
Carderock Division

Naval Surface Warfare Center
Bethesda, Maryland 20084-5000

CARDEROCKDIV-94/000

May 2000

DT_NURBS

Spline Geometry Subprogram Library

Users’ Manual

Version 3.7

Prepared by

Boeing Shared Services Group

Edited by

United States Navy

Naval Surface Warfare Center/Carderock Division

David Taylor Model Basin

Bethesda, MD 20084

DT_NURBS Users’ Manual

 iii

TABLE OF CONTENTS

CHAPTER 1 - INTRODUCTION

CHAPTER 2 - DTRC SPLINE GEOMETRY

CHAPTER 3 - DYNAMIC MEMORY MANAGEMENT FACILITY

CHAPTER 4 - CREATING CURVES

CHAPTER 5 - CREATING SURFACES

CHAPTER 6 - NOTES ON INTERSECTING SURFACES

CHAPTER 7 - GEOMETRY, GRIDS AND ANALYSIS

CHAPTER 8 - IGES FILE MANIPULATION

CHAPTER 9 - USER-DEFINED DATA TYPES

CHAPTER 10 - REINITIALIZING DYNAMIC MEMORY ARRAYS

CHAPTER 11 - SPECIAL INTERSECTION

CHAPTER 12 - POINT ON INTERSECTION

CHAPTER 13 - TRAVERSE TRIMMED BOUNDARY

CHAPTER 14 - TRIMMED & JOINED - DT_NURBS VS IGES

CHAPTER 15 - TRIMMED TO SUBRANGE

CHAPTER 16 - COMPUTING MOMENTS OF INERTIA

APPENDIX A - LICENSE TERMS AND CONDITIONS

DT_NURBS Users’ Manual

1-1

INTRODUCTION

1

1.1 THE DT_NURBS LIBRARY

This Users' Manual contains general and introductory information about the DT_NURBS Spline

Geometry Subprogram Library developed for the David Taylor Research Center by Boeing Com-

puter Services.
1
 The Library uses a Non-Uniform Rational B-Spline (NURBS) representation for

general spline functions. It is implemented in the FORTRAN 77 programming language.

The other two manuals for the Library are the Reference Manual, which contains the complete

interface information for each user-callable subroutine, and the Theory Document, which con-

tains technical articles about the algorithms, implementation, and application of some of the

more complex components of the Library.

The development of complex physical systems (ships, airplanes, turbine engines, etc.) typically

involves the application of many independently created computer-based tools. A principal moti-

vation for the creation of the DT_NURBS Spline Geometry Subprogram Library was the need for

a tool kit for building interfaces between these many design and analysis tools, and to help estab-

lish standard representations for geometric design data and related analysis data which are not

dependent on any particular tool’s peculiarities.

1.2 SPECIAL FEATURES OF DT_NURBS

The NURBS representation is most often used as a computationally efficient way to express

curves in a plane or curves and surfaces in space. It forms the basis for many Computer-Aided

Design (CAD) systems. However, almost all the underlying mathematics works equally well for

n-parameter functions to m-dimensional space. One of the unusual features of the DT_NURBS

Library is that it was designed to support these more general functions. Some applications of the

capability to represent functions with arbitrary numbers of independent and dependent variables

are the ability to model a surface together with the pressure and temperature at each surface point

as a single NURBS object, the ability to model a time-varying surface as a three-parameter

NURBS object, the ability to model parametric solids, the ability to model fluid flows in a vol-

ume as a single continuous NURBS function, and the ability to create, manipulate, and analyze

all these things with the same set of tools.

Standard FORTRAN 77 lacks the features needed to create complex data structures and to dy-

namically allocate memory based on run-time needs. Another unusual feature of the

DT_NURBS Library is the inclusion of facilities which mitigate these deficiencies as much as

possible while remaining fully compliant with the FORTRAN 77 standard and fully portable to

any system with a FORTRAN 77 compiler.

1
 The formal names of both institutions have changed since the project began. See the title page for the current

names.

DT_NURBS Users’ Manual

1-2

1.3 OUTLINE OF THE USERS MANUAL

Chapter 1 contains introductory and version information about the Library. Chapter 2 describes

the NURBS representation and why it is used. Chapter 3 describes the Library's Dynamic

Memory Management Facility. Chapter 4 describes the tools in the Library for creating curves.

Chapter 5 describes the tools in the Library for creating surfaces. Chapter 6 contains information

about the various subroutines which compute intersections of surfaces. Chapter 7 explains the

intent behind a new data structure which relates the geometry, the grids used in analyzing design

performance and the analysis results together in one structure. The remaining chapters consist of

case studies illustrating in brief form the application of the subroutines in the Library to a repre-

sentative set of problems. It is hoped that concrete examples will be more helpful than hundreds

of pages of generalities.

1.4 DISTRIBUTION OF THE DT_NURBS LIBRARY

The DT_NURBS Spline Geometry Subroutine Library source code, test code and documentation

is available free under license to qualified organizations and individuals. An example of typical

license terms and conditions is given in Appendix A.

The Library is distributed through a World-Wide Web site with the URL (at this writing) of

http://ocean.dt.navy.mil. The most current information about the Library is likely to be found on

this site. In particular, the procedure for registering for a free license will be found there.

The many files comprising a particular release of the DT_NURBS Library are assembled into a

small number of large, compressed files in both UNIX "tar" format and “zip” format. The indi-

vidual files and updates to individual files made between formal releases are also available.

As of this writing, the contact person for licenses and general information is
 Robert Ames AmesRM@nswccd.navy.mil

 NSWC/Carderock Division (301)227-3657

 David Taylor Model Basin fax(301)227-1125

 Code 50

 Bethesda, MD 20084-5000

Library development is an ongoing activity, although the pace varies widely depending on fund-

ing and other factors. Please communicate with "ames" regarding any bugs, documentation er-

rors, performance problems, suggested improvements, general needs, etc. User input has a major

influence on priorities and general direction.

1.5 NAMING CONVENTIONS FOR LIBRARY GLOBAL NAMES

In order to make it easy to distinguish the Phase 2 routines which use dynamic memory manage-

ment from routines which don't, and user-callable routines from Library internal subroutines, the

naming convention for Library subroutines has been refined. All Phase 1 routines had names be-

ginning with "DT", except for twenty low-level internal subroutines whose names began with

"D". These initial characters were followed by three or four alphanumeric characters of "unique"

name. The refined naming convention requires all "global" Library names to begin with "D", but

varies the second letter to identify important major subsets of names as follows:

http://ocean.dt.navy.mil/

DT_NURBS Users’ Manual

1-3

D0 Internal low-level routines, not user-callable.

D1 Internal "shadow" routines, not user-callable. The "shadow" part refers to the fact that

there is a corresponding user-callable routine with the same "unique" name that does in-

put checking and then calls the "shadow" routine to do the real work. The "shadow" rou-

tine is preferred for internal calls by other Library routines.

DT User-callable, non-memory-managing routines. All the user-callable Phase 1 routines

remain in this category. The DT routines may be preferred for simple tasks that do not

involve complex data structures or very many NURBS objects

DU Internal low-level routines, not user-callable, non-memory-managing.

D2 User-callable, memory-managing routines. All these routines have the dynamic memory

arguments "CMEM, IMEM, DMEM" as their first three arguments. Where a DT subrou-

tine and a D2 subroutine perform essentially the same function, the same "unique" name

is used, although the argument lists differ significantly.

DC Reserved for Library common blocks. Communication via arguments is preferred. An

internal common block is used by the Library error routines.

DI Reserved for Library "include" files. While "include" is a very common and useful fea-

ture, it is not standard. Hence it will not be used in Library source code. However, there

are occasional instances of useful files which users may wish to "include" in their own

code, either by using their own version of the "include" feature, or by directly embedding

the text via a text editor.

During a transition period, there may be Phase 1 subroutines in the Library which belong in the

DU category, but whose names have not yet changed from the original DT or D. Since none of

these are intended to be user-callable, it should have no impact on user code.

1.6 HISTORY AND VERSION NOTES

The DT_NURBS Library has been evolving over time in response to the needs of its users. The

first phase developed most of the DTxxxx subroutines. The fundamental data construct manipu-

lated by these subroutines is the single NURBS function. The second phase extended the Library

with more DTxxxx subroutines and new D2xxxx subroutines. The new series of subroutines

implements a dynamic memory management scheme and supports composite data structures of

arbitrary complexity in standard, portable FORTRAN.

1.6.1 VERSION 2.1 CHANGES

Version 2.1 of the Library adds two new capabilities: a full IGES file interface and a dynamic

memory file interface. The IGES file interface is implemented by the definition of the structure

of data types IGES Entity and IGES Index and by thirty-seven new D2xxxx subroutines. The key

subroutines are D2IGRD, which reads an IGES file and creates a corresponding data structure in

dynamic memory, and D2IGWR, which writes an IGES file from an IGES data structure in dy-

namic memory. The IGES File Reader and Writer include options to restrict transfers to the enti-

ties listed in the NASA-IGES Protocol. The relevant entities are listed in Chapter 3 of the Refer-

ence Manual. An alternate text-file-based method for saving, transferring, and retrieving arbi-

DT_NURBS Users’ Manual

1-4

trary data entity structures built using the Library's dynamic memory management facility is im-

plemented by the subroutines D2READ and D2WRIT. This new D2 File Format is also de-

scribed in Chapter 3 of the Reference Manual.

1.6.2 VERSION 2.2 CHANGES

With Version 2.2 of the Library, dynamic memory versions of several popular spline evaluation

and interpolation subroutines are added. The following table lists the subroutines and their dy-

namic memory names. Both versions are documented in the Reference Manual.

DT Name D2 Name Purpose

DTNPDR D2NPDR Evaluation of a partial derivative of a tensor product spline

DTNPVL D2NPVL Evaluation of a tensor product spline

DTSPDR D2SPDR Evaluation of a spline and its derivatives

DTSPVL D2SPVL Evaluation of a spline

DTCNTR D2CNTR Contour generation

DTNSI D2NSI Construction of a natural spline interpolant

To support this conversion, several new entity types and their support subroutines had to be cre-

ated. Following is a list of these new subroutines.

Entity type New Subrou-

tine

Purpose

SA: Sub-Array Access D2SADF Define

SM: Sub-Matrix Access D2SMDF Define

CA, IA and DA: Character, Integer and

Double Precision Array

D2ADF Define

 D2ASZ Get dimensions

 D2AETC

D2AETI

D2AETD

Transfer one element of appropriate type

 D2AAT Transfer entire array or sub-array

 D2AATD Transfer double precision array to/from a

Sub-Array Access (SA) entity

CM, IM and DM: Character, Integer and

Double Precision Matrix

D2MDF Define

 D2MSZ Get dimensions

 D2METC

D2METI

D2METD

Transfer one element of appropriate type

 D2MMT Transfer entire matrix or sub-matrix

 D2MMTD Transfer double precision matrix to/from a

Sub-Matrix Access (SM) entity

 D2TPSM Transpose matrix

CQ, IQ and DQ: Character, Integer and

Double Precision Sequence

D2QDF Define

DT_NURBS Users’ Manual

1-5

Entity type New Subrou-

tine

Purpose

 D2QSZ Get dimensions

 D2QATC

D2QATI

D2QATD

Transfer sequence of appropriate type

BF: B-spline Function Array DTGETS

D2BFSZ
2

Get size information

 DTKNOT

D2BFKN

Transfer the knot sequence

 DTBRKP

D2BFBP

Transfer the breakpoints

 DTCTLP

D2BFCP

Transfer the control points

Also included in this Version are a new Composition of Functions (CF) data type and subrou-

tines which support this new structure. Following is a list of these new subroutines.

New Subroutine Purpose

D2POSE Compose two existing functions to produce a new Composition of Functions (CF)

entity

D2POSX Extend a composition

D2DPSE Decompose a Composition of Functions (CF) entity

D2BINE Combine two functions to produce a new Spline Function (BF) entity

D2CONC Concatenate two functions to produce a new Spline Function (BF) entity

D2MPBC Build a spline mapping from the unit square into a planar region

D2MPQD Build a spline mapping onto a planar region defined by a quadrilateral

D2EVLF Evaluate a Composition of Function (CF) entity

D2EVL1 Evaluate a Composition of Function (CF) entity which has just one independent vari-

able

D2EVL2 Evaluate a Composition of Function (CF) entity which has just two independent vari-

ables

D2EVLS Evaluate a "small" Composition of Function (CF) entity which no more than two in-

dependent variables and three dependent variables

D2EVDF Evaluate partial derivatives of a Composition of Function (CF) entity

D2EVD1 Evaluate derivatives of a Composition of Function (CF) entity which has just one in-

dependent variable

D2EVD2 Evaluate partial derivatives of a Composition of Function (CF) entity which has just

two independent variables

D2EVDS Evaluate partial derivatives of a "small" Composition of Function (CF) entity which

no more than two independent variables and three dependent variables

1.6.3 VERSION 2.3 CHANGES

With Version 2.3 of the Library, two new entity types were added to support the Grid, Geometry

and Analysis concept. See Chapter 2 of the Reference Manual for details.

2
 In cases where there is both a new DTmmmm and a D2nnnn subroutine, the "D2" subroutine is a dynamic memory

form of the "DT" subroutine.

DT_NURBS Users’ Manual

1-6

The following new subroutines were added to support these new entities.

New Subroutine Purpose

D2GACF Geometry And Analysis Add Function

D2GADF Geometry And Analysis Define

D2GADN Evaluate Derivative Of A Geometry And Analysis Function By Name

D2GADV Evaluate Partial Derivative Of A Geometry And Analysis Function

D2GAEN Evaluate A Geometry And Analysis Function By Name

D2GAEV Evaluate A Geometry And Analysis Function

D2GRDF Grid Define

Five new IGES-style entity types were defined in order to write the new Grid (GR) and Geometry

and Analysis (GA) entities to an IGES file. These are described in Chapter 3 of the Reference

Manual.

The following new subroutines were added to convert the Grid (GR) and Geometry and Analysis

(GA) entities and their dependencies to and from the DT_NURBS-defined IGES types.

New Subroutine Purpose

D2BFDI Convert B-Spline Function (BF) To DT_NURBS IGES Type

D2DIBF Convert DT_NURBS IGES Type To B-Spline Function (BF)

D2CFDI Convert Composition Of Functions (CF) To DT_NURBS IGES Type

D2DICF Convert DT_NURBS IGES Type To Composition Of Functions (CF)

D2CQDI Convert Character Sequence (CQ) To DT_NURBS IGES Type

D2DICQ Convert DT_NURBS IGES Type To Character Sequence (CQ)

D2DADI Convert Double Precision Array (DA) To DT_NURBS IGES Type

D2DIDA Convert DT_NURBS IGES Type To Double Precision Array (DA)

D2DMDI Convert Double Precision Matrix (DM) To DT_NURBS IGES Type

D2DIDM Convert DT_NURBS IGES Type To Double Precision Matrix (DM)

D2DQDI Convert Double Precision Sequence (DQ) To DT_NURBS IGES Type

D2DIDQ Convert DT_NURBS IGES Type To Double Precision Sequence (DQ)

D2GADI Convert Geometry And Analysis (GA) To DT_NURBS IGES Type

D2DIGA Convert DT_NURBS IGES Type To Geometry And Analysis (GA)

D2GRDI Convert Grid (GR) To DT_NURBS IGES Type

D2DIGR Convert DT_NURBS IGES Type To Grid (GR)

D2IADI Convert Integer Array (IA) To DT_NURBS IGES Type

D2DIIA Convert DT_NURBS IGES Type To Integer Array (IA)

Also, the B-Spline Function (BF) and Composition of Function (CF) entity types were modified

to accommodate labeling of independent and dependent variables.

The following new subroutines were added to support variable labeling.

DT_NURBS Users’ Manual

1-7

New Subroutine Purpose

D2BFDP Dump A B-Spline Function Entity To A File

D2BFER Erase B-Spline Function

D2BFLV B-Spline Function Label Variables

D2BFMG B-Spline Function Merge

D2BFSL B-Spline Function Select By Labels

D2CFDP Dump A Composition Of Functions Entity To A File

D2CFLV Composition Of Functions Label Variables

D2CFSL Composition Of Functions Select By Labels

D2FEVL Fetch Variable Label

Two new distance subroutines were added to determine the Hausdorff distance between two

functions, and to determine a distance function between two curves.

New Subroutine Purpose

D2HDIS Hausdorff Distance Between Functions

D2PDIS Distance Between Parametric Functions

Significant Changes to Existing Subroutines

The derivative evaluation routines for the Composition of Functions (CF) entity type [D2EVDF,

D2EVDS, D2EVD1, D2EVD2] were found to be in error, if the composition contained more

than one B-Spline Function (hereafter referred to as a “complex composition”). These have been

corrected. If a derivative of a complex composition is desired, use D2EVDF. A second, or

higher, derivative of a complex composition is not available at this time.

Because several conversions of DT_NURBS entities into IGES involve dependent entities, it

made sense that the subroutines themselves should keep track of the current directory entry num-

ber, rather than the user. Thus, the JDE parameter for the IGES conversion routines [D2BFIG,

D2CYIG, D2LPIG, D2TSIG] is now an INPUT/OUTPUT parameter. On input to the subrou-

tine, JDE should point to the directory entry in which the parent entity will be stored. On output,

JDE will be set to the next free directory location. If the last entry has been used, the IGES Index

(GI) entity will be expanded and JDE will point to the newly created space. The calling program

should no longer need to increment JDE between subroutine calls. The user should confirm that

none of the listed subroutines, as well as the new D2xxDI subroutines, is called with a constant

in the place of the JDE parameter.

D2IGWR has been modified to remove null directory pointers from the end of the IGES Index

(GI) entity before writing the IGES file.

1.6.4 VERSION 2.4 CHANGES

With Version 2.4 of the Library, extensions to the IGES translation capability have been added.

A powerful new surface-surface intersector D2SSXT, using the dynamic memory management

scheme was added.

DT_NURBS Users’ Manual

1-8

Also, the contour subroutine D2CNTR was re-written to accommodate higher order splines.

D2CNTR was previously limited to cubic splines.

The following new subroutines were added.

New Subroutine Purpose

D2GRGA Construct Geometry and Analysis from Grid of Points and a Parent Surface

D2IGBQ Convert IGES type 102 (Composite Curve) to a B-Spline Sequence entity (BQ)

D2IGCF Convert IGES type 142 (Curve on a Surface) to a Composition of Functions (CF)

D2IGDM Convert IGES type 124 (Transformation Matrix) to a Double Precision Matrix (DM)

D2SSXT New Surface-Surface Intersection Subroutine

Modified Sub-

routine

Purpose

D2IGBF,

D2IGCY

Extended to handle IGES types 100 (Circular Arc), 104 (Conic Arc), 106 (Copious

Data--Polyline), and 110 (Line Segment)

D2IGTS,

D2IGLP,

D2IGEG,

D2LPIG

Extended to handle IGES type 144 (Trimmed Surface)

1.6.5 VERSION 2.5 CHANGES

Version 2.5 of the Library primarily involves a restructuring of the DT_NURBS documentation.

The previous Users’ Manual has been extended to include much more usage information and ex-

amples. The subroutine documentation has been moved to a new Reference Manual.

In addition to the documentation changes, the following new subroutines were added:

New Subroutine Purpose

D2ARLN Dynamic memory version of DTARLN (“Compute Arc Length”)

D2CLPM Compute the Point(s) on a Set of Surfaces and/or Curves Closest to a Given Point

D2CLSP Dynamic memory version of DTCLSP (“Compute the Point on a Surface or Curve

Closest to a Given Point”)

D2EQAR Dynamic memory version of DTEQAR (“Extract Points at Equal Arc Length”)

D2MDIS Minimum Distance between Functions

D2RADC Dynamic memory version of DTRADC (“Compute Radius of Curvature”)

Modified Sub-

routine

Purpose

D2HDIS Add parameter IFSOL= parameters of each function at the solution point

D2PDIS Add parameter IFSOL= parameters of each function at the solution point

1.6.6 VERSION 3.0 CHANGES

With version 3.0 of the Library, the definition of the pointer has been modified, so that the head-

ers are calculated from the top of the IMEM Integer Memory Array. This enables memory to be

expanded by the user, and D2REIN to be called to shift the headers up with the expansion, with

DT_NURBS Users’ Manual

1-9

no change to the existing pointers. See Section 3.3 for an explanation of dynamic memory point-

ers.

The following new subroutines were added:

New Subroutine Purpose

D2ALFR Compute Arc Length Fraction (Curve)

D2ALFS Compute Arc Length Fraction (Surface)

D2ALPT Compute Arc Length Point

D2CAPP Approximate a Conic Section with a Polynomial Spline

D2CLXT Curve and Line Intersection

D2CNPR Extract a Constant Parameter Curve

D2CRBL Blend Curves

D2CSI Construction of Complete Spline Interpolant

D2DIGL Compute Double Integral

D2GCSI Complete Spline Interpolant on a Multivariate Grid

D2GELE General Linear Equation Solver

D2GESL General Linear Equation Solver for Additional Right Hand Sides

D2GNSI Natural Spline Interpolant on a Multivariate Grid

D2GPAR Multivariate Grid Parameterization

D2GRBL Blend a Grid (Network) of Curves

D2GTPA Weighted Least Square Tensor Product Spline Approximation of Data on a Multi-

variate Grid

D2HSI Construction of Hermite Spline Interpolant

D2JOIN Join Two Splines Together

D2LCMB Linear Combination of Two Splines

D2LCMS Form Linear Combination of a Mesh

D2LCST Form a Linear Combination of Strings of Data

D2LSA Weighted Least Square Spline Fit to Data

D2MGKT Combine Knots

D2MIRI Mirror a Spline Surface

D2MMPS Matrix-Matrix Product

D2MVPS Matrix-Vector Product

D2OSLO Add Knots to a Spline

D2PCS1 Construction of Periodic Cubic Spline Curve

D2PCS2 Construction of Periodic Cubic Spline Surface

D2PCUT Compute the Intersection of a Surface and a Plane

D2PCXT Curve and Plane Intersection

D2PLAR Compute Planar Area

D2PLN3 Generate a Spline Representation of a Plane, Given 3 Points

D2PLNE Generate a Spline Representation of a Plane

D2QUAD Compute Single Integral

D2RDCA Read B-Spline Data from a File

D2REAX Read D2 File Format with Extra Output

D2REIN Reinitialize Dynamic Storage Arrays After Expansion

D2RHOC Build a Rho-Conic

D2RMKT Remove a Knot from a SPLINE

D2RPRM Reparameterize a Spline

D2SCHK Check a B-Spline Function Entity and Data for Validity

D2SCHT Find Points Along a Curve, Satisfying a Chord-Height Tolerance

D2SCR3 Generate a Circular Arc, Given 3 Points

D2SCRC Generate a Circular Arc Given the Center and

D2SEPP Extract Points from a Curve At Equally Spaced Parameter Values

D2SFAR Compute Surface Area

DT_NURBS Users’ Manual

1-10

New Subroutine Purpose

D2SLIN Generate a Spline Representation of a Line

D2SLNE Generate a Spline Representation of a Line, Given the End Points

D2SLXT Surface and Line Intersection

D2SMGD Smooth a Grid of Points

D2SMTP Smooth a String of Points

D2SOFF Determine an Offset Curve

D2SPAD Analytic Derivative of a Spline

D2SPJN Join Two Splines Together

D2SREV Surface of Revolution

D2SRFC Surface Curvatures

D2SRFN Surface Normal

D2STRM Trim a Spline

D2SZER Zeros of a Univariate Function

D2TROT Create a Transformation Matrix to Rotate an Object

D2TSCL Create a Transformation Matrix to Scale an Object

D2TTRN Create a Transformation Matrix to Translate an Object

D2UPDG Raise the Degree of a Spline

D2WRCA Write B-Spline Data to a File

DTCSIZ Compute DTRC Spline Array Size

DTRPRM Reparameterize a Spline

Many of the dynamic memory (D2xxxx) subroutines and functions were modified to accommo-

date the new pointer structure. In addition, the following routines were modified:

Modified Sub-

routine

Purpose

DTCNPR Remove dimension restrictions

DTRDCA Remove dimension restrictions

DTWRCA Remove dimension restrictions

1.6.7 VERSION 3.1 CHANGES

The following new subroutines were added:

New Subroutine Purpose

D2BQIG Convert B-Spline Sequence to IGES

D2CCTR Trim a Plane/Space Curve by a Plane/Space Curve

D2CCXT Curve-Curve Intersection

D2CFER Erase a Composition of Functions Entity

D2CFSZ Fetch Composition of Functions Size Information

D2CSTR Trim a Space Curve by a Space Surface

D2CSXT Curve-Surface Intersection

D2FTRM Trim a Spline From a BF or CF

D2GAER Erase a Geometry and Analysis Entity

D2IGNL Convert IGES to Name Label Entity

D2IGPA Convert IGES Associativity Instance to a Pointer Array

D2JSCR Create a Joined Surface From Two Edge Entities

D2JSER Erase a Joined Surface Entity

D2JSMP Moment of Inertia for B-Rep Solids

D2MFDF Define Matrix Function

DT_NURBS Users’ Manual

1-11

New Subroutine Purpose

D2MOIN Moment of Inertia for Parametric Solids

D2NEPT Find Nearest Edge of a Trimmed or Joined Surface to a Given Point

D2NLIG Convert Name Label Entity to IGES

D2NVLS Weighted Least Squares Fit to Bivariate Data

D2OFFS Offset a Spline Surface

D2PAIG Convert Pointer Array to IGES Associativity Instance

D2PATD Parameterize and Approximate Three Dimensional Data

D2PCOS Project a Curve Onto a Surface

D2SFDF Define Select Function

D2SIMP Simplify a Spline by Removing Knots

D2TSCR Create a Trimmed Surface From a Surface and Trimming Curve

D2TSCV Curvatures of a Trimmed Surface at a Point

D2TSDR Partial Derivative of a Trimmed Surface at a Point

D2TSET Tangent Vector to the Nearest Edge Point of a Trimmed Surface at a Point

D2TSNR Unit Normal Vector of a Trimmed Surface at a Point

DTCHTA Find Points Along a Spline Satisfying a Chord-Height Tolerance for Each Coordi-

nate

DTPMTZ Multivariate Grid Parameterization

In addition to minor bug-fixes, the following routines were modified:

DT_NURBS Users’ Manual

1-12

Modified Sub-

routine

Purpose

D2BINE No longer restrict IFU1 to being a BF

D2EGDF Allow curve input to be CF in addition to BF entity.

D2EGER Erase curve entity based on its type - BF or CF.

D2GRBL Extend to cases where there are more knots than curves

D2JOIN Ensured that various pieces of DMEM are unlocked on return.

D2PJDC IER returns changed due to allowing the Surface function to be a BF, CF or GA and

the Curve function to be a BF or CF.

D2PJIC IER returns changed due to allowing the Surface function to be a BF, CF or GA and

the Curve function to be a BF or CF.

D2PJMC IER returns changed due to allowing the Surface function to be a BF, CF or GA and

the Curve function to be a BF or CF.

D2PJMS IER returns changed due to allowing the Surface function to be a BF, CF or GA and

the Curve function to be a BF or CF.

D2POSE Extend to functions expressed as U0 subtypes

D2POSX Extend to functions expressed as U0 subtypes

D2RMKT Ensured that space pointed to by IBF is unlocked on return.

D2RPRM Revised to unlock IBF before returning.

D2SSXT Bug fixes.

D2STRM Improved algorithm. Also, now permits output location to be the same as the input.

In this case, the output spline data overwrites the input spline data. The DMEM allo-

cation to the spline is not changed, however.

D2TSER Erase surface entity based on its type - BF, CF, or GA.

DTGPAR Add handling of degenerate cases where successive rows are the same

DTGRBL Extend to cases where there are more knots than curves

DTSTRM Improved algorithm.

1.6.8 VERSION 3.2 CHANGES

Version 3.2 was created specifically to support the Portable Extendable Viewer (PEV) version

1.0 developed at NASA's Lewis Research Center. It includes only those changes which were

needed by the PEV development team, the surface intersector improvements which just missed

the previous version's deadline, and minor corrections believed to have no impact on users other

than the avoidance of warning messages from some compilers.

The following subroutines were modified:
Modified Sub-

routine

Purpose

D2CFDI Remove doubly declared variables

D2DPSE Remove doubly declared variables

D2EQAR Removed limitation to four dependent variables. Parametrized other constants.

D2MPBC Fix nonuse of IHOSTn for n=1..4. Make distinct error codes in place of -999

D2NSI Remove doubly declared variables

D2PCS1 Remove doubly declared variables

D2PCS2 Remove doubly declared variables

D2SCHT Remove doubly declared variables

D2SSXT Improved ability to handle surface and surface derivative discontinuities - in

particular, discontinuous, C0, and C1 surfaces.

DT_NURBS Users’ Manual

1-13

1.6.9 VERSION 3.3 CHANGES

The following subroutines were added:

New Subroutine Purpose

D2CFBF Combine CF to make simplest BF composition

D2CFFU Extract function component from a CF entity

D2CFKN Fetch composition of functions knots

D2CFSX Fetch composition of functions size information (extended)

D2CHTA Advanced chord-height-based curve approximation

D2DTTR General purpose dt_nurbs to iges translator

D2EXTP Closest(or farthest) point on a geometric object to a given point

D2GASZ Fetch geometry and analysis function size information

D2IGTR General purpose iges to dt_nurbs translator

D2INVP Inverse image of a point

D2INVQ Inverse image of a point quit

D2INVS Inverse image of a point setup

D2NORP Normals to a geometric object through a given point

D2SFVL Select function variables by label

D2SFVN Select function variables by number

D2SWCH Switch parameters in a two-parameter BF entity

D2TRCE Entity trace

The following routines were modified:

Modified Sub-

routine

Purpose

D2ALFR Revise to avoid integrating across a knot and reporting of unexpected and out-of-

memory errors.

D2ALFS Improve reporting of out-of-memory errors.

D2ARLN Fix computation on CFS.

D2BFCP Prevent zeroing of V array.

D2CFBF Add IER = -11 out-of-bound check.

D2CFSZ Fix problem with Identity map components.

D2CLSP Fix calculation of ndep for rational BFs.

D2CNTR Added IER = 2 check/bug fix.

D2IGTS Remove IMEM setting after D2EGDF call.

D2PCXT Change DATA SUBNAM from 8 characters to 6.

D2RDCA Improve reporting error message.

D2SOFF Change DATA SUBNAM from 8 characters to 6.

D2SSXT Added code so that if d0ssxt returns a positive ier, the order of the surfaces is

switched and d0ssxt is called again.

DTCTLP Prevent zeroing of V array.

DTRDCA Improve reporting error message.

DTRPRM Minor correction to handle rational splines.

DTSPRM Fix coefficient reordering problem by using LAT stuff and eliminates need for work-

space.

DT_NURBS Users’ Manual

1-14

Minor corrections have been made to:

D2GELE

D2GPAR

D2GRGA

D2PCS2

D2RADC

D2RHOC

D2SMGD

D2BFMG

D2CONC

D2BFLV

D2CFLV

D2CYIG

D2EVLF

D2SZER

D2GQNM

D2RADC

D2RPRM

D2SIMP

D2MDF

1.6.10 VERSION 3.4 CHANGES

Significant changes were made to:
Modified Sub-

routine

Purpose

D2CFSZ Fix errors in handling CF's with no BF's and in memory release upon error.

D2EVD1 Improve speed. Add input and output options. Support option to request one deriva-

tive at a time.

D2EVD2 Improve speed. Simplify by making use of new low-level routines used by D2EVDF.

Prevent use on one-variable functions.

D2EVDF Improve speed and correct handling of certain CF's. Also prepare for extension to

second derivatives of CF's. Suppress second and higher derivative cases which used

to be computed, but not always correctly. Add simpler LSADRV, LSAPAR, and

LSAFDV options.

D2EVDS Improve speed. Simplify by making use of new low-level routines used by D2EVDF.

D2EVL1 Improve speed. Simplify by making use of new low-level routines used by D2EVLF.

D2EVL2 Improve speed. Simplify by making use of new low-level routines used by D2EVLF.

Prevent use on one-variable functions.

D2EVLF Improve speed. Add simpler LSAPAR and LSAFV options.

D2EVLS Improve speed. Simplify by making use of new low-level routines used by D2EVLF.

D2INVP All new version with more general capabilities than previous versions.

The D2EVxx series of evaluators was reworked to allow isolated selection, linear, and affine

functions as well as B-spline functions and compositions of functions. The two-variable routines

lost the ability to accept one-variable functions. The specification of derivative orders for com-

positions of functions is now in terms of the actual input variables to the composition and not in

terms of the first B-spline component that happens to be within the composition. Second and

higher derivatives will no longer be computed for compositions with a single B-spline. They

were not always computed correctly by the former version. Correctly computed second deriva-

tives for any composition of functions will be added in a later revision.

DT_NURBS Users’ Manual

1-15

1.6.11 VERSION 3.5 CHANGES

The following subroutines were added:

New Subroutine Purpose

D2DSPF Construct a spline function which is the sum of a geometry function and a pointwise

displacement function

D2FECS Fetch compete character string content of a Dynamic Memory Entity

D2GAFL Extract a label for a component CF from a Geometry and Analysis (GA) entity

D2GAFU Extract a component Composition of Functions (CF) from a Geometry and Analysis

(GA) entity

D2MSPX Extrapolate multivariate spline function in one of its independent variables

D2PLMT Compute moments of inertia for region in plane bounded by curve.

D2PSXT Find all intersection components of a plane and a surface

DTSPEX Extrapolate univariate spline function

The following routines were modified:

Modified Sub-

routine

Purpose

D2ALFR Improve robustness

D2BQBF Deal with case having only one spline function in the spline sequence

D2CFBF Correct handling of out-of-memory error from lower-level

D2CRBL Fix case of bad swap when IDOM = 2

D2DTTR Fix bug involving 3D rational spline surfaces

D2IGED Bug fixes

D2IGLP Add orientation recognition and outer/inner boundary determination

D2IGTS Improve error detection, translation of type 102, and add outer boundary calculation

for type 144

D2INVP Internal simplification

D2JOIN Increased work space for curves

D2MGKT Replace -999s with distinct error numbers to improve diagnostic capabilities

D2NVLS Extended from bivariate to multivariate data

D2PATD Correct mistaken call of lower-level routine

D2PCOS Correct mistaken call of lower-level routine

D2SSXT Fix memory leak and improve robustness

D2UPDG Remove unnecessary restriction to non-rational splines

DTRPRM Fix to protect against changes to input A and other minor corrections

DTSZER Fixed an inconsistency in the use of tolerances, failure to detect empty intervals, and a

workspace computation.

Three changes have been made in lower-level components of the equation-solving subroutines to

improve performance and robustness. Small changes in the outputs of all the intersection sub-

routines may be observable. Some solution points not previously found may now be found.

The Reference Manual is no longer structured as a Microsoft Word Master Document with five

subdocuments representing each of the five chapters. Instead each chapter is now a separate Mi-

crosoft Word document and the front matter is labeled as if it were a separate Chapter 0. Three

word macros have been added to the style file DT_NURBS.DOT. The macro MakeTocText cre-

ates a table of contents in text file form for each chapter it is executed in. These text file tables

DT_NURBS Users’ Manual

1-16

are then used by macro MakeToc (executed on Chapter 0) to update the subsections and page

numbers in the master Table of Contents, and by macro UpdateFuncIndex (executed on Chapter

1) to update the page numbers and any missing subroutine titles in the functional index. The ear-

lier system for keeping page numbers up to date using the Master Document structure and Word

“bookmarks” was unreliable. Moreover, the document was getting impractically large.

1.6.12 VERSION 3.6 CHANGES

The following subroutines were added:

New Subroutine Purpose

D2FLLT Construct a constant radius fillet surface between two given surfaces.

D2MEMU Report CMEM, IMEM, DMEM maximum memory usage.

DT_NURBS Users’ Manual

1-17

The following routines were modified:

Modified Sub-

routine

Purpose

D2BINE Minor corrections involving rational splines.

D2DEFE Minor change supporting D2MEMU.

D2DEFX Minor change supporting D2MEMU.

D2DPSE Fix variable labels corruption bug and others.

D2EQAR Replace with new technology like that in D2ALFR.

D2EVLF Fix initialization omission.

D2HDIS Fix initialization omission.

D2INIT Changes supporting D2MEMU and backslash problem fix.

D2MBAD Changes to error codes resulting from D2MEMU implementation.

D2MDMP Fix backslash problem. Handle changes to Master Control Block from D2MEMU

implementation.

D2MDIS Fix initialization omission.

D2MPBC Add tolerance to corner point checking.

D2MSPX Fix initialization omissions and null string problem.

D2OFFS Fixed error handling.

D2PCUT Fix initialization omission and another error.

D2PDIS Fix initialization omission.

D2PLMT Fix null string problem

D2POSE Fix incorrect label check.

D2PSXT Correct workspace requests.

D2READ Fix backslash problem.

D2REAX Fix backslash problem.

D2REIN Fix two errors in moving header blocks and updating Master Control Block

D2SSXT A series of changes were made to improve robustness. Results should no longer de-

pend on the order in which the two surfaces are given.

D2SZER Rewritten to use D2CFBF to handle CF input.

D2TSIX Fix initialization omission.

D2UPDG Fix errors in comments and improve efficiency slightly.

D2WRIT Fix backslash problem.

DCOPY Remove unrolled loop, which seems to trigger an optimization error in latest SGI

compiler, in favor of letting compilers figure their own optimizations.

DTUPDG Minor improvements

DT_NURBS Users’ Manual

1-18

Many of the corrections mentioned above are actually made in lower-level subroutines called by

the user-callable routines listed.

The documentation files (and associated macros) have migrated to a version of Word which the

“about” window identifies as “Microsoft Word 97 SR-1”. They cannot be saved as Word 95 /

6.0 without gross corruption despite the fact that the format has not changed at all and the content

has not changed significantly.

1.6.13 VERSION 3.7 CHANGES

Version 3.7 collects bug fixes and requested extensions made in the year plus period since ver-

sion 3.6 was released. It provides the opportunity to synchronize all users at a well-defined ver-

sion with matching documentation.

The following subroutines were added:

New Subroutine Purpose

D2ACBR Area of surface defined on a curve-bounded region and many variations on that

theme.

D2BINL Variant of D2BINE which limits the degree of the resulting curve, thereby greatly

improving the accuracy of the results.

D2CCJN Simple-minded Curve-Curve Join. Avoids sometimes troublesome

reparameterizatons done by D2SPJN and other behaviors by D2JOIN.

D2CVPR Convert a polynomial spline to the corresponding rational spline.

D2DIGV Provide a minor variant of D2DIGL for use by D2ICBR.

D2ICBR Integrate over curve-bounded planar region.

DT_NURBS Users’ Manual

1-19

The following routines were modified:

Modified Sub-

routine

Purpose

D2BINE Fix errors connected with rational splines.

D2CCXT Several improvements to robustness and reliablility.

D2DTTR Fix several errors in data management.

D2FEVL Minor code improvements.

D2FLLT Minor code improvements.

D2FTRM Fix initialization omission.

D2GADN Fix locked memory problem.

D2GADV Fix locked memory problem.

D2GAEN Fix locked memory problem.

D2GAEV Fix locked memory problem.

D2GAFL Fix locked memory problem.

D2GAFU Fix locked memory problem.

D2GTPA Fix working storage problem.

D2IGLP Revise to handle IGES type 143 subtype 0 (no parameter curves).

D2IGRD Expand the string parameter capacity and handle multi-line strings.

D2IGTR Fix several errors in data management.

D2IGTS Extend to handle IGES type 143 subtype 0.

D2IGWR Fix multi-line string errors.

D2IGXI Fix errors in translation index management and improve efficiency.

D2LPIG Change to call D2BINL instead of D2BINE.

D2MPQD Simplified code.

D2MSPX Fix error.

D2NORS Fix minor error.

D2NVLS Fix declaration and header comments.

D2LSA Fix working storage problem.

D2PATD Fix minor error.

D2PCOS Fix errors related to IGES types 141 and 143 and relax certain restrictions.

D2SFAR Extend to handle TS (Trimmed Surface) and JS (Joined Surface) using D2ACBR.

Also improved accuracy and robustness.

D2SIMP Fix minor error.

D2SOFF Fix minor error.

D2SPJN Fix memory management errors.

DTGTPA Fix working storage problem.

DTLSA Fix working storage problem.

DTLSAA Fix working storage problem.

DTPCUT Improve code portability.

DTPMTZ Fix minor error.

DTSCHT Improve code portability.

DTSCR3 Improve code portability.

DTSLXT Improve code portability.

DTSPJN Fix error in handling of rational splines.

DTSPDR Improve code portability.

DTSPVL Improve code portability.

DTSPRM Fix error in handling of rational splines.

DTSSXT Improve code portability.

Many of the corrections mentioned above are actually made in lower-level subroutines called by

the user-callable routines listed.

DT_NURBS Users’ Manual

2-1

DTRC SPLINE GEOMETRY

2

2.1 INTRODUCTION

Consider a circle of radius R, centered at the origin, in a plane. How should this be represented

in the computer? The answer depends on what one is going to do with that circle, and on what

other geometric objects might also need to be used in the same context. Suppose one needs to be

able to represent any “reasonable” continuous curve. Then there are two main strategies: one can

use the equation of the curve, in this case: x
2
 + y

2
 = R

2
, or one can describe the curve by para-

metric functions, for example: x = R cos t and y = R sin t, where 0 t < 2. At first sight the

equation is simpler. It provides an easily computed criterion for when a point (x,y) is, or is not,

on the circle. But what it doesn’t do is provide an easy way to find a lot of those points, which is

what is needed to, for example, draw the circle on a screen. The parametric representation intro-

duces a new variable, t, has two formulas instead of one equation, and involves bounds on t, but

is nevertheless easier to use for drawing and many other operations. To find a sequence of well-

spaced points along the circle, pick a sequence of well-spaced values of t between 0 and 2 and

compute the corresponding x’s and y’s.

Parametric representations are not unique. The parametric functions: x = R cos 2u and y = R

sin 2u, where 0 u < 1, describe exactly the same circle. The parametric functions:

x = R(1-t
2
)/(1+t

2
) and y = R(2t)/(1+t

2
) , where 0 t < 1,

describe the quarter of the same circle in the first quadrant. With some sign changes, the latter

parameterization can be used for each quarter circle, thereby giving the whole circle in four piec-

es using rational functions.

The purpose of the preceding paragraphs is to provide the foundation for an understanding of the

strategic decision to represent geometric objects primarily in terms of parametric functions. In

the following sections we touch briefly on the concepts on which the DTRC Spline Geometry

rests: splines, degree, order, break-points, knots and multiplicities, B-spline representations, use-

ful properties of splines and B-splines, and rational and tensor product splines. Readers needing

or desiring a more thorough understanding of the concepts are referred to the DTRC Theory

Document and Reference Manual and to the references therein.

The section is organized in seven subsections: polynomial splines, B-splines, geometry, computa-

tion, rational splines, tensor product splines, and the DTRC Spline Representation.

2.2 POLYNOMIAL SPLINES

What is a spline? Intuitively, a spline is a finite sequence of polynomial arcs satisfying certain

smoothness conditions at their join points. The following are four examples.

Example 2.2.1:

DT_NURBS Users’ Manual

2-2

s t t
t t

t t
1()

if 1 0;

if 0 1
.

Example 2.2.2:

s t
t t

t t
2 2
()

if 1 0;

if 0 1
.

Example 2.2.3:

s t
t t

t t
3

2

2
()

if 1 0;

if 0 1
.

Example 2.2.4:

s t
t t t

t t
4

3 2

2
()

if 1 0;

if 0 1
.

Definition: Let points 0 = < 1 < < q and polynomials p1, , pq be given. The function s

defined by

s t

t

p t t

p t t

t

q q

q

()

;

() ;

() ;

0

0

0

1 1

if

if

if

if

0

q-1

is a spline function.

Even though we are only interested in the spline on the interval [0, q], we actually define it for

all values by extending to the zero function. Throughout these discussions, all splines are ex-

tended in this manner.

- The join points are called break-points. In the examples, the values -1, 0, and 1 are the break-

points.

- Degree is the maximum degree of any component. This means that Example 2.2.2 has degree

two and Example 2.2.4 has degree three even though, in both cases, there are segments of

lower degree.

- Order is one plus the degree.

- A knot is a break-point combined with a multiplicity. Multiplicity is calculated from the or-

der and the smoothness at the break-point. If the order is k and the derivatives of the spline

are continuous up to and including the (j - 1)
st
 derivative, the multiplicity of the knot is (k -

j). There is no requirement that knots be distributed evenly. In fact, for many geometric op-

erations it is advantageous to distribute the knots in a fashion other than uniform. The DTRC

spline library provides for this and this is the source of the NU in the acronym DT_NURBS.

DT_NURBS Users’ Manual

2-3

In the examples, the first is continuous but there is a break at zero in its derivative. Since its or-

der is 2 (degree + 1) the knot at zero has multiplicity one. In the second example there is also a

discontinuity in the first derivative. But now the order is 3 so the knot has multiplicity two. A

break in continuity occurs in the second derivative of example 2.2.3 and in the third derivative of

example 2.2.4. In both cases the multiplicity of the knot at zero is one. In all the examples, -1

and 1 are knots of full (i.e. equal to the order) multiplicity.

Here are some properties of splines worth noting.

- Splines of order k are also splines of order k+1 with the multiplicity of each knot increased by

one.

- The derivative of a spline of order k is a spline of order k-1 with the same knots.

- Polynomials of degree less than or equal to k-1 are splines of or k for any and all choices of

knots and multiplicities.

There are two ways of representing knots and their multiplicities, either listing the knot and its

multiplicity explicitly or replicating the knot a number of times correspond to the desired multi-

plicity. Thus, the knots for Example 2.2.2 could be listed as -1, 0, 1 with multiplicities 3, 2, 3 or

equivalently as -1, -1, -1, 0, 0, 1, 1, 1.

2.3 B-SPLINES

B-splines are specific splines of order k defined over subsets of k + 1 knots. Here are three ex-

amples.

Example 2.3.1: T= {-1, -1, 0, 1, 1} and order = 2. There are three B-splines given by:

s t
t t

t
1

1 0

0
()

;

if

0 if < .

s t
t t

t t
2

1 1 0

1 0
()

;

if

- if .

s t
t

t t
3

0 1 0

0 1
()

;

if

if .

Example 2.3.2: T= {-1, -1, -1, 0, 1, 1, 1} and order = 3. Then the four B-splines are:

s t
t t

t
1

2 1 0

0
()

;

if

0 if < .

s t
t t t

t t
2

2

2
5

4 1 3 1 1 0

1 0
() .

() () ;

if

(-) if .

s t
t t

t t t
3

2

2
5

1 1 0

4 1 3 1 0 1
() .

() ;

() ()

if

if .

DT_NURBS Users’ Manual

2-4

s t
t

t t
4 2

0 1 0

0 1
()

;

if

if .

Example 2.3.3: The Bernstein polynomials i,k of order k defined by

i k

i k it
k

i k i
t t, ()

!

!()!
()

 1

are the B-splines for the knot set consisting of 0 and 1 each with multiplicity k. They also form

the basis for Bezier curves.

The important fact about B-splines is the following. If order and knots k, T = {0 1

m+k} are given, then any spline s of order k with these knots has a unique set of constants a1,

, am for which

s t a B tj j

j

m

() ().

1

The importance of this fact is that we now have a clear cut route to travel in developing algo-

rithms for defining splines. One simple consequence is that determining splines which interpo-

late data reduces to solving relatively simple sets of linear equations.

There are a number of beneficial properties of B-splines. Among these are:

- Partition of Unity: j

m k

jB t

 1 1() for k t tm-k+1.

- Local Support: Bj(t) 0 if t < j or t > j+k.

- Positivity: Bj(t) > 0 if j < t < j+k.

- Variation Diminishing: The number of sign changes of a spline is less than or equal to the

number of sign changes in the sequence of coefficients.

- Derivative Representation:

 s t k a a C tj

m k

j j j k j j() () (() / ()) ()1 2 1 1 where Cj are

the B-splines of one less order based on the knots 2, , m-k-1.

Each of these properties has numerical or geometric significance. The local support property

leads to well-posed and sparse linear algebra equations for solving for spline coefficients. It also

enables the local modification of geometry. Positivity leads to robust evaluation algorithms for

B-splines.

The variation diminishing property is a powerful tool for controlling spline curves. For example,

if all the coefficients are non-negative then so is the spline. (Warning, the converse is not true.

Splines can be non-negative and still have negative B-spline coefficients.

The derivative representation means that exact B-spline based formulas for derivatives and for

integrals are easily derived. It can also be used, together with the variation diminishing property,

to control derivative behavior.

DT_NURBS Users’ Manual

2-5

2.4 GEOMETRY

The B-spline representation for a curve has geometric significance. Let the curve be given as

C t x t y t x B t y B tj
m

j i j
m

j i() = ((), ()) = (= =1 1 (), ()) .

Let

P x yj j j (,) and rewrite the curve as

 C t P B tj i

j

m

() ()

1

 (2.4.1).

The quantities

Pj are called the control points of the curve C and the polygon formed by the con-

trol points is called the control polygon.

The curve matches the control polygon at its first and last points. The tangents to the curve at the

first and last points are parallel to the first and last legs of the control polygon.

Since, at each t the B-splines are positive and sum to one, (2.4.1) shows that the curve is a con-

vex combination of its control points. Thus, C(t) is contained in the convex hull of its control

polygon. This is known as the convex hull property.

Other interesting properties derivable from elementary relationships are:

- An affine transformation (rotation plus translation) of a curve is accomplished by applying

the affine transformation to each of the control points

- Convexity of the control polygon is sufficient but not necessary for convexity of the curve.

- Bezier curves of order k are curves for which each knot is effectively a k
th

 order knot.

2.5 COMPUTING B-SPLINES AND SPLINES

One of the most powerful reasons for usings B-splines is in evaluation. Formulas exist for eval-

uating B-splines and splines which are computationally stable.

The recurrence relation for B-splines relates the values of a k-order B-spline to those of a pair of

(k-1)-order B-splines. Let T be the usual set of m knots and k the order. Denote by Bj,k the j
th

 B-

spline of order k. Then:

 B t
x

B t
x

B tj k

j

j k j

j k

j k

j k j

j k, , ,() () ()

 1

1

1

1 1 . (2.5.1)

This formula means that B-splines are evaluated by forming positive combinations of positive

quantities. Thus, reducing the danger of errors through cancellation effects.

Formula 2.5.1 may be applied to obtain a formula for splines of order k in terms of lower order

B-splines:

 s t a B t a B tj j k j j k

j

m

j

m

() () (),

[]

,

 2

1

21

 (2.5.2)

where the coefficients a j

[]2
 are given by

DT_NURBS Users’ Manual

2-6

a
t a t a

j

j j j k j

j k j

[]
() ()

2 1 1

1

.

These formulas do not require the knots to be simple. Any multiplicity (k) are allowed. Thus,

splines with multiple knots are as easily evaluated as those with simple knots.

The DTRC Spline Geometry Library evaluators implement these formulas. Equation 2.5.2 is

used to evaluate a univariate spline function. Combinations of 2.5.1 and 2.5.2 are used to evalu-

ate planar and higher order curves and surfaces.

2.6 RATIONAL SPLINES

Conic sections can be parametrized as ratios of quadratic polynomials. In particular, the conic

section passing through fixed points Q0, Q2 and having tangents at those points which intersect at

a third point Q1 has the representation

r u
w Q u w Q u u w Q u

w u w u u w u
()

() ()

() ()

0 0

2

1 1 2 2

2

0

2

1 2

2

1 2 1

1 2 1
.

- The numbers wi are called weights,

- If the weights are all equal, the conic r(u) is a parabola.

- If all the weights are positive, the conic r is contained in the convex hull of the points Q0, Q1,

Q2.

Rational splines R(t) are defined as

R t
x t

y t

x B t

y B t

j

m

i i

j

m

i i

()
()

()

()

()

1

1

.

Planar rational spline curves are given by

 C t
x t

w t

y t

w t
() (

()

()
,

()

()
) . (2.6.1)

The B-spline coefficients {wj} j

m

1 of the denominator are called weights. The control points are

the planar points

P x w y wi i i i i (,) . They enjoy the same properties as the control points for

planar spline curves.

Example 2.6.1: A rational spline parameterization of a circular arc:

C t
t

t

t

t
() (,)

1

1

2

1

2

2 2
.

The DTRC Spline Geometry Library represents conic sections as rational splines of the form

(2.6.1).

DT_NURBS Users’ Manual

2-7

2.7 TENSOR PRODUCT SPLINES

Tensor product splines and spline surfaces are direct generalizations of univariate splines and

spline curves and enjoy many of the same properties. As in the univariate case, a tensor product

spline is a collection of individual polynomial surfaces connected along lines called knot lines

with certain continuity. They are not, however, made up of polynomial surfaces over arbitrary

domains. Each domain is required to be rectangular and the collection of domains fits together as

a rectangular grid.

Let orders ku, kv and knots T={p} p

P ku

1 , X={q} q

Q kv

1 be given. The tensor product splines of order

(ku,kv) with knots T, X are the functions f of the form

f u v f B u C vi j p q

q

Q

p

P

(,) () (),

11

where the functions Bp, Cq are the B-splines of order ku, kv respectively with the knots T and X.

Thus, f is a function defined on the rectangle 1 1, ,P k Q ku v . As in the univariate case, f

is taken to be zero outside the rectangle.

2.8 DTRC SPLINE REPRESENTATIONS

The DTRC Spline Geometry Library common spline representation is based on the B-spline rep-

resentation. Accordingly, the information required to define a spline consists of:

- the order k of the spline

- the list of knots 1, , m+k and

- the list of B-spline coefficients a1, , am.

In addition, the DTRC format stores the dimension of the parameter space (for curves this is

one), the dimension of the model space (for functions one, for planar curves two, for space

curves three and m for higher-dimensional curves in R
m
). It also stores the number m-k of B-

spline coefficients. Finally, one remaining parameter (called `jspan') is stored. This parameter

has no geometric or mathematical significance but storing it improves evaluation performance.

The DTRC Spline Geometry Library common rational spline representation stores a rational

spline in homogeneous coordinates with the parameter corresponding to the dimension of the

model space (homogeneous coordinates) set to the negative of the number of dependent varia-

bles. Thus, the rational spline curve

C t
x t

w t

y t

w t
() (

()

()
,

()

()
)

is stored as the space curve (x(t), y(t), w(t)) with the model space parameter set to -3. The spline

evaluators DTSPVL and D2SPVL return the two numbers x(t)/w(t) and y(t)/w(t).

The complete specification of the DTRC representation for general spline functions with arbi-

trary numbers of independent and dependent variables may be found in Chapter 2 of the Refer-

ence Manual.

DT_NURBS Users’ Manual

3-1

DYNAMIC MEMORY MANAGEMENT FACILITY

3

3.1 INTRODUCTION

The first phase of the DT_NURBS Spline Geometry Subprogram Library development provided

routines to create and manipulate Non-uniform Rational B-spline (NURBS) objects. Single

NURBS objects represent single curve segments, single surface patches, or higher-dimensional

analogs thereof. A major goal of the second phase of development was to extend the Library to

support representations of composite entities such as trimmed surfaces (surface patch with

boundary curves), joined surfaces (multiple trimmed surfaces joined at designated edges), and

solids (interiors of closed, oriented, joined surfaces).

In order to implement composite entities like trimmed and joined surfaces, one needs pointers to

connect the components. The only portable way to implement pointers in standard FORTRAN

77 is to use indices to large arrays containing all the related or relatable components. This leads

naturally to putting all components in one set of arrays managed at run time by a new set of Li-

brary subroutines.

3.2 DYNAMIC MEMORY MANAGEMENT SCHEME

The three main kinds of data of interest to the Library are character, integer, and double preci-

sion. Character data (or integer data) can serve for logical data, and double precision can serve

for complex or real (i.e., single precision) data. Equivalence statements could be used to place all

data in one array, but would tend to be non-portable and complex. One could also encode every-

thing as double precision data, but not simply or efficiently. Thus, the simplest portable solution

seems to be to dynamically manage three arrays, one for each main type. In order to take ad-

vantage of possible hardware string handling functions, the master "character array" is imple-

mented as a single character string.

Thus, the routines which use dynamic memory (D2xxxx routines) all have as their first three ar-

guments: CMEM, IMEM, and DMEM, which are the dynamically managed character, integer,

and double precision memory areas, respectively. In return for these three constant arguments,

there is no need for the usual work area and work area length arguments because the new Library

routines can allocate their own temporary work areas as needed. Moreover, composite entities of

arbitrary complexity can be communicated by a single pointer (integer) argument. For most sub-

routines, both Library and user, the total number of arguments is reduced, and the complexity of

argument interrelationships is greatly reduced.

In the Library dynamic memory management scheme, a dynamically allocated data entity con-

sists of memory for some number of characters, some number of integers, some number of dou-

ble precision values, and some header information that ties the entity together, defines its type,

and supports memory management of it. "Some number" includes zero as a common case. A

pointer to a data entity is a positive integer encoding the index (subscript) to the header infor-

mation and a sequence number used in error detection.

DT_NURBS Users’ Manual

3-2

3.3 MANAGED MEMORY LAYOUT

The three managed memory areas will be referred to as CMEM, IMEM and DMEM throughout

this document. These arrays must be initialized with a call to the subroutine D2INIT before any

of the other memory management routines may be called.

The beginnings and ends of these arrays are reserved for Library use. Each data entity allocated

using the Library dynamic memory management routines consists of a header block and up to

three data areas, one in CMEM for character data, one in IMEM for integer data, and one in

DMEM for double precision data. The data areas assigned to consecutively created data entities

are consecutive blocks of locations proceeding from low to high subscript values for CMEM,

IMEM, and DMEM. Except when prevented by locks, the data areas are kept compacted as data

entities are erased.

A data area for an entity is in one of four memory management states: unlocked, explicitly

locked, implicitly locked, or implicitly erased. Unlocked is the "normal" state in which all opera-

tions are permitted. A data area is explicitly locked whenever its absolute subscripts are being

made available outside the Library routines. The explicit lock prevents the data area from being

moved by garbage collection (data compaction) activities. A data area is implicitly locked when-

ever some data area at higher subscripts in the same array is explicitly locked. A data area is im-

plicitly erased whenever it has been erased but not yet compacted away because some data area at

higher subscripts in the same array is explicitly locked. The state of a given data area is determi-

nable from information in the master control block and the entity header block.

The general layouts of the CMEM, IMEM, and DMEM managed memory areas are as follows:

DT_NURBS Users’ Manual

3-3

IMEM

MEMAXI check value <= IMEM(2)

.

.

.

.

U

S

E

D

header

blocks

<= IMEM(10, 11, 12, 17 and 18)

<= IMEM(16)

.

.

.

.

F

R

E

E

free

space

<= IMEM(5)

.

.

.

unlocked

<= IMEM(8)

.

.

.

U

S

E

mixed

<= IMEM(14)

.

.

.

20

D

implicit

19

.

1

 master

control

block

CMEM

MEMAXC ~ <= IMEM(1)

.

.

.

.

F

R

E

E

free

space

<= IMEM(4)

.

.

.

unlocked

<= IMEM(7)

.

.

.

U

S

E

mixed

<= IMEM(13)

.

.

2

D

implicit

1 H, M or L

DT_NURBS Users’ Manual

3-4

DMEM

MEMAXD 9.87654321E9 <= IMEM(3)

.

.

.

.

F

R

E

E

free

space

<= IMEM(6)

.

.

.

unlocked

<= IMEM(9)

.

.

.

U

S

E

mixed

<= IMEM(15)

.

.

2

D

implicit

1 9.87654321E9

The segment labeled "unlocked" contains the most recently allocated data areas and is the only

one in which data compaction or resizing in place can occur. The segment labeled "mixed" con-

tains all explicitly locked areas and implicitly erased areas, plus implicitly locked areas between

(and possibly below) them. If non-empty, its high end must consist of an explicitly locked area.

If empty, the implicit area is also empty. The segment labeled "implicit" contains only implicitly

locked data areas, and is empty when no explicit locks are present. The master control block at

the beginning of IMEM contains the system data needed to manage memory. In particular, it

contains the indices defining the segments in all the managed areas.

3.3.1 CONTENTS OF RESERVED LOCATIONS AND MASTER CONTROL BLOCK

The first character in CMEM holds the requested error check level, which should be 'L', 'M', or

'H' for low, medium, or high, respectively. The last character in CMEM is used for a clobber

check value, which is chosen to be '~'. The first twenty-five locations in IMEM are reserved for

memory management use as follows:

1 Length of CMEM, in characters

2 " IMEM, in integers

3 " DMEM, in double precision values

4 Next (lowest) free location in CMEM

5 " IMEM

6 " DMEM

7 Lowest unlocked location in CMEM

8 " IMEM

9 " DMEM

10 Location of header belonging to highest lock in CMEM

11 " IMEM

12 " DMEM

13 Lowest location to check when compacting memory in CMEM

14 " IMEM

15 " DMEM

DT_NURBS Users’ Manual

3-5

16 Lowest used header location in IMEM

17 Beginning of active header block linked list in IMEM

18 Beginning of free header block linked list in IMEM

19 Last sequence number used in a new header block

20 Number of locations reserved for system use in CMEM

21 Number of locations reserved for system use in IMEM (length of Master Con-

trol Block + 1)

22 Number of locations reserved for system use in DMEM

23 Maximum locations used in CMEM since last reset by D2MEMU (or since

the call to D2INIT)

24 Maximum locations used in IMEM since last reset by D2MEMU

25 Maximum locations used in DMEM since last reset by D2MEMU

The last location in IMEM is the sum of the first three, and serves as a primitive checksum for

damage to IMEM. The first and last locations in DMEM are set to 0.987654321D10 to serve as

clobber checks.

3.3.2 CONTENTS OF HEADER BLOCKS

Header blocks are eight integers long and allocated in the high end of IMEM. Once allocated,

header blocks do not move. If an entity is erased, its header block may be reused for another en-

tity, but only after incrementing the sequence number. The only time a header block is erased is

if it is the lowest one in IMEM. Otherwise it is placed on the free header block linked list. Header

blocks for new entities are taken from the free header block linked list if the list is non-empty, or

allocated from the high end of the free area (low end of header block area) in IMEM.

The header block contents of an active header are as follows:

header_index + 0 pointer validity check (including seq. num.)

 + 1 beginning of character data in CMEM

 + 2 beginning of integer data in IMEM

 + 3 beginning of double precision data in DMEM

 + 4 length of character data

 + 5 length of integer data

 + 6 length of double precision data

 + 7 link value (and type id number)

The pointer validity check value is identical to the current pointer value for the data entity in

whose header it is found. Pointer values are defined as:

Pointer 256
MEMAXI header_ index

8
sequence_ number

MEMAXI (=IMEM(2)) is the length of the IMEM array in integers. Sequence numbers are in-

cremented modulo 256 every time a header block is reused for a new entity. This ensures that

pointers to the old erased entity are recognized as invalid, even though the header index is the

same. Of course, after a header block is reused 256 times, it will repeat an old pointer value, but

the probability of an invalid pointer being accepted is quite small. The integer equality test be-

DT_NURBS Users’ Manual

3-6

tween pointer and pointer validity check also provides some protection against data corruption in

the header block. Hence, this test is performed even at the low error check level.

The link value's primary function is to locate the next header block in either the active header

block linked list or the free header block linked list, whichever the header block currently be-

longs to. In the active header list, it also encodes a data type identification number (hereafter re-

ferred to as the "type id"). In the active header list, the link value is defined as:

Link_ value 256
MEMAXI next_ header_ index

8
type_ id

In the free header list, the link value is defined as:

Link_value = next_header_index.

A next_header_index of zero marks the end of a list. The active header list is maintained in the

order of decreasing data area subscripts as it is traced from beginning to end. Beginning loca-

tions for data areas are defined even when the length of that data area is zero. In this case they

are identical to the beginning location of the next allocated entity (previous header block in the

active header list).

Erasure is indicated by negation of the pointer check value. Note that negation of the pointer

check value makes all references to the entity invalid by the usual test, even though the data may

still be present.

Explicit locks are indicated by negating the length value of the corresponding data area in the

header block. Hence, the absolute value function must be employed to get a proper length value

independent of the locked state. Note also that a zero length data area cannot be explicitly

locked.

The header block of a free header is the same as that of an active header except that the three

lengths are necessarily zero, the pointer check value is negated, and the location holding the link

to the next free header does not include any type id number.

The header block of an erased, but (implicitly) locked, entity has its pointer check value negated,

and may have had some of its data areas compacted away (length reduced to zero), but otherwise

looks like an active header, and remains in the active header linked list.

3.4 MEMORY ERROR DETECTION

The extensive use of pointers is prone to errors of a kind which are very difficult to trace, namely

the inadvertent use of invalid pointer values to modify the wrong area of memory. This kind of

error is not usually detected until something completely bizarre happens in an unrelated part of

the program. The Library routines include some automatic pointer validity checking and data

type checking which should catch most such errors immediately. In addition, a number of

memory consistency checking (D2MBAD) and memory dump (D2MDMP, D2EDMP) routines

have been included to aid in debugging.

Before the managed memory areas can be used, they must be initialized by a call to D2INIT.

One of the arguments to D2INIT allows the caller to set the automatic error check level to low,

medium or high. A high check level improves the likelihood of detecting damage to the man-

DT_NURBS Users’ Manual

3-7

aged memory areas promptly after it happens, but is also likely to significantly degrade program

speed.

3.5 GARBAGE COLLECTION AND LOCKING

Garbage collection is accomplished by shifting active data spaces downward in the arrays and

correcting the header blocks. In the absence of locking, used memory is always packed. This

scheme is conveniently simple and is reasonably efficient if erasure happens predominantly to

recently allocated data entities. If erasure or resizing happens frequently to data entities allocated

near the beginnings of the arrays, a lot of time can be wasted, but this does not correspond to ex-

pected usage.

Maximal efficiency is obtained by computing directly with the data in the CMEM, IMEM and

DMEM arrays, but the correct subscripts to identify data of a particular data entity at one time

can become incorrect at a later time as a result of garbage collections. Hence the need for a lock-

ing scheme to prevent such data movements during periods of direct user access. Whenever the

library routines which fetch the absolute subscripts (D2FEBx) of a data entity are called, the rel-

evant data space is explicitly locked. It is up to the user to unlock the data space (D2UNLx) when

he has finished his direct access to that data. It is better never to unlock than to unlock prema-

turely. The only penalty for never unlocking is that one may run out of memory much sooner,

but this is always detectable. Unlocking and then using absolute indexes into CMEM, IMEM or

DMEM after the data space has moved can corrupt memory and lead to errors which are difficult

to trace. When the quantity of data to be accessed is small or speed is not too critical, the library

routines which fetch and store the data values using subscripts relative to the data entity

(D2FEAx, D2FEEx, D2STAx, D2STEx) are preferable to obtaining the absolute subscripts and

accessing directly. These routines locate the data wherever it may be at the moment of the call,

and are therefore much simpler and safer to use.

When a data area of an entity is explicitly locked, all data located at lower subscripts in the same

managed memory array are implicitly locked. That is, no data movement is permitted. Erasure of

an implicitly locked data entity is marked in the header block and access is subsequently denied,

but no changes occur in the data and the space cannot be reused until it is subsequently unlocked.

An explicit lock can only be removed by an explicit unlock (D2UNLx) or by erasing the entire

entity (D2ERAS).

3.6 EXAMPLE APPLICATION

 PROGRAM EXMPL1

C -- VERSION -- EXMPL1 : 1995-05-19

C

C Load an IGES file and save it in the DT_NURBS D2 File Format.

C Get the input and output file names from the user.

C

C HISTORY

C 5/19/95 P. Kraushar Adapted from T2IGRD

C

C Define parameters for the sizes of the Dynamic Memory areas

 INTEGER MEMAXC, MEMAXI, MEMAXD

 PARAMETER (MEMAXC = 30000,

 + MEMAXI = 150000,

DT_NURBS Users’ Manual

3-8

 + MEMAXD = 100000)

C Allocate the Dynamic Memory areas

 CHARACTER CMEM*(MEMAXC)

C For those systems which impose a small limit on the length of

C individual character strings, it may be necessary to define

C CMEM as an array of individual characters instead of a string:

C CHARACTER*1 CMEM(MEMAXC)

C Reports to date are that the Library continues to work fine in

C this case

 INTEGER IMEM(MEMAXI)

 DOUBLE PRECISION DMEM(MEMAXD)

C Allocate other local variables

 CHARACTER*(80) FILEIN, FILEOU

 INTEGER LUI, LUO, LVLI, IGI, LVLE, IER

C ****

 LUI = 8

 LUO = 9

C Get input and output file names interactively from user

 PRINT *, 'Name of input IGES file'

 READ (*,'(A)') FILEIN

 OPEN (LUI, FILE=FILEIN, STATUS='OLD', MODE='READ', ERR=9999)

 CLOSE (LUI)

 PRINT *, 'Name of output D2-format file'

 READ (*,'(A)') FILEOU

C Initialize the Dynamic Memory. The ' ' argument lists no user-

C defined types, and the 'L' sets the error check level to low.

 CALL D2INIT (CMEM, IMEM, DMEM, MEMAXC, MEMAXI, MEMAXD, ' ', 'L',

 + IER)

 IF (IER .NE. 0) GOTO 9999

C Stop on any error or warning.

C Read the IGES file into the Dynamic Memory. Set input level to 3

C to accept any IGES entity type.

 LVLI = 3

 CALL D2IGRD (CMEM, IMEM, DMEM, FILEIN, -LUI, LVLI, IGI, LVLE, IER)

C Negating the logical unit number causes more extensive reporting

C on the standard output of the progress made in reading the file.

C Report results from IGES read operation

 WRITE (*,'(/,A)') 'D2IGRD results:'

 WRITE (*,'(A,I1)') ' Highest Level Encountered (LVLE) = ', LVLE

 WRITE (*,'(A,I5)') ' Returned error status (IER) = ', IER

C The output variable IGI contains the Dynamic Memory pointer to

C the IGES Index entity.

 IF (IER .LT. 0) GOTO 9999

C Stop on any error (but continue on any warning).

C Write the DT_NURBS internal IGES data structure out in D2 File

C Format. Request the writing of a list of 1 pointer, namely IGI,

C and use the default "user-supplied subroutine" (D2LPUT) to locate

C pointers in user-defined types (since there are no user-defined

C types). All entities accessible from the IGES Index entity are

C written to the output file automatically.

 CALL D2WRIT (CMEM, IMEM, DMEM, 1, IGI, D2LPUT, FILEOU, LUO, IER)

DT_NURBS Users’ Manual

3-9

 WRITE (*,'(/,A,I5)') 'D2WRIT returned error status (IER) = ', IER

 9999 CONTINUE

 STOP

 END

DT_NURBS Users’ Manual

4-1

CREATING CURVES

4

4.1 CURVES

By definition, a curve is a function from an interval in R
1
 into R

n
. Most commonly, n is two for a

plane curve, or n is three for a space curve. When n is one, it is customary to include the parame-

ter as the x coordinate and picture the function graph as the "curve", although, in fact, the para-

metric curve lies in a one-dimensional space. Cases where n is greater than three are also im-

portant, although harder to visualize. One case where a four-dimensional curve arises naturally is

in intersecting two parametric surfaces in space. The intersection curve one first imagines is the

three-dimensional curve lying where the surfaces intersect in space. However, for many purpos-

es, it is the parameter values in each of the two surfaces' parameter spaces that map to this inter-

section which are most useful. A curve function providing the two parameters for the first sur-

face and the two parameters for the second surface is a four-dimensional curve. It has the visual-

ization of being two planar curves (in separate planes) with a common parameterization.

4.2 CURVES FROM POINTS

This section describes the main facilities in the Library for creating curves from information

based at points. There are two major classes of problems - interpolating and approximating. An

interpolating curve goes through each point. An approximating curve comes as close to each

point as possible while satisfying other restrictions. When conditions are chosen just right, a tool

designed to produce an approximating curve will produce an interpolating curve, since that is

certainly a curve which comes as close as possible to each point, other restrictions permitting.

In the simplest case, a sequence of points in some (n-dimensional) space has been given and an

interpolating curve is desired. That problem has infinitely many solutions, so one must be more

particular. For computational simplicity, restrict attention to spline curves. There are still infi-

nitely many possibilities, so a series of additional constraints must be imposed to narrow the pos-

sible solutions to one curve that can easily be computed. Ideally, the constraints should be de-

rived from a deeper understanding of the application. In practice, the choices are much restricted

by the availability of tools and techniques to apply them. Traditionally, constraints broadly in-

volving smoothness and constraints on the parameterization are supported.

Smoothness means "number of continuous derivatives". The individual pieces of a spline are

polynomial or rational, and are therefore infinitely smooth (except at zeroes of the denominator

in the rational case, but most systems or applications require the denominators to be uniformly

positive.) So smoothness constraints mainly involve what happens at the breakpoints between

pieces. Choosing the overall degree (equivalently, order) of the spline immediately limits the

possible smoothness at the breakpoints to at most one less than the degree. To see this, consider

a breakpoint between two cubic polynomial pieces that had three continuous derivatives at that

point. That would mean that the function value and its first three derivatives match on each side

of the point. But those four values completely determine a cubic polynomial. Hence, both pieces

DT_NURBS Users’ Manual

4-2

are exactly the same polynomial, and the breakpoint is purely nominal - there is no freedom to

"change course" in any way.

Consequently, choosing the overall smoothness takes the form of choosing the degree of the

spline. A spline of degree one produces a piecewise linear curve, that is, a series of straight line

segments, joined end to end. This is a simple, continuous curve, but its first derivative is discon-

tinuous. A spline of degree two produces a piecewise conic curve, that is, a series of conic arcs,

joined end to end, and normally with a common tangent at the joints. Now the curve is continu-

ous and its first derivative is continuous, but the second derivative is not. A spline of degree

three can produce a curve with continuous second derivative, and so on. As smoothness increas-

es, a price may be paid in another quarter - the interpolating curve may become wavy, eventually

oscillating wildly beyond the initial data points. Space and time costs also increase steadily.

Hence, the optimum smoothness for most purposes is somewhere near degree three.

In some applications, there may be particular points where smoothness is deliberately reduced

below the natural limit to achieve other effects - for example, a sharp corner, or a specified tan-

gent, or monotonicity.

Another set of constraints concerns the parameterization. What parameter values should be as-

signed to each of the data points? These selections have subtle effects on the resulting curve, and

the matter is still a subject of research. The Library provides tools for computing the three most

common parameterizations - chord length (D2GPAR, DTGPAR), uniform (TBD), and centripe-

tal (TBD). If one has no better idea, try chord length first, examine the resulting curve under a

microscope, and if it isn't satisfactory, try the others.

The final set of constraints concerns placement of the knots, that is, the places where the curve is

permitted to switch from one polynomial to another. If too many knots are provided, this deci-

sion acquires a second part, which involves specifying additional conditions to be satisfied by the

curve. There are many complex constraints on these choices and most users prefer to avoid

them. Avoidance takes the form of choosing a tool which applies some fixed strategy for placing

the knots and selecting additional conditions in a way which causes the curve interpolation prob-

lem to have a single solution.

A popular solution is called "natural" spline interpolation. It places single knots at each data

point for odd degree curves and midway between data points for even degree curves. This is "too

many" knots for a unique solution.
3
 A single solution is obtained by requiring an appropriate

number of the second and higher derivatives to be zero at the end points. The Library imple-

ments this strategy in D2NSI (and DTNSI).

A variation on natural spline interpolation is complete spline interpolation. In this variation, the

user may specify values for some of the derivatives at the endpoints of the curve. This strategy is

implemented in D2CSI (and DTCSI).

When the point set is appropriate and the interpolating curve is intended to be a closed curve, that

is, returning "smoothly" to its starting point, a "periodic" cubic spline may be created using

D2PCS1.

3
 To understand why this is "too many", see Chapter 2 for an introduction to spline theory, and then see the spline

theory article in the DT_NURBS Theory Document.

DT_NURBS Users’ Manual

4-3

When both points and tangent slopes at each point are provided, Hermite spline interpolation

should be used. The strategy used here places a double knot at each point. Hermite spline inter-

polation is implemented by D2HSI (and DTHSI). (Note how the addition of tangent constraints

reduces the smoothness.)

The most general-purpose curve generator is the Least-Squares Approximant. In this case the

user takes full control and supplies the knots as an input. With appropriate choices of knots, the

resulting curve is actually interpolating. Otherwise, the algorithm finds the curve which mini-

mizes the sum of the squared distances from the curve to the given data points. The Library rou-

tine is named D2LSA (and DTLSA).

4.3 CURVES FROM CURVES

This section describes the main facilities in the Library for creating curves from other curves.

The situations in which a new curve is created from an old one are quite varied.

A segment of a spline curve can be turned into spline curve in its own right by calling the "spline

trim" subroutine D2STRM (or DTSTRM).

Two spline curves that share an end point can be converted into a single spline curve by the

"spline join" subroutine D2SPJN (or DTSPJN).

The curve representing the derivative of a spline curve can be created by D2SPAD (or

DTSPAD).

Curves created by offset from a given curve can be created by TBD.

4.4 CURVES FROM SURFACES

This section describes the main facilities in the Library for creating curves from surfaces.

"Constant parameter" curves are obtained by fixing the value of one of the two parameters of the

surface and letting the other be the parameter of the curve. Library routines D2CNPR (and

DTCNPR) perform this operation. It can also be achieved by trimming one parameter to a single

point using D2STRM (or DTSTRM).

Intersection of a surface with a plane to obtain intersection curves in the parameter space of the

surface can be accomplished using D2PCUT (or DTPCUT).

Intersection of two spline surfaces, obtaining the four-dimensional "intersection" curve consist-

ing of two planar curves in the two surfaces' parameter domains, can be accomplished by

D2SSXT (or DTSSXT).

4.5 EXAMPLE USING D2LSA

Suppose one is given a sequence of points from the cross-section of a wing and the task is to

construct a curve interpolating these points. Suppose the points start at the trailing edge, go

along the upper surface to a known point on the leading edge, then return along the lower surface

to end at the trailing edge point from which they began. Suppose further that this wing is to have

a "sharp" leading edge as well as a sharp trailing edge, but otherwise be fairly smooth. The most

reasonable translation of this last requirement is that a degree three (cubic) spline is required

DT_NURBS Users’ Manual

4-4

across the top and bottom (second derivatives continuous), but the first derivative should be dis-

continuous at the leading and trailing edges. The natural spline interpolant could produce a sharp

trailing edge merely by starting the curve there and ending there, but it is deliberately designed to

prevent such discontinuities in the middle of the curve. One solution would be to use the natural

spline interpolant (D2NSI) to fit the upper curve, then the lower curve, then join them (D2SPJN)

at the leading edge point. A more elegant and efficient solution is to use the least-squares ap-

proximant (D2LSA) in a way which produces interpolation and the desired derivative discontinu-

ity all at once.

To permit a discontinuity in the first derivative at a point in a cubic spline, one must place a triple

knot there. (See chapter two for further explanation.) The end points of a cubic spline are auto-

matically quadruple knots. To maintain smoothness elsewhere, the remainder of the knots

should be single knots. To guarantee interpolation, the number of interior knots for a cubic

spline must be the number of interior data points minus two. Furthermore, these knots must be

distributed in a way which satisfies the "interlacing" conditions. Qualitatively, the interlacing

conditions require that the knots be distributed roughly evenly among the data points. If a knot is

placed at each data point and a triple knot is placed at the leading edge point, there will be four

knots too many. If the knots at the points next to the end points and at the points on either side of

the leading edge point are omitted, the correct number is attained and the interlacing conditions

are satisfied.

The following subroutine implements this plan. In the interest of brevity, all the IER checking

and error handling that should occur after each call to a Library routine has been omitted. Where

error handling is required, a user-supplied subroutine named "FAILED" is assumed to take care

of it.

 SUBROUTINE EXMPL7 (CMEM, IMEM, DMEM, IDMPTS, JLEAD, IBFSEC, IER)

C Create airfoil section curve with a sharp leading edge from given points

C and given leading edge point.

C

C Inputs:

C IDMPTS Pointer to DM entity whose rows are the points, starting from

C the trailing edge, over the top surface to the leading edge,

C and back along the bottom surface to the same trailing edge

C point. (3D pts)

C JLEAD Row index of leading edge point in IDMPTS

C Outputs:

C IBFSEC Pointer to BF entity expressing the airfoil section curve

C IER Error code (Zero indicates no error.)

C

 CHARACTER CMEM*(*)

 INTEGER IMEM(*), IMPTS, JLEAD, IBFSEC, IER

 DOUBLE PRECISION DMEM(*)

C

 INTEGER NPTS, NDEP, NDEG, NKNOTS, IFAIL, JDMPTS, IDAPAR, JDAPAR

 INTEGER JDUM, IDAKNT, JDAKNT

C

C Obtain size parameters from size of points matrix

 CALL D2MSZ (CMEM, IMEM, DMEM, IDMPTS, 'D', NPTS, NDEP, IER)

C Verify JLEAD has a reasonable value

 IF (JLEAD .LT. 4 .OR. JLEAD .GT. NPTS-3) THEN

 CALL FAILED ("EXMPL7 - JLEAD or NPTS out of range",-2,IER)

 RETURN

DT_NURBS Users’ Manual

4-5

 ENDIF

C

C Allocate space for the parameterization of the points

 CALL D2ADF (CMEM, IMEM, DMEM, 'D', NPTS, IDAPAR, IER)

C Find the absolute location in DMEM of the parameter array

 CALL D2FEBD (CMEM, IMEM, DMEM, IDAPAR, JDAPAR, JDUM, IER)

C Find the absolute location in DMEM of the points array

 CALL D2FEBD (CMEM, IMEM, DMEM, IDMPTS, JDMPTS, JDUM, IER)

C Construct the normalized chord length parameterization

 CALL D2GPAR (CMEM, IMEM, DMEM, NPTS, DMEM(JDMPTS), 1, NDEP, NPTS,

 + DMEM(JDAPAR), IER)

C

C Next allocate space for the knot vector

 NKNOTS = NPTS - 4

 CALL D2ADF (CMEM, IMEM, DMEM, 'D', NKNOTS, IDAKNT, IER)

C Get its absolute location in DMEM

 CALL D2FEBD (CMEM, IMEM, DMEM, IDAKNT, JDAKNT, JDUM, IER)

C Place the interior knots at the interior data points other than the

C first and last, i.e. at the 3rd to NPTS-2nd data points, then make

C the knot at the JLEAD point a triple knot while omitting the adjacent

C knots.

 DO 100 I=0,NKNOTS-1

 DMEM(JDAKNT+I) = DMEM(JDAPAR+I+2)

 100 CONTINUE

 DMEM(JDAKNT+JLEAD-2) = DMEM(JDAKNT+JLEAD-1)

 DMEM(JDAKNT+JLEAD) = DMEM(JDAKNT+JLEAD-1)

C

C Construct the interpolating cubic curve, using the default of equal

C weights (NDEG = 3, IWT = 0, WHT = 1.0D0)

 CALL D2LSA (CMEM, IMEM, DMEM, NPTS, DMEM(JDAPAR), DMEM(JDMPTS), NPTS,

 + NDEP, 3, 0, 1.0D0, DMEM(JDAKNT), NKNOTS, IBFSEC, IFAIL, IER)

C

C.....Delete the workspace

 CALL D2ERAS (CMEM, IMEM, DMEM, IDAPAR, IER)

 CALL D2ERAS (CMEM, IMEM, DMEM, IDAKNT, IER)

C Unlock the points array

......CALL D2UNLD (CMEM, IMEM, DMEM, IDMPTS, IER)

 RETURN

 END

DT_NURBS Users’ Manual

5-1

CREATING SURFACES

5

5.1 SURFACES

By definition, a surface is a function from a domain in R
2
 into R

n
. For the "tensor product spline

surfaces" which are the basic building block of all the surfaces the Library works with, the do-

main is always a rectangle whose sides are parallel to the axes. Most commonly, the image space

dimension, n, is three, producing a surface situated in three-dimensional space. However, an n of

two, indicating a mapping from a rectangle into another patch of a plane, arises naturally in the

so-called subrange surface, usually used to identify and parameterize a curve-bounded subset of

the parameter domain of an ordinary surface. The composition of the subrange surface and the

ordinary surface then serves to select a "trimmed" portion of the ordinary surface image in space.

When n is one, it is customary to include the surface parameters as the x and y coordinates and

picture the function graph (i.e. the points (x,y,z) such that z = f(x,y)) as a "surface" in three-

dimensional space, although, in fact, the image of the function lies in a one-dimensional space.

Cases where n is greater than three arise by including additional variables (e.g. pressure, tempera-

ture, velocity vector components) along with geometric position as outputs of the function.

5.2 SURFACES FROM POINTS

This section describes the main facilities in the Library for creating surfaces from points. There

are two major classes of problems - interpolating and approximating. An interpolating surface

goes through each point. An approximating surface comes as close to each point as possible

while satisfying other restrictions. When conditions are chosen just right, a tool designed to pro-

duce an approximating surface will produce an interpolating surface, since that is certainly a sur-

face which comes as close as possible to each point, other restrictions permitting.

The creation of a tensor product spline surface is much simpler and more efficient if the data

points are arranged in a a topologically rectangular grid, where the rows are assumed to occur at

places where one parameter is constant and the columns occur at places where the other parame-

ter is constant. Fortunately, this is very often the case.

The remainder of the considerations in building a spline surface are quite similar to those de-

scribed for curves in section 4.2, except that there are now two parameters to consider. In partic-

ular, a degree, data parameter values, and a knot vector must be chosen for each parameter.

Again, the easiest course is to use a tool which chooses satisfactory knot vectors automatically.

One popular solution is a generalization of "natural" spline interpolation for curves. The Library

subroutine D2GNSI (or DTGNSI) implements this, both for surfaces and for three-, four-, or

higher-parameter functions.

Similarly, complete spline interpolation for multi-parameter functions, most often surfaces, is

implemented in D2GCSI (or DTGCSI).

DT_NURBS Users’ Manual

5-2

When the point set is appropriate and the interpolating surface is intended to be closed in one di-

rection, that is, returning "smoothly" to its starting edge in that direction, a "periodic" cubic

spline surface may be created using D2PCS2.

The most general-purpose surface generator is the General Tensor Product Approximant,

D2GTPA (or DTGTPA), which is the higher-dimensional analogue to the Least-Squares Approx-

imant for curves. In this case the user takes full control and supplies the knots as an input. With

appropriate choices of knots, the resulting surface is actually interpolating. Otherwise, the algo-

rithm finds the surface which minimizes the sum of the squared distances from the surface to the

given data points.

5.3 SURFACES FROM CURVES

This section describes the main facilities in the Library for creating surfaces from curves.

The simplest case is the generation of a surface of revolution from a curve and an axis. The Li-

brary routine which does this is D2SREV (or DTSREV).

A subrange surface can be constructed from four boundary curves using D2MPBC, or from four

points using D2MPQD.

A more interesting challenge is to "blend" a family of roughly parallel curves into a surface. The

actual surface construction is performed by D2CRBL (or DTCRBL), but it only works on curves

with the same degree and knot vector. Additional routines to modify the structure of the input

curves, without changing their spatial positions or shapes, to achieve identical degrees and knot

vectors are D2UPDG (or DTUPDG), which increases the apparent degree of a curve, and

D2MGKT (or DTMGKT), which adds knots to the members of a family of curves until all mem-

bers have the same knot vector.

A variation on curve blending is grid blending, where two families of curves intersecting in a

consistent grid pattern are interpolated by a surface. The Library routine which implements this

is D2GRBL (or DTGRBL).

5.4 SURFACES FROM SURFACES

This section describes the main facilities in the Library for creating surfaces from other surfaces.

The situations in which a new surface may be created from an old one are quite varied.

A portion of a spline surface defined by further restricting the two parameter intervals can be

turned into a spline surface in its own right by calling the "spline trim" subroutine D2STRM (or

DTSTRM).

A mirror image of a surface in a plane in space can be produced by D2MIRI (or DTMIRI).

A surface can be rotated, scaled, and/or translated by combining it with the appropriate linear or

affine mapping using D2BINE. The matrix representing the mapping can be created using

D2TROT, D2TSCL, or D2TTRN (or DTTROT, DTTSCL or DTTTRN).

Surfaces created by offset from a given surface can be created by TBD.

DT_NURBS Users’ Manual

5-3

5.5 EXAMPLE USING D2CRBL

Suppose a family of airfoil section curves has been provided, and the task is to construct the wing

surface interpolating between them. The following code fragment illustrates using D2UPDG,

D2MGKT and D2CRBL to accomplish this.

 SUBROUTINE EXMPL8 (CMEM, IMEM, DMEM, IPASEC, IDAPAR, NDEG, IBFSUR,

 + IER)

C Blend a list of airfoil sections at given parameter locations into a

C wing surface.

C

C Inputs:

C IPASEC Pointer array whose pointers point to the BF curve entities

C representing the wing sections, in order spanwise.

C IDAPAR Pointer to array of parameter locations for the curves in

C IPASEC.

C NDEG Degree to use in spanwise direction of wing

C Outputs:

C IBFSUR Pointer to BF entity representing the wing surface

C IER Error code (Zero means no error)

C

 CHARACTER CMEM*(*)

 INTEGER IMEM(*), IPASEC, IDAPAR, NDEG, IBFSUR, IER

 DOUBLE PRECISION DMEM(*)

C

 INTEGER NCUR, IPA, KORD, JDUM, JDAPAR, IBFSEC, IBFCHG, JBFCHG, IPACHG

 INTEGER I, J, K, N, M, NC

 DOUBLE PRECISION CLO, CHI, PLO, PHI, ORDER

 LOGICAL SAMDEG, R

C

C Get number of curves

 CALL D2ASZ (CMEM, IMEM, DMEM, IPASEC, 'P', NCUR, IER)

C

C Find maximum curve order and obtain first curve's parameter range

 CALL D2AETI (CMEM, IMEM, DMEM, IPASEC, 1, '>' IBFSEC, IER)

 CALL D2BFSZ (CMEM, IMEM, DMEM, IBFSEC, 1, N, M, R, KORD, NC, CLO,

 + CHI, IER)

 DO 100 I=2,NCUR

 CALL D2AETI (CMEM, IMEM, DMEM, IPASEC, I, '>', IBFSEC, IER)

C Take advantage of the fact that the order of a curve is always the

C third element of its spline array

 CALL D2FEED (CMEM, IMEM, DMEM, IBFSEC, 3, ORDER, IER)

 IF (INT (ORDER) .GT. KORD) KORD = INT (ORDER)

 100 CONTINUE

C

C Make a copy of the input curve list so that its elements may be

C processed without corrupting the original input data.

C Allocate a new list

 CALL D2ADF (CMEM, IMEM, DMEM, 'P', NCUR, IPA, IER)

C Copy the old list, adjusting the parameter domains and orders as

C necessary

 DO 200 I=1,NCUR

 CALL D2AETI (CMEM, IMEM, DMEM, IPASEC, I, '>', IBFSEC, IER)

 CALL D2BFSZ (CMEM, IMEM, DMEM, IBFSEC, 1, N, M, R, K, NC, PLO,

 + PHI, IER)

 IF (K .LT. KORD) THEN

C Increase the order until it matches the maximum among all the

C curves. This process also creates a new copy of the curve

DT_NURBS Users’ Manual

5-4

 DO 210 J=K+1,KORD

 CALL D2UPDG (CMEM, IMEM, DMEM, IBFSEC, 1, IBFCHG, IER)

C Clean up by erasing the previous copy, if not the original

 IF (J .GT. K+1) CALL D2ERAS (CMEM, IMEM, DMEM, IBFSEC, IER)

 IF (J .LT. KORD) IBFSEC = IBFCHG

 210 CONTINUE

 ELSE

C Copy the old curve, ignoring any variable labels that may be

C present

 CALL D2FELD (CMEM, IMEM, DMEM, IBFSEC, M, IER)

 CALL D2BFDF (CMEM, IMEM, DMEM, M, '', IBFCHG, IER)

 CALL D2FEBD (CMEM, IMEM, DMEM, IBFCHG, JBFCHG, JDUM, IER)

 CALL D2FEAD (CMEM, IMEM, DMEM, IBFSEC, 1, M, DMEM(JBFCHG), IER)

 CALL D2UNLD (CMEM, IMEM, DMEM, IBFCHG, IER)

 ENDIF

C Fix the parameter bounds, if necessary

 IF (PLO .NE. CLO .OR. PHI .NE. CHI)

 + CALL D2RPRM (CMEM, IMEM, DMEM, IBFCHG, 1, CLO, CHI, IER)

C Store the copy in the new list

 CALL D2AETI (CMEM, IMEM, DMEM, IPA, I, '<', IBFCHG, IER)

 200 CONTINUE

C

C Make the knot vectors match

 CALL D2MGKT (CMEM, IMEM, DMEM, IPA, 0.0D0, 0, 0, IPACHG, IER)

C

C Erase the intermediate local copy of the input curves

 DO 300 I=1,NCUR

 CALL D2AETI (CMEM, IMEM, DMEM, IPA, I, '>', IBFCHG, IER)

 CALL D2ERAS (CMEM, IMEM, DMEM, IBFCHG, IER)

 300 CONTINUE

 CALL D2ERAS (CMEM, IMEM, DMEM, IPA, IER)

C

C Create the wing surface by blending the processed local copy of the

C airfoil section curves

 CALL D2FEBD (CMEM, IMEM, DMEM, IDAPAR, JDAPAR, JDUM, IER)

 CALL D2CRBL (CMEM, IMEM, DMEM, IPACHG, DMEM(JDAPAR), 1, NDEG, IBFSUR,

IER)

 CALL D2UNLD (CMEM, IMEM, DMEM, IDAPAR, IER)

C

C Erase the local copy of the input curves

 DO 400 I=1,NCUR

 CALL D2AETI (CMEM, IMEM, DMEM, IPACHG, I, '>', IBFCHG, IER)

 CALL D2ERAS (CMEM, IMEM, DMEM, IBFCHG, IER)

 400 CONTINUE

 CALL D2ERAS (CMEM, IMEM, DMEM, IPACHG, IER)

C

......RETURN

 END

DT_NURBS Users’ Manual

6-1

NOTES ON INTERSECTING SURFACES

6

6.1 SURFACE - SURFACE INTERSECTION

The Phase 1 subroutine for surface-surface intersection, DTSSI, required the user to supply a

starting point and constructed three lists of points (one in model space and one in each surface's

parameter space) for the one intersection curve nearest that starting point. (An intersection curve,

since it lies in both surfaces, is most usefully described in the form of two planar curves, one in

each surface's parameter space.) The Phase 2 subroutine for surface-surface intersection,

DTSSXT, is a far more capable routine. It attempts to find all components of the intersection of

two surface patches without user guidance. It has no difficulty with loop detection, which is of-

ten considered a special problem in the literature. DTSSXT has the unique feature that it de-

scribes the intersection curves in the four-dimensional Cartesian product of the two surface pa-

rameter spaces. This amounts to providing a simultaneous parameterization of the corresponding

pair of planar curves. Although cases are known in which DTSSXT fails (e.g., crossing intersec-

tion curves), it appears to be state-of-the-art at this time. DTSSXT does require that both surfac-

es be continuously differentiable.

The "contour refining" component of DTSSXT is sufficiently general that it has been made

available to users directly as DTCNTR, which is also described below.

In version 2.4 of the Library, D2SSXT replaced DTSSXT as the recommended surface intersec-

tion routine. In addition to using the dynamic memory facility to allocate all required workspaces

and the solution space, D2SSXT incorporates a better algorithm for solving the various subsidi-

ary systems of nonlinear equations that arise in the DTSSXT intersection algorithm. This im-

provement eliminates the problematic PROB parameter of DTSSXT as well as greatly increasing

the likelihood that all solutions will be found.

6.2 USAGE OF DTCNTR FOR SURFACE - SURFACE INTERSECTION

If DTSSXT fails to find an intersection curve, but you know where the curve starts and ends,

then DTCNTR can be used to find the curve. To do so, your two surfaces must be defined by

spline arrays C and D as in DTCNTR. Set up the AUX array as follows: AUX(1) should be MC,

the length of the array C. C should be copied into AUX starting at AUX(2), and D should be

copied into AUX starting at AUX(MC+2). You don't need to create FCN; you can use DTSS09,

which is a lower level subprogram for DTSSXT. To get the input form of CT, use DTLSA as

follows (note that WHT and XKNOTS are dummy arguments):

PARAMETER (N = 4, NROWY = 4, NCURV = 4, NDEG = 3,

+ IWT = 0, NKNOTS = 0, MCT = 29, NHOLD = 100)

DOUBLE PRECISION T(N), Y(NROWY,NCURV), WHT, XKNOTS, CT(MCT),

+ HOLD(NHOLD)

T(1) = 0.D0

T(2) = 1.D0/3.D0

T(3) = 2.D0/3.D0

DT_NURBS Users’ Manual

6-2

T(4) = 1.D0

Y(1,1) = first parameter value of starting point on first surface

Y(1,2) = second parameter value of starting point on first surface

Y(1,3) = first parameter value of starting point on second surface

Y(1,4) = second parameter value of starting point on second surface

 (the fourth row of Y is set up similarly for the ending point)

DO 10 J = 1, 4

 Y(2,J) = (2.D0*Y(1,J) + Y(4,J)) / 3.D0

 Y(3,J) = (Y(1,J) + 2.D0*Y(4,J)) / 3.D0

10 CONTINUE

CALL DTLSA (N, T, Y, NROWY, NCURV, NDEG, IWT, WHT,

+ XKNOTS, NKNOTS,HOLD, NHOLD, MCT, CT, MC, IFAIL,

+ IER)

When AUX and CT are ready, the call to DTCNTR will be

CALL DTCNTR (DTSS09, AUX, TOL, MCT, WORK, NWORK, CT, IER)

If you have more information about the curve than its endpoints, you can modify T(2), T(3), and

the middle rows of Y accordingly, or you can add additional points.

6.3 USAGE OF D2CNTR FOR SURFACE - SURFACE INTERSECTION

As above, if D2SSXT fails to find an intersection curve, but you know where the curve starts and

ends, then D2CNTR can be used to find the curve. The two surfaces must be defined by B-spline

function (BF) entities, IBF1 and IBF2. IAUX is a Pointer Array (PA) entity, containing only

pointers to IBF1 and IBF2. You don't need to create CNTRFU; you can use D0SS00, which is a

lower level subprogram for D2SSXT.

To get the input form of the initial guess (B-spline function IGUESS), use DTLSA as above, to

create a spline array CT. Then create an initial guess B-Spline Function (BF) entity IGUESS and

copy the spline array into it as follows:

CALL D2BFDF (CMEM, IMEM, DMEM, MCT, LABEL, IGUESS, IER)

CALL D2STAD (CMEM, IMEM, DMEM, CT, 1, MCT, IGUESS, IER)

Create IAUX as follows:

CALL D2ADF (CMEM, IMEM, DMEM, ’P’, 2, IAUX, IER)

CALL D2STEI (CMEM, IMEM, DMEM, IBF1, 1, IAUX, IER)

CALL D2STEI (CMEM, IMEM, DMEM, IBF2, 2, IAUX, IER)

When IAUX and IGUESS are ready, the call to D2CNTR will be

CALL D2CNTR (CMEM, IMEM, DMEM, D0SS00, IAUX, TOL, IGUESS, IER)

DT_NURBS Users’ Manual

7-1

GEOMETRY, GRIDS AND ANALYSIS

7

7.1 INTRODUCTION

The purpose of the Geometry, Grid & Analysis (GGA) object is to provide a common mathemat-

ical framework and a convenient structure for managing geometry, grid, and analysis data. It is

based on an hierarchical object architecture. In general, it will:

1. Store geometry, grid, and analysis data in a compact yet flexible form.

2. Store entities so that the child changes as a parent object changes. This would allow, for in-

stance, grids to easily reflect changes in geometry.

3. Provide a method of storing analysis results with geometry.

4. Enable standard methods for extracting information such as Cartesian coordinates, surface

area and solid volume, curvatures and normals, and analysis solutions.

5. Allow transparent handling of many independent and dependent variables. This will allow,

for example, geometry, grid, and analysis data to vary with time without changing the number

of objects in the data base.

The GGA object is a mathematical framework that provides a consistent format for storing ge-

ometry data, grid data, and analysis data. The basic idea is to relate all three forms of data to a

common parameterization and to allow the parameterization to have as many independent varia-

bles as is needed for description. Before discussing each item in detail consider some of the

problems that occur using traditional formats.

First, consider geometry. In most CAD systems the basic building block is a single "patch" de-

scribed as a polynomial or piecewise polynomial surface. But, in many, if not most, industrial

applications the geometry of interest is actually only a piece of the defined geometry. For exam-

ple, for many applications the only part of a ship's hull needed for analysis is the wetted portion,

i.e., the portion below the waterline. Also, the portion of interest may change over time. For ex-

ample, the waterline may change as the ship executes various maneuvers or the sea conditions

change. Dealing with changing geometries is difficult. The GGA object is designed to permit

the "parent" geometry to be stored along with the relevant, time varying "child" geometry.

Grids present similar problems. If grids and grid lines are described directly on the geometry

then, as the geometry changes, grids will have to be rederived. In the wetted surface example, as

the sea conditions change grid points will no longer be on the wetted surface while new grid

points will be required. This type of change needs to be handled but the typical geometry system

does not have facilities for doing so. The GGA object is designed to store a basic underlying grid

on the parametric domain of the "child" geometry which then allows the grid to change automati-

cally as the geometry changes.

Finally, the results of computational analysis are usually given at various discrete points, the grid

points, on the geometry. Interpolating results to different grids as required in multi-disciplinary

DT_NURBS Users’ Manual

7-2

applications is difficult. The GGA object is designed to permit the analysis results to be identi-

fied with points in the parametric domain of the geometry. Then, the multi-dimensional capabil-

ity of the DT_NURBS spline type can be used to construct interpolatory or approximating sur-

faces and store them directly with the grid and geometry.

The building blocks of a GGA object are tensor product splines of any dimensionality, composi-

tions of functions, and grids. Parent geometry may be any composition of functions. Child ge-

ometries are obtained by composing subrange functions with parent geometries. Subrange func-

tions consist of some of the dependent variables of a tensor product spline. The remaining de-

pendent variables are analysis results.

7.2 GEOMETRY

Geometry is described by two functions. The first, parent geometry, can be any entity of type

Composition of Functions (CF). The second, subrange function, is part of a tensor product spline

entity (BF).

The domain of the parent geometry is an n-dimensional cube R. It will generally be referred to as

(u,v) parameter space. The domain of the subrange function is another n-dimensional cube D

and will be referred to as (s,t) parameter space. An example of a third dimension in D would be

the use of a time parameter used to describe the boundary of relevant geometry on the parent sur-

face as it changes with time.

The model of geometry is depicted in the following diagram where the mapping f: R E
3

space

is the parent geometry of the particular joined surface component and g: D R is a subrange

mapping defining the relevant piece of the parent geometry.

7.3 GRIDS

Grids are logical descriptions of particular geometric points together with connectivity relation-

ships such as which grid points form the vertices of a cell and so forth. Grids are data structures

that describe a cellular decomposition of the domain D of the subrange function g. The reason

for this is to allow geometry to change while holding the description of the geometric points con-

stant. This allows those points to change with changes in the geometry without requiring contin-

DT_NURBS Users’ Manual

7-3

ual regridding of the geometry. We use the notation {...}
grid

 D to mean the mapping from

the grid data to specific points in the domain D of the function g.

Initially, grids will be provided in one of the following three formats.

1. Rectangular Grid (RG) described by two or more vectors. For example, the vectors (s1, ..., sp)

and (t1, ..., tq) describe a grid in the two-dimensional domain D. For this grid, the points in D

are Pij = (si, tj) and the elements are the rectangles with vertices Pij, P(i+1)j, P(i+1)(j+1), Pi(j+1).

In the example, if a third dimension w such as time and a vector (w1, .., wr) are added then the

points in D are Pijk = (si, tj, wk).

1. Topologically Rectangular Grid (TRG) described by two (or more) matrices each of dimen-

sion p x q. For this grid, the points in D are Pij = (sij, tij) and the elements are the rectangles

with vertices Pij, P(i+1)j, P(i+1)(j+1), Pi(j+1). See previous comments about other parameters such

as time. See previous comments about other parameters such as time.

For example, the matrices (tij), (sij) describe a grid in a two-dimensional domain D.

1. Triangular (or unstructured) Grid (TG) described by a collection Pi of vertices of triangles in

D together with a list of which vertices are connected in a triangle.

The following diagram shows how the grids, together with the joined surfaces are used to gener-

ate geometric points for use in an analysis code.

t

s

t

s

(s1, ..., sp)

(t1, ..., tq)

(w1, ..., wr)

time w = 1 time w = 2

t

s

(tij)

(sij)

t

s

DT_NURBS Users’ Manual

7-4

(s1, s2, s3, s4)

(t1, t2, t3, t4)

(sij)

(tij)

7.4 ANALYSIS

The last component is the analysis component. Analysis results are stored as an extension of the

range of the subrange map g. Initially, the subrange maps D R After completing the analysis,

the range of g will be extended as g: D (u, v, ..., a1, a2, ...) where the first several dependent

components u, v, ... coordinates in R and the last several components a1, ... are the results of vari-

ous analyses.

For example, the analysis results could be coefficients of pressure CP. The subrange function g is

then extended so that g:(s,t) (u,v,CP) where CP is the coefficient of pressure at the point (x,y,z)

= f(u,v).

The spline coefficients for the analysis results are normally obtained as follows. After an analy-

sis is completed results are available at each of the geometric points and each geometric point is

associated with a particular (u, v) point in the domain D. Thus, there is a mapping from points in

D to results. DT_NURBS functionality then can be used to generate a spline fit, either an inter-

polation or a smoothing, to the data and that spline fit becomes the variable ai.

7.5 SUMMARY

The structure for each piece of the joined surface is in the form of a triple (f, g, grid) where f de-

scribes the parent geometry, g describes both the relevant subset of geometry (the subrange) and

the results of analysis, and grid describes the various grids involved in generating the analyses.

7.6 EXAMPLE

The following example is a good one to keep in mind. Imagine a ship where we want to calcu-

late water speed at points along the ship's wetted surface (i.e., points below the waterline). The

geometry consists of the parent geometry f describing the entire hull, and two subsurfaces, the

wetted surface and the free surface. The boundary between the two subsurfaces is the waterline.

DT_NURBS Users’ Manual

7-5

For the free subsurface only the mapping g1 which defines it is provided and the grid is null. For

the wetted surface a mapping g2 and a grid are provided and the velocity vector (vx, vy, vz) is

stored.

If things were static this is all that would be needed. However, we can assume the waterline it-

self varies with time and, as it varies, different grids are needed. Imagine the situation in the

next diagram where the "vertical" grid lines change from being located near the bow to being lo-

cated near the stern of the hull.

The following data are needed to fully describe the dynamics involved.

I. The parent geometry f: (u, v) hull

II. The free surface

A. A null grid

B. g1: (s, t, w) (u, v) describing the free surface at time w.

In this case f g1 (s, t, w)
4
 is a point which, at time w, is above the waterline.

III. The wetted surface

4
The notation f g (x) means "function f composed with function g," and could be written as f(g(x))

{u}

{v}
g2

g1

DT_NURBS Users’ Manual

7-6

A. A 3-dimensional grid in (s, t, w) space (of type RG, TRG or TG)

B. g2: (s, t, w) (u, v, vx, vy, vz) describing the wetted surface and the analysis re-

sults at time w.

Denote by S(i,j) the selection map that chooses the i,j coordinates of a vector. Similarly, S(i,j,k)

chooses the i,j,k coordinates. Also, denote by f g the composition of f with g. Then, in the case

described, f S(1,2) g2 (s,t,w) is a point which, at time w, is below the waterline and S(3,4,5)
g2 (s,t,w) is the velocity vector at that point and time.

7.7 EXAMPLE PROGRAM

This example demonstrates a simple creation of a Geometry and Analysis (GA) entity. A few

evaluations are performed to show how this is done.

In a more realistic program, the splines would have been formed by a data fitting program, which

may take a Grid (GR) entity as one of its arguments.

Also, after some evaluations are made, some components of the "g" spline may be refit, and

merged back into the spline with the D2BFMG subroutine.

 PROGRAM GGA

C

C Example Program to demonstrate the use of the GGA entities

C and subroutines.

C

C HISTORY:

C October 24, 1994 D. Parsons Created.

C

C ---------------

C

 EXTERNAL DTJCON

 INTEGER DTJCON

 INTEGER LUNIT

 INTEGER MEMAXC, MEMAXI, MEMAXD

 PARAMETER (

 + MEMAXC = 500,

 + MEMAXI = 500,

 + MEMAXD = 500)

 CHARACTER CMEM*(MEMAXC)

 INTEGER IMEM(MEMAXI)

 DOUBLE PRECISION DMEM(MEMAXD)

 INTEGER IER

 INTEGER MAXCF, IXCF(3), IGA

 INTEGER IBFF, IBFG, ICF1, ICF2, ICF3

 INTEGER JCF

 INTEGER S1(4), S2(3), S3(5), IS1, IS2, IS3

 INTEGER LSAPAR, LSAFV, LSADRV, LSAFDV

 INTEGER JDRV(2)

 DOUBLE PRECISION FV(3), FDV(3), PAR(2)

DT_NURBS Users’ Manual

7-7

 CHARACTER CHKLVL, TYPNAM*(5), CFLBLS*(30)

 CHARACTER CFNAME*(15)

 DOUBLE PRECISION BFF(36), BFG(74)

 LOGICAL INITIZ

 DATA CFLBLS /'~Geometry~Temperature~Velocity'/

C Splines Functions:

C The following functions would probably be generated by creating

C a grid entity, and some data arrays and passing these to some

C user data-fitting program to fit the spline data. For simplicity

C this example just uses DATA statements.

C B-spline function f(u,v) -> (x,y,z)

C such that x(u,v) = u

C y(u,v) = v

C z(u,v) = u*v*v

 DATA BFF /2.D0, 3.D0, 2.D0, 3.D0, 2.D0, 3.D0, 0.D0, 0.D0,

 + 0.D0, 0.D0, 1.D0, 1.D0,

 + 0.D0, 0.D0, 0.D0, 1.D0, 1.D0, 1.D0,

 + 0.D0, 1.D0, 0.D0, 1.D0, 0.D0, 1.D0,

 + 0.D0, 0.D0, .5D0, .5D0, 1.D0, 1.D0,

 + 0.D0, 0.D0, 0.D0, 0.D0, 0.D0, 1.D0/

C B-spline function g(s,t) -> (u,v,T,Vx,Vy,Vz)

C such that u(s,t) = s

C v(s,t) = t

C T(s,t) = s*t

C Vx(s,t) = s*s

C Vy(s,t) = t*t

C Vz(s,t) = 1

 DATA BFG /2.D0, 6.D0, 3.D0, 3.D0, 3.D0, 3.D0, 0.D0, 0.D0,

 + 0.D0, 0.D0, 0.D0, 1.D0, 1.D0, 1.D0,

 + 0.D0, 0.D0, 0.D0, 1.D0, 1.D0, 1.D0,

 + 0.D0, .5D0, 1.D0, 0.D0, .5D0, 1.D0, 0.D0, .5D0, 1.D0,

 + 0.D0, 0.D0, 0.D0, .5D0, .5D0, .5D0, 1.D0, 1.D0, 1.D0,

 + 0.D0, 0.D0, 0.D0, 0.D0, .25D0,.5D0, 0.D0, .5D0, 1.D0,

 + 0.D0, 0.D0, 1.D0, 0.D0, 0.D0, 1.D0, 0.D0, 0.D0, 1.D0,

 + 0.D0, 0.D0, 0.D0, 0.D0, 0.D0, 0.D0, 1.D0, 1.D0, 1.D0,

 + 1.D0, 1.D0, 1.D0, 1.D0, 1.D0, 1.D0, 1.D0, 1.D0, 1.D0/

C Select functions:

C Select (u,v) from g

 DATA S1 /6, 2, 1, 2/

C Select (T) from g

 DATA S2 /6, 1, 3/

C Select (Vx,Vy,Vz) from g

 DATA S3 /6, 3, 4, 5, 6/

C ---------------

 LUNIT = DTJCON(6)

DT_NURBS Users’ Manual

7-8

 TYPNAM = 'DUMMY'

 CHKLVL = 'H'

 INITIZ = .TRUE.

C Initialize dynamic memory and create entities and parameters

 CALL D2INIT (CMEM, IMEM, DMEM, MEMAXC, MEMAXI, MEMAXD, TYPNAM,

 + 'H', IER)

 IF (IER .NE. 0) THEN

 WRITE (LUNIT, 9910)

 GOTO 8000

 ENDIF

C Function f(u,v) -> (x,y,z)

 CALL D2BFDF (CMEM, IMEM, DMEM, 36, 'Function f', IBFF, IER)

 IF (IER .NE. 0) THEN

 WRITE (LUNIT, 9920)

 GOTO 8000

 ENDIF

 CALL D2STAD (CMEM, IMEM, DMEM, BFF, 1, 36, IBFF, IER)

 IF (IER .NE. 0) THEN

 WRITE (LUNIT, 9980)

 GOTO 8000

 ENDIF

C Function g(s,t) -> (u,v,T,Vx,Vy,Vz)

 CALL D2BFDF (CMEM, IMEM, DMEM, 74, 'Function g', IBFG, IER)

 IF (IER .NE. 0) THEN

 WRITE (LUNIT, 9920)

 GOTO 8000

 ENDIF

 CALL D2STAD (CMEM, IMEM, DMEM, BFG, 1, 74, IBFG, IER)

 IF (IER .NE. 0) THEN

 WRITE (LUNIT, 9980)

 GOTO 8000

 ENDIF

C Select functions

 CALL D2ADF (CMEM, IMEM, DMEM, 'I', 4, IS1, IER)

 IF (IER .NE. 0) THEN

 WRITE (LUNIT, 9950)

 GOTO 8000

 ENDIF

 CALL D2STAI (CMEM, IMEM, DMEM, S1, 1, 4, IS1, IER)

 IF (IER .NE. 0) THEN

 WRITE (LUNIT, 9960)

 GOTO 8000

 ENDIF

 CALL D2ADF (CMEM, IMEM, DMEM, 'I', 3, IS2, IER)

 IF (IER .NE. 0) THEN

 WRITE (LUNIT, 9950)

 GOTO 8000

DT_NURBS Users’ Manual

7-9

 ENDIF

 CALL D2STAI (CMEM, IMEM, DMEM, S2, 1, 3, IS2, IER)

 IF (IER .NE. 0) THEN

 WRITE (LUNIT, 9960)

 GOTO 8000

 ENDIF

 CALL D2ADF (CMEM, IMEM, DMEM, 'I', 5, IS3, IER)

 IF (IER .NE. 0) THEN

 WRITE (LUNIT, 9950)

 GOTO 8000

 ENDIF

 CALL D2STAI (CMEM, IMEM, DMEM, S3, 1, 5, IS3, IER)

 IF (IER .NE. 0) THEN

 WRITE (LUNIT, 9960)

 GOTO 8000

 ENDIF

C Create function compositions

C f(s1(g(s,t))) -> (x,y,z) = 'Geometry'

 CALL D2POSE (CMEM, IMEM, DMEM, 'B', IBFG, 'S', IS1, ICF1, IER)

 IF (IER .NE. 0) THEN

 WRITE (LUNIT, 9930)

 GOTO 8000

 ENDIF

 CALL D2POSX (CMEM, IMEM, DMEM, ICF1, 'B', IBFF, IER)

 IF (IER .NE. 0) THEN

 WRITE (LUNIT, 9940)

 GOTO 8000

 ENDIF

C s2(g(s,t)) -> (T) = 'Temperature'

 CALL D2POSE (CMEM, IMEM, DMEM, 'B', IBFG, 'S', IS2, ICF2, IER)

 IF (IER .NE. 0) THEN

 WRITE (LUNIT, 9930)

 GOTO 8000

 ENDIF

C s3(g(s,t)) -> (Vx,Vy,Vz) = 'Velocity'

 CALL D2POSE (CMEM, IMEM, DMEM, 'B', IBFG, 'S', IS3, ICF3, IER)

 IF (IER .NE. 0) THEN

 WRITE (LUNIT, 9930)

 GOTO 8000

 ENDIF

C Create IGA

 MAXCF = 3

 IXCF(1) = ICF1

 IXCF(2) = ICF2

 IXCF(3) = ICF3

 CALL D2GADF (CMEM, IMEM, DMEM, MAXCF, CFLBLS, IXCF, IGA, IER)

 IF (IER .NE. 0) THEN

DT_NURBS Users’ Manual

7-10

 WRITE (LUNIT, 9990)

 GOTO 8000

 ENDIF

C ---

C Perform sample evaluations at (.25,.75)

C Since no fancy use of subarrays for input are needed for this

C example, just use the dummy setting of zero for the subarray

C access arrays.

 LSAPAR = 0

 LSADRV = 0

 LSAFV = 0

 PAR(1) = .25D0

 PAR(2) = .75D0

C Evaluate "Geometry" (by name).

 CFNAME = 'GEOMETRY'

 CALL D2GAEN (CMEM, IMEM, DMEM, IGA, CFNAME, LSAPAR, PAR,

 + LSAFV, FV, IER)

 IF (IER .NE. 0) THEN

 WRITE (LUNIT, 9010)

 GOTO 8000

 ELSE

 WRITE (LUNIT, 9110) PAR(1), PAR(2), FV(1), FV(2), FV(3)

 ENDIF

C Evaluate the partial derivative of "Temperature" (by name)

C with respect to the second independent variable (t).

 CFNAME = 'TEMPERATURE'

 JDRV(1) = 0

 JDRV(2) = 1

 CALL D2GADN (CMEM, IMEM, DMEM, IGA, CFNAME, LSADRV, JDRV,

 + LSAPAR, PAR, LSAFDV, FDV, IER)

 IF (IER .NE. 0) THEN

 WRITE (LUNIT, 9020)

 GOTO 8000

 ELSE

 WRITE (LUNIT, 9120) PAR(1), PAR(2), FDV(1)

 ENDIF

C Evaluate "Velocity" using the knowledge that it is the 3rd

C Composite Function in the structure.

 JCF = 3

 CALL D2GAEV (CMEM, IMEM, DMEM, IGA, JCF, LSAPAR, PAR,

 + LSAFV, FV, IER)

 IF (IER .NE. 0) THEN

 WRITE (LUNIT, 9030)

 GOTO 8000

 ELSE

 WRITE (LUNIT, 9130) PAR(1), PAR(2), FV(1), FV(2), FV(3)

 ENDIF

 8000 CONTINUE

DT_NURBS Users’ Manual

7-11

 WRITE (LUNIT, '(//)')

C --- End of Program ---

 STOP

C ===

 9010 FORMAT (/,' Unexpected failure of D2GAEN',/)

 9020 FORMAT (/,' Unexpected failure of D2GADN',/)

 9030 FORMAT (/,' Unexpected failure of D2GAEV',/)

 9110 FORMAT (/,' Geometry coordinates (x,y,z) at (',

 + F4.2,',',F4.2,'):',//,10X,'(',

 + F5.2,',',F5.2,',',F5.2,')'/)

 9120 FORMAT (/,' Partial of Temperature (T), with respect to t, at (',

 + F4.2,',',F4.2,'):',//,10X,'(',F5.2,')'/)

 9130 FORMAT (/,' Velocity vectors (Vx,Vy,Vz) at (',

 + F4.2,',',F4.2,'):',//,10X,'(',

 + F5.2,',',F5.2,',',F5.2,')'/)

 9910 FORMAT (/,' D2INIT Unable to initalize Dynamic Memory for test',/)

 9920 FORMAT (/,' D2BFDF Unable to create spline',/)

 9930 FORMAT (/,' D2POSE Unable to compose function',/)

 9940 FORMAT (/,' D2POSX Unable to expand CF function',/)

 9950 FORMAT (/,' D2ADF Unable to create IIA for test',/)

 9960 FORMAT (/,' D2STAI Unable to copy integers to IIA',/)

 9970 FORMAT (/,' D2MDF Unable to create IDM',/)

 9980 FORMAT (/,' D2STAD Unable to copy dbl. prec. to IDM',/)

 9990 FORMAT (/,' D2GADF Unable to create IGA',/)

 END

Program Output

Geometry coordinates (x,y,z) at (.25, .75):

 (.25, .75, .14)

Partial of Temperature (T), with respect to t, at (.25, .75):

 (.25)

Velocity vectors (Vx,Vy,Vz) at (.25, .75):

 (.06, .56, 1.00)

Stop - Program terminated.

7.8 SECOND EXAMPLE

In this example, a subrange of a surface will be constructed, a grid placed on it, analysis data for

the pressure and temperature added to it, and, finally, a constant pressure contour extracted. The

central data object in this series of manipulations will be a Geometry and Analysis (GA) entity.

DT_NURBS Users’ Manual

7-12

First we give an example of a subroutine which constructs a GA entity with the subrange struc-

ture indicated above. Assume IBFSUR is a MEM pointer to the B-spline Function entity repre-

senting the base surface. Assume IBFCUT is a MEM pointer to a P-spline Function entity repre-

senting a curve cutting the parameter domain of the base surface from the right edge to the left

edge, and that the bottom half of this domain is to be gridded and analyzed. Assume FAILED is

a user subroutine which handles error message reporting. Assume EQCHK is a user subroutine

which decides whether two double precision numbers are close enough to be considered equal.

 SUBROUTINE EXMP02 (CMEM, IMEM, DMEM, IBFSUR, IBFCUT, IGA, IER)

 CHARACTER CMEM*(*)

 INTEGER IMEM(*), IBFSUR, IBFCUT, IGA, IER

 DOUBLE PRECISION DMEM(*)

C

 EXTERNAL EQCHK

 INTEGER NSURI, NSURO, KSUR(2), NCSUR(2), NCUTI, NCUTO, KCUT

 INTEGER NCCUT, IBFBOT, IBFLFT, IBFRGT, IBFSUB, ICF(3)

 DOUBLE PRECISION SURPLO(2), SURPHI(2), CUTPLO, CUTPHI, VR, VL

 DOUBLE PRECISION DUM, U, PA(2), PB(2)

 LOGICAL RATNL, EQCHK

C

C Extract parameter range information from surface and cut curve

 CALL D2BFSZ (CMEM, IMEM, DMEM, IBFSUR, 2, NSURI, NSURO, RATNL,

 + KSUR, NCSUR, SURPLO, SURPHI, IER)

 IF (IER .LT. 0) THEN

 CALL FAILED ('EXMP02: Call 1 to D2BFSZ failed', -1, IER)

 RETURN

 ENDIF

 CALL D2BFSZ (CMEM, IMEM, DMEM, IBFCUT, 1, NCUTI, NCUTO, RATNL,

 + KCUT, NCCUT, CUTPLO, CUTPHI, IER)

 IF (IER .LT. 0) THEN

 CALL FAILED ('EXMP02: Call 2 to D2BFSZ failed', -2, IER)

 RETURN

 ENDIF

C Check cutting curve endpoints

 CALL D2EVLS (CMEM, IMEM, DMEM, IBFCUT, CUTPLO, DUM, U, VR, DUM,

 + IER)

 IF (IER .LT. 0) THEN

 CALL FAILED ('EXMP02: Call 1 to D2EVLS failed', -3, IER)

 RETURN

 ENDIF

 IF (.NOT. EQCHK(U, SURPHI(1))) THEN

 CALL FAILED ('EXMP02: Cutting curve does not start at right'

 + // ' edge', -4, IER)

 RETURN

 ENDIF

 CALL D2EVLS (CMEM, IMEM, DMEM, IBFCUT, CUTPHI, DUM, U, VL, DUM,

 + IER)

 IF (IER .LT. 0) THEN

 CALL FAILED ('EXMP02: Call 2 to D2EVLS failed', -5, IER)

 RETURN

 ENDIF

 IF (.NOT. EQCHK(U, SURPLO(1))) THEN

 CALL FAILED ('EXMP02: Cutting curve does not end at left edge',

 + -6, IER)

 RETURN

 ENDIF

C Construct left, bottom and right edge portions of boundary

DT_NURBS Users’ Manual

7-13

 PA(1) = SURPLO(1)

 PA(2) = VL

 PB(1) = SURPLO(1)

 PB(2) = SURPLO(2)

 CALL D2SLNE (CMEM, IMEM, DMEM, 2, PA, PB, IBFLFT, IER)

 IF (IER .LT. 0) THEN

 CALL FAILED ('EXMP02: Call 1 to D2SLNE failed', -7, IER)

 RETURN

 ENDIF

 PA(1) = SURPHI(1)

 PA(2) = SURPLO(2)

 CALL D2SLNE (CMEM, IMEM, DMEM, 2, PB, PA, IBFBOT, IER)

 IF (IER .LT. 0) THEN

 CALL FAILED ('EXMP02: Call 2 to D2SLNE failed', -8, IER)

 RETURN

 ENDIF

 PB(1) = SURPHI(1)

 PB(2) = VR

 CALL D2SLNE (CMEM, IMEM, DMEM, 2, PA, PB, IBFRGT, IER)

 IF (IER .LT. 0) THEN

 CALL FAILED ('EXMP02: Call 3 to D2SLNE failed', -9, IER)

 RETURN

 ENDIF

C Construct subrange mapping

 CALL D2MPBC (CMEM, IMEM, DMEM, IBFBOT, IBFRGT, IBFCUT, IBFLFT,

 + IBFSUB, IER)

 IF (IER .LT. 0) THEN

 CALL FAILED ('EXMP02: Call to D2MPBC failed', -10, IER)

 RETURN

 ENDIF

C Construct the composition of functions expressing the subrange

C surface

 CALL D2POSE (CMEM, IMEM, DMEM, 'B', IBFSUB, 'B', IBFSUR, ICF(1),

 + IER)

 IF (IER .LT. 0) THEN

 CALL FAILED ('EXMP02: Call to D2POSE failed', -11, IER)

 RETURN

 ENDIF

C Use null pointers for the Pressure and Temperature analysis

C functions which will be added later

 ICF(2) = 0

 ICF(3) = 0

C Construct the Geometry and Analysis entity

 CALL D2GADF (CMEM, IMEM, DMEM, 3,'|GEOMETRY|PRESSURE|TEMPERATURE',

 + ICF, IGA, IER)

 IF (IER .LT. 0) THEN

 CALL FAILED ('EXMP02: Call to D2GADF failed', -12, IER)

 RETURN

 ENDIF

 RETURN

 END

The next example subroutine shows the generation of the model space grid (on the surface) that

corresponds to the input grid on the parameter domain of the subrange surface.

All the usual IER checking and error reporting code will be omitted in the remainder of this ex-

ample in the interest of brevity and in order to emphasize the main sequence of Library calls.

DT_NURBS Users’ Manual

7-14

 SUBROUTINE EXMP03 (CMEM, IMEM, DMEM, IGA, IGR, NROWS, G, IER)

 CHARACTER CMEM*(*)

 INTEGER IMEM(*), IGA, IGR, NROWS, IER

 DOUBLE PRECISION DMEM(*), G(3,NROWS,*)

C

 INTEGER ENTGR

 PARAMETER (ENTGR=229)

C

 INTEGER I, J, LGR(4), MTYP, ILO, IHI, JLO, JHI, ICF, IERX

 DOUBLE PRECISION U, V

C

C Check the Grid input and extract the useful information

 CALL D2FEET (CMEM, IMEM, DMEM, IGR, MTYP, IER)

 IF (MTYP .NE. ENTGR) THEN

 CALL FAILED ('EXMP03: IGR is not a grid entity', -1, IER)

 RETURN

 ENDIF

 CALL D2FEAI (CMEM, IMEM, DMEM, IGR, 1, 4, LGR, IER)

 IF (LGR(1) .NE. 1 .OR. LGR(2) .NE. 2) THEN

 CALL FAILED ('EXMP03: Grid is unacceptable type or dimension',

 + -2, IER)

 RETURN

 ENDIF

C Locate the DMEM bounds for the grid parameters

 CALL D2FEBD (CMEM, IMEM, DMEM, LGR(3), ILO, IHI, IER)

 IF (IHI - ILO .GE. NROWS) THEN

 CALL FAILED ('EXMP03: Output grid has too few rows', -3, IER)

 CALL D2UNLD (CMEM, IMEM, DMEM, LGR(3), IERX)

 RETURN

 ENDIF

 CALL D2FEBD (CMEM, IMEM, DMEM, LGR(4), JLO, JHI, IER)

C Extract the geometry function from the GA entity

 CALL D2FEEI (CMEM, IMEM, DMEM, IGA, 3, ICF, IER)

C Evaluate the geometry function at each grid point, putting the

C output points in the G array

 DO 200 I=ILO,IHI

 DO 100 J=JLO,JHI

 CALL D2EVL2 (CMEM, IMEM, DMEM, ICF, DMEM(I), DMEM(J), 0,

 + G(1,I-ILO+1,J-JLO+1), IER)

 100 CONTINUE

 200 CONTINUE

C Unlock the grid parameter arrays, now that we are done with direct

C access to their DMEM data

 CALL D2UNLD (CMEM, IMEM, DMEM, LGR(3), IER)

 CALL D2UNLD (CMEM, IMEM, DMEM, LGR(4), IER)

 RETURN

 END

We assume some analysis code(s) have been called using the G array as input and producing cor-

responding P and T arrays containing the computed pressure and temperature at each surface

point in G. The next part interpolates the P and T data to produce pressure and temperature func-

tions defined on the subrange domain, and adds these to the Geometry and Analysis entity.

 SUBROUTINE EXMP04 (CMEM, IMEM, DMEM, IGA, IGR, NROWS, P, T, IER)

 CHARACTER CMEM*(*)

 INTEGER IMEM(*), IGA, IGR, NROWS, IER

 DOUBLE PRECISION DMEM(*), P(NROWS,*), T(NROWS,*)

C

DT_NURBS Users’ Manual

7-15

 INTEGER NMAX, JDM, IDM, IBFP, IBFT, ICFP, ICFT, LGR(4), N(2), J

C

C Extract the data from the grid entity into the LGR integer array

 CALL D2FEAI (CMEM, IMEM, DMEM, IGR, 1, 4, LGR, IER)

C Get the lengths of the two parameter lists comprising the grid

 CALL D2ASZ (CMEM, IMEM, DMEM, LGR(3), 'D', N(1), IER)

 CALL D2ASZ (CMEM, IMEM, DMEM, LGR(4), 'D', N(2), IER)

C Allocate and load a temporary matrix entity to serve as the

C parameter array input for the surface interpolation routine

 NMAX = MAX (N(1), N(2))

 CALL D2MDF (CMEM, IMEM, DMEM, 'D', NMAX, 2, IDM, IER)

 CALL D2FEBD (CMEM, IMEM, DMEM, IDM, JDM, J, IER)

 CALL D2FEAD (CMEM, IMEM, DMEM, LGR(3), 1, N(1), DMEM(JDM), IER)

 CALL D2FEAD (CMEM, IMEM, DMEM, LGR(4), 1, N(2), DMEM(JDM+NMAX),

 + IER)

C Construct the Pressure and Temperature analysis functions by

C interpolating the analysis point data on the grid

 CALL D2GNSI (CMEM, IMEM, DMEM, DMEM(JDM), NMAX, 2, N, P, N, 1, 3,

 + IBFP, IER)

 CALL D2GNSI (CMEM, IMEM, DMEM, DMEM(JDM), NMAX, 2, N, T, N, 1, 3,

 + IBFT, IER)

C Erase the temporary matrix

 CALL D2ERAS (CMEM, IMEM, DMEM, IDM, IER)

C Turn the analysis function BF entities into CF entities by

C composing them with the identity function

 CALL D2POSE (CMEM, IMEM, DMEM, 'B', IBFP, 'I', 0, ICFP, IER)

 CALL D2POSE (CMEM, IMEM, DMEM, 'B', IBFT, 'I', 0, ICFT, IER)

C Add the Pressure and Analysis functions to the GA entity

 CALL D2STEI (CMEM, IMEM, DMEM, ICFP, 4, IGA, IER)

 CALL D2STEI (CMEM, IMEM, DMEM, ICFT, 5, IGA, IER)

 RETURN

 END

Finally, we find all contours of constant pressure Q in the subrange parameter domain.

 SUBROUTINE EXMP05 (CMEM, IMEM, DMEM, IGA, Q, TOL, MXPTS, IPACON,

 + IER)

 CHARACTER CMEM*(*)

 INTEGER IMEM(*), IGA, IPACON, IER

 DOUBLE PRECISION DMEM(*), Q

C

 INTEGER IBF, ICF, NCUTS

 DOUBLE PRECISION PLANE(2)

C

C Extract the pointer to the actual spline function (BF entity)

C expressing the Pressure

 CALL D2FEEI (CMEM, IMEM, DMEM, IGA, 4, ICF, IER)

 CALL D2FEEI (CMEM, IMEM, DMEM, ICF, 4, IBF, IER)

C Construct the "plane" in the one-dimensional range space of the

C Pressure function whose equation is 1*p = Q

 PLANE(1) = 1.0D0

 PLANE(2) = Q

C Call the planar cut subroutine to find all the curves in the

C pressure surface where the pressure is the constant Q. IPACON

C is an array of pointers to the BFs expressing these curves.

 CALL D2PCUT (CMEM, IMEM, DMEM, IBF, PLANE, TOL, MXPTS, 1, NCUTS,

 + IPACON, IER)

 RETURN

 END

DT_NURBS Users’ Manual

8-1

IGES FILE MANIPULATION

8

8.1 PROBLEM STATEMENT

Suppose you have been given a large IGES file containing Spline Surfaces (type 128), Spline

Curves (type 126), and some other entities, and you need to create a smaller IGES file containing

only the DT_NURBS IGES 5001 B-Spline Function entity.

8.2 PROBLEM ANALYSIS

IGES (Initial Graphics Exchange Specification) format is a standard file format for transferring

geometry data from one CAD system to another.

The NASA-IGES-NURBS entities are a subset of the IGES entity set, dealing primarily with

conics and splines.

The DT_NURBS extensions to IGES and the NASA-IGES-NURBS entity types are described in

detail in the DT_NURBS Reference Manual.

Because you are only interested in the Spline data from the IGES file, which happens to be one of

the NASA-IGES-NURBS entity types, you should set the LVLI parameter of the D2IGRD (IGes

ReaD) subroutine to its lowest value (1), to avoid overfilling your memory arrays with uninterest-

ing entities.

Once the desired spline entity has been located using the D2IGNT (IGes Next of Type) subrou-

tine, the entity needs to be converted to the DT_NURBS B-Spline Function (BF) entity type, us-

ing D2IGBF (IGes to B-spline Function). That B-Spline Function entity is now of the form used

by the spline evaluators and manipulators that make up most of the DT_NURBS library.

For this simple example, however, the B-Spline Function is simply converted to the DT_NURBS

IGES extension type 5001, using the subroutine D2BFDI (B-spline Function to Dt Iges).

D2IGDI (IGes Define Index) is called first, to define a new IGES index, representing the new

IGES file. After the conversion, this internal IGES file is written out to a new physical IGES file

by D2IGWR (IGes WRite).

8.3 EXAMPLE PROGRAM

Input IGES File

 S 1

 1H,, 1H;, 1H , 1H , 1H ,12HDT_NURBS 1.0,32,38,7,307,16, 1H , G0000001

 .10000000E+01,1, 2HIN,1, .33330000E-02, 1H , .10000000E-05, G0000002

 .10000000E+06, 1H , 1H ,9,0, 1H ; G0000003

 143 1 0 0 0 0 0 000000000D0000001

 143 0 0 1 0 TS 0D0000002

 128 2 0 0 0 0 0 000010000D0000003

 128 0 0 8 0 S 0D0000004

DT_NURBS Users’ Manual

8-2

 141 10 0 0 0 0 0 000010000D0000005

 141 0 0 1 0 LP 0D0000006

 126 11 0 0 0 0 0 000010000D0000007

 126 0 0 5 0 0D0000008

 126 16 0 0 0 0 0 000010500D0000009

 126 0 0 5 0 E 1D0000010

 126 21 0 0 0 0 0 000010000D0000011

 126 0 0 5 0 0D0000012

 126 26 0 0 0 0 0 000010500D0000013

 126 0 0 5 0 E 2D0000014

 126 31 0 0 0 0 0 000010000D0000015

 126 0 0 5 0 0D0000016

 126 36 0 0 0 0 0 000010500D0000017

 126 0 0 5 0 E 3D0000018

 126 41 0 0 0 0 0 000010000D0000019

 126 0 0 5 0 0D0000020

 126 46 0 0 0 0 0 000010500D0000021

 126 0 0 5 0 E 4D0000022

143,1,3,1,5; 0000001P0000001

128,1,1,1,1,0,0,1,0,0, .00000000E+00, .00000000E+00, 0000003P0000002

 .10000000E+01, .10000000E+01, .00000000E+00, .00000000E+00, 0000003P0000003

 .10000000E+01, .10000000E+01, .10000000E+01, .10000000E+01, 0000003P0000004

 .10000000E+01, .10000000E+01, .00000000E+00, .00000000E+00, 0000003P0000005

 .00000000E+00, .10000000E+01, .00000000E+00, .10000000E+01, 0000003P0000006

 .00000000E+00, .10000000E+01, .10000000E+01, .10000000E+01, 0000003P0000007

 .10000000E+01, .20000000E+01, .00000000E+00, .10000000E+01, 0000003P0000008

 .00000000E+00, .10000000E+01; 0000003P0000009

141,1,2,3,4,7,1,1,9,11,1,1,13,15,1,1,17,19,1,1,21; 0000005P0000010

126,1,1,0,0,1,0, .00000000E+00, .00000000E+00, .10000000E+01, 0000007P0000011

 .10000000E+01, .10000000E+01, .10000000E+01, .50000000E+00, 0000007P0000012

 -.24825342E-16, .50000000E+00, .10000000E+01, .50000000E+00, 0000007P0000013

 .15000000E+01, .00000000E+00, .10000000E+01, .00000000E+00, 0000007P0000014

 .00000000E+00, .00000000E+00; 0000007P0000015

126,1,1,1,0,1,0, .00000000E+00, .00000000E+00, .10000000E+01, 0000009P0000016

 .10000000E+01, .10000000E+01, .10000000E+01, .50000000E+00, 0000009P0000017

 .00000000E+00, .00000000E+00, .10000000E+01, .50000000E+00, 0000009P0000018

 .00000000E+00, .00000000E+00, .10000000E+01, .00000000E+00, 0000009P0000019

 .00000000E+00, .10000000E+01; 0000009P0000020

126,1,1,0,0,1,0, .00000000E+00, .00000000E+00, .10000000E+01, 0000011P0000021

 .10000000E+01, .10000000E+01, .10000000E+01, .10000000E+01, 0000011P0000022

 .50000000E+00, .15000000E+01, .50000000E+00, .10000000E+01, 0000011P0000023

 .15000000E+01, .00000000E+00, .10000000E+01, .00000000E+00, 0000011P0000024

 .00000000E+00, .00000000E+00; 0000011P0000025

126,1,1,1,0,1,0, .00000000E+00, .00000000E+00, .10000000E+01, 0000013P0000026

 .10000000E+01, .10000000E+01, .10000000E+01, .10000000E+01, 0000013P0000027

 .50000000E+00, .00000000E+00, .50000000E+00, .10000000E+01, 0000013P0000028

 .00000000E+00, .00000000E+00, .10000000E+01, .00000000E+00, 0000013P0000029

 .00000000E+00, .10000000E+01; 0000013P0000030

126,1,1,0,0,1,0, .00000000E+00, .00000000E+00, .10000000E+01, 0000015P0000031

 .10000000E+01, .10000000E+01, .10000000E+01, .50000000E+00, 0000015P0000032

 .10000000E+01, .15000000E+01, .00000000E+00, .50000000E+00, 0000015P0000033

 .50000000E+00, .00000000E+00, .10000000E+01, .00000000E+00, 0000015P0000034

 .00000000E+00, .00000000E+00; 0000015P0000035

126,1,1,1,0,1,0, .00000000E+00, .00000000E+00, .10000000E+01, 0000017P0000036

 .10000000E+01, .10000000E+01, .10000000E+01, .50000000E+00, 0000017P0000037

 .10000000E+01, .00000000E+00, .00000000E+00, .50000000E+00, 0000017P0000038

 .00000000E+00, .00000000E+00, .10000000E+01, .00000000E+00, 0000017P0000039

 .00000000E+00, .10000000E+01; 0000017P0000040

126,1,1,0,0,1,0, .00000000E+00, .00000000E+00, .10000000E+01, 0000019P0000041

 .10000000E+01, .10000000E+01, .10000000E+01, -.24825342E-16, 0000019P0000042

 .50000000E+00, .50000000E+00, .50000000E+00, .00000000E+00, 0000019P0000043

 .50000000E+00, .00000000E+00, .10000000E+01, .00000000E+00, 0000019P0000044

 .00000000E+00, .00000000E+00; 0000019P0000045

126,1,1,1,0,1,0, .00000000E+00, .00000000E+00, .10000000E+01, 0000021P0000046

 .10000000E+01, .10000000E+01, .10000000E+01, .00000000E+00, 0000021P0000047

 .50000000E+00, .00000000E+00, .50000000E+00, .00000000E+00, 0000021P0000048

 .00000000E+00, .00000000E+00, .10000000E+01, .00000000E+00, 0000021P0000049

DT_NURBS Users’ Manual

8-3

 .00000000E+00, .10000000E+01; 0000021P0000050

S0000001G0000003D0000022P0000050 T0000001

Example Program

 PROGRAM SAMPLE

C Example program demonstrating the manipulation of IGES files

C and data

 INTEGER MEMAXC, MEMAXI, MEMAXD

 PARAMETER (MEMAXC=10000, MEMAXI=10000, MEMAXD=10000)

 CHARACTER CMEM*(MEMAXC)

 INTEGER IMEM(MEMAXI)

 DOUBLE PRECISION DMEM(MEMAXD)

 INTEGER IER

 INTEGER IGI1, IGI2, LVLI, LVLO, LVLE, ITYPE, IGE, IBF

 INTEGER NSL, NDE, JDE1, JDE2

 LOGICAL INIT

 INTEGER IGESLU

 CHARACTER*10 FILIN, FILOUT

 DATA IGESLU /7/

 DATA FILIN /'SAMPLE.IGS'/

 DATA FILOUT /'OUTPUT.IGS'/

C Begin program execution

 WRITE (6, 1000)

C Initialize dynamic memory arrays

 CALL D2INIT (CMEM, IMEM, DMEM, MEMAXC, MEMAXI, MEMAXD, '*',

 + 'H', IER)

 IF (IER .NE. 0) THEN

 WRITE (6, 1010) 'D2INIT'

 GOTO 9900

 ENDIF

C Read only the NASA-IGES-NURBS entities from the IGES file

C Specify a negative unit for verbose status messages

 OPEN (UNIT=IGESLU, FILE=FILIN, ERR=9900)

 LVLI = 1

 CALL D2IGRD (CMEM, IMEM, DMEM, FILIN, -IGESLU, LVLI, IGI1,

 + LVLE, IER)

 CLOSE (UNIT=IGESLU)

 IF (IER .NE. 0) THEN

 WRITE (6, 1010) 'D2IGRD'

 GOTO 9900

 ENDIF

 IF (LVLE .GT. 1)

 + WRITE (6, 1020) LVLE

DT_NURBS Users’ Manual

8-4

C Locate the first B-Spline Curve entity (Type 126)

 ITYPE = 126

 JDE1 = 1

 CALL D2IGNT (CMEM, IMEM, DMEM, IGI1, ITYPE, JDE1, IGE, IER)

 IF (IER .NE. 0) THEN

 WRITE (6, 1010) 'D2IGNT'

 GOTO 9900

 ENDIF

C Convert the entity to a DT_NURBS B-Spline Function (BF) entity

 CALL D2IGBF (CMEM, IMEM, DMEM, IGE, IBF, IER)

 IF (IER .NE. 0) THEN

 WRITE (6, 1010) 'D2IGBF'

 GOTO 9900

 ENDIF

C Make a new IGES file

 NSL = 1

 NDE = 2

 INIT = .TRUE.

 CALL D2IGDI (CMEM, IMEM, DMEM, NSL, NDE, INIT, IGI2, IER)

 IF (IER .NE. 0) THEN

 WRITE (6, 1010) 'D2IGDI'

 GOTO 9900

 ENDIF

C Convert the B-Spline Function entity to DT_NURBS IGES type 5001

 JDE2 = 1

 CALL D2BFDI (CMEM, IMEM, DMEM, IBF, IGI2, JDE2, IGE, IER)

 IF (IER .NE. 0) THEN

 WRITE (6, 1010) 'D2BFDI'

 GOTO 9900

 ENDIF

C Write out just the new IGES file containing the 5001 entity

 OPEN (UNIT=IGESLU, FILE=FILOUT, ERR=9900)

 LVLO = 3

 CALL D2IGWR (CMEM, IMEM, DMEM, IGI2, LVLO, FILOUT, -IGESLU, LVLE,

 + IER)

 CLOSE (UNIT=IGESLU)

 IF (IER .NE. 0) THEN

 WRITE (6, 1010) 'D2IGWR'

 GOTO 9900

 ENDIF

 9900 RETURN

 1000 FORMAT (1X,' Begin IGES read/write demonstration',//)

 1010 FORMAT (1X,A,': Unexpected Failure -- ABORTING',//)

 1020 FORMAT (//,1X,'D2IGRD encountered entities at level=',I1,

 + '; greater than the level requested -- ignored',//)

DT_NURBS Users’ Manual

8-5

 END

Program Output

 Begin IGES read/write demonstration

D2IGRD: Processing Entity (IDE) Number 1; Entity Type = 143 Form = 0

D2IGRD: Processing Entity (IDE) Number 3; Entity Type = 128 Form = 0

D2IGRD: Processing Entity (IDE) Number 5; Entity Type = 141 Form = 0

D2IGRD: Processing Entity (IDE) Number 7; Entity Type = 126 Form = 0

D2IGRD: Processing Entity (IDE) Number 9; Entity Type = 126 Form = 0

D2IGRD: Processing Entity (IDE) Number 11; Entity Type = 126 Form = 0

D2IGRD: Processing Entity (IDE) Number 13; Entity Type = 126 Form = 0

D2IGRD: Processing Entity (IDE) Number 15; Entity Type = 126 Form = 0

D2IGRD: Processing Entity (IDE) Number 17; Entity Type = 126 Form = 0

D2IGRD: Processing Entity (IDE) Number 19; Entity Type = 126 Form = 0

D2IGRD: Processing Entity (IDE) Number 21; Entity Type = 126 Form = 0

D2IGWR: Processing Entity (IDE) Number 1; Entity Type = 5001 Form = 0

Output IGES File

 S 1

 1H,, 1H;, 1H , 1H , 1H ,12HDT_NURBS 1.0,32,38,7,307,16, 1H , G0000001

 .10000000E+01,1, 2HIN,1, .33330000E-02, 1H , .10000000E-05, G0000002

 .10000000E+06, 1H , 1H ,9,0, 1H ; G0000003

 5001 1 0 0 0 0 0 000000000D0000001

 5001 0 0 3 0 0D0000002

5001,1,3,1,2,2, .00000000E+00, .00000000E+00, .10000000E+01, 0000001P0000001

 .10000000E+01, .50000000E+00, .10000000E+01, -.24825342E-16, 0000001P0000002

 .50000000E+00, .50000000E+00, .15000000E+01,; 0000001P0000003

S0000001G0000003D0000002P0000003 T0000001

DT_NURBS Users’ Manual

9-1

NAMED GROUPS OF ENTITIES AND IGES

9

9.1 PROBLEM STATEMENT

Suppose you have an IGES file containing a group of entities associated by an IGES entity type

402 (Associativity Instance) and 406-15 (Name Label) and you need to translate this group of

entities into DT_NURBS entities, do some analysis, and output a new group of entities into an

IGES type 406-15 with a backpointer to an IGES type 402.

9.2 PROBLEM ANALYSIS

The DT_NURBS routine D2IGNL allows an IGES type 406-15 to be translated to a U1 entity

(Universal with one pointer). The U1 has a subtype identifier of "_NLE" for "Name Label Enti-

ty." If the 406-15 IGES entity contains a backpointer to an IGES type 402 entity, the 402 is

translated to a DT_NURBS Pointer Array (PA) and the pointer in the U1 points to this PA.

The DT_NURBS routine D2NLIG allows a DT_NURBS Name Label Entity (U1 with subtype

identifier "_NLE") to be translated to an IGES type 406-15 with a backpointer to an IGES type

402.

The pair of DT_NURBS routines D2IGTR and D2DTTR, which are the general purpose IGES-

DT Translation routines, also perform the above translation processes.

9.3 EXAMPLE PROGRAM

Input IGES File

 S 1

 1H,, 1H;, 1H , 1H , 1H ,12HDT_NURBS 1.0,32,38,7,307,16, 1H , G0000001

 0.10000000E+01,1, 2HIN,1, 0.33330000E-02, 1H , 0.10000000E-05, G0000002

 0.10000000E+06, 1H , 1H ,9,0, 1H ; G0000003

 402 1 0 0 0 0 0 000000000D0000001

 402 0 0 1 1 0D0000002

 128 2 0 0 0 0 0 000010000D0000003

 128 0 0 8 0 S 0D0000004

 124 10 0 0 0 0 0 000010201D0000005

 124 0 0 1 0 TRANSFOR 0D0000006

 126 11 0 0 0 0 0 000010000D0000007

 126 0 0 5 0 0D0000008

 406 16 0 0 0 0 0 000000000D0000009

 406 0 0 1 15 0D0000010

402,4,3,5,7,9; 0000001P0000001

128,1,1,1,1,0,0,1,0,0, .00000000E+00, .00000000E+00, 0000003P0000002

 .10000000E+01, .10000000E+01, .00000000E+00, .00000000E+00, 0000003P0000003

 .10000000E+01, .10000000E+01, .10000000E+01, .10000000E+01, 0000003P0000004

 .10000000E+01, .10000000E+01, .00000000E+00, .00000000E+00, 0000003P0000005

 .00000000E+00, .10000000E+01, .00000000E+00, .10000000E+01, 0000003P0000006

 .00000000E+00, .10000000E+01, .10000000E+01, .10000000E+01, 0000003P0000007

 .10000000E+01, .20000000E+01, .00000000E+00, .10000000E+01, 0000003P0000008

 .00000000E+00, .10000000E+01; 0000003P0000009

124,0.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0,0; 0000005P0000010

126,1,1,0,0,1,0, .00000000E+00, .00000000E+00, .10000000E+01, 0000007P0000011

DT_NURBS Users’ Manual

9-2

 .10000000E+01, .10000000E+01, .10000000E+01, .50000000E+00, 0000007P0000012

 .00000000E+00, .50000000E+00, .10000000E+01, .50000000E+00, 0000007P0000013

 .15000000E+01, .00000000E+00, .10000000E+01, .00000000E+00, 0000007P0000014

 .00000000E+00, .00000000E+00; 0000007P0000015

406,1,10HTEST GROUP,1,1; 0000009P0000016

S0000001G0000003D0000010P0000016 T0000001

Example Program

 PROGRAM SAMPLE

C Example program demonstrating the use of D2IGNL and D2NLIG to

C translate an IGES type 406-15 to a DT_NURBS U1 entity and back.

 INTEGER MEMAXC, MEMAXI, MEMAXD

 PARAMETER (MEMAXC = 32760,

 + MEMAXI = 32760,

 + MEMAXD = 32760)

 CHARACTER CMEM*(MEMAXC)

 INTEGER IMEM(MEMAXI)

 DOUBLE PRECISION DMEM(MEMAXD)

 INTEGER IER, LVLI, LVLE, LVLO, IGI1, IGI2, ITYPE, ITYP

 INTEGER JDE, JDE1, IGE, IPA, IPA1, LENPA, INL, INL1, IFU

 INTEGER IBF, IDM, ICF, NSL, NDE, I, J

 LOGICAL INIT

 DOUBLE PRECISION NDOM, NDEP

 INTEGER IGESLU

 CHARACTER*10 FILIN, FILOUT, GRPNAM

 DATA IGESLU / 7 /

 DATA FILIN / 'SAMPLE.IGS' /

 DATA FILOUT / 'OUTPUT.IGS' /

 DATA GRPNAM / 'NEW GROUP ' /

 WRITE (6, 1000)

C Initialize Dynamic Memory Arrays

 CALL D2INIT (CMEM, IMEM, DMEM, MEMAXC, MEMAXI, MEMAXD, '*',

 * 'H', IER)

 IF (IER .NE. 0) THEN

 WRITE (6,1010) 'D2INIT'

 GOTO 9900

 ENDIF

C Read the IGES input file

 OPEN (UNIT = IGESLU, FILE = FILIN, ERR = 9900)

 LVLI = 2

 CALL D2IGRD (CMEM, IMEM, DMEM, FILIN, -IGESLU, LVLI, IGI1,

 * LVLE, IER)

 CLOSE (UNIT = IGESLU)

 IF (IER .NE. 0) THEN

 WRITE (6, 1010) 'D2IGRD'

 GOTO 9900

 ENDIF

C Get the number of Entities in the IGES Index (NDE/2)

 CALL D2IGLI (CMEM, IMEM, DMEM, IGI1, NSL, NDE, IER)

 IF (IER .NE. 0) THEN

 WRITE (6, 1010) 'D2IGLI'

 GOTO 9900

 ENDIF

DT_NURBS Users’ Manual

9-3

C Locate the IGES type 406-15

 ITYPE = 406

 JDE1 = 1

 CALL D2IGNT (CMEM, IMEM, DMEM, IGI1, ITYPE, JDE1, IGE, IER)

 IF (IER .NE. 0) THEN

 WRITE (6, 1010) 'D2IGNT'

 GOTO 9900

 ENDIF

C Convert the entity to a DT_NURBS Name Label Entity (U1)

 CALL D2IGNL (CMEM, IMEM, DMEM, IGE, INL, IPA, IER)

 IF (IER .NE. 0) THEN

 WRITE (6, 1010) 'D2IGNL'

 GOTO 9900

 ENDIF

 CALL D2FELI(CMEM, IMEM, DMEM, IPA, LENPA, IER)

 IF (IER .NE. 0) THEN

 WRITE (6, 1010) 'D2FELI'

 GOTO 9900

 ENDIF

C Create a new PA Entity and NL Entity

 CALL D2ADF (CMEM, IMEM, DMEM, 'P', LENPA-1, IPA1, IER)

 IF (IER .NE. 0) THEN

 WRITE (6, 1010) 'D2ADF'

 GOTO 9900

 ENDIF

 INIT = .TRUE.

 CALL D2DEFE (CMEM, IMEM, DMEM, 226, 14, 1, 0, INIT,

 * INL1, IER)

 IF (IER .NE. 0) THEN

 WRITE (6, 1010) 'D2DEFE'

 GOTO 9900

 ENDIF

 CALL D2STAC (CMEM, IMEM, DMEM, '_NLE', 1, 4, INL1, IER)

 IF (IER .NE. 0) THEN

 WRITE (6, 1010) 'D2STAC'

 GOTO 9900

 ENDIF

C Store the Name Label Pointer in the PA

 CALL D2STEI (CMEM, IMEM, DMEM, INL1, 1, IPA1, IER)

 IF (IER .NE. 0) THEN

 WRITE (6, 1010) 'D2STEI'

 GOTO 9900

 ENDIF

C Store the PA Pointer and Name in the NL

 CALL D2STEI (CMEM, IMEM, DMEM, IPA1, 1, INL1, IER)

 IF (IER .NE. 0) THEN

 WRITE (6, 1010) 'D2STEI'

 GOTO 9900

 ENDIF

 CALL D2STAC (CMEM, IMEM, DMEM, GRPNAM, 5, 14, INL1, IER)

 IF (IER .NE. 0) THEN

 WRITE (6, 1010) 'D2STAC'

 GOTO 9900

 ENDIF

C Compose the DM and Surface from the IGES file

 J = 2

 DO 100 I = 1, LENPA

 CALL D2FEEI(CMEM, IMEM, DMEM, IPA, I, IFU, IER)

 IF (IER .NE. 0) THEN

 WRITE (6, 1010) 'D2FEEI'

DT_NURBS Users’ Manual

9-4

 GOTO 9900

 ENDIF

 CALL D2FEET(CMEM, IMEM, DMEM, IFU, ITYP, IER)

 IF (IER .NE. 0) THEN

 WRITE (6, 1010) 'D2FEET'

 GOTO 9900

 ENDIF

 IF (ITYP .EQ. 246) THEN

C Check if this BF is the surface

 CALL D2FEED (CMEM, IMEM, DMEM, IFU, 1, NDOM, IER)

 IF (IER .NE. 0) THEN

 WRITE (6, 1010) 'D2FEED'

 GOTO 9900

 ENDIF

 CALL D2FEED (CMEM, IMEM, DMEM, IFU, 2, NDEP, IER)

 IF (IER .NE. 0) THEN

 WRITE (6, 1010) 'D2FEED'

 GOTO 9900

 ENDIF

 IF (NDOM .EQ. 2 .AND. NDEP .EQ. 3) THEN

 IBF = IFU

 GOTO 100

 ENDIF

 ELSEIF (ITYP .EQ. 234) THEN

 IDM = IFU

 GOTO 100

 ELSEIF (ITYP .EQ. 226) THEN

 GOTO 100

 ENDIF

 CALL D2STEI (CMEM, IMEM, DMEM, IFU, J, IPA1, IER)

 IF (IER .NE. 0) THEN

 WRITE (6, 1010) 'D2STEI'

 GOTO 9900

 ENDIF

 J = J + 1

 100 CONTINUE

C Compose the DM and Surface

 CALL D2POSE (CMEM, IMEM, DMEM, 'B', IBF, 'A', IDM, ICF, IER)

 IF (IER .NE. 0) THEN

 WRITE (6, 1010) 'D2POSE'

 GOTO 9900

 ENDIF

C Store the Composition in the PA

 CALL D2STEI (CMEM, IMEM, DMEM, ICF, J, IPA1, IER)

 IF (IER .NE. 0) THEN

 WRITE (6, 1010) 'D2STEI'

 GOTO 9900

 ENDIF

C Create a new IGES Index Entity and store the new NL entity

 NSL = 1

 INIT = .TRUE.

 CALL D2IGDI (CMEM, IMEM, DMEM, NSL, NDE+2, INIT, IGI2, IER)

 IF (IER .NE. 0) THEN

 WRITE (6, 1010) 'D2IGDI'

 GOTO 9900

 ENDIF

C Translate the new NL Entity to IGES 406-15

 JDE = 1

 CALL D2NLIG (CMEM, IMEM, DMEM, INL1, IGI2, JDE, IGE, IER)

 IF (IER .NE. 0) THEN

 WRITE (6, 1010) 'D2NLIG'

DT_NURBS Users’ Manual

9-5

 GOTO 9900

 ENDIF

C Write a new IGES file containing the new 406-15 Entity

 OPEN (UNIT = IGESLU, FILE = FILOUT, ERR = 9900)

 WRITE (6, *)

 LVLO = 3

 CALL D2IGWR (CMEM, IMEM, DMEM, IGI2, LVLO, FILOUT, -IGESLU,

 * LVLE, IER)

 CLOSE (UNIT = IGESLU)

 IF (IER .NE. 0) THEN

 WRITE (6, 1010) 'D2IGWR'

 GOTO 9900

 ENDIF

 WRITE (6, 1020)

 9900 CONTINUE

 1000 FORMAT (1X,/, ' Begin IGES 406-15 Conversion Demonstration'/)

 1010 FORMAT (1X, A, ': Unexpected Failure -- ABORTING',//)

 1020 FORMAT (1X,/, ' IGES 406-15 Conversion Demonstration Complete',/)

 END

Program Output

 Begin IGES 406-15 Conversion Demonstration

 D2IGRD: Processing Entity (IDE) Number 1; Entity Type = 402 Form = 1

 D2IGRD: Processing Entity (IDE) Number 3; Entity Type = 128 Form = 0

 D2IGRD: Processing Entity (IDE) Number 5; Entity Type = 124 Form = 0

 D2IGRD: Processing Entity (IDE) Number 7; Entity Type = 126 Form = 0

 D2IGRD: Processing Entity (IDE) Number 9; Entity Type = 406 Form = 15

 D2IGWR: Processing Entity (IDE) Number 1; Entity Type = 402 Form = 1

 D2IGWR: Processing Entity (IDE) Number 3; Entity Type = 406 Form = 15

 D2IGWR: Processing Entity (IDE) Number 5; Entity Type = 5001 Form = 0

 D2IGWR: Processing Entity (IDE) Number 7; Entity Type = 5002 Form = 0

 D2IGWR: Processing Entity (IDE) Number 9; Entity Type = 5001 Form = 0

 D2IGWR: Processing Entity (IDE) Number 11; Entity Type = 5005 Form = 2

 IGES 406-15 Conversion Demonstration Complete

Output IGES File

 S 1

 1H,, 1H;, 1H , 1H , 1H ,12HDT_NURBS 1.0,32,38,7,307,16, 1H , G0000001

 0.10000000E+01,1, 2HIN,1, 0.33330000E-02, 1H , 0.10000000E-05, G0000002

 0.10000000E+06, 1H , 1H ,9,0, 1H ; G0000003

 402 1 0 0 0 0 0 000000000D0000001

 402 0 0 1 1 0D0000002

 406 2 0 0 0 0 0 000000000D0000003

 406 0 0 1 15 0D0000004

 5001 3 0 0 0 0 0 000000000D0000005

 5001 0 0 3 0 0D0000006

 5002 6 0 0 0 0 0 000000000D0000007

 5002 0 0 1 0 0D0000008

 5001 7 0 0 0 0 0 000000000D0000009

 5001 0 0 6 0 S 0D0000010

 5005 13 0 0 0 0 0 000000000D0000011

 5005 0 0 4 2 0D0000012

402,3,3,5,7; 0000001P0000001

406,1,10HNEW GROUP ,1,1; 0000003P0000002

DT_NURBS Users’ Manual

9-6

5001,1,3,1,2,2, 0.00000000E+00, 0.00000000E+00, 0.10000000E+01, 0000005P0000003

 0.10000000E+01, 0.50000000E+00, 0.10000000E+01, 0.00000000E+00, 0000005P0000004

 0.50000000E+00, 0.50000000E+00, 0.15000000E+01,; 0000005P0000005

5002,2,3,2,5,9,4,11,; 0000007P0000006

5001,2,3,1,2,2,2,2, 0.00000000E+00, 0.00000000E+00, 0000009P0000007

 0.10000000E+01, 0.10000000E+01, 0.00000000E+00, 0.00000000E+00, 0000009P0000008

 0.10000000E+01, 0.10000000E+01, 0.00000000E+00, 0.10000000E+01, 0000009P0000009

 0.00000000E+00, 0.10000000E+01, 0.00000000E+00, 0.00000000E+00, 0000009P0000010

 0.10000000E+01, 0.10000000E+01, 0.00000000E+00, 0.10000000E+01, 0000009P0000011

 0.10000000E+01, 0.20000000E+01,; 0000009P0000012

5005,2,3,4, 0.00000000E+00, 0.10000000E+01, 0.00000000E+00, 0000011P0000013

 0.10000000E+01, 0.00000000E+00, 0.00000000E+00, 0.00000000E+00, 0000011P0000014

 0.00000000E+00, 0.10000000E+01, 0.00000000E+00, 0.00000000E+00, 0000011P0000015

 0.00000000E+00; 0000011P0000016

S0000001G0000003D0000012P0000016 T0000001

DT_NURBS Users’ Manual

10-1

USER-DEFINED DATA TYPES

10

10.1 PROBLEM STATEMENT

Suppose that the user's application frequently uses 3 × 3 matrices which have a string name, and

which are linked into sequences. Suppose further that these entities are to be readily checkable

for correct type and that they must be communicated correctly in D2 Format files.

10.2 PROBLEM ANALYSIS

.This structure does not match any predefined Library data type. Hence, it is a natural candidate

for a user-defined data type

Once the user has decided the structure of his new entity type, it is very simple to add it to the set

of defined types. The names of user-defined data types are stored when the dynamic memory is

initialized by the subroutine D2INIT (INITialize), simply by including a delimited string for the

parameter TYPNAM. These user-defined names can be fetched from the dynamic memory, us-

ing the subroutine D2FETN (FETch Name). The user can create allocator, accessor, modifier,

and deallocator subroutines for entities of a user-defined type by applying the type-neutral gen-

eral-purpose subroutines in the Library. Also, if D2 Format files containing this type are to be

created, the user will need to create a special "locate_pointers" subroutine and pass its name as an

argument in the call to D2WRIT (WRITe). The "locate_pointers" subroutine is responsible for

telling D2WRIT where the pointers are in any given entity of user-defined type. It is very special

in that it may not call on any Library subroutines to help it perform this task. (See the description

of the SUBROU argument of D2WRIT.)

10.3 EXAMPLE PROGRAM

Example Program

 PROGRAM SAMPLE

C Example program demonstrating the manipulation of user-

C defined data types

 EXTERNAL UWRITE

 INTEGER MEMAXC, MEMAXI, MEMAXD

 PARAMETER (MEMAXC=10000, MEMAXI=10000, MEMAXD=10000)

 CHARACTER CMEM*(MEMAXC)

 INTEGER IMEM(MEMAXI)

 DOUBLE PRECISION DMEM(MEMAXD)

 INTEGER IER

 INTEGER IDE1, IDE2, MEMPA

 DOUBLE PRECISION DA(9)

C Begin program execution

DT_NURBS Users’ Manual

10-2

 WRITE (6, 1000)

C Initialize dynamic memory arrays

C Define User type 1 to be called "Matrix"

 CALL D2INIT (CMEM, IMEM, DMEM, MEMAXC, MEMAXI, MEMAXD, '*Matrix',

 + 'H', IER)

 IF (IER .NE. 0) THEN

 WRITE (6, 1010) 'D2INIT', IER

 GOTO 9900

 ENDIF

C Define and initialize two "Matrix" entities

 DA(1) = 1.0D0

 DA(2) = 2.0D0

 DA(3) = 3.0D0

 DA(4) = 4.0D0

 DA(5) = 5.0D0

 DA(6) = 6.0D0

 DA(7) = 7.0D0

 DA(8) = 8.0D0

 DA(9) = 9.0D0

 CALL CREATE (CMEM, IMEM, DMEM, 'Matrix One', 0, DA, IDE1, IER)

 IF (IER .NE. 0) THEN

 WRITE (6, 1010) 'CREATE', IER

 GOTO 9900

 ENDIF

 DA(1) = 9.0D0

 DA(2) = 8.0D0

 DA(3) = 7.0D0

 DA(4) = 6.0D0

 DA(5) = 5.0D0

 DA(6) = 4.0D0

 DA(7) = 3.0D0

 DA(8) = 2.0D0

 DA(9) = 1.0D0

 CALL CREATE (CMEM, IMEM, DMEM, 'Matrix Two', IDE1, DA, IDE2, IER)

 IF (IER .NE. 0) THEN

 WRITE (6, 1010) 'CREATE', IER

 GOTO 9900

 ENDIF

C Write out all of the dynamic memory entities

 MEMPA=0

 CALL D2WRIT (CMEM, IMEM, DMEM, 0, MEMPA, UWRITE, 'OUTPUT.D2', 7,

 + IER)

 IF (IER .NE. 0) THEN

 WRITE (6, 1010) 'D2WRIT', IER

 GOTO 9900

 ENDIF

 9900 RETURN

 1000 FORMAT (1X,' Begin User-defined entity demonstration',//)

 1010 FORMAT (1X,A,': Unexpected Failure (',I3,') -- ABORTING',//)

DT_NURBS Users’ Manual

10-3

 END

 SUBROUTINE CREATE (CMEM, IMEM, DMEM, CA, INEXT, DA, IUE, IER)

C Subroutine to create the user-defined entity type Matrix

 CHARACTER CMEM*(*)

 INTEGER IMEM(*)

 DOUBLE PRECISION DMEM(*)

 INTEGER ENTUSR

 PARAMETER (ENTUSR=1)

 INTEGER INEXT, IUE, IER

 DOUBLE PRECISION DA(*)

 CHARACTER CA*(*)

 INTEGER LENC, LENI, LEND

 LOGICAL INITIZ

 LENC = LEN(CA)

 LENI = 1

 LEND = 9

 INITIZ = .TRUE.

 CALL D2DEFE (CMEM, IMEM, DMEM, ENTUSR, LENC, LENI, LEND, INITIZ,

 + IUE, IER)

 IF (IER .NE. 0) GOTO 9900

 CALL D2STAC (CMEM, IMEM, DMEM, CA, 1, LENC, IUE, IER)

 IF (IER .NE. 0) GOTO 9900

 CALL D2STEI (CMEM, IMEM, DMEM, INEXT, 1, IUE, IER)

 IF (IER .NE. 0) GOTO 9900

 CALL D2STAD (CMEM, IMEM, DMEM, DA, 1, 9, IUE, IER)

 IF (IER .NE. 0) GOTO 9900

 9900 CONTINUE

 RETURN

 END

 SUBROUTINE UWRITE (CMEM, IMEM, DMEM, LP)

C User-modified version of the D0LPUT routine

C Handles the user-defined "Matrix" entity

C

C LP Array of context data.

C LP(1) = Header index for entity

C LP(2) = MEM data type number of entity.

C LP(3) = 0 Initial call for this entity.

C > 0 Beginning absolute index of previous pointer block.

C LP(4) = Ending absolute index of previous pointer block.

C LP(5) = Absolute index of end of entity's integer data space.

C Upon return, LP(3) and LP(4) have been updated to locate the

C beginning and end of the next pointer block in the entity's

C integer data space, or to LP(5)+1 if no more pointers.

DT_NURBS Users’ Manual

10-4

 CHARACTER CMEM*(*)

 INTEGER IMEM(*)

 DOUBLE PRECISION DMEM(*)

 INTEGER LP(14)

C****

 IF (LP(3) .EQ. 0) THEN

 LP(3) = LP(4) + 1

 LP(4) = LP(5)

 ELSE

 LP(3) = LP(4) + 1

 LP(4) = LP(4) + 1

 ENDIF

 RETURN

 END

Output “D2 File” from D2WRIT

D2 File Format 1.0 80 11 23 16 3

 0 2 1 20 18 18

 2555906* 2553859*

 1 6Matrix

 2555906* 10 1 9 1

Matrix One

 0*

 1.000000000000000 2.000000000000000 3.000000000000000

 4.000000000000000 5.000000000000000 6.000000000000000

 7.000000000000000 8.000000000000000 9.000000000000000

 2553859* 10 1 9 1

Matrix Two

 2555906*

 9.000000000000000 8.000000000000000 7.000000000000000

 6.000000000000000 5.000000000000000 4.000000000000000

 3.000000000000000 2.000000000000000 1.000000000000000

DT_NURBS Users’ Manual

11-1

REINITIALIZING DYNAMIC MEMORY ARRAYS

11

11.1 PROBLEM STATEMENT

Sometimes it is difficult to predict the size of the dynamic memory arrays. Also, problems may

be so complex that it is not practical to abort and restart if a failure occurs.

11.2 PROBLEM ANALYSIS

Many users are using Fortran compilers that allow allocatable arrays, or C to drive their

DT_NURBS subroutines. These users needed a simple way to reinitialize the dynamic memory

after an expansion (REALLOC), so that the program can continue. This subroutine D2REIN

(RE-INitialize dynamic memory) is designed to be called after more storage has been tacked onto

otherwise valid dynamic memory arrays.

It is best to save the data before calling the subroutine which is most likely to fail, and restore

that saved data. If, instead, the user were to simply reallocate and reinitialize the arrays after the

failure, then repeat the call, there is likely to be too many working storage entities and locks left

in place by the failed routine.

11.3 EXAMPLE CODE

 PROGRAM S2REIN

C

C Example program to demonstrate subroutine D2REIN.

C

 INTEGER MEMAXC, MEMAXI, MEMAXD, IMAX, DMAX

 PARAMETER (MEMAXC = 1000,

 + IMAX = 1000,

 + DMAX = 5000)

 CHARACTER CMEM*(MEMAXC)

 INTEGER IMEM[ALLOCATABLE] (:), IMEMSV(IMAX)

 DOUBLE PRECISION DMEM[ALLOCATABLE] (:), DMEMSV(DMAX)

 INTEGER IER, IERX

 INTEGER LEND1, LEND2, IBF1, IBF2, NCUTS, IPCUTS

 PARAMETER (LEND1 = 72, LEND2 = 28)

 DOUBLE PRECISION BF1(LEND1), BF2(LEND2), TOL

 DATA BF1 /

 + 2.D0, 3.D0, 4.D0, 4.D0, 4.D0, 4.D0, 0.D0, 0.D0,

 + 0.D0, 0.D0, 0.D0, 0.D0, 1.D0, 1.D0, 1.D0, 1.D0,

 + 0.D0, 0.D0, 0.D0, 0.D0, 1.D0, 1.D0, 1.D0, 1.D0,

 + 0.D0, .33333333D0, .66666666D0, 1.D0, 0.D0,

 + .33333333D0, .66666666D0, 1.D0,

 + 0.D0, .33333333D0, .66666666D0, 1.D0, 0.D0,

 + .33333333D0, .66666666D0, 1.D0,

 + 0.D0, 0.D0, 0.D0, 0.D0, .33333333D0, .33333333D0,

DT_NURBS Users’ Manual

11-2

 + .33333333D0, .33333333D0,

 + .66666666D0, .66666666D0, .66666666D0, .66666666D0,

 + 1.D0, 1.D0, 1.D0, 1.D0,

 + 1.D0, 1.D0, 1.D0, 1.D0, -.9D0, 1.D0, -2.4D0, 1.D0,

 + -1.D0, 1.D0, -2.D0, 1.D0, 1.D0, 1.D0, 1.D0, 1.D0 /

 DATA BF2 /

 + 2.D0, 3.D0, 2.D0, 2.D0, 2.D0, 2.D0, 0.D0, 0.D0,

 + 0.D0, 0.D0, 1.D0, 1.D0, 0.D0, 0.D0, 1.D0, 1.D0,

 + 0.D0, 1.D0, 0.D0, 1.D0, 0.D0, 0.D0, 1.D0, 1.D0,

 + 0.D0, 0.D0, 0.D0, 0.D0 /

 TOL = 1.0D-6

C ---------------

 CALL DTERRS (3,1000)

C Initialize dynamic memory to 100-word arrays

 MEMAXI = IMAX

 MEMAXD = DMAX

 ALLOCATE (IMEM(MEMAXI),

 + DMEM(MEMAXD),

 + STAT=IER)

 IF (IER .NE. 0)

 + STOP ' * NOT ENOUGH MEMORY FOR INITIAL ALLOCATION *'

 CALL D2INIT (CMEM, IMEM, DMEM, MEMAXC, MEMAXI, MEMAXD, ' ',

 + 'H', IER)

 IF (IER .NE. 0)

 + STOP ' * UNEXPECTED ERROR FROM D2INIT *'

C Create two B-spline entities

 CALL D2BFDF (CMEM, IMEM, DMEM, LEND1, 'BF 1', IBF1, IER)

 IF (IER .NE. 0)

 + STOP ' * UNEXPECTED FAILURE ON SPLINE ALLOCATION 1 *'

 CALL D2STAD (CMEM, IMEM, DMEM, BF1, 1, LEND1, IBF1, IER)

 IF (IER .NE. 0)

 + STOP ' * UNEXPECTED FAILURE ON SPLINE INITIALIZATION 1 *'

 CALL D2BFDF (CMEM, IMEM, DMEM, LEND2, 'BF 2', IBF2, IER)

 IF (IER .NE. 0)

 + STOP ' * UNEXPECTED FAILURE ON SPLINE ALLOCATION 2 *'

 CALL D2STAD (CMEM, IMEM, DMEM, BF2, 1, LEND2, IBF2, IER)

 IF (IER .NE. 0)

 + STOP ' * UNEXPECTED FAILURE ON SPLINE INITIALIZATION 2 *'

C Save memory state in case a re-start is necessary

C This might be replaced by a call to D2WRIT

 CALL D0ICPY (IMAX, IMEM, 1, IMEMSV, 1)

 CALL DCOPY (DMAX, DMEM, 1, DMEMSV, 1)

 1000 CONTINUE

C Find the intersection of the splines

DT_NURBS Users’ Manual

11-3

 CALL D2SSXT (CMEM, IMEM, DMEM, IBF1, IBF2, TOL, NCUTS, IPCUTS,

 + IER)

 IF (IER .NE. 0) THEN

 IF (IER .EQ. -102) THEN

C Insufficient IMEM

C Allocate more integer memory and start over

 MEMAXI = MEMAXI+1000

 WRITE (6,*) ' > Increasing IMEM to ',MEMAXI

 DEALLOCATE (IMEM)

 ALLOCATE (IMEM(MEMAXI), STAT=IERX)

 IF (IERX .NE. 0)

 + STOP ' * NOT ENOUGH MEMORY FOR INTEGER RE-ALLOCATION *'

 ELSE IF (IER .EQ. -103) THEN

C Insufficient DMEM

C Allocate more real memory and start over

 MEMAXD = MEMAXD+5000

 WRITE (6,*) ' > Increasing DMEM to ',MEMAXD

 DEALLOCATE (DMEM)

 ALLOCATE (DMEM(MEMAXD), STAT=IERX)

 IF (IERX .NE. 0)

 + STOP ' * NOT ENOUGH MEMORY FOR REAL RE-ALLOCATION *'

 ELSE

 STOP ' * UNEXPECTED ERROR FROM INTERSECTOR *'

 ENDIF

 CALL D0ICPY (IMAX, IMEMSV, 1, IMEM, 1)

 CALL DCOPY (DMAX, DMEMSV, 1, DMEM, 1)

 CALL D2REIN (CMEM, IMEM, DMEM, MEMAXC, MEMAXI, MEMAXD, IER)

 IF (IER .NE. 0)

 + STOP ' * UNEXPECTED ERROR FROM D2REIN *'

 GOTO 1000

 ENDIF

 WRITE (6,*)

 WRITE (6,*) ' Intersection completed successfully'

C Intersection is done. Now process the output

C ...

 STOP

 END

Output

***** INPUT ARGUMENT ERROR REPORTED BY SUBROUTINE D2SSXT

 28 WORDS OF WORKING STORAGE NEEDED

 SEE D2SSXT ABSTRACT (IER = -103)

DT_NURBS Users’ Manual

11-4

 > Increasing DMEM to 10000

***** INPUT ARGUMENT ERROR REPORTED BY SUBROUTINE D2SSXT

 800 WORDS OF WORKING STORAGE NEEDED

 SEE D2SSXT ABSTRACT (IER = -103)

 > Increasing DMEM to 15000

***** INPUT ARGUMENT ERROR REPORTED BY SUBROUTINE D2SSXT

 64 WORDS OF WORKING STORAGE NEEDED

 SEE D2SSXT ABSTRACT (IER = -102)

 > Increasing IMEM to 2000

***** INPUT ARGUMENT ERROR REPORTED BY SUBROUTINE D2CNTR

 3958 WORDS OF WORKING STORAGE NEEDED

 SEE D2CNTR ABSTRACT (IER = -23)

***** INPUT ARGUMENT ERROR REPORTED BY SUBROUTINE D2SSXT

 0 WORDS OF WORKING STORAGE NEEDED

 SEE D2SSXT ABSTRACT (IER = -103)

 > Increasing DMEM to 20000

***** INPUT ARGUMENT ERROR REPORTED BY SUBROUTINE D2SPDR

 66 WORDS OF WORKING STORAGE NEEDED

 SEE D2SPDR ABSTRACT (IER = -9)

***** INPUT ARGUMENT ERROR REPORTED BY SUBROUTINE D2CNTR

 0 WORDS OF WORKING STORAGE NEEDED

 SEE D2CNTR ABSTRACT (IER = -23)

***** INPUT ARGUMENT ERROR REPORTED BY SUBROUTINE D2SSXT

 0 WORDS OF WORKING STORAGE NEEDED

 SEE D2SSXT ABSTRACT (IER = -103)

 > Increasing DMEM to 25000

***** INPUT ARGUMENT ERROR REPORTED BY SUBROUTINE D2CNTR

 12850 WORDS OF WORKING STORAGE NEEDED

 SEE D2CNTR ABSTRACT (IER = -23)

***** INPUT ARGUMENT ERROR REPORTED BY SUBROUTINE D2SSXT

 0 WORDS OF WORKING STORAGE NEEDED

 SEE D2SSXT ABSTRACT (IER = -103)

 > Increasing DMEM to 30000

***** INPUT ARGUMENT ERROR REPORTED BY SUBROUTINE D2CNTR

 754 WORDS OF WORKING STORAGE NEEDED

 SEE D2CNTR ABSTRACT (IER = -23)

***** INPUT ARGUMENT ERROR REPORTED BY SUBROUTINE D2SSXT

 0 WORDS OF WORKING STORAGE NEEDED

 SEE D2SSXT ABSTRACT (IER = -103)

DT_NURBS Users’ Manual

11-5

 > Increasing DMEM to 35000

 Intersection completed successfully

Stop - Program terminated.

DT_NURBS Users’ Manual

12-1

SPECIAL INTERSECTION

12

12.1 PROBLEM STATEMENT

Suppose there are two analysis functions defined on overlapping subranges of some base geome-

try surface. Suppose the first one has two independent variables and four dependent variables -

u, v, T, and Ec, where u and v are the parameters in the domain of the base geometry, T is the

temperature, and Ec is the rate of radiative cooling. Suppose the second one has three independ-

ent variables, the third being time, and five dependent variables - u, v, T, P and Eh, where u and v

are the parameters in the domain of the base geometry, T is the temperature, P is the pressure,

and Eh is the rate of frictional heating. The problem is to distinguish, at some sample of discrete

times, the areas of the surface where the temperature is rising from the areas where it is falling.

12.2 PROBLEM ANALYSIS

Let us ignore the dubious physics and simply focus on the mathematics. First, reformulate the

problem as one of finding the boundaries between the areas where the temperature is rising and

where it is falling, i.e. find the places where the radiative cooling equals the frictional heating.

Knowing the boundaries, one can test any one point within a region to determine whether the

heating rate exceeds the cooling rate or vice versa. Second, observe that the input data consists

of three functions - the base geometry surface function:

f(u,v) = (x,y,z),

the first analysis function:

g(p,q) = (u,v,T,Ec),

and the second analysis function:

h(r,s,t) = (u,v,T,P,Eh).

Third, note that although we may ultimately want to view curves on the surface in xyz-space, it is

better to find the curves in the parameter domain of the surface (uv-space) and then map them

onto the surface with the surface function f, than it is to find them in the xyz-space directly. So

the problem can now be stated as finding those points where (u,v,Ec) from the g analysis function

match (u,v,Eh) from the h analysis function. This means that the other dependent variables in the

analysis functions are extraneous to the current problem. In Library terminology, they can be

eliminated by composing the original functions with "select and permute" functions:

s1,2,4 g(p,q) = (u,v,E) = s1,2,5 h(r,s,t).

The problem is now very close to being a standard surface intersection problem. The Library

surface intersection subroutine takes two "surface functions", that is, functions with two inde-

pendent variables and three dependent variables each, and finds the places (normally curves)

where their three dependent variables match up. The one aspect that doesn't fit is that the second

DT_NURBS Users’ Manual

12-2

analysis function, h, has three independent variables. The solution is to specialize to one time

slice at a time. Selecting time ti creates a two-parameter function

hi(r,s) h(r,s,ti).

Mathematically, the problem has now been reformulated as a surface intersection problem. In

practice, there remains one more problem that must be solved before applying the Library inter-

section subroutine (D2SSXT). The Library routine is restricted to pure spline functions of two

independent and three dependent variables and this restriction is inherent in the algorithm, which

makes essential use of the convex hull property of B-spline functions. Therefore, the extraneous

independent and dependent variables must be physically removed from the g and h functions to

produce pure B-spline representations of the functions to be intersected. Assuming that the g and

h functions were initially expressed as pure B-spline functions, this requirement is easily met.

The removal of the extra independent variable in h by setting it to a constant ti should be done by

applying D2CNPR (CoNstant PaRameter) after a future enhancement makes D2CNPR accept

functions with more than two independent variables. In the meantime, the same result can be

obtained by applying D2STRM (Spline TRiM) and trimming the third parameter interval to the

point ti. To remove the dependent variables, use D2BINE (comBINE functions) instead of

D2POSE (comPOSE functions).

12.3 EXAMPLE CODE

 SUBROUTINE EXMPL9 (CMEM, IMEM, DMEM, IBFG, IBFH, TI, TOL, IPA, IER)

C Find the intersection curves belonging to the intersection of the

C 1st, 2nd and 4th dependent variables of G and the 1st, 2nd and

C 5th dependent variables of H at the slice determined by setting

C the 3rd independent variable of H to the constant TI.

C

C Inputs:

C IBFG Pointer to B-spline Function entity expressing

C analysis function G, where G(p,q) = (u,v,T,E)

C IBFH Pointer to B-spline Function entity expressing

C analysis function H, where H(r,s,t) = (u,v,T,P,E)

C TI Time splice of H at which to do intersection

C TOL Tolerance to which intersection curves are to be determined

C Outputs:

C IPA Pointer to pointer array containing pointers to the B-spline

C Function entities representing the intersection curves.

C IER Error code (Zero means no error)

C

 CHARACTER CMEM*(*)

 INTEGER IMEM(*), IBFG, IBFH, IPA, IER

 DOUBLE PRECISION DMEM(*), TI, TOL

C

C Local variables

 INTEGER IBFG1, IBFH1, IBFH2, NCUTS, ISELG, LSELG(5), ISELH, LSELH(5)

 INTEGER N, M, K(3), NC(3)

 DOUBLE PRECISION TRIM(3,2)

 LOGICAL R

C

C Data for dependent variable selection functions

 DATA LSELG / 4, 3, 1, 2, 4 /

 DATA LSELH / 5, 3, 1, 2, 5 /

C

C Select 1st, 2nd and 4th dependent variables of G, making IBFG1

 CALL D2ADF (CMEM, IMEM, DMEM, 'I', 5, ISELG, IER)

DT_NURBS Users’ Manual

12-3

 CALL D2STAI (CMEM, IMEM, DMEM, LSELG, 1, 5, ISELG, IER)

 CALL D2BINE (CMEM, IMEM, DMEM, IBFG, 'S', ISELG, IBFG1, IER)

 CALL D2ERAS (CMEM, IMEM, DMEM, ISELG, IER)

C

C Select 1st, 2nd and 5th dependent variables of H, making IBFH1

 CALL D2ADF (CMEM, IMEM, DMEM, 'I', 5, ISELH, IER)

 CALL D2STAI (CMEM, IMEM, DMEM, LSELH, 1, 5, ISELH, IER)

 CALL D2BINE (CMEM, IMEM, DMEM, IBFH, 'S', ISELH, IBFH1, IER)

 CALL D2ERAS (CMEM, IMEM, DMEM, ISELH, IER)

C

C Take the constant parameter surface slice corresponding to t=TI

C from IBFH1, making IBFH2.

 CALL D2BFSZ (CMEM, IMEM, DMEM, IBFH1, 3, N, M, R, K, NC, TRIM(1,1),

 + TRIM(1,2), IER)

 IF (TI .LT. TRIM(3,1) .OR. TI .GT. TRIM(3,2)) THEN

 CALL FAILED ('EXMPL9: Time slice out of range', -11, IER)

 RETURN

 ENDIF

 TRIM(3,1) = TI

 TRIM(3,2) = TI

 CALL D2STRM (CMEM, IMEM, DMEM, IBFH1, TRIM, 3, IBFH2, IER)

 CALL D2ERAS (CMEM, IMEM, DMEM, IBFH1, IER)

C

C Perform the intersection on IBFG1 and IBFH1

 CALL D2SSXT (CMEM, IMEM, DMEM, IBFG1, IBFH2, TOL, NCUTS, IPA, IER)

C

C Clean up

 CALL D2ERAS (CMEM, IMEM, DMEM, IBFG1, IER)

 CALL D2ERAS (CMEM, IMEM, DMEM, IBFH2, IER)

 RETURN

 END

DT_NURBS Users’ Manual

13-1

POINT ON INTERSECTION

13

13.1 PROBLEM STATEMENT

Determine whether a given point in model space is on the intersection of two surfaces.

13.2 PROBLEM ANALYSIS

While this problem sounds simple, it doesn't have a simple answer. It will rarely be the case that

one can find pairs of parameter values for each surface function that compute to the given point

exactly to the last binary digit. So the return question becomes "How close is close enough?"

The answer to that will depend on the particular application.

Instead let us consider the problem of computing the distance of a given point in model space

from the intersection of two surfaces.

The D2CLSP (CLoSe Point) subroutine can be used to find the distance of the given point to

each surface individually. For some purposes, having both such distances sufficiently small is

good enough. For other purposes, it may not be. If the surfaces intersect at a very small angle,

one can find points close to both surfaces which are nevertheless a long way from the "true" in-

tersection.

Suppose the surface intersection subroutine D2SSXT has been used to compute the one or more

intersection curves comprising the "intersection of two surfaces". The D2CLSP subroutine can

be used to find the distance of the given point to each component of the intersection curves, or

D2CLPM (CLose Point Multiple) might be used to scan all of them at once. When using this

interpretation of "intersection", two additional considerations come up. First, these intersection

curves are only accurate to the tolerance that was specified in the call to D2SSXT, so it would

make no sense to use a criterion of closeness that was any less than that. Second, for each theo-

retical intersection component, there are two implied intersection curves in model space deriva-

ble from the output of D2SSXT, one for each surface, and no reason to prefer one over the other.

13.3 EXAMPLE CODE

 SUBROUTINE EXPL11 (CMEM, IMEM, DMEM, ISU1, ISU2, PT, TOL, DIS, IER)

C Find the distance from PT to the intersection of surfaces ISU1 and

C ISU2 with a tolerance of TOL. This example leaves out the necessary

C IER checking after each call for the sake of expository simplicity.

 CHARACTER CMEM*(*)

 INTEGER IMEM(*), ISU1, ISU2, IER

 DOUBLE PRECISION DMEM(*), PT(3), TOL, DIS

C

C Local Variables

 INTEGER NCUTS, IPCUTS, IPA, I, LSEL1, LSEL2, IA1, IA2, ICF, IBF

 INTEGER IPIN, MXITER, MXHALF, MXMARQ, DEFP(4)

 INTEGER NCP, INDEX, IP, ID, INITER, IINFO

 DOUBLE PRECISION EPS(4), GAMMA, FNU, TOL2, TMP

C

C Data for selection functions and D2CLPM inputs

DT_NURBS Users’ Manual

13-2

 DATA LSEL1 / 4, 2, 1, 2 /

 DATA LSEL2 / 4, 2, 3, 4 /

 DATA DEFP / 0.5D0, 0.0D0, 0.5D0, 0.0D0 /

 DATA MXITER, MXHALF, MXMARQ / 30, 3, 10 /

 DATA GAMMA, FNU / 0.25D0, 2.0D0 /

C

C Find the 4D intersection curves

 TOL2 = 0.5 * TOL

 CALL D2SSXT (CMEM, IMEM, DMEM, ISU1, ISU2, TOL2, NCUTS, IPCUTS, IER)

 IF (NCUTS .EQ. 0) THEN

 CALL FAILED ('EXPL11: Surfaces do not intersect!?', -31, IER)

 RETURN

 ENDIF

C

C Construct selection functions

 CALL D2ADF (CMEM, IMEM, DMEM, 'I', 4, IA1, IER)

 CALL D2ADF (CMEM, IMEM, DMEM, 'I', 4, IA2, IER)

 CALL D2STAI (CMEM, IMEM, DMEM, LSEL1, 1, 4, IA1, IER)

 CALL D2STAI (CMEM, IMEM, DMEM, LSEL2, 1, 4, IA2, IER)

C

C Construct the pairs of model space curves corresponding to each

C intersection curve

 CALL D2ADF (CMEM, IMEM, DMEM, 'P', 2*NCUTS, IPA, IER)

 DO 100 I=1,NCUTS

 CALL D2FEEI (CMEM, IMEM, DMEM, IPCUTS, I, IBF, IER)

 CALL D2POSE (CMEM, IMEM, DMEM, 'B', IBF, 'S', IA1, ICF, IER)

 CALL D2POSX (CMEM, IMEM, DMEM, ICF, 'B', ISU1, IER)

 CALL D2STEI (CMEM, IMEM, DMEM, ICF, 2*I-1, IPA, IER)

 CALL D2POSE (CMEM, IMEM, DMEM, 'B', IBF, 'S', IA2, ICF, IER)

 CALL D2POSX (CMEM, IMEM, DMEM, ICF, 'B', ISU2, IER)

 CALL D2STEI (CMEM, IMEM, DMEM, ICF, 2*I, IPA, IER)

 100 CONTINUE

C

C Find distances to these curves

 CALL D2ADF (CMEM, IMEM, DMEM, 'D', 4*NCUTS, IPIN, IER)

 DO 200 I=1,NCUTS

 CALL D2STAD (CMEM, IMEM, DMEM, DEFP, 4*I-3, 4*I, IPIN, IER)

 200 CONTINUE

C Try mainly to achieve absolute distance (EPS(1))

 EPS(1) = TOL2

 EPS(2) = 16.0D0 * DTMCON(6)

 EPS(3) = 0.0625 * TOL2

 EPS(4) = 16.0D0 * DTMCON(6)

 CALL D2CLPM (CMEM, IMEM, DMEM, IPA, PT, IPIN, EPS, GAMMA, FNU,

 + MXITER, MXHALF, MXMARQ, NCP, INDEX, IP, ID, INITER, IINFO, IER)

C

C Return the average of these distances

 DIS = 0.0D0

 DO 300 I=1,NCP

 CALL D2FEED (CMEM, IMEM, DMEM, ID, I, TMP, IER)

 DIS = DIS + TMP

 300 CONTINUE

 DIS = DIS / DBLE(NCP)

C

C Clean up, preferably in reverse order of creation

 CALL D2ERAS (CMEM, IMEM, DMEM, IINFO, IER)

 CALL D2ERAS (CMEM, IMEM, DMEM, INITER, IER)

 CALL D2ERAS (CMEM, IMEM, DMEM, ID, IER)

 CALL D2ERAS (CMEM, IMEM, DMEM, IP, IER)

 CALL D2ERAS (CMEM, IMEM, DMEM, INDEX, IER)

 CALL D2ERAS (CMEM, IMEM, DMEM, IPIN, IER)

DT_NURBS Users’ Manual

13-3

 DO 400 I=1,NCUTS

 CALL D2FEEI (CMEM, IMEM, DMEM, IPA, 2*I, ICF, IER)

 CALL D2ERAS (CMEM, IMEM, DMEM, ICF, IER)

 CALL D2FEEI (CMEM, IMEM, DMEM, IPA, 2*I-1, ICF, IER)

 CALL D2ERAS (CMEM, IMEM, DMEM, ICF, IER)

 400 CONTINUE

 CALL D2ERAS (CMEM, IMEM, DMEM, IPA, IER)

 CALL D2ERAS (CMEM, IMEM, DMEM, IA2, IER)

 CALL D2ERAS (CMEM, IMEM, DMEM, IA1, IER)

 DO 410 I=1,NCUTS

 CALL D2FEEI (CMEM, IMEM, DMEM, IPCUTS, I, IBF, IER)

 CALL D2ERAS (CMEM, IMEM, DMEM, IBF, IER)

 410 CONTINUE

 CALL D2ERAS (CMEM, IMEM, DMEM, IPCUTS, IER)

 IER = 0

 RETURN

 END

DT_NURBS Users’ Manual

14-1

TRAVERSE TRIMMED BOUNDARY

14

14.1 PROBLEM STATEMENT

Given a Trimmed Surface entity and a chord-height tolerance, find a series of points on the

boundary of the trimmed surface which includes all edge endpoints of all loops and enough addi-

tional points from each edge to ensure that the polyline drawn through the list of points does not

deviate from the "true" boundary by more than the given tolerance.

14.2 PROBLEM ANALYSIS

This is basically an application of the D2SCHT (Spline Chord Height Tolerance) subroutine. All

the complexity stems from tracing through the data structure to get all the pieces and from possi-

bly dealing with compositions of functions rather than pure splines.

One instance where an edge is normally expressed as a composition of functions occurs when a

trimming edge arises from an intersection of surfaces computed by D2SSXT. The intersection

curve produced directly by D2SSXT has four dependent variables, two parameter values for each

surface. When it is to be used as a trimming edge in the first surface, it should be composed with

a "select and permute" function which selects the first two dependent variables. When it is to be

used as a trimming edge in the second surface, it should be composed with a "select and per-

mute" function which selects the second two dependent variables. When building a Joined Sur-

face entity, these two edges are naturally linked as "joined" edges.

14.3 EXAMPLE CODE

 SUBROUTINE EXPL12 (CMEM, IMEM, DMEM, ITS, TOL, NLP, IPTS, IER)

C Locate a string of points on the boundary of trimmed surface ITS

C satisfying a chord-height tolerance TOL. Output NLP is the number

C of disjoint boundaries, and IPTS is a pointer array containing

C pointers to the lists of model space points for each boundary, each

C list expressed as a DM entity whose columns are the points.

C

C This example leaves out the necessary IER checking after each Library

C call for the sake of expository simplicity.

C

 CHARACTER CMEM*(*)

 INTEGER IMEM(*), ITS, NLP, IPTS, IER

 DOUBLE PRECISION DMEM(*), TOL

C

C Type identifier constants

 INTEGER ENTBF, ENTCF, KEYSA

 PARAMETER (ENTBF=246, ENTCF=244, KEYSA=-12321)

C

C Local Variables

 CHARACTER SUFIC*1, EGFIC*1

 INTEGER ILP, IXLP, ISURF, ITYP, NOV, NEG, IPA, I, J, K, IEG, IEFU, IECF

 INTEGER IDA, NEPT, NLPT, IDM, JDM, LSA(8), LASDM

 DOUBLE PRECISION TMP, DUM

C

DT_NURBS Users’ Manual

14-2

C Extract essential data about the trimmed surface

 CALL D2FEEI (CMEM, IMEM, DMEM, ITS, 5, NLP, IER)

 CALL D2ADF (CMEM, IMEM, DMEM, 'P', NLP, IPTS, IER)

 CALL D2FEEI (CMEM, IMEM, DMEM, ITS, 1, ISURF, IER)

 CALL D2FEET (CMEM, IMEM, DMEM, ISURF, ITYP, IER)

 IF (ITYP .EQ. ENTBF) THEN

 CALL D2FEED (CMEM, IMEM, DMEM, ISURF, 2, TMP, IER)

 NOV = TMP

 IF (NOV .LT. 0) NOV = -NOV - 1

 SUFIC = 'B'

 ELSE IF (ITYP .EQ. ENTCF) THEN

 CALL D2FEEI (CMEM, IMEM, DMEM, ISURF, 2, NOV, IER)

 SUFIC = 'C'

 ELSE

 CALL FAILED ('EXPL11: Unknown surface type in ITS', -32, IER)

 ENDIF

C

C Process the loops individually

 DO 200 I=1,NLP

 CALL D2STEI (CMEM, IMEM, DMEM, 0, I, IPTS, IER)

 CALL D2TSLP (CMEM, IMEM, DMEM, ITS, I, ILP, IER)

 IF (ILP .EQ. 0) GOTO 200

 CALL D2FEEI (CMEM, IMEM, DMEM, ILP, 3, NEG, IER)

 CALL D2ADF (CMEM, IMEM, DMEM, 'P', 2*NEG, IPA, IER)

C

C Process the edges in the loop

 NLPT = 0

 DO 100 J=1,NEG

 CALL D2STEI (CMEM, IMEM, DMEM, 0, J, IPA, IER)

 CALL D2LPEG (CMEM, IMEM, DMEM, ILP, J, IEG, IER)

 IF (IEG .EQ. 0) GOTO 100

C

C Extract the geometric edge and build the function expressing

C it in model space

 CALL D2FEEI (CMEM, IMEM, DMEM, IEG, 1, IEFU, IER)

 CALL D2FEET (CMEM, IMEM, DMEM, IEFU, ITYP, IER)

 IF (ITYP .EQ. ENTBF) THEN

 EGFIC = 'B'

 ELSE IF (ITYP .EQ. ENTCF) THEN

 EGFIC = 'C'

 ELSE

 CALL FAILED ('EXPL11: Unknown curve type in edge',-33,IER)

C Clean up should be done here.

 RETURN

 ENDIF

 CALL D2POSE (CMEM, IMEM, DMEM, EGFIC, IEFU, SUFIC, ISURF, ICF,

 + IER)

C

C Find parameter locations of points on this edge

 CALL D2SCHT (CMEM, IMEM, DMEM, ICF, TOL, 1, IDA, NEPT, IER)

C

C Save the parameter locations and model space edge curve for later

 CALL D2STEI (CMEM, IMEM, DMEM, IDA, J, IPA, IER)

 CALL D2STEI (CMEM, IMEM, DMEM, ICF, NEG+J, IPA, IER)

C

C Accumulate the total number of points on this loop

 NLPT = NLPT + NEPT

 100 CONTINUE

C

C Allocate space for the list of model space points for this loop

C Ensure closure by repeating the initial point at the end

DT_NURBS Users’ Manual

14-3

 NLPT = NLPT + 1

 CALL D2MDF (CMEM, IMEM, DMEM, 'D', NOV, NLPT, IDM, IER)

 CALL D2STEI (CMEM, IMEM, DMEM, IDM, I, IPTS, IER)

C

C Treat IDM as a one-dimensional array, and use the fact that elements

C in a column are stored consecutively, to set up a sub-array access

C into the matrix IDM. The model space points will be stored directly

C in IDM. The "sub-array access" list is described in Reference Manual

C 2.2.14.

 LSA(1) = KEYSA

 LSA(2) = NOV

 LSA(3) = 1

 LSA(4) = NOV*NLPT

 LSA(5) = 1

 LSA(6) = 0

 LSA(7) = IDM

 LSA(8) = 3

C

C Cycle through the edges again, evaluating to obtain model space

C points

 DO 150 J=1,NEG

 CALL D2FEEI (CMEM, IMEM, DMEM, IPA, J, IDA, IER)

 CALL D2FEEI (CMEM, IMEM, DMEM, IPA, NEG+J, ICF, IER)

 CALL D2FELD (CMEM, IMEM, DMEM, IDA, NEPT, IER)

C

C Evaluate the points on this edge, accumulating them in IDM at

C the location indicated by LSA

 DO 140 K=1,NEPT

 CALL D2FEED (CMEM, IMEM, DMEM, IDA, K, TMP, IER)

 CALL D2EVL1 (CMEM, IMEM, DMEM, ICF, TMP, LSA, DUM, IER)

 LSA(3) = LSA(3) + NOV

 140 CONTINUE

C

C Clean up as we go, erasing the parameter values for each edge

 CALL D2ERAS (CMEM, IMEM, DMEM, IDA, IER)

C and the composition function (but NOT the edge and surface

C components of the CF, which are part of the Trimmed Surface!)

 CALL D2ERAS (CMEM, IMEM, DMEM, ICF, IER)

 150 CONTINUE

C

C Copy the first point exactly, to make sure the loop is closed.

 CALL D2FEBD (CMEM, IMEM, DMEM, IDM, JDM, LASDM, IER)

 LASDM = LASDM - NOV + 1

 DO 170 J=0,NOV-1

 DMEM(LASDM+J) = DMEM(JDM+J)

 170 CONTINUE

 CALL D2UNLD (CMEM, IMEM, DMEM, IDM, IER)

C

C Clean up for current loop

 CALL D2ERAS (CMEM, IMEM, DMEM, IPA, IER)

 200 CONTINUE

C

 IER = 0

 RETURN

 END

DT_NURBS Users’ Manual

15-1

TRIMMED & JOINED - DT_NURBS VS IGES

15

15.1 PROBLEM STATEMENT

Place a DT_NURBS Library Joined Surface entity in an IGES file.

15.2 PROBLEM ANALYSIS

The short answer is that it can't be done at this time. The nearest thing to a Library Joined Sur-

face (JS) entity in IGES is a "Shell Entity" (Type 514). The Shell Entity and its component enti-

ties are still in "proposed, but not yet formally adopted" status with respect to IGES. There are

no Library routines yet for creating IGES Shell, Face, Loop, Edge or Vertex entities. Moreover,

IGES Shell entities are required to be closed surfaces, while Library Joined Surfaces are not re-

quired to be closed.

A Library Joined Surface is essentially just a list of Trimmed Surfaces plus some edge connect-

ing information. For Trimmed Surfaces there is another IGES entity, the "Bounded Surface Enti-

ty" (Type 143), which the Library does support to some degree. The basic ideas behind a Library

Trimmed Surface and an IGES Bounded Surface Entity are the same, but the technical details

vary enough that there are examples of each which do not translate into the other.

The cases which the Library routines D2TSIG (Trimmed Surface to IGes) and D2IGTS (IGes to

Trimmed Surface) can successfully translate are those in which the "untrimmed surface" is repre-

sented by a B-spline Function and all components of the boundary curves are represented by B-

spline Functions. IGES also permits non-parametric surfaces and non-B-spline surfaces and

boundary curves. On the other side, the Library is expanding its original definition of allowed

surface and curve components to include Composition of Functions (CF) entities, and, in the case

of the surface, a Geometry and Analysis (GA) entity. These latter entity types can only be trans-

lated into IGES using "vendor-defined entities" which extend the standard. The expansion to al-

low CF and GA entities in TS and JS entities is underway but not yet available in version 2.5.

15.3 EXAMPLE CODE

Given the state of flux of both IGES and the Library on this issue, creating an example is not ap-

propriate at this time.

DT_NURBS Users’ Manual

16-1

TRIMMED TO SUBRANGE

16

16.1 PROBLEM STATEMENT

Construct a subrange surface matching a given trimmed surface.

16.2 PROBLEM ANALYSIS

Stated more precisely, the problem is to construct a spline function which maps a coordinate rec-

tangle in the plane (usually the unit square) onto the active region in the parameter domain of the

given trimmed surface.

If the active region of the trimmed surface has holes, there will be a problem. If it is permissible

for the subrange image to have seams (i.e. places where parts of the edges of the image overlap),

the task is still possible. See the diagram below.

Seam

Not possible

Possible subrange map with seam

Circle edge

Square edge

Left

Seam

Right

Seam

Making a subrange map to an active region with a hole

(Disconnected boundary)

If the boundary of the active region of the trimmed surface is very convoluted, the prospects for a

satisfactory subrange mapping become dim. Consider the active region indicated below. The

natural subrange construction results in a mapping which doubles back on itself and spreads out-

side the active region, as shown below.

DT_NURBS Users’ Manual

16-2

Convoluted active region of

Trimmed Surface

Image of subrange mapping resulting

from natural construction

Double-covered

area outside

active region

Triple-covered

area inside

active region

Infinitely-covered

line, partly inside,

partly outside, and

partly on the

boundary of the

active region

No

w suppose there are no holes and the boundary is not very convoluted. The basic Library subrou-

tine for building a subrange mapping is D2MPBC (MaP to Boundary Curves). It requires a

boundary consisting of exactly four curves. These four curves will become the images of the

four edges of the unit square. If the boundary of the active region happens to contain exactly four

curves, these become natural choices as inputs to D2MPBC. If the result is not satisfactory, one

can rearrange the boundary as described below and try again.

If the boundary does not consist of four curves, or if the original set of four curves does not give

good results, the user must choose four "corner" points and reformulate the boundary between

successive corner points as single B-spline curves. If any of the original boundary edges are ex-

pressed as Compositions of Functions (CF), they can be converted into pure B-spline Functions

(BF) by D2BINE. Where an original boundary edge needs to be divided because it contains a

corner point, D2STRM (Spline TRiM) can be applied. Where two consecutive B-spline curves

need to be combined into one, D2SPJN (SPline JoiN) can be used. If some of the original edges

are rational splines, additional problems may arise. In this case, D2MGKT (MerGe KnoT) may

be helpful.

Unless the specific application provides some a priori knowledge about locating good choices for

corner points, it is very difficult to write an automatic procedure for building subrange surfaces.

16.3 EXAMPLE CODE

TBD

DT_NURBS Users’ Manual

17-1

COMPUTING MOMENTS OF INERTIA

17

17.1 PROBLEM STATEMENT

Compute mass, centroid, and moments of inertia for uniform solids given a tool for computing

x x x dV1 2 3

over a solid .

17.2 PROBLEM ANALYSIS

Given a B-rep solid represented by a joined surface (JS) entity, use DT_NURBS subroutine

D2JSMP to compute

x y z dVm m mx y z

where x, y, and z are the components of points in the solid and is the solid. These integrals

make it possible to compute all the mass properties of the solid.

Given a spline mapping from R
k
 R

n
 for k=3 and n arbitrary, use DT_NURBS subroutine

D2MOIN to compute

x x x dVm m

n

mn

1 2
1 2

where the xi are the components of the mapping and is the domain of the mapping. The mass

properties of the solid may be computed from this routine.

17.2.1 MASS AND VOLUME

Computing the volume is easy. Just set (, ,) = (0,0,0) and compute

v dV .

The mass m is just the product of the volume with the density, i.e.

m = v.

17.2.2 CENTER OF MASS

Computing the centroid is almost as easy. To get x1 , compute

x dV1

DT_NURBS Users’ Manual

17-2

and divide the result by v. Similarly, x2 can be computed by calculating

x dV2

and dividing the result by v. The computation for x3 is analogous. Compute

x dV3

and divide by v. These three quantities are the three components of the centroid

x

x

x

x

1

2

3

.

17.2.3 MOMENT OF INERTIA

Now consider the moment of inertia about an axis w through the origin. If r is the distance of

any point x = (x1, x2, x3)
T
 from this axis, then the inertia can be computed as:

r dV x x x w dV

w Jw

2 2

[() ()]
,

where J is the 3 3 matrix whose entries are given by

J x x x x x dVij ij i j [()] 1

2

2

2

3

2

.

In this expression, ij = 1 if i = j and 0 otherwise. The matrix J is called the inertia tensor, and

its entries can be computed by evaluating (and combining) the integrals

M x x dVij i j .

Specifically, the Jij are given by

J M M M Mij ij ij ()11 22 33 .

Given this matrix, it is possible to compute the moment of inertia I(w, p) about any point p and

any rotational axis w using the Parallel Axis Theorem. It is given by

))(()2(),(wwppxpvJwwpwI .

17.2.4 RADIUS OF GYRATION

The radius of gyration k(w, p) can be computed from the equation

I w p vk w p(,) (,) 2 .

Thus, it is given by

DT_NURBS Users’ Manual

17-3

k w p
I w p

v
(,)

(,)
 .

DT_NURBS Users’ Manual

A-1

LICENSE TERMS AND CONDITIONS

APPENDIX A

DT_NURBS SPLINE GEOMETRY SUBROUTINE LIBRARY LICENSE

Terms and Conditions

The DT_NURBS Spline Geometry Subroutine Library, referred henceforth as DT_NURBS, is

distributed under the terms and conditions set forward in this document.

1. Licensee shall use reasonable efforts not to disclose the DT_NURBS source files, not in-

cluding documentation files, sample code, or test codes distributed with DTNURBS, oth-

er than to its employees, staff, faculty, and students, and shall not authorize the removal

of DT_NURBS from Licensee's premises. The Naval Surface Warfare Center, Carderock

Division, at David Taylor Model Basin, or an agency, institution, or corporation appoint-

ed by NSWC to distribute this code, are the only parties authorized to distribute library

source files. Exceptions are allowed for purposes of distributing, within the United

States, applications in source format written using the DT_NURBS library. In this cir-

cumstance only those DT_NURBS routines, header, or include files, or other related

source files used by the application may be distribute in source format.

2. The software is provided "as is", without any warranty by NSWC, or its contractors. In

no event shall NSWC, or its contractors, be liable for any loss or for any indirect, special,

punitive, exemplary, incidental, or consequential, damages arising from use, possession,

or performance of the software.

3. When bugs or problems are found, the licensee will make a reasonable effort to report

them to NSWC at the address stated on this document.

4. The licensee has full rights to any software developed with this library, whether commer-

cial, academic, or internal use only.

5. This software library, is not available to foreign nationals, or foreign owned companies at

this time. Foreign nationals working or studying in a U.S. company or U.S. academic in-

stitution are authorized to use the library under the recognizance of the Licensee. Licen-

see agrees to instruct its employees, staff, faculty, and students who will have access to

the software as to their obligations under Paragraph 1 of this agreement.

6. Applications developed with this software can be distributed outside the United States

freely provided the DT_NURBS routines used in the application are in an executable bi-

nary format.

7. To obtain a licensed copy of DT_NURBS you must sign this form and submit it along

with a written request to the address below. Please make a copy of this agreement for

your records and reference.

DT_NURBS Users’ Manual

A-2

___________________________/__________

Printed Name of Licensee / Date

__

Postal Address

E-mail Address

________________/_________________

Phone / Fax

___________________________/___________

Signature of Licensee / Date

All requests should be sent to:

Bob Ames ames@oasys.dt.navy.mil

NSWC/Carderock Division

David Taylor Model Basin

Code 50

Bethesda, Md. 20084-5000 (301)227-1339(ph) (301)227-1125(fax)

