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Abstract Commodity RGBD cameras such as Kinect

sensor have recently proved a large success in many indoor

robotics and computer vision applications. Nevertheless,

professional applications cannot rely on their raw outputs

because of the low accuracy. These consumer cameras can

only produce precise depth measures within a small range.

However, they do suffer from potential noise when the

target is further away than permitted distance. The present

paper proposes an innovative adaptation of Kalman filter-

ing scheme to improve the precision of Kinect as a real-

time RGBD capture device. We demonstrate Kalman filter

adaptation to any Kinect-like camera and further justify the

robustness of our approach with real experiments. A GPU

implementation of the filter is also described with the dif-

ferent levels of optimisation.

Keywords RGBD � Real time � Tracking � 3D

registration � Kalman filter � GPU

Abbreviations

GPU Graphic processing unit

CPU Central processing unit

RGBD Red, green, blue and depth

RGB Red, green and blue

TOF Time of flight

FPS Frames per second

IR Infrared

3D Spatial X, Y and Z three dimensions

KF Kalman filter

MovAve Moving average filter

RMSE Root mean square error

1 Introduction

The concept of virtual reality is increasingly becoming a

necessity for many civilian and defence applications, espe-

cially when importing concrete data of the scene into virtual

models becomes possible [1]. Tools to capture 3D infor-

mation of objects are required. Laser scanning technologies

produce accurate scans [2], but they are expensive and

require a level of expertise to manipulate them correctly [3].

Along with laser scanners, ultrasonic and radar scanners [4]

are available for use as well. Existing multi-view methods

[5] can produce acceptable results by reconstructing 3D

models using two or more images taken for the same object

from different viewpoints [6]. Nevertheless, image-based

reconstruction process is computationally greedy, and

therefore not convenient for real-time applications [7].

Furthermore, this technology presents some drawbacks such

as sparse textures or complex occlusions among different

views [6]. On the other hand, two other classes of range

sensors, namely time of flight (ToF) and structured light

cameras can be adopted as well [8]. The former captures

reflected light and computes the distance between the sensor

and the scene from the time that elapses between emission

and reception [9]. The latter uses an IR projector that emits

light patterns onto the scene [10]. These patterns are cap-

tured by an IR camera and then correlated to a reference

stencil that has a known depth value. The deviation between

snapshot range and the reference one produces a disparity
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image, which the sensor uses to deliver the actual range map

of the scene [11]. In the present work, we aim to enhance the

capabilities of commodity range cameras to derive accurate

and trustworthy 3D scans. The device we used is Microsoft

Kinect,1 which is an off-the-shelf RGBD sensor that was first

designed for interactive gaming. More importantly, it has

proved a vast success among computer vision and graphics

professional and research applications alike since it was first

introduced. Moreover, accuracy itself is not sufficient for

good 3D data capture; real-time performance should also be

ensured in the architecture we design. In other words, the

filtering algorithm should run at the same rate of capture

without introducing latency to the whole system and by

benefitting as much as possible from the maximum frame

rate of the sensor. To this end, we propose a parallel design

implemented on the GPU to clean the raw depth measure-

ments output by Kinect. At this level, it becomes possible to

embed the GPU-based filtering setup in dedicated cards for a

self-contained capture/filtering system. This last configura-

tion could be added to every RGBD setup as a pre-processing

stage to feed the subsequent levels with neat point clouds.

The present work is divided into these sections. In the

first one, ‘‘related work’’, we discuss state-of-the-art

research about RGBD data filtering. The architecture of our

filtering scheme is fully presented in ‘‘System architec-

ture’’. We highlight ‘‘Kinect sensor technical specifica-

tions’’ as an example of RGBD camera. We present

‘‘Kalman filter’’ as a real-time refinement approach. Kal-

man filter is then leveraged to enhance the robustness of

RGBD sensors in ‘‘Kalman filter on Kinect’s data’’.

‘‘Kalman filter effect on RGBD data for moving vehicles

tracking’’ illustrates how our findings about Kinect could

be beneficial to recognise Kinect as an accurate real-time

measurement device.

In ‘‘Kalman filter effect on RGBD data for depth images

registration’’ we assess the visual quality of the geometry built

upon filtered 3D data. In the next section ‘‘Results and dis-

cussion’’, the precision of our solution is evaluated. Finally, in

‘‘Conclusion and future work’’ we highlight the benefits of our

approach and present the future works we are targeting.

2 Related work

By nature, depth data are rough and noisy Fig. 1a. RGBD

sensors in general are sensitive to noise because of their

active nature. Filtering approaches aim to remove noisy

data (outliers), clean the useful zones (inliers) and preserve

the edges. In the presence of specular reflective or light-

emitting objects, holes appear in the captured depth data.

Hole filling is a challenging task because of the missing

values. The recovery of the lost parts is generally based on

some assumptions about the regions surrounding them and

where the disparity data are available.

Despite the quantisation noise (noise created when

reproducing the continuous real world with a discrete digital

representation), recent research papers mostly use raw Ki-

nect data without any filtering. However, limitations in the

covered space and the maximum reachable depth need to be

addressed. Other papers focus on Kinect depth data de-

noising or propose data pre-processing stages as a basis for

their applications. Menna et al. [12] present a detailed study

on the precision of the Kinect depth map. However, no

specific approach to depth map accuracy improvement has

been proposed. They used a filtering approach based on

spatio-temporal median computed from the motion vector.

Camplani et al. [13] used an adaptive joint-bilateral filter that

combined depth and colour by analysing an edge-uncertainty

map and the detected foreground regions to improve the

quality of the Kinect depth map.

Kalman filter uses a sequence of noisy measurements

observed over time and produces statistically optimal esti-

mates [14]. This filter is well known amongst navigation,

guidance, communication and control researchers, since it

helps enormously to predict and correct the noisy measure-

ments. Kalman de-noising method has been recently

implemented to clean Kinect data in a few works. Ling et al.

[15] applied extended Kalman filter in a real-time 3D map-

ping framework on Kinect RGBD data. The authors pro-

posed repetitive linearisation of the nonlinear measurement

model to provide a running estimate of camera motion.

Similarly, Thibault et al. [16] applied nonlinear Kalman

filtering to generate accurate 3D maps. Furthermore,

Sangheon et al. [17] proposed a 3D hand tracking method

based on a Kinect and a Kalman filtering strategy. In all the

cited works, Kalman filter was customised to fit the target

application (3D mapping or tracking). However, the novelty

of the present work originates from the fact that we uncov-

ered some interesting characteristic properties of Kinect

sensor and the behaviour of its output over time. We have

also demonstrated that the depth measurements can be

optimally filtered to feed several applications without any

supplementary tuning of the parameters. Our modelling is

useful for all the users of Kinect camera, in particular, as well

as RGBD sensors, in general.

3 System architecture

The Kinect outputs three different streams of data2 as

illustrated in Fig. 2. The system we are aiming to design in

the present paper targets only depth stream. Kinect sensor

1 http://www.xbox.com/en-GB/Kinect, 2013. 2 http://msdn.microsoft.com/en-us/library/jj131023.aspx, 2013.
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has the advantage of working in real time at a frequency of

30 fps. Whenever a further processing is added to the line,

a drop in frame rate occurs. Hence, to conserve the real-

time nature of the solution, we must find a suitable hard-

ware and software combination that best answers this need.

From a hardware point of view, the same processing

(kernel) could normally be applied in parallel on all the

pixels of the depth image. In the implemented solution, we

achieved a frame rate ranging between 25 and 30 fps,

which is very convenient for the application level, as the

filter computational load is relatively low during the whole

capture. To reach real-time performance when processing

huge amounts of 3D data, we need enough computation

power to handle the flow of depth images. In the literature,

GPUs have provided many advantages, while CPU has

proved to be too slow to handle considerable amounts of

data. As a consequence, we designed a series of algorithms

to be embedded in the graphic processor. This allows us to

fully benefit from the maximum frame rate of the camera

(30 fps) which would be otherwise impossible to reach

with classic CPU implementations.

Figure 3 shows the stream of depth data from the

camera, to the parallel filtering stage, and then finally to the

application level. This architecture could be easily inte-

grated as an independent data enhancement stage into the

driver of any Kinect-like camera. The core algorithm needs

only to be initialised with the appropriate camera calibra-

tion parameters specific to the sensor.

From the software side, we adapted a recursive state-

transition filter to Kinect’s depth data. However, this was

not a straightforward task, since some complex conditions

need to be fulfilled. In addition, this kind of adaptation has

not been previously discussed in the literature. Thus, we

developed our own mathematical formulation to ade-

quately fit the problem into the filter’s model.

4 Technical specifications of the Kinect sensor

The Kinect sensor is an RGBD camera which has the

ability to capture both a depth map of the scene and an

RGB colour image at a frame rate of 30 fps. The sensor

includes the following:

• An IR projector: projects IR patterns on the scene.

• An IR camera: captures the reflected light of the

projected patterns.

• An RGB camera: works as an ordinary colour camera.

The Kinect computes depth with a triangulation pro-

cess.3 After a calibration procedure, both the RGB image

and the IR depth data can be fused to form a coloured 3D

point cloud of about 300,000 points in every frame. Like

any camera, Kinect cannot cover the entire continuous

resolution of the physical scene [18]. It actually projects

the captured disparity map on a set of discrete parallel

planes. Consequently, some data, which should be posi-

tioned between the planes (according to their real world

continuous x; y; zð Þ coordinates), are either lost or shifted to

the closest available discrete range level. The accuracy of

the sensor is largely affected by this low-resolution-related

Fig. 1 Kinect depth and colour

data

Fig. 2 Kinect data streams

3 http://wiki.ros.org/kinect_calibration/technical, 2014.

J Real-Time Image Proc

123

http://wiki.ros.org/kinect_calibration/technical


behaviour. More importantly, if we use Kinect for appli-

cations that require fairly accurate 3D pose data, this

drawback will adversely affect the measurements and will

result in erroneous sensing for the whole system. The

innovative point in our research work is that, inspired by

the 3D structure of the sensor’s output, and using a well-

established filtering scheme [19], we were able to improve

the capabilities of RGBD sensors and to increase the

robustness of the measurements over time. However, the

adaptation of the filter to the sensor’s output is not possible

before the fulfilment of a number of conditions, such as the

assumption of Gaussian white noise and that the quantity

that we wish to optimise (depth measurements) should

evolve linearly over time. In the following section, we

present the Kalman filter. Then, we develop a thorough

analysis followed by the proof that all the conditions

required to apply the Kalman filtering scheme are satisfied

with Kinect data.

5 Kalman filter

The Kinect has been designed for gaming applications in

which the user is relatively close to the sensor at all times.

Professional applications using its data can only be accu-

rate at a close range. Indeed, for depth values greater than

3.50 m the error can reach ±20 cm. However, this inac-

curacy is unacceptable in most end applications.

To overcome the low quality of data, many filters exist

in the literature, but up to now, none has perfectly adapted

to work on RGBD sensors. In this study, we apply the

Kalman filter to accurately stabilise the Kinect data capture

over time. We also improve its capabilities to cover a larger

view. This work is motivated by some properties we

discovered concerning the depth data that permit us to fit it

into a Kalman filter framework. The working principle of

this filter is based on a recursive prediction of the next state

and its correction. The Kalman filter is distinguished by its

ability to run in real time, using only the present mea-

surements as input and the previously estimated state, with

no additional history of the system’s behaviour [20].

The general form of state-transition filters to predict or

estimate the state of a dynamic system from a series of

incomplete or noisy measurements is defined by the fol-

lowing equations:

xt ¼ Axt�1 þ But þ wt; ð1Þ
zt ¼ Hxt þ vt: ð2Þ

Linear Kalman filter equations in prediction–correction

form are given below:

Prediction:

xt ¼ Axt�1 þ But þ wt; ð3Þ

Pt ¼ APt�1AT þ Qt: ð4Þ

Correction:

Kt ¼ PtH
TðHPtH

T þ RkÞ�1; ð5Þ
xt ¼ xt þ Ktðzt � HxtÞ; ð6Þ

Pt ¼ ðI � KtHÞPt; ð7Þ

where for each discrete time step, t; xt is the state variable;

xt is the state estimate; zt is the measured entity; Pt is the

state error covariance; Pt is the a priori estimate of the state

error covariance; Kt is the Kalman gain; A is the state-

transition model; B is the control-input model; H is the

observation model; Qt is the covariance matrix of process

noise; Rk is the covariance of measurement noise of the kth

Z-Level; wt is process noise; vk is measurement noise at the

Fig. 3 Real-time RGBD data

filtering architecture
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kth Z-Level; ut is the control signal. Process and obser-

vation noise models should be independent, white and

follow a normal distribution: wt�Nð0; QtÞ; vk �
Nð0; RkÞ.

To adapt Kalman filter to our specific case, we should

first demonstrate that the sensor’s model and its data satisfy

the requirement to fit into Eqs. 3, 4, 5, 6, 7. During the

experiments, we found that Kinect RGBD pixels lie in

parallel planes towards the positive Z direction. The depth

values are limited to a known set of levels. To enhance the

accuracy of the sensor, without any extra hardware, we

proposed an adaptation to the Kalman filter, which over a

small number of frames associates each pixel with an

optimal depth value.

6 Kalman filter on Kinect’s data

6.1 Z-resolution

To study the nature of depth resolution of the camera, we

pointed the camera parallel to a large flat wall as shown in

Fig. 4a. This setup allows us to capture a cloud of points

from the whole Kinect operating range. We also aim to

characterise the necessary parameters for the filter.

As shown in Fig. 4b, depth resolution is inversely pro-

portional to the distance from the sensor. In addition, the

points in the capture (taken from the same frame) are

distributed in independent clusters that we define as ‘‘Z-

Levels’’. Accordingly, we formulate Kinect’s data as a

finite set of points distributed on parallel planes (Z-Levels),

where every plane constitutes a partition of the whole

capture.

The mathematical definition is as follows:

K : Set of indices ranking the parallel planes.

I: Set of indices indexing the points lying in the planes.

C: set of the whole point cloud data (Fig. 4b).

Zk; k 2 K: Plane in C (Fig. 4c).

Pi xi; yi; zið Þ; i 2 I: Point in RGBD space, lying in a

given Z-Level, Zk ¼ zi; k 2 K; (Fig. 4c).

Every point cloud C satisfies the properties:

C ¼ UkZk; k 2 K ð8Þ
8Zk1; Zk2 2 C; k1; k2 2 K; k1 6¼ k2; Zk1 \ Zk2 ¼ ; ð9Þ
8pi 2 C; i 2 I; k 2 K; 9! Zk; pi�Zk ð10Þ
8Zk 2 C; k 2 K; Zk?Zaxis: ð11Þ

6.2 Depth noise statistics

The Kinect, as an electronic device, has hardware-related

noise. This noise is caused by reference template accuracy,

calibration process, lighting conditions and the objects’

surface properties [21]. Errors in the projected data

increase with increasing Z distances, because of the

decrease in depth resolution Fig. 4b. A study that we

conducted to discover the nature of noise affecting the

depth measurements showed that it has a Gaussian distri-

bution with varying standard deviations. These depend on

the range separating the sensor and the scene. Figure 5a

shows some samples that were taken at 3.406 m from the

camera. Based on the graph, we can extract the corre-

sponding standard deviation, which was 0.075 m.

When we re-projected the sampled points back to their

original depth map, we found that the standard deviations

rk could be formulated by the equation:

rk ¼ ðZkþh � Zk�hÞ=2; 8k 2 K; h 2 N ð12Þ

where rk is the average distance between the two

extremities of the 2hþ 1 Z-Levels and the central one Zk to

which the sampled point belongs (Fig. 5b). As a result, at

every level Zk, the Kinect noise remains Gaussian and rk is

its standard deviation Eq. 12. Empirically, the best results

were reached with h ¼ 3. This property allows us to prove

the Gaussian nature of the quantisation noise affecting

depth data, and to consequently satisfy the first condition

required to apply the Kalman filter. Moreover, we can

precisely attribute a standard deviation rk to every

Z-Level, which will serve to compute optimal depth mea-

surements for all the points in the cloud.

Fig. 4 Kinect’s point cloud structure
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6.3 States of an IR pixel

When we point the sensor against a static scene, where

both the sensor and the scene remain steady during the

whole capture, and we observe the depth map over time

Fig. 6a, we notice fluctuations in almost 90 % of all the

map’s elements (the range reading at every pixel of the

depth map). The change is limited to a finite set of values

close to each other. If we closely observe the rendered

points, we note that they tend to disappear from one Z-

Level and reappear in a neighbouring one as illustrated in

(b). In addition, for every capture of any scene, there is a

finite set of repetitive depth values. In other words, we can

predict the possible discrete depth values that we may

encounter in the output data. As explained above, the Ki-

nect sensor works in a discrete set of depth elements that

we call ‘‘Z-Levels’’. Every level constitutes a partition of

the whole set of points within a frame (Eqs. 8, 9, 10), and

has the property of being completely independent from the

neighbouring levels and orthogonal to Z-axis (Eq. 11). As a

result, we cannot find a point out of these parallel planes.

This is what really appears in all the captured data if we

rotate the scene over the X-axis or Y-axis (the points lie in

planes parallel to XY). The importance of such information

for Kinect-based applications is that we can study the

relationship between depth measurements taken over dif-

ferent frames. That is, if we find that two successive depth

measures are related to a linear function, we will have

fulfilled the second condition required to use the Kalman

filter.

When the sensor is stationary, the depth map keeps

changing because of points jumping from one Z-Level to

another Fig. 6b, not necessarily adjacent, but within a

limited radius Eq. (12).

When the points change their depth level, the 2D (ui; vi)

image coordinates on the screen remain the same, but their

world coordinates ðxi; yi; ziÞ change. This is true because

every point Pi ðxi; yi; ziÞ in the 3D world lies on a line from

the centre of the camera passing through the pixel (ui; vi)

on the screen towards the scene (Fig. 6b), following the

direction of the perspective frustum [22]. Using this

information, we can infer the relationship between two

successively measured 3D coordinates.

From the intrinsic parameters of the camera (fx; fy;

cx; cy), we have the equations:

ui ¼ ðfx=ziÞxi þ cx

vi ¼ ðfy=ziÞyi þ cy

�
zi 6¼ 0: ð13Þ

As pixel coordinates in two successive frames remain

the same, from Eq. 13 we get with zi 6¼ 0; zþi 6¼ 0 [(?)

means the new coordinates in the following frame]:

uþi ¼ ui�! yieldsðfx=zþi Þxþi þ cx ¼ ðfx=ziÞxi þ cx

vþi ¼ vi�! yieldsðfy=zþi Þyþi þ cy ¼ ðfy=ziÞyi þ cy

�
:

ð14Þ

Finally, after simplification of Eq. 14, we get:

xþi ¼
zþi
zi

� �
xi

yþi ¼
zþi
zi

� �
yi

8>><
>>:

: ð15Þ

Equation 15 proves the linearity between points pro-

jected at the same pixel on the screen over different frames.

Adding this to the Gaussian nature of noise, we can safely

use the Kalman filter as a real-time filtering tool for RGBD

sensors. The effect of the filter can clearly be seen in

Figs. 7, 8.

6.4 The Kalman filter adaptation to the Kinect sensor

For a given pixel in the frame at time step t; �Zt is the state

estimate; eZt is the measured depth; �Pt is the a priori esti-

mate error covariance and Kt is the Kalman gain. We have

one-to-one scalar correspondence between state/measure-

ments, so H ¼ 1:A ¼ 1 as the depth should not change

beyond the magnitude of noise between two successive

Fig. 5 Z data quantisation noise behaviour and statistics
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frames (rk). B ¼ 0 for a fixed sensor. There is no process

noise, Q � 0 (we assume that the system is precisely

modelled). Rk ¼ r2
k is the covariance of observation noise

(rk is the standard deviation which describes the magnitude

of noise around its mean �Zt and differs from one Z-Level to

another proportionally to the distance from the sensor). For

a static sensor/dynamic scene setup, Kalman Eqs. 3, 4, 5, 6,

7 become:

Prediction:

�Zt ¼ Zt�1; ð16Þ
�Pt ¼ Pt�1: ð17Þ

Correction:

Kt ¼ �Ptð�Pt þ RkÞ�1; ð18Þ

Zt ¼ �Zt þ Ktð eZt � �ZtÞ; ð19Þ

Pt ¼ ð1� KtÞ �Pt: ð20Þ

From the equations above, one may think that at a given

pixel, �Zt does not evolve over time, although important

variations in depth occur if the observed object moves

backward or forward. Our filter optimises the estimates of

depth under the assumption that the dynamics of the scene

slightly change between two successive frames (the change

Fig. 6 Z-Levels’ properties
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is not abrupt DZ � a� rk, within 33 ms; 33 ms = 1/30

fps). The parameter a is determined empirically. We found

that a ¼ 2:5 gives the best results. In practice, our cus-

tomisation of the Kalman filter is generally verified,

because we deal with physical objects that move gradually

and continually. The elementary displacements of these

entities are small given the high frame rate of capture that

we are ensuring by implementing the filter on the GPU.

Based on this, when the depth reading changes its levels,

the filter updates the pixel’s workspace ( �Zt; Rk; �Pt; Kt).

However, when the difference between two successive z

values becomes greater than 2:5 � rk, the workspace is

reinitialised according to the current value of depth (the

object jumps from Z-Level k to Z-Level’ �Ztþ1 ¼ �Ztþ1,

Rk0 ¼ 2:5� rk0 ; �Ptþ1 ¼ Rk0 ; Ktþ1 ¼ �Ptþ1ð�Ptþ1 þ Rk0 Þ�1
).

As a result, the steadier the scene is, the better the filter

performs. In real scenarios, most of the pixels within the

image do not change beyond the threshold of every frame.

This fact helps the filter to operate smoothly in an indoor

environment (Kinect is designed to work only indoors)

where the scene does not abruptly change all the time.

7 Kalman filter effect on RGBD data for moving

vehicles’ tracking

Tracking applications are very concerned with the accuracy

in position of the tracked entity. However, Kinect raw data

are not accurate enough to precisely localise an object

within its neighbourhood. When the sensor captures a point

cloud, the 3D data are automatically distributed on the

discrete Z-Levels Fig. 9b. However, the original point data

come from the continuous real world. Their corresponding

images in Kinect’s space lie in the sensor’s parallel planes.

The error in measurement is proportional to the gap

between Z-Levels where the points are projected. None-

theless, the Kalman filter takes these noisy raw data as

input, optimises them, and consequently approaches the

best of their real-world counterparts Fig. 9c. The effect of

the filter can be clearly seen in Fig. 10. The two images in

Fig. 10a, b depict the raw and the filtered trajectories,

respectively, for a moving robot captured by the same Ki-

nect camera. The blue points in Fig. 10a represents the raw

positions taken by the robot. If we observe closely the

deeper points (greater zi), the gaps between the parallel Z-

Levels are clearer (because of the drop in resolution as we

get far away from the camera). However, the Kalman fil-

ter’s smoothing effect as seen in Fig. 10b optimally con-

denses the sparse and discrete Zk around their corresponding

real-world true positions �Zt: This behaviour reduces the

error in the 3D point cloud. Accordingly, the position of the

tracked object becomes more precise and reliable.

8 Kalman filter effect on RGBD data for depth image

registration

Image registration is necessary to reconstruct 3D models of

real objects for simulation, and virtual and augmented reality

applications. Feature extraction and matching are the basic

tools to find the respective correspondences between two

different images before aligning them. Figure 11b illustrates

the captured point data which are distributed on parallel

planes (as we explained earlier). When the same real-world

feature is detected in two different point clouds, we find it

lying in a given Z-Level that is naturally discrete and does

not reflect the true position of the feature in the scene.

Consequently, the whole 3D data of the scene are discretised

because of the sensor’s nature. As a result, equivalent features

within different point clouds will be wrongly matched.

Hence, alignment error increases (Fig. 11d, e). On the other

hand, the application of the Kalman filter optimises the

positions of the tracked features and produces the best pos-

sible result, given hardware limitations of the camera. The

Kalman filter optimally places the discrete points in the

continuous real space (off the discrete Z-Levels) (Fig. 11c).

Therefore, the features obtained from different viewpoints

should have closer 3D geometric properties and the sub-

sequent registration is achieved with less error (Fig. 11f). The

Kalman filter is more useful at greater ranges, because Kinect

accurately measures the depth at small ranges (below 1.5 m).

Fig. 7 The effect of Kalman filter on point cloud data
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Fig. 8 On the left, raw 3D

point clouds; and on the right,

the corresponding filtered point

clouds (Kalman filter)

Fig. 9 Kalman effect on Kinect’s data for object tracking applications
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Fig. 10 Kalman effect on

position data

Fig. 11 Effect of Kalman filtering on image features
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9 Results and discussion

All the following stages are based on our hardware con-

figuration which includes an INTEL i7 3,930 K CPU with

six physical cores (two logical cores per physical) running

at 3.20 GHz, 16.0 GB of RAM, along with an NVIDIA

GeForce 2 GB GTX 680 GPU. All the programing in our

work was done in C?? for the CPU and CUDA for the

GPU.

Fig. 12 Kalman filter GPU implementation for depth map filtering

Fig. 13 Optimisation of data exchange in the GPU

Fig. 14 Robot tracking experimental setup

Fig. 15 CPU/GPU benchmarking of KF for Kinect
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Fig. 16 Tracking scenario 1 (circle)
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Fig. 17 Tracking scenario 2 (left to right)
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Fig. 18 Tracking scenario 3 (front to back)
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9.1 GPU implementation of the Kalman filter for depth

map filtering

The objective of the present work is to filter VGA reso-

lution (640 9 480) depth images at the same frame rate of

the camera to allow the following applications to fully

exploit the frame rate offered by the sensor (30 fps). When

we first ran the filter on regular CPU, the maximum

reached frame rate was 17 fps. Hence, the need to imple-

ment the solution on the GPU emerged.

Image data are more naturally organised to fit GPU

blocs where every element in the bloc (kernel) processes a

single pixel at a time [23]. Figure 12 illustrates how the

depth image output by the camera is divided into image

blocs of a constant size of (16� 16 pixels; so 256 threads

is the size in of the bloc in our implementation). The pixels

of the same image bloc are processed simultaneously in the

same GPU thread bloc. As a result, for every pixel in the

image, a kernel in the GPU is attributed. The latter runs the

actual filtering (KF) on a single depth pixel (range reading)

and saves the necessary data for the next frame (Zt, Pt).

This scheme is straightforward because there are no con-

straints between the pixels and the order in which they

should be processed. Otherwise, more specific techniques

should be applied to benefit from the parallel computing

ability of the GPUs. The complexity of processing is

reduced to the complexity of the algorithm running in the

kernel (Kalman filter), which indeed is constant.

Other methods should be addressed to optimise the util-

isation of all the available hardware capability. Basically, the

design of heterogeneous algorithms aims at higher occu-

pancy of the processors and a full usage of the bandwidth

when exchanging data between the central memory (RAM)

and the global memory of the GPU (GMGPU) [24]. To this

end, we focus on two optimisation aspects:

9.1.1 Running asynchronous transfers

When the GPU is processing the current frame, the bus

between it and the central memory is entirely free. We

therefore benefit from this idleness in exchanging data. In

other words, the following frame (f tþ1) is sent from the

RAM to the GMGPU, and the already available result

(f 0t�1) is sent back to the RAM. Simultaneously, the cur-

rent frame (f t) is being processed on the device (GPU)

Fig. 13(a).

9.1.2 Memory coalescing

The GPU automatically loads the content of adjacent

memory cells because its internal design assumes that it is

highly probable for neighbouring data within the same area

to be sooner requested as well [25]. Memory coalescing is

another optimisation that significantly helps to increase the

probability of threads in same warp (a group of 32 threads

from the same thread bloc running simultaneously) to fetch

data from the memory together. The purpose of memory

coalescing is to ensure that the threads fetch data within the

same memory segment to only pay one memory transac-

tion. However, if the threads of the same warp fetch sparse

addresses, then it will cost 32 memory transactions.

Appropriately organising the data in device memory

allows such contiguous access to automatically happen.

Programmatically, Structure of Arrays rather than the easy to

use Array of Structure significantly increases the chances of

loading a chunk of memory containing the data for not only

the thread which requests it, but also for its neighbours in the

warp. Figure 13b illustrates what happens when a thread

fetches a given cell in the global memory.

9.2 Object tracking applications

To validate our findings about the filtering effect of the

Kalman scheme on the Kinect data, we conducted an

experiment in which a moving vehicle was tracked by one

Kinect camera Fig. 14. The robot moves in a closed space

of 4 m 9 4 m, and the aim is to find the global position of

the robot within the surrounding environment at the same

time of the capture.

We tested our solution against Moving Average filter

(MovAve) [26] to justify the rationale of fitting the Kalman

equations to the Kinect sensor and to show the proof of

validity.

The two important components to localise the robot are

Z and X coordinates (Y is almost unchangeable over time

for ground robots. It can be included without any restric-

tion). The purpose of this approach is to test the accuracy

of Kinect in issuing a 3D special positions for a given

object in real time. The filter affects only the depth data (Z

component in this setup). Hence, the computation of the

two other coordinates is based on Z and the calibration

parameters of the IR camera Eq. 13).

Table 1 RMSE results of our tracking scenarios

Scenarios Components MovAve

(m)

KF (m) Difference

(m) (MovAve–

KF)

Scenario 1

(circle)

Z 0.040307 0.028102 0.012205

X 0.081796 0.056366 0.025429

Scenario 2

(left-to-

right)

Z 0.040307 0.028102 0.012875

X 0.081796 0.056366 0.030445

Scenario 3

(front-to-

back)

Z 0.045275 0.033223 0.012053

X 0.08948 0.058883 0.030597
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Figure 15 illustrates our GPU/CPU benchmarking for

the three tracking scenarios. The outcome of the GPU

implementation is clearly seen. The whole frame rate of

tracking is just below 30 fps (almost one frame processed

every 33 ms).

For generality, we tested our tracker on three different

scenarios where the robots were moving in front of the

camera in circular motion, left to right (swinging back and

forth) and front to back (swinging left and right). For every

scenario, we plotted the ground truth trajectory taken by

the vehicle, along with the raw position and the filtered

trajectories resulting from the Kalman filter (KF) and the

moving average filter (MovAve).

To assess the accuracy of our approach, we evaluated

the root mean square error (RMSE) for both Z and X. The

results can be seen in Figs. 16, 17, 18.

Fig. 19 Experimental results for 3D reconstruction applications
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In all the three scenarios, it is clearly shown that Z and

X graphs filtered with KF are impinged with less error

because of KF optimal smoothing effect. Moreover, the

further the robot gets from the camera to the upper left and

right corners, the higher is the error. Noisy fragments of the

trajectory correspond to the peaks of X and Z error plots.

Ultimately, the filtered trajectory (in red) is always the

closest to the ground truth (in black). Its RMSE is also

smaller than that of MovAve. In other words, at every

position KF-RMSE is 1.0 cm less than MovAve-RMSE

Table 1. The raw data (blue) is sparser and unsteadier. Its

corresponding error is higher.

9.3 Registration applications

Unlike tracking, registration applications use many features

to find the correct mapping between the source and target

views. To test the usefulness of our filter on this type of

applications, we run some experiments on a real-time 3D

scanning application based on the Kinect. This application

uses a structure from motion algorithm to gradually build

the 3D geometry of the scene as we move around with the

handheld Kinect [27]. The algorithm reconstructs the 3D

geometry of the scene by aligning new frames on the

already built model. Both filtered and the raw 3D data were

tested (Fig. 19).

Registration based on the raw data was prone to misa-

lignments which led to a rough 3D structure (particularly,

when the object gets further away from the camera). As we

can see in Fig. 19b, raw depth points lie in parallel planes

(stripes can be clearly seen in column b). This shows what

we have already explained in ‘‘3D image registration’’. The

feature positions are discretised and distributed on the

available depth levels. Although surface reconstruction

algorithm fills the gaps between the planes after triangu-

lation, the resulting model still suffers from a rough and

bumpy surface. This drawback clearly appears after the

lighting of the reconstructed structure. On the other hand,

with the model resulting from the filtered data, illustrated

in Fig. 19 column (c), the geometry is smoother and there

is almost no misalignment between the views taken over

time. The resulting 3D geometry is more realistic and less

noisy. Hence, it does not need any further post-processing.

From the computational point of view, 3D recon-

struction algorithm runs at 20 fps. This frame rate is less

than the frequency of filtering which varies between 25

and 30 fps. No ground truth model was used to exactly

evaluate the error after reconstruction (unlike what we did

in the tracking application). Visually, we can assess the

high quality of the outputs resulting from the scanning

process (the filter transforms the points to their optimal

3D locations).

10 Conclusion and future work

In this work, we presented an innovative approach to

enhance the quality of raw RGBD data issued by Kinect-

like sensors. We built the mathematical model representing

the depth map and successfully adapted it to the Kalman

filtering scheme. To validate our finding, we tested the

filtering approach on an object tracking algorithm (to

quantify the accuracy of the data after applying the filter).

In addition, we tested the output of the filter in a 3D

scanning application (to visually assess its effect on the 3D

model). We proposed a possible architecture to directly

integrate the filter in the existing driver of the camera.

However, to maintain the real-time nature of the sensor, we

used a parallel algorithm that applies the same kernel of

processing on all the pixels in the depth image. Practically,

the filter was designed pixel-wise to avoid constraining any

pixel by its neighbours. Thus, our own solution was

implemented in the GPU.

As future work, we aim to extend our findings about the

Kinect to other 3D scanning devices. This will allow us to

reach a better accuracy without generating latency in the

system. As a result, consumer cameras will be better

endowed to reasonably achieve what could not be other-

wise done without expensive sophisticated tools. We aim to

fully embed the algorithm on dedicated computing boards

to free the system from the hassle of filtering the raw 3D

data. We furthermore initiated the application of the Kal-

man filter to RGBD image stabilisation. Most of the state-

of-the-art approaches that are used come from image pro-

cessing background. The benefit we got from this research

can be similarly investigated in other image problems. The

advantage of the Kalman filter is that it can produce opti-

mal results with correct adaptation to the problem.
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