
SFTL006: Creating Best-in-Class Intel® RealSense™
Applications

General Microsoft* Visual Studio* Tips

Permissions: Be sure to run as admin or restart Microsoft* Visual Studio* with elevated permissions.

Line Numbers

If you don’t see the line numbers:
From the Solution Explorer panel menu,
select “Tools” -> “Options”.
From the left list box,
choose “Text Editor”,
then select “C/C++”,
and make sure “Line numbers” is
checked. Click OK.

To Configure the Build Target Platform,
and Build the Solution

On the Menu Bar, select the “Build” menu ->
“Configuration Manager”. Make sure the fields are set as
shown.

To Configure the Development Environment

C++ : To import property sheets, choose View → Other Windows → Property Manager. Right click on
the project and choose Add Existing Property Sheet. They’re in $(RSSDK_DIR)/props.
Use VS2010-13.Integration.MD.props for dynamic runtime compilation or
use VS2010-13.Integration.MT.props for static runtime.

C#. The SDK exposes 2 DLLs supporting .Net 4.0 : libpxcclr.cs.dll & libpxccpp2.dll
In the solution explorer, right click the project name and select Add Reference.
For C#: Add $(RSSDK_DIR)/bin/[win32 or x64]/libpxcclr.cs.dll
For C++ P/Invoke DLL: The app must manually copy libpxccpp2.dll to the local directory (if using Copy
Local=True).

Lab 1: Intel® RealSense™ R200/F200 Raw Streams

1

This lab shows how to get raw streams from an Intel® RealSense™ Camera using the Camera Viewer
module with either the user facing or world facing camera. You will use the Lab sample app (DF_
CameraViewer_vs2013.sln) and add these functions in the camera_viewer.cpp file (Use same file for
F200 and R200 but add lines as specified per camera. For the solution, R200 and F200 Folders are
separate and the folder you used should be renamed to src).

 Create SenseManager instance

 Configure the 3 streams (color, depth, IR). Later separate into 3 windows

 Initialize the pipeline

 Acquire and render each frame and clear for next (loops)

L1 Step-1: Open source camera_viewer.cpp
On the desktop, open IDF_RealSenseLab> Lab1_FR_RawStreams >
 DF_ CameraViewer_vs2013.sln

From the “Solution Explorer” panel, open src > camera_viewer.cpp.

L1 Step-2: Create Instance, Configure Streams, and Init the Pipeline

After Line 18, add code below as TODO 1
// create an instance of SenseManager
 PXCSenseManager *pp = PXCSenseManager::CreateInstance();

After Line 26, add code below as TODO 2
// Create stream renders

For F200 use:
 UtilRender renderc(L"Color"), renderd(L"Depth"), renderi(L"IR");
For R200 use:

UtilRender renderc(L"Color"), renderd(L"Depth"), renderl(L"IR-Left"),
renderr(L"IR-Right");

After Line 30, add code below as TODO 3
// configure the components

for F200 use:
pp->EnableStream(PXCCapture::STREAM_TYPE_COLOR |
PXCCapture::STREAM_TYPE_DEPTH | PXCCapture::STREAM_TYPE_IR, 0, 0);

For R200 use:
 pp->EnableStream(PXCCapture::STREAM_TYPE_COLOR | PXCCapture::STREAM_TYPE_DEPTH |

 PXCCapture::STREAM_TYPE_RIGHT | PXCCapture::STREAM_TYPE_LEFT, 0, 0);

2

L1 Step-3: Handle each frame

Starting at Line 45, aquire and render each frame (until loop is stopped) (TODO 4)
/* Waits until new frame is available and locks it for application processing */
 sts=pp->AcquireFrame(false);

After Line 48 to set the color, depth and IR images in 3 separate windows, ((TODO 5)
/* Render the frame*/
 const PXCCapture::Sample *sample = pp->QuerySample();
 if (sample) {
 if (sample->color && !renderc.RenderFrame(sample->color)) break;
 if (sample->depth && !renderd.RenderFrame(sample->depth)) break;

Then add in TODO 6

For F200 add
 if (sample->ir && !renderi.RenderFrame(sample->ir)) break;

 }

For R200 use:
if (sample->left && !renderr.RenderFrame(sample->left)) break;
if (sample->right && !renderl.RenderFrame(sample->right)) break;
}

L1 Step-4: Graceful close
After Line 55, add in line as TODO 7
// Release the frame so the pipeline can process next frame
 pp->ReleaseFrame();

After Line 66, BEFORE exiting, add in line as TODO 8
// Release the (created SenseManager) Instance

pp->Release();

Step-5: Press “Save” to save your code in CameraViewer.cpp.

Step-6: Build the solution.

Step-7: Run the App by pressing “Local Windows Debugger”.

After the app starts, you should see 4 windows show up, respectively, for
Windows command, Color stream, Depth Stream, and IR stream.

To exit, press Esc or q in the windows command window.

Lab 2: Intel® RealSense™ F200 Background Replacement Usage

3

Use the background segmentation algorithm module to replace the video background with grayscale or a
different picture. You will use Lab2a_F_3DSeg to do grayscale and then Lab2b for video background.
Please use the separate 3dseg.cpp files in 2a or 2b to:

 Setup camera pipeline

 Initialize 3dSegmentation module

 Blend segmented image with greyscale background

 Replace grayscale with another background video (Lab 2b)

Lab 2a: Create Sample application with background replacement capability

L2 Step-1: Open 3dSegmentation source
On the Desktop, open IDF_RealSenseLab
 Lab2a_F_3DSeg> FF_3DSeg_vs2013.sln
From the “Solution Explorer” panel, open src > 3dseg.cpp

L2 Step-2: Setup Camera pipeline

After line 26 (32) replace ToDo 1 // create a pipeline construct
PXCSenseManager* pSenseManager = PXCSenseManager::CreateInstance();

At Line 35 (41) replace ToDo 2 // Enable the User Segmentation video module
pxcStatus result = pSenseManager->Enable3DSeg();

At Line 42 (48) replace ToDo 3 //Query 3dSegmentation module
PXC3DSeg* pSeg = pSenseManager->Query3DSeg();

At Line 55 (62) replace ToDo 4 // Initialize and report the resulting stream source
and profile to stdout

result = pSenseManager->Init();

Lab 2 Step-3: Acquire the segmented frame and blend with background

Line 105, ToDo 5
//Get the segmented image from PXC3dSeg Video Module
result = pSenseManager->AcquireFrame(true);

Line 167 (179) ToDo6 //Get the address of the row of pixels
 pxcBYTE* p = segmented_image_data.planes[0]
 + y * segmented_image_data.pitches[0];

4

Line 182 (194) ToDo7 //Blend the image with grey pixels
Else for (int ch = 0; ch < 3; ch++) p[ch] = (p[ch] >> 4) + GREY;

 Now Build and Run!

Lab 2B. Use 2B files, make same changes as above and then change
background from greyscale to picture. USE 2B files

L2 Step-4: Open Lab 2b 3dseg.cpp
On the Desktop, open IDF_RealSenseLab Lab2b_F_3DSeg -> FF_3DSeg_video.sln. You will
modify the source file 3dseg.cpp from 2b

L2 Step-5: Setup pipeline. Repeat Step 2 above, line numbers in (). Do
NOT repeat Step 3

L2 Step-6:
Line 115, replace ToDo 8 //Open CV to read file
string filename = "test.mp4";

VideoCapture cvCaptureFromFile(filename);
if (!cvCaptureFromFile.isOpened())

throw "Error when reading steam_avi";
Mat framefile;

Line 139 replace ToDo 9 //Acquire the image
 PXCImage* segmented_image = pSeg->AcquireSegmentedImage();

Line 209, replace ToDo 10 //Read each RGB pixel from compressed MP4 frame
PixelColor.val[0] = fPtr[y*frame.cols*channel + x*channel + 0]; // B
PixelColor.val[1] = fPtr[y*frame.cols*channel + x*channel + 1]; // G
PixelColor.val[2] = fPtr[y*frame.cols*channel + x*channel + 2]; // R

Line 223, replace ToDo 11 //Blend RGB from video frame and segmented image
p[0] = PixelColor.val[2];
p[1] = PixelColor.val[1];
p[2] = PixelColor.val[0];

5

Lab 3: Intel® RealSense™ F200 Hand Tracking and
Gesture

Use the hand module to recognize gestures and determine left or right hand. You will use
Lab3a_F_Hands and Lab3b_F_Hands to complete the following functions in the Handviewer.cpp file

 Setup camera pipeline

 Initialize the hand module

 Detect and alert on recognized gesture (3a)

 Detect hand and alert the recognized gesture with hand information (3b)

Lab 3a: Create Sample application to recognize at least 3 different gestures

L3 Step-1: Open Hand Viewer source
On the Desktop, open IDF_RealSenseLab
 Lab3a_F_Hands> FF_HandViewer_vs2013.sln

From the “Solution Explorer” panel, open src > Handviewer.cpp

L3 Step-2: Setup the Camera
Pipeline

The function void SimplePipeline(HWND hwndDlg) starts at line 283 (299).
Fill in the following key lines of code:

Line 289: //Create Sense Manager
 PXCSenseManager *pp = g_session->CreateSenseManager();
 if(!pp)
 {

SetStatus(hwndDlg,L"Failed to create SenseManager");
return;

}

Line 303: //Enable Hand Module
pxcStatus status = pp->EnableHand(0);

Line 306: After //Query Hand Module
PXCHandModule *handAnalyzer=pp->QueryHand();
if(handAnalyzer == NULL || status != pxcStatus::PXC_STATUS_NO_ERROR)
{

 SetStatus(hwndDlg,L"Failed to pair the gesture module with I/O");
 Return
}

6

(Lab 3 continued)

Line 317: //Initialized the Pipeline
pxcStatus result = pp->Init();

L3 Step-3: Enable Gesture

After Line 346: //Disable all gesture for better performance
 config->DisableAllGestures();

After Line 350: //Enable specific gesture. Add gesture name from manual
config->EnableGesture(L"spreadfingers", true);

Lab 3b: Modify Gesture Recognition to detect which hand and specific gesture

Follow Steps 1 and 2 of Lab 3a EXCEPT use lab 3b files!!!!!!!

L3 Step-4:

Around Line 223 in Lab 3b file, in the Function display Gesture,
AFTER //Get hand data related to fired gesture , add
 PXCHandData::IHand* handData;

Line 227, AFTER //Check body side
if(handData->QueryBodySide() == PXCHandData::BodySideType::BODY_SIDE_LEFT)
{

gestureStatus += ",Left Hand Gesture: ";

AFTER //Else if body side
 else if(handData->QueryBodySide() == PXCHandData::BodySideType::BODY_SIDE_RIGHT)

{
gestureStatus += " Right Hand Gesture: ";

L3 Step-5: Save file and build code

7

Lab 4: Intel® RealSense™ F200 camera Face Tracking

Use various functions of the face tracking algorithm module to detect and track the face and landmarks of
the face and detect poses. You will use the Lab sample app (DF_FaceTracking_vs2013.sln) and fill in
the following functions In FaceTrackingProcessor.cpp

 Setup the camera pipeline

 Configure Face Tracking Utilities (Face, Landmark and Pose Detection)
 Expression Recognition

Lab 4a:

L4 Step-1: Open FaceTracking source

On the Desktop, open IDF_RealSenseLab
Lab4_F_FaceTracking\DF_FaceTracking_vs2013.sln
From the “Solution Explorer” panel, open src >
FaceTrackingProcessor.cpp

L4 Step-2: Setup Camera pipeline

Read thru the function (CreateSenseManager) from line 66, start at void
FaceTrackingProcessor::Process(HWNDdialogWindow)

Around Line 100, replace ToDo1 with

/* Set Module */
senseManager->EnableFace();

/* Initialize */
 FaceTrackingUtilities::SetStatus(dialogWindow, L"Init Started",
statusPart);

Then add a QueryFace()

PXCFaceModule* faceModule = senseManager->QueryFace();
if (faceModule == NULL)
{

assert(faceModule);
return;

}

(Lab 4 continued)

8

Then Create the Active Configuration

PXCFaceConfiguration* config = faceModule->CreateActiveConfiguration();
if (config == NULL)
{

assert(config);
return;

}

Then Set the Tracking Mode

config->SetTrackingMode(FaceTrackingUtilities::GetCheckedProfile(dialogWindow));
config->ApplyChanges();

L4 Step-3: Run the code
Press ctrl + F5 to see the camera stream.

9

Lab 4, Task 2: Setup Face, Landmark,
 and Pose detection

L4 Step-4: Around Line 171
(look for FaceTrackingAlertHandler)
,

replace ToDo 2 (not Todo 3)
with the following code
for location, landmark, and pose to enable all
expressions.

config->detection.isEnabled = FaceTrackingUtilities:
:IsModuleSelected(dialogWindow, IDC_LOCATION);
 config->landmarks.isEnabled = FaceTrackingUtilities:
:IsModuleSelected(dialogWindow, IDC_LANDMARK);
 config->pose.isEnabled = FaceTrackingUtilities:
:IsModuleSelected(dialogWindow, IDC_POSE);

(should resume existing code at ToDo 3 and then config->EnableAllAlerts();)

L4 Step-5: Hit ctrl+ F5 to run the code.
On the popup, check the Detection/Landmarks/Pose box on the
right

You can see that the face is detected in a yellow bounding box,
various landmarks on the face are detected and painted in white
and the pose information is displayed on the top right (Pitch,
Yaw and roll information).

10

Lab 4, Task 3 : Expression Recognition

L4 Step-6: At the bottom of the step 5 section (but above config->EnableAllAlerts(),
replace ToDo3 with

 if (FaceTrackingUtilities::IsModuleSelected(dialogWindow, IDC_EXPRESSIONS))
 {
 config->QueryExpressions()->Enable();
 config->QueryExpressions()->EnableAllExpressions();
 }

L4 Step-7: Hit ctrl+ F5 to run the code.
On the popup, check Expressions and click Start:

In the example picture, the mouth is open and eyes are looking up. Note the left side of the
picture box shows the values of the selected expressions.

Try putting your tongue out, closing an eye or even kissing to see the expressions being
recognized!

11

Lab 5: Intel® RealSense™ R200 Enhanced Photography
Module

The R200 provides multiple enhanced photography algorithms. Use Lab5_R_EnhancedPhotography to
perform the following functions in the RF_EnhancedPhotography.cpp file

 Measure the distance between two points
 Refocus based on Depth
 Paste a sticker on plane
 Pop a Color

Lab 5: Take a snapshot and measure distance

L5 Step-1: Open the EP Viewer

From the desktop, click on
IDF_RealSenseLab-> Lab5_R_EnhancedPhotography-> RF_EnhancedPhotography_vs2013.sln

Press Ctrl + F5 to run the code.

A blank EP Viewer will appear.
The bottom left status indicator will show ‘Streaming’
but the video window will be blank.

You need to write the code to display the camera
stream.

L5 Step-2: Open the EP Viewer and read through pipeline creation
Open Source Files\RF_EnhancedPhotography.cpp

Scroll down to line 417,

This sets up the camera pipe line, enables the enhanced photo module and initializes the camera streams.

Lab 5 Step-3: Setup Display

12

 At line 464,
the while loop queries a frame from the camera
and needs to display it on the screen

On line 469, replace ToDo 1 with
 sample = senseMgr->QuerySample();

On line 473, replace ToDo 2 with:
 DrawBitmap(hwndDlg, sample->color);

L5 Step-4: Compile and check results
Press Ctrl + F5 to compile. Check for color streaming in the EP Viewer.

 L5 Step-5: Measure the distance between two points.

Starting at Line #180, read through the function ProcessPhoto

The
measurement
feature is

implemented in lines 202 to 212

On Line 208,
pxcF32 distance = 0;

replace ToDo 3 (not whole line) with

distance = ep->MeasureDistance(photo,
g_start, g_end);

Run the code and take a picture of a flat surface about 1’ away from the camera.
Choose the Measure radio button and select two points to measure the distance between them.

13

14

 Lab5 Step-6: Refocus based on depth

Depth refocus is implemented in
lines 217- 240

On line 224, replace ToDo 4 with:

photoOut = ep->DepthRefocus
(photo, g_start, 30);

Run the code again.
Point it at an object and take a snapshot. Then choose the refocus radio button and select a point on the
object to refocus it . Notice the change of focus.

L5 Step-7: Paste sticker on Plane

The Paste on plane feature is implemented in lines 243 - 266 .

~ line 252, replace ToDo 5 with

photoOut = ep->PasteOnPlane
(photo, sticker, g_start, g_end);

Run the code and take a snapshot of a flat
surface.

Choose the paste on plane radio button

15

Lab5 Step-8: Color Pop

The Color Pop function is coded on lines 268 -295

On line 273,
PXCImage *mask = NULL; //ToDo 6 :

replace the entire line 276

PXCImage *mask = ep->ComputeMaskFromCoordinate(photo, g_start);

On line 282,
replace ToDo 7 with:
 BlendColorPop(photoOut, mask);

l5 Step-9: Run the code and take a snapshot.

 Select the color pop radio button and choose a pop
point.

16

Lab 6: Intel® RealSense™ R200 Augmented Reality SP
Use the Scene Perception algorithm module to create an Augmented Reality sample app
(RF_AugmentedRealitySP_vs2013.sln) with the following functions:

In sp_controller.h

 Initialize and Configure Scene Perception module

 Query for Scene Perception Sample

 Retrieve color/depth images, camera pose, and tracking accuracy from sample

In AugmentedReality.cpp

 Overlay objects onto the scene when localization Tracking Accuracy is acceptable

 Clean up resources by releasing the frame

 Experiment with the R200’s real-time Localization/Tracking capabilities

L6 Step-1: Open the AR/SP Module

On the Desktop, open IDF_RealSenseLab
 Lab5_R_AugmentedRealitySP RF_AugmentedRealitySP_vs2013.sln.

Open \include\ sp_controller.h,

L6 Step-2: Create Session Instance & Init and configure
the SP module

At Line 90, replace TODO 1a with

m_pSession = PXCSession::CreateInstance();

At Line 108, replace TODO 1b with

17

pxcStatus sts = m_pSenseMgr->EnableScenePerception();

L6 Step-3: Query for ScenePerception Sample

At Line 247, in the ProcessNextFrame function, replace TODO 2 with
auto pxcStatus = m_pSenseMgr->AcquireFrame(true);

 Lab 6 Step-4 Retrieve color/depth images,
camera pose, and tracking accuracy

At Line 277, (still in ProcessNextFrame function), replace TODO 3 with

if (color) *color = sample->color;
if (depth) *depth = sample->depth;

L6 Step-5 Overlay objects onto the Scene

Open the \src\AugmentedReality.cpp file

On line 505, in clbDisplay function, replace TODO 4 by calling the function

 drawObjects();

L6 Step-6 Release the Frame and Clean Up Resources

On line 556, (still in the clbDisplay function), replace TODO 5 by calling the function

pScenePerceptionController->CleanupFrame();

18

19

L6 Step-7 Experiment

Press F5 to build the sample app and run it.

Point at something (that has texture) which is 1-2m (3-6’)
away from the camera. (sample uses cardboard box).
When the “Tracking status” shows “High Accuracy”, the
SHOOT button will appear. (Requires successful track
for buttons to appear.)

Click the shoot button to overlay the ball objects
on the object on the screen.

(Lab 7 Task 3 Conclusion)

The Scene Perception module keeps track, in
realtime, of the camera pose, and the localization
data.

To verify that the R200 Scene Perception Module is accurately tracking the camera pose, try
moving the camera closer, further or to the side.

20

Observe the tracking accuracy as the balls stay in
the overlay location on the object.

You can hit the RESET button to start-over as
needed.

Legal Notices and Disclaimers

Intel technologies’ features and benefits depend on system configuration and may require enabled
hardware, software or service activation. Learn more at intel.com, or from the OEM or retailer.
No computer system can be absolutely secure.
Tests document performance of components on a particular test, in specific systems. Differences in
hardware, software, or configuration will affect actual performance. Consult other sources of information
to evaluate performance as you consider your purchase. For more complete information about
performance and benchmark results, visit http://www.intel.com/performance.
Cost reduction scenarios described are intended as examples of how a given Intel-based product, in the
specified circumstances and configurations, may affect future costs and provide cost savings.
Circumstances will vary. Intel does not guarantee any costs or cost reduction.
This document contains information on products, services and/or processes in development. All
information provided here is subject to change without notice. Contact your Intel representative to obtain
the latest forecast, schedule, specifications and roadmaps.
Statements in this document that refer to Intel’s plans and expectations for the quarter, the year, and the
future, are forward-looking statements that involve a number of risks and uncertainties. A detailed
discussion of the factors that could affect Intel’s results and plans is included in Intel’s SEC filings,
including the annual report on Form 10-K.
The products described may contain design defects or errors known as errata which may cause the
product to deviate from published specifications. Current characterized errata are available on request.
No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by
this document.
Intel does not control or audit third-party benchmark data or the web sites referenced in this document.
You should visit the referenced web site and confirm whether referenced data are accurate.
Intel, RealSense, and the Intel logo are trademarks of Intel Corporation in the United States and other
countries.

*Other names and brands may be claimed as the property of others.

© 2015 Intel Corporation

21

http://www.intel.com/performance

22

	SFTL006: Creating Best-in-Class Intel® RealSense™ Applications
	To Configure the Build Target Platform, and Build the Solution
	L1 Step-1: Open source camera_viewer.cpp
	After Line 66, BEFORE exiting, add in line as TODO 8 // Release the (created SenseManager) Instance
	Lab 2a: Create Sample application with background replacement capability
	L2 Step-1: Open 3dSegmentation source
	L2 Step-2: Setup Camera pipeline
	Lab 2 Step-3: Acquire the segmented frame and blend with background
	L2 Step-4: Open Lab 2b 3dseg.cpp On the Desktop, open IDF_RealSenseLab Lab2b_F_3DSeg -> FF_3DSeg_video.sln. You will modify the source file 3dseg.cpp from 2b L2 Step-5: Setup pipeline. Repeat Step 2 above, line numbers in (). Do NOT repeat Step 3
	Lab 3a: Create Sample application to recognize at least 3 different gestures
	L3 Step-1: Open Hand Viewer source On the Desktop, open IDF_RealSenseLab Lab3a_F_Hands> FF_HandViewer_vs2013.sln
	The function void SimplePipeline(HWND hwndDlg) starts at line 283 (299). Fill in the following key lines of code:
	Lab 3b: Modify Gesture Recognition to detect which hand and specific gesture
	Follow Steps 1 and 2 of Lab 3a EXCEPT use lab 3b files!!!!!!!
	Lab 4a:
	L4 Step-1: Open FaceTracking source
	L4 Step-2: Setup Camera pipeline
	L4 Step-3: Run the code
	Lab 4, Task 2: Setup Face, Landmark, and Pose detection
	Lab 5: Take a snapshot and measure distance
	Lab 6 Step-4 Retrieve color/depth images, camera pose, and tracking accuracy
	At Line 277, (still in ProcessNextFrame function), replace TODO 3 with
	drawObjects();

