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820.1 THE PLANE BAR ELEMENT

This Chapter begins Part 111 of the course. This Part deals with the computer implementation of
the Finite Element Method for static analysis. It is organized in “bottom up” fashion. It begins
with simpletopics, such as programming of bar and beam elements, and gradually builds up toward
more complex models and calculations.

Specific examples of this Chapter illustrate the programming of one-dimensional elements: bars
and beams, using Mathematica as implementation language.

§20.1. ThePlaneBar Element

Thetwo-node, prismatic, two-dimensional bar element

was studied in Chapters 2-3 for modeling planetrusses. ¢=1°
It is reproduced in Figure 20.1 for conveniency. Ithas Y
two nodes and four degrees of freedom. The element \¢
node displacements and conjugate forces are yF
™ for 101, %1)
u f X
we=| Y|, = . (20.1)
Ux2 fx2 FIGURE 20.1. Plane bar element.
Uy2 fy2

The element geometry is described by the coordinates {x;, yi}, i = 1, 2 of the two end nodes. For
stiffness computations, the only material and fabrication properties required are the modulus of
glasticity E = E® and the cross section area A = AS, respectively. Both are taken to be constant
over the element.

§20.1.1. PlaneBar StiffnessMatrix

The element stiffnessmatrix in global {x, y} coordinatesis given by the explicit expression derived
in 83.1:

c> sc —c® —sc Xo1X21  Xo1Y21 —X2o1Xp1 —Xo1Y21
EA| sc s —sc —¢? EA| x —X —
KE — , > _ 2121 Y11 21Y21 —Ya1Y21 (20.2)
V4 —C® —sC ¢C SC £3 —X21X21 —Xo1Y21 Xo1Xo1 Xo1Yza
—sc —s? sc §° —X21Y21 —VY21¥Y21 Xo1Yor  Yoa1Ya1

Here ¢ = cosg = Xp1/¢,S = SiNg = Yo1/¢,inWhichXy; = Xp—X1, Y21 = Y2—VY1,€ = /X3, + Y3,
and ¢ istheangleformed by X and x, measured from x positive counterclockwise— see Figure 20.1.
The second expression in (20.2) is preferable in a computer algebra system because it enhances
simplification possibilities when doing symbolic work, and is the one actually implemented in the
modul e described below.

820.1.2. PlaneBar Stiffness Module

The computation of the stiffness matrix K€ of the two-node, prismatic plane bar ele-
ment is done by Mathematica module PlaneBar2Stiffness. This is listed in Fig-
ure IFEM:Ch20:fig:PlaneBarStiffM atrixModule. The module isinvoked as

Ke = PlaneBar2Stiffness[ncoor, Em, A, options] (20.3)
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Chapter 20: IMPLEMENTATION OF ONE-DIMENSIONAL ELEMENTS

Pl aneBar 2Sti f f ness[ ncoor , Em , A ,options_]:= Mdul e[
{x1,x2,y1,y2,x21,y21, EA nuner, L, LL, LLL, Ke},

{{x1,y1}, {x2,y2}}=ncoor; {x21,y21}={x2-x1,y2-y1l};

EA=EnT A; {nuner}=options; LL=x21"2+y2172; L=Sqrt[LL];

I f [numer, {x21,y21, EA LL, L}=N {x21,y21, EA LL,L}]];

I f [!nunmer, L=PowerExpand[L]]; LLL=Sinplify[LL*L];

Ke=(Enmt A/ LLL) *{{ x21*x21, x21*y21,-x21*x21,-x21*y21},
{ y21*x21, y21*y21,-y21*x21,-y21*y21},
{-x21*x21, - x21*y21, x21*x21, x21*y21},
{-y21*x21, -y21*y21, y21*x21, y21*y21}};

Ret ur n[ Ke]] ;

F1GURE 20.2. Mathematica stiffness module for a two-node, prismatic plane bar element.

The arguments are
ncoor Node coordinates of element arranged as { { x1,y1},{x2,y2}}.
Em Elastic modulus.
A Cross section area.

options A list of processing options. For thiselement ishasonly oneentry: { numer }. This
isalogical flag with the value True or False. If True the computations are carried
out in floating-point arithmetic. If False symbolic processing is assumed.

The module returnsthe 4 x 4 element stiffness matrix as function value.

ClearAI[A EmL];

ncoor ={ {0, 0}, {30, 40}}; Em=1000; A=5;

Ke= Pl aneBar 2Sti f f ness[ ncoor, Em A, { True}];
Print["Nunmerical Elem Stiff Matrix: "];
Print[Ke//MtrixForn;

Print["Ei genval ues of Ke=", Chop[ Ei genval ues[ NN Ke]]11];
Print["Synmetry check=", Si npli fy[ Chop[ Transpose[ Ke]-Ke]]];

Numerical Elem Stiff Matrix:
36. 48. -36. -—48)
48. 64. -48. -64,
-36. -—48. 36. 48.
-48. -64. 48. 64.
Eigenvalues of Ke={200., 0, 0, 0}

Symmetry check={{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, O}, {0, 0, 0, O} }

F1GURE 20.3. Test of plane bar stiffness module with numerical inputs.

§20.1.3. Testing the Plane Bar Module

The modules are tested by the scriptslisted in Figures 20.3 and 20.4. The script shown on the top
of Figure 20.3 tests a numerically defined element with end nodes located at (0, 0) and (30, 40),
with E = 1000, A = 5, and numer set to True. Executing the script produces the results listed in
the bottom of that figure.
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820.2 THE SPACE BAR ELEMENT

ClearAlI[A EmL];

ncoor ={ {0, 0}, {L, 0}};

Ke= Pl aneBar2Sti ffness[ ncoor, Em A, {Fal se}];
kfac=En* A/ L; Ke=Si npli fy[ Ke/kfac];

Print["Synbolic Elem Stiff Matrix: "];

Print[kfac," ", Ke//MatrixForni;

Print["Ei genval ues of Ke=", kfac,"*", Ei genval ues[ Ke] ];

Symbolic Elem Stiff Matrix:

1 0 -10

AEm 0O 0 0 O

L -1 0 1 O

0O 0 0 O
Eigenvalues of Ke=A = H0,0,0, 2}

FI1GURE 20.4. Test of plane bar stiffness module with symbolic inputs.

On return from PlaneBar2Stiffness, the stiffness matrix returned in Ke is printed. Its four
eigenvalues are computed and printed. As expected three eigenvalues, which correspond to the
threeindependent rigid body motions of the element, are zero. Theremaining eigenvalueispositive
and equal to EA/£. The symmetry of Ke is checked by printing (K®)T — K® upon simplification
and chopping.

The script of Figure 20.4 tests a symbolically defined bar element with end nodes located at (0O, 0)
and (L, 0), which isaligned with the x axis. Properties E and A are kept symbolic. Executing the
script shown in the top of Figure 20.4 produces the results shown in the bottom of that figure. One
thing to be noticed isthe use of the stiffness scaling factor EA/¢, called kfac in the script. Thisis
a symbolic quantity that can be extracted as factor of matrix K®. The effect is to clean up matrix
and vector output, as can be observed in the printed results.

820.2. The Space Bar Element

To show how the previousimplementation extends easily to three dimensions, this section describes
the implementation of the space bar element.

The two-node, prismatic, space bar
element is pictured in Figure 20.5. —
The element has two nodes and six y
degreesof freedom. Theelement node Z
displacements and conjugate forces

1(X,.Y;.2,) | E, A constant |

are arranged as
y
- R 206,952,
Uy1 fy1 £ =1L° X
ue = Uz fe — fa X \/
Uy |’ fuo |- 7 Global system
| Uy | T FIGURE 20.5. The space (3D) bar element.
(20.4)
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Chapter 20: IMPLEMENTATION OF ONE-DIMENSIONAL ELEMENTS

SpaceBar 2Sti f f ness[ ncoor _, Em , A , opti ons_]: =Modul g[
{x1,x2,y1,y2,z1,22,x21,y21, z21, EA, nuner, L, LL, LLL, Ke},
{{x1,y1, z1},{x2,y2,z2}} =ncoor; {x21,y21, z21} ={x2-x1, y2-y1, z2- z1};
EA=Ent A; {nuner}=options; LL=x21"2+y2172+z2172; L=Sqrt[LL];
I f [numer, {x21,y21,z21, EA LL, L}=N[{x21,y21, z21, EA LL, L}]];
If [!nunmer, L=PowerExpand[L]]; LLL=Sinplify[LL*L];
Ke=( En* A/ LLL) *
{{ x21*x21, x21*y21, x21*z21,-x21*x21, -x21*y21,-x21*z21},
{ y21*x21, y21*y21, y21*z21,-y21*x21,-y21*y21,-y21*z21},
{ z21*x21, z21*y21, z21*z21,-z21*x21,-2z21*y21,-2z21*z21},
{-x21*x21, - x21*y21, - x21*z21, x21*x21, x21*y21, x21*z21},
{-y21*x21, -y21*y21, -y21*z21, y21*x21, y21*y21, y21*z21},
{-z21*x21, -z21*y21,-z21*221, z21*x21, z21*y21, z21*z21}};
Ret ur n[ Ke] ;

1,

F1GuRE 20.6. Module to form the stiffness of the space (3D) bar element.

The element geometry is described by the coordinates {X;, Vi, z }, i = 1, 2 of the two end nodes.
Asin the case of the plane bar, the two properties required for the stiffness computations are the
modulus of elasticity E and the cross section area A. Both are assumed to be constant over the
element.

§20.2.1. SpaceBar StiffnessMatrix

For the space bar element, introduce the notation Xp; = Xo — X1, Yo1 = Y2 — Y1, Zo1 = Zp — Z; and

L= \/ X5, + Y5 + 25, It can be shown' that the element stiffness matrix in global coordinatesis
given by

X21X21 X21Y21 X211 —X21X21 —Xo1Y21  —Xoulzn

X21Y21 Y21Y21 X21Z21 —XuY2z1 —YaYa1 —Ya1Z:

Ke — E°A° X21221 V21221 221721 —Xul1 —Yaln —Znuixn . (20.5)
£3 —Xo1Xo1  —X2o1Yo1 —X21Z:1 X21X21 X21Y21 X21Z21
—X21Y21  —Ya1Yo1 —Xo1Z:; X21Y21 Y21Y21 Y21221

L —X21Z01 —YaZnn —Zo1Zx X121 Y21221 2177

This matrix expression in terms of coordinate differences is useful in symbolic work, because it
enhances simplification possibilities.

§20.2.2. SpaceBar StiffnessModule

The computation of the stiffness matrix K © of the two-node, prismatic space bar element, is done by
Mathematica module SpaceBar2Stiffness. Thisislistedin Figure 20.6. The moduleisinvoked
as

Ke = SpaceBar2Stiffness[ncoor, Em, A, options] (20.6)

The arguments are
ncoor Node coordinates of element arranged as { { x1,y1,z1},{x2,y2,z2}}.

1 The derivation was the subject of Exercise 6.10.
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820.2 THE SPACE BAR

ELEMENT

ClearAll[A ENM;

ncoor ={{0, 0, 0}, {2, 3,6}}; Enr343; A=10;

Ke= SpaceBar 2Sti ff ness[ ncoor, Em A, { True}];
Print["Nunerical ElemStiff Matrix: "];
Print[Ke//MatrixForni;

Print["Ei genval ues of Ke=", Chop[ Ei genval ues[Ke]]];

Numerical Elem Stiff Matrix:

40. 60. 120. -40. -60. -12
60. 90. 180. -60. -90. -180
120. 180. 360. -120. -180. -360.
—-40. -60. -120. 40. 60. 120.
-60. -90. —-180. 60. 90. 180.
-120. -180. -360. 120. 180. 360

Eigenvalues of Ke={980., 0, 0, 0, 0, G}

Em
A
options

F1GURE 20.7. Testing the space bar stiffness module with numerical inputs.

Elastic modulus.
Cross section area.

A list of processing options. For thiselement ishas only oneentry: {numer }. This
isalogical flag with the value True or False. If True the computations are carried
out in floating-point arithmetic. If False symbolic processing is assumed.

The module returnsthe 6 x 6 element stiffness matrix as function value.

ClearAlI[A EmL];

ncoor ={{0, 0, 0}, {L, 2*L, 2*L}/ 3};

Ke= SpaceBar 2Sti f f ness[ ncoor, Em A, { Fal se}];

kf ac=Ent A/ (9*L); Ke=Si nplify[Ke/kfac];
Print["Synbolic Elem Stiff Matrix: "];

Print[kfac," ", Ke//MatrixForn;

Print["Ei genval ues of Ke=", kfac,"*", Ei genval ues[ Ke] ];

Symbolic Elem Stiff Matrix:

1 2 2 -1 -2 -2
2 4 4 -2 -4 -4
AEm| 2 4 4 -2 -4 -4
9L -1 -2 -2 1 2 2
-2 -4 -4 2 4 4
-2 -4 -4 2 4 4

Eigenvalues of Ke = %‘ 0{0, 0,0, 0, 0, 18}

F1GURE 20.8. Testing the space bar stiffness module with symbolic inputs.

§20.2.3. Testing the Space Bar Module

Themodulesaretested by the scriptslisted in Figures20.7 and 20.8. Asthesearesimilar to previous
tests done on the plane bar they need not be described in detail .
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Chapter 20: IMPLEMENTATION OF ONE-DIMENSIONAL ELEMENTS

y @ G, 0 (b) N
T A Z 2 (X2 ’ yz)
U1 01 _ _

_ Uyz y
G N\ 0
10 52— X y

‘ §\|E, A, 1 constant] (X7, ;)
— 1€ 74 11
— (=L ——] X

Fi1cUre 20.9. Plane beam-column element: (a) initslocal system; (b) in the global system.

The script of Figure 20.7 tests a numerically defined space bar with end nodes located at (0, O, 0)
and (30, 40, 0), with E = 1000, A = 5 and numer Set to True. Executing the script produces the
results listed in the bottom of that Figure.

The script of Figure 20.8 testsa symbolically defined bar element with end nodeslocated at (O, 0, 0)
and (L, 2L, 2L)/3, which haslength L and is not aligned with the x axis. The element properties
E and A are kept symbolic. Executing the script produces the results shown in the bottom of that
Figure. Note the use of a stiffness factor kfac of EA/(9¢) to get cleaner printouts.

§20.3. ThePlane Beam-Column Element

Beam-column elements model structural members that resist both axial and bending actions. This
IS the case in skeletal structures such as frameworks which are common in steel and reinforced-
concrete building construction. A plane beam-column element is a combination of a plane bar
(such asthat considered in 820.1), and a plane beam.

We consider abeam-column element initslocal system (X, y) asshown in Figure 20.9(a), and then
in the global system (X, y) as shown in Figure 20.9(b). The six degrees of freedom and conjugate
node forces of the elements are:

_le_ B f_xl_ [ Ux1 | [ fxl_
_ 7] e m 0 m
ue — _zl : f = N z1 ’ ue — z1 ’ fe — z1 ] (20.7)
Ux2 Ux2 Ux2 fxo
—922— L My | —922— [ My

The rotation angles 6 and the nodal moments m are the same in the local and the global systems
because they are about the z axis, which does not change in passing from local to global.

The element geometry is described by the coordinates {x;, y;},1 = 1, 2 of the two end nodes. The
element length is ¢ = L®. Properties involved in the stiffness calculations are: the modulus of
elasticity E, the cross section area A and the moment of inertial = |, about the neutral axis. All
properties are taken to be constant over the element.

8§20.3.1. Plane Beam-Column Stiffness Matrix
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820.3 THE PLANE BEAM-COLUMN ELEMENT

To obtain the plane beam-column stiffnessin the local system we simply add the stiffness matrices
derived in Chapters 11 and 12, respectively, to get

1 0 0 -1 0 07 0 O O 0 O 0
0O 0 O 0O 12 6¢ 0 -12 ©6¢
-e EA 0O 0 0O El 402 0 —6¢ 202
K== 1 00|T @ 0 0 o0 (208
0 O 12 -6/
[ symm 0_ [ symm 402

The two matrices on the right of (20.8) come from the bar stiffness (12.22) and the Bernoulli-
Euler bending stiffness (13.20), respectively. Before adding them, rows and columns have been
rearranged in accordance with the nodal freedoms (20.7).

The displacement transformation matrix between local and global systemsis

™ Uyq ] rc S 0O 0 O O7 [ Uy
Uy1 -s ¢ 0 0 OO Uy1
e | 6a|l _| O O0O1 0 0O O | _ e
U=l uol=lo 00 ¢ s ofllug|=T" (20.9)
Oy 0O 00 —-s ¢ O Uy
| O, | L O 0 0 O O 11L6,

iInwhichc = cosg = (X2 — X1)/¢, s = SNy = (Y2 — y1)/¢, and ¢ is the angle between X and X,
measured positive-counterclockwise from x; see Figure IFEM:Ch20:fig:PlaneBeamCol Elem. The
stiffness matrix in the global system is obtained through the congruent transformation

Ke=TTK°T. (20.10)

Explicit expressions of the entries of K© are messy. Unlike the bar, it is better to |et the program do
the transformation.

§20.3.2. Plane Beam Column Stiffness M odule

The computation of the stiffness matrix K € of the two-node, prismatic plane beam-column element
is done by Mathematica module P1laneBeamColumn2Stiffness. Thisislisted in Figure 20.10.
The module isinvoked as

Ke = PlaneBeamColumn2Stiffness[ncoor, Em, {A,Izz}, options] (20.11)
The arguments are
ncoor Node coordinates of element arranged as { { x1,y1},{x2,y2}}.
Em Elastic modulus.
A Cross section area.
Izz Moment of inertia of cross section area respect to axis z.

options A list of processing options. For thiselement ishasonly oneentry: { numer }. This
isalogical flag with the value True or False. If True the computations are carried
out in floating-point arithmetic. If False symbolic processing is assumed.

The module returns the 6 x 6 element stiffness matrix as function value.
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Chapter 20: IMPLEMENTATION OF ONE-DIMENSIONAL ELEMENTS

Pl aneBeanCol um2Sti f f ness[ncoor _,Em ,{A ,1zz_}, options_]:=Modul e[
{x1,x2,y1l,y2,x21,y21, EA El, nuner, L, LL, LLL, Te, Kebar, Ke},
{{x1,y1}, {x2,y2}}=ncoor; {x21,y21}={x2-x1,y2-yl};
EA=Ent A; El=Enf*lzz; {nuner}=options;
LL=Si mpl i fy[ x2172+y2172]; L=Sqrt[LL];
I f [numer, {x21,y21, EA EI, LL, L}=N {x21,y21, EA El, LL,L}]1];
I f [!nuner, L=PowerExpand[L]]; LLL=Si nplify[LL*L];
Kebar= (EA/L)*{

{ 1,0,0,-1,0,0},{0,0,0,0,0,0},{0,0,0, 0,0, 0},
{-1,0,0, 1,0,0},{0,0,0,0,0,0},{0,0,0,0,0, 0}} +

2%El / LLL) *{
{ 0,0,0,0,0,0},{0, 6, 3*L,0, -6, 3*L},{0, 3*L, 2*LL, 0,-3*L, LL},
{ 0,0,0,0,0,0},{0,-6,-3*L,0, 6 -3*L},{0,3*L, LL,O,-3*L, 2*LL}};
Te={{x21,y21, 0, 0,0, 0}/L, {-y21, x21, 0,0, 0,0}/L, {0, 0, 1,0, 0, 0},

{0,0,0,x21,y21,0}/L,{0,0,0,-y21,x21,0}/L,{0,0,0,0,0, 1} };
Ke=Tr anspose[ Te] . Kebar . Te;
Ret urn[ Ke] 1;

FiGure 20.10. Mathematica module to form the stiffness matrix of a two-node,
prismatic plane beam-column element.

ClearAl[L,EmA Izz];

ncoor ={{0, 0}, {3, 4}}; Em100; A=125; |zz=250;

Ke= Pl aneBeanCol um2Sti f f ness[ ncoor, Em { A, | zz}, { True}];
Print["Nunerical ElemStiff Matrix: "];
Print[Ke//MtrixForn;

Print["Ei genval ues of Ke=", Chop[ Ei genval ues[ Ke]]];

Numerical Elem Stiff Matrix:

2436. 48. -4800. -2436. -48. —4800.
48, 2464, 3600. -48. -2464. 3600
-4800. 3600. 20000. 4800. -3600. 10000.
-2436. -48. 4800. 2436. 48. 4800
-48. -2464. -3600. 48, 2464. -3600.
-4800. 3600. 10000. 4800. -3600. 20000.

Eigenvalues of Ke ={34800., 10000., 5000., 0, 0, 0}

F1GURE 20.11. Test of two-node plane beam-column element with numericinputs.

§20.3.3. Testing the Plane Beam-Column Module

The beam-column stiffness are tested by the scripts shown in Figures 20.11 and 20.12.

The script at the top of Figure 20.11 tests a numerically defined element of length £ = 5 with
end nodes located at (0, 0) and (3, 4), respectively, with E = 100, A = 125 and |, = 250. The
output is shown at the bottom of that figure. The stiffness matrix returned in Ke is printed. Its
six eigenvalues are computed and printed. As expected three eigenval ues, which correspond to the
three independent rigid body motions of the element, are zero. The remaining three eigenvalues
are positive.

The script at the top of Figure 20.12 tests a plane beam-column of length L with end nodes at (0, 0)
and (3L/5,4L/5). The properties E, A and |, are kept in symbolic form. The output is shown
at the bottom of that figure. The printed matrix looks complicated because bar and beam coupling
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820.4 *PLANE BEAM WITH OFFSET NODES

occurswhen the element is not aligned with the global axes. The eigenvalues are obtained in closed
symbolic form, and their simplicity provides a good check that the transformation matrix (20.9) is
orthogonal. Three eigenvalues are exactly zero; one is associated with the axia (bar) stiffness and
two with the flexural (beam) stiffness.

ClearAlI[L,EmA I zz];

ncoor ={{0, 0}, {3*L/ 5, 4*L/ 5}};

Ke= Pl aneBeantCol um2Sti f f ness[ ncoor, Em { A, | zz}, {Fal se}];
Print["Synmbolic Elem Stiff Matrix:"]; kfac=Em

Ke=Si npl i fy[ Ke/ kfac]; Print[kfac," ", Ke//MatrixForni;
Print["Ei genval ues of Ke=", kfac,"*", Ei genval ues[ Ke]];

Symboalic Elem Stiff Matrix:

3 (64 1zz +3AL2) 12 (12 1zz +AL?) _241z _3(641zz +3AL2) _12 (12 1zz +AL%) _ 241z

25 L3 25 L3 512 25 L3 25 L3 5L2
12 (-12 1zz +AL2) 4(27 12z +4 AL?) 18 Izz _ 12 (-12 1zz +AL2) _4(27 1zz +4 AL2) 18 Izz
25 L3 25 L3 5L2 25 L3 25 L3 512
_ 24 1zz 18 lzz 4 1zz 24 1zz _ 18 lzz 2 1zz
Em 512 512 L 512 52 L
_3(641zz +3AL2) _ 12 (-12 12z +AL?) 24 17z 3(64 1zz +3AL2) 12 (=12 1zz +AL2) 24 17z
25 L3 25 L3 512 25 L3 25 L3 512
_12 (12 I1zz +AL?) _4(27 1zz +4AL2) _18 1z 12 (12 1zz +AL?) 4(27 1zz +4 AL2) _181zz
25 L3 25 L3 512 2513 25 L3 5L2
_ 24 1zz 18 lzz 2 1zz 24 1zz _ 18 lzz 4 1zz
512 512 L 52 52 L

lzz 6(4lzz+1zz L2)}
L’ L3

Eigenvalues of Ke= Em{0, 0, O, % , &

F1GURE 20.12. Test of two-node plane beam-column element with symbolic inputs.

§20.4. *Plane Beam With Offset Nodes
§20.4.1. Plate Reinforced With Edge Beams

Consider aplate reinforced with edge beams, as shown in Figure 20.13(a). The conventional placement of the
nodesis at the plate midsurface and beam longitudinal (centroidal) axis. But those element centered locations
do not coincide. To assemble the structure it is necessary to refer both the plate and beam stiffness equations
to common locations, because such equations are only written at nodes. We assume that those connection
nodes, or simply connectors, will be placed at the plate midsurface, as sketched in Figure 20.13(b). With that
choice there is no need to change the plate equations. The beam connectors have been moved, however, from
their original centroidal positions. For the beam these connectors are also known as offset nodes.

Structural configurations such as that of Figure 20.13(a) are common in aerospace, civil and mechanical
engineering when shells or plates are reinforced with eccentric stiffeners.

The process of moving the beam stiffness equation to the offset nodesis called offsetting. It relieson setting up
multifreedom constraints (MFC) between centered and offset node freedoms, and applying the master-slave
congruential transformation introduced in Chapter 8. For simplicity we discuss only this process assuming
that the beam of Figure 20.13(b) is a plane beam whose freedoms are to be moved upwards by a distance
d, which is positive if going upward from beam centroid. Freedoms at connection and centroidal nodes are
declared to be master and slaves, respectively. They are labeled as shown in Figure 20.13(c,d). The original
stiffness equations referred to centroidal (slave) freedoms are
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FIGURE 20.13. Plane beam with nodes offset for arigid-link connection to plate.
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12|zzc 6|zzc _ 12|zzc _ 6|zzc
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12|zzc _ 6|zzc
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| symm —e—4|I_ZZ°

- , or Kfui=f:, (20.12

in which A isthe beam cross section areawhile 1,,. denotes the section moment of inertia with respect to the

centroidal axis Z.

§20.4.2. Rigid Link Transformation

Kinematic constraints between master and centroidal (slave) freedoms are obtained assuming that they are
connected by rigid links as pictured in Figure 20.13(c,d). This gives the centroidal (slave)-to-master transfor-

mation
Ux1c
Uy1c
Qzlc
UXZC
a y2c
9220

[eNeolNolNolNol]
[cNolNoNol o)

The inverse transformation: Ty = T,

which yields

[cNeoNol ool

OOoORrOOoOOo
OFrLr OO0OO0OO0o

PO OO0

Uxim
Uyim
921m
L_Jx2m
a y2m
022m

2012

or ui=Tsug, (20.13)

o+ is obtained on replacing d with —d, asis physically obvious. The
modified stiffness equations are obtai ned by the congruential transformation: TT Ksg TT

=Tl & =1,

cm'c
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- A 0 d —A 0 —d N _
do e oo b | o
yim ylm
E| d O 4lutAd —d —O[ 20m-Ad | | Gy | _ | Man (20.14)
Le| —A 0 —d A 0 d Gom | | fiom |
e e o g o |02 |0
| Oom _ | Mzom |
| —d 6|I_Zezc 2l,—Ad? d _6_|I_Zez_C Azt Ad?

Note that the modified equations are till referred to the local system {X, Ym} pictured in Figure 20.13(c).
Prior to assembly they should be transformed to the global system {x, y} prior to assembly.

Theforegoing transformation procedure has aflaw: for standard plate elementsit will introduce compatibility
errors at the interface between plate and beam. This may cause the beam stiffness to be significantly under-
estimated. See the textbook by Cook et. al. [149] for an explanation, and references therein. The following
subsections describes a different scheme that builds K¢, directly and cures that incompatibility.

§20.4.3. Direct Fabrication of Offset Beam Stiffness

This approach directly interpolates displacements and strains from master nodes placed at distance d from the
beam longitudinal (centroidal) axis, aspictured in Figure 20.14. Asusual theisoparametric coordinate & along
the beam element varies from —1 at node 1 through +1 at node 2. The following cross section geometric
properties are defined for use below:

A=/ dA, sz=/ ydA = Ad, |m:/ V2dA, |zzm=f V2dA = | + Ad?,  (20.15)
Ae Ae A& Ag

The inplane displacements are expressed in term of the master freedoms at nodes 1, and 2,,. Using the
Bernoulli-Euler model gives

Uxim

_ _ 9Nyt _9Ng,1 _ 0 Nyy2 _aN Uyim
|:L_Jxm:| _ |: Nua =Y 9% _ya—)—(z Nux2 —VY a)—(y -y a)g(zz :| ?zlm (20.16)

Uym 0 Nuyl Nezl 0 Nuy2 NGZZ l;lx2m

uy2m

922m

inwhich Nyya = 5(1—£)/2, Nuxa = 51+ 8)/2, Ny = (1 = £*Q+8), Non = 301 — §)°(1 + &),
Nuyz = 3(1+ )22 — &), Ngo = —3£(1 + £)%(1 — &) are the usual bar and beam shape functions, but here
referred to the offset axis X,.

The axial strainis e, = du,/0X and the strainenergy U® = 3 [ . E €2, dV wheredV = Adx=A. Carrying
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F1cURrE 20.14. Plane beam fabricated directly from offset master node freedoms.

out the integral and differentiating twice with respect to the degrees of freedom yields the stiffness matrix

Ke=—

EA
Le

A
0

—Ad

—-A
0

Ad
1

0

—d
-1

0

d

0 —Ad
12 (lxe+Ad®)  6(lmet+Ad?)
(L®)? L®
2
6(|zzc|j‘Ad ) 4(|zzc+Ad2)
0 Ad
—12 (It Ad®) =6 (I t+Ad?)
(L% L®
2
G(IZZCI:"_Ad ) 2(|ch+Ad2)
0 —d -1
12(r2 +d? 6(r3 +d? 0
(L®)? L®
2 2
Setd) 4pz+w) d
0 d 1
—12¢5+d*) —6(g+d)
(L®)? L®
2 2
8etd) 202+ —d

—A 0 Ad .
0 —12(ztAd®)  6(lumt+Ad?)
(% L®
2
ad - SBUaAD) oA
A 0 —Ad
0 12(lze+Ad®)  —6(lmctAd?)
(L% L®
2
~Ad Bl=dAD) g, A
0 d §
~1202+d?»  6(2+d?)
(% L®
_ 2 2
DD ez +
0 ~1d
1220 +d> —6@03+dd
(L% L®
2 2
—e—_G(rﬁ+d) 408 +d?)

(20.17)

In the second form, rg = |,/ A isthe squared radius of gyration of the cross section about z.

Comparing thefirst form of K in (20.17) with (20.14) shows that the bending terms are significantly different
if d # 0. These differences underscore the limitations of the rigid link assumption.

§20.5. *Layered Beam Configurations

Another application of rigid link constraints is to modeling of layered beams, also called composite beams
as well as beam stacks. These are beam-columns fabricated with beam layers that are linked to operate
collectively as a beam member. In this section we study how to form the stiffness equations of beam stacks

under the following assumptions:

1

constant along the longitudinal direction).

2.

20-14

Both the beam stack and each of its constituent layers are prismatic.

The overall cross section of the beam member is rectangular and prismatic (that is, the cross section is



8§20.5 *LAYERED BEAM CONFIGURATIONS

3.  Thelayers are of homogeneous isotropic material. Layer material, however, may vary from layer to
layer.
The key modeling assumption is. isinterlayer slip allosed or not? The two cases are studied next.

§20.5.1. Layered Beam With No Interlayer Slip

The main modeling constraint here is: if all layers are of the same material, the stiffness equations should
reduce to those of a homogenous beam. To discuss how to meet this requirement it is convenient to introduce
a beam template that separates the stiffness matrix into basic and higher order components. Consider a
homogeneous, isotropic prismatic beam column element with elastic modulus E, cross section area A and
cross section second moment of inertia |y, with respect to its neutral (centroidal) axis. The template form of
the stiffness matrix in the local systemis

Kt 0 0 —Kp O O 0 O 0O 0 O 0

0O O O 0O O O 0 Kz Khna 0 —Kpz Kpa
e e e _ 0 0 K2 0 0 —Kp 0 Khs Kps 0 —Kps Kps
K=Kp+Ki=1 _k,0 0 kg o 0o |[TPl0o 0 o0 0 o o | @B
0O O O 0O O O 0 —Knzs —Kna 0 Kpnz —Kpa
0 0—-Kp 0 0 Ky 0 Kna Kps 0 —=Kps Kps

inwhich Kp; = EA/L®, Kpp = Elzye/L8, Kpz = 12E1,,./(L®)3, Kpg = 6E 155/ (L8)? and Kps = 3E |5/ LC.
Here B, is afree parameter that scales the higher order stiffnessKy,. If g, = 1 we recover the standard beam
column stiffness (20.8). For arectangular crosssection of height H andwidthh, A= Hhand I ,,c = H3h/12,
and the template (20.18) becomes

HO O -HO O 00 0 0O 0 O
00 0O 0O O 0 4 2L° 0 -4 2L¢
ge_Eh| 0 0 $£H® 0 0-%H? BhEHSh | 0 2L (L®)2 0 —2Le (L®)2 (2019)
“le|-HO 0 H O 0 4L (00 0 0O O O '
00 0O 0O O 0 -4 —2L°0 4 -2L®
0 0-5H® 0 0 SH?® 0 2L® (L®? 0 —2L°® (L®)?

Next, cut the foregoing beam into two identical layers of height H, = H/2, wherek = 1, 2 is used as layer
index. See Figure 20.15(b). The layers have area Ax = Hqh = H h/2 and self inertia I = H2h/12 =
H3h/96. The layer stiffness matricesin template form are

Hc 0 0 —HO0 0 00 0 0 O 0
0 0 O 00 O 0 4 2L 0 —4 2L®
Re_ Eh| 0o 0 iH? 0 0-3LH? +ﬁthHfh 0 2L® (L®2 0 —2L¢ (L®)? K—12
k=7e| -H O 0 H 0 0 4Le® (0O O 0O O O |7 "7
0 0 O 00 O 0 -4 —2L®0 4 -2L¢
0 0-3H2 0 0 SH? 0 2L® (L®? 0 —2L® (L®)? 2020

Beacusethelayersareidentical it isreasonabl e to assume the same higher order free parameter for both layers,
that is, Bn1 = Bn2 = Bn- The offset distances from each layer to the centroid of the full beam to the centroid
of each layer ared; = —H /4 and d, = H /4. Therigid-link transformation matrices for (20.20) are the same
as those found in the previous Section:

1 0 —H/4 00 O 1 0 H4 00 O
01 0 00 O 01 0 00 O
00 1 00 © 00 1 00 O
T1i=100 o 1 0 —H/4 | T2=19 0 o0 1 0 H/4 (20.21)
00 O 01 O 00 0 01 O
00 O 00 1 00 0 00 1
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F1GuRre 20.15. Plane beam divided into identical “sticking” layers.

Transforming and adding layers contributionsasK® = TTK (T, 4+ TJKST, gives

HO 0 -HO 0 00 0 0 0 O
00 O 00 O 0 4 2L° 0 —4 2L°

e Eh| 0 0 ZH® 0 0-2ZH®| B EH®h|o02L® (L®2 0 —2L° (L®)?

K=Te|-Ho 0 Ho o |TwILp |00 00 o0 o | @2
00 O 00 O 0 -4 -2L°0 4 -2L°
0 0-5H® 0 0 SH?® 0 2L® (L®? 0 —2L°® (L®)?

This becomesidentical to (20.19) if we set 8, = 4.
Carrying out the same exercise for three identical layers of height H /3, as shown in Figure 20.15(c), yields

HO 0 -HO 0 00 00 0 O
00 0O 00 O 0 4 2L° 0 —4 2L°
ge_ENn| 0 0 ZH® 0 0-—gH® | A EH’h]02L° (L9? 0 —2L° (L9 (20.23)
~Le|-HO 0O H O O 6L |00 0 0 0 0 [
00 O 00 O 0 -4 -2L°0 4 -2L°
0 0-4H® 0 0 +4H? 0 2L® (L2 0 —2L°® (L®?

which becomesidentical to (20.19) if weset g, = 9. It isnot difficult to show that if the beam is divided into
N > 2layersof height H/N, the correct beam stiffnessis recovered if wetake g, = N2.
If is not difficult to prove the following generalization. Suppose that the beam is cut into N layers of heights
He = wH, k= 1,... N that satisfy 3"} He = H or 3.1 s = 1. To get the correct stiffness of the layered
beam take

Bk =1/ (20.24)

For example, suppose that the but is divided into 3 layers of thicknesses H; = H; = H/4and H, = H/2.
Then pick n1 = Bns = 1/(3)? = 16 and B = 1/(3)* = 4.

What istheinterpretation of thisboost? A spectral analysisof the combined stiffness showsthat taking B = 1
lowerstherigidity associated with the antisymmetric bending mode of the element. But thismodeisassociated
with shear-dlippage between layers. Boosting Sk as found above compensates exactly for thisrigidity decay.
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§20.5.2. Beam Stacks Allowing Interlayer Slip

Sandwich beam fabrication

longitudinal cut Cross
y section ,y

Metal sheet facing pzzz }tf=20m 77007777
= e
e | s N | il

!= L—80cm ~|th 2cm —|b=9cm |«

Elastic modulus of facings= E; = 65 GPa
Elastic modulus of core~0

FI1GURE 20.16. Plane sandwich beam.

There are beam fabrications where layers can slip longitudinally past each other. One important example is
the sandwich beam illustrated in Figure 20.16. The beam is divided into three layers. 2 metal sheet facings
and a honeycomb core. The core stiffness can be neglected since its effective elastic modulus is very low
compared to the facings modulus E;. In addition, the facings are not longitudinally bonded since they are
separated by the weaker core. To form the beam stiffness by the rigid link method it is sufficient to form the
faces salf-stiffness, which are identical, and the rigid-link transformation matrices:

Af 0 0 —Af 0 0 ]
12|ZZf 6|zzf 0 _12|sz 6|ZZf
(LE)Z _Le_ (LE)Z _Le_ 10 df 00O
O 6|zzf 4| d 6|zzf 2| O 1 0 OO 0
ke Et e Aaw —d -7 2l | 1001000, _,,
kK™ Le| —A; O 0 A 0 0 k= looo010d [T ™
12|ZZf 6|zzf 0 12|sz 6|ZZf 000O010O0
T (L8? L 52 ~L° 000001
L 0 6_|I_Zezi 2Izzf 0 _G—II_ZeZi 4|2Zf
(20.25)

where, in the notation of Figure 20.16, A = bty, Iy = bt3/12, dy = —(c+tf)/2and d; = (C + tf)/2.
The stiffness of the sandwich beam isK® = T{ Kbold$ T; + T, KboldS T, into which the numerical values

given in Figure 20.16 may be inserted. There is no need to use here the template form and of adjusting the
higher order stiffness.
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§20.6. The Space Beam Element

A second example in 3D is the general beam element shown in Figure 20.17. The element is
prismatic and has two end nodes: 1 and 2, placed at the centroid of the end cross sections.

Thesedefinethelocal X axisasdirected from
1to 2. For simplicity the cross section will
be assumed to be doubly symmetric, asisthe
case in commercia | and double-T profiles.
The principal moments of inertia are defined
by these symmetries. Thelocal y and z axes
are aligned with the symmetry lines of the
cross section forming a RH system with X.
Consequently the principal moments of in-
ertiaare lyy and |, the bars being omitted
for convenience.

. . 3 , ,
Orientation node = (X3 ¥3.%3)

defining plane X,y N

Theglobal coordinate systemis{x, y, z}. To
define the orientation of {y, z} with respect
to the global system, athird orientation node
3, which must not be colinear with 1-2, is
introduced. See Figure 20.17. Axisy liesin
the 1-2—-3 plane and z is normal to 1-2-3.

FIGURE 20.17. The space (3D) beam element.

Six global DOF are defined at each node i : the 3 translations uy;, Uyi, Uz and the 3 rotations 6y;,
eyi » Oz -

§20.6.1. Space Beam Stiffness Matrix

The element global node displacements and conjugate forces are arranged as

ue:[uxl Uyl Uz exl Gyl 921 Ux2 uy2 Uz 9x2 9y2 922]1—7 (2026)
fe:[fxl fyl le My myl Mz fx2 fy2 sz My2 my2 mzZ] .

The beam material is characterized by the elastic modulus E and the shear modulus G (the latter
appearsin the torsional stiffness). Four cross section properties are needed: the cross section area
A, the moment of inertia J that characterizes torsional rigidity,? and the two principal moments of
inertia Iy, and I, taken with respect to y and z, respectively. The length of the element is denoted
by L. The Bernoulli-Euler model is used; thus the effect of tranverse shear on the beam stiffnessis
neglected.

To simplify the following expressions, define the following “rigidity” combinations by symbols:
R* = EA/L, R' = GJ/L, R); = Elyy/L3 R), = Elyy/L? R) = Elyy/L, R, = Elz/L3,
R'§2 = El,/L? R? = El,/L. Notethat R? isthe axial rigidity, R' the torsional rigidity, while

2 For circular and annular cross sections, J is the polar moment of inertia of the cross section wrt X. For other sections J
has dimensions of (length)* but must be cal culated according to St. Venant's theory of torsion, or approximate theories.
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SpaceBeantCol um2Sti f f ness[ ncoor _, {Em ,Gm},{A ,1zz_,lyy_ ,JIxx_},

options_]:= Mdul e[
{x1,x2,y1,y2, 21,22, x21,y21, z21, xm ym zm xO0, y0, z0, dx, dy, dz,
EA Elyy, El zz, GJ, nuner ,ra, ry,ry2,ry3,rz,rz2,rz3, rx,
L, LL, LLL, yL, t xx, txy, txz, tyx, tyy,tyz, tzx,tzy,tzz, T, Kebar, Ke},
{x1,y1, z1}=ncoor[[1]]; {x2,y2,z2}=ncoor[[2]];
{x0,y0, zO}={xm ym zn} ={ x1+x2, y1+y2, z1+z2}/ 2;
I f [Length[ncoor] <=2, {x0, y0, z0} +={0, 1, 0}];
I f [Length[ncoor]==3, {x0, y0, z0} =ncoor[[3]] ]:
{x21,y21,z21} ={x2-x1, y2-y1, z2-z1}; {nuner}=options;
EA=Emt A, El zz=En¥lzz; Elyy=Entlyy; GI=G1JIxX;
LL=Si npli fy[ x21"2+y2172+221"2]; L=Sqrt[LL];
If [nunmer, {x21,y21,z21, EA Elyy, Elzz, GJ, LL,L}=
N {x21,y21, z21, EA, El yy, El zz, &QJ, LL, L}]];

If [!'nuner, L=Power Expand[L]]; LLL=Sinplify[LL*L];
ra=EA/ L; rx=GJ/L;
ry=2*Elyy/L; ry2=6*Elyy/LL; ry3=12*Elyy/LLL;
rz=2*El zz/L; rz2=6*Elzz/LL; rz3=12*Elzz/LLL;

Kebar ={

{ ra, 0, 0, 0O, o, 0, -ra, 0, 0, 0, 0, 0},
{ 0, rz3, 0, 0O, 0, rz2, 0,-rz3, o, 0, 0, rz2},
{ O, 0, ry3, O0,-ry2, 0, 0, 0,-ry3, 0,-ry2, 0},
{ O, 0, 0, rx, 0, 0, 0, 0, 0, -rx, 0, 0},
{ 0O, 0,-ry2, 0,2*ry, 0, 0, 0, ry2, 0, ry, 0},
{ 0, rz2, 0, 0O, 0, 2*rz, 0,-rz2, o, 0, 0, rz},
{-ra, 0, 0, 0O, 0, 0, ra, 0, 0, 0, 0, 0},
{ 0,-rz3, 0, O, 0,-rz2, 0, rz3, o, 0, 0,-rz2},
{ 0O, 0,-ry3, 0, ry2, 0, o, 0, ry3, 0, ry2, 0},
{ o, 0, 0, -rx, 0, 0, 0, 0, 0, rx, 0, 0},
{ O, 0,-ry2, 0, ry, 0, 0, 0, ry2, 0, 2*ry, 0},

0, rz2, 0, O 0, rz, 0,-rz2, 0 0, 0,2*rz}};

{ ,

{dx, dy, dz} ={x0-xm y0-ym z0- zn}; | f [ nurer, {dx, dy, dz} =N { dx, dy, dz}]];

t zx=dz*y21-dy*z21; tzy=dx*z21-dz*x21; tzz=dy*x21-dx*y21

zL=Sqgrt[tzx 2+t zy~2+t zz"2] ;

If [!'nuner, zL=Si npl i f y[ Power Expand[ zL]]];

{tzx,tzy, tzz} ={tzx, tzy, tzz}/ zL; {txx, txy, txz}={x21,y21, z21}/L;

tyx=tzy*txz-tzz*txy; tyy=tzz*txx-tzx*txz; tyz=tzx*txy-tzy*txx;

Te={{t xx, txy, txz, o, 0, O, 0o, 0, O, :
{tyx, tyy, tyz, o, 0, O, 0
{tzx,tzy,tzz, 0, 0, O, 0

, txx, txy, txz, 0

tyx,tyy,tyz, 0

, tzx,tzy, tzz, 0, O, ,

0, 0, 0, txx,txy,txz

o
-

) ) )

o
—-—

0
0,
0

)

o
-

o
-

cooo

Oco000000O
=}
S

OCO0O00O00O000Oo
o
A

A A A A A A
OCO0O0O00O000O0o
OCO0O0O00O0000o
o000 0O0O000o

0, 0, 0, tyx,tyy, tyz, , , 0},
, , , 0, 0, 0, tzx,tzy,tzz, 0, , 0},
, , , 0o, 0, O, 0, 0, 0, txx,txy,txz},
, , , 0, O, O, 0, 0, O, tyx,tyy,tyz},
, , , 0, 0, O, 0, 0, O, tzx,tzy,tzz}};
Ke=Tr anspose[ Te] . Kebar . Te;

Ret ur n[ Ke]
I

F1cure 20.18. Module to form stiffness of space (3D) beam.

the R”’s are bending rigities scaled by the length in various ways. Then the 12 x 12 local stiffness
matrix can be written as®

3 Cf. page 79 of Pzremieniecki [603]. The presentation in this book includes transverse shear effects as per Timoshenko's
beam theory. The form (20.27) results from neglecting those effects.
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- R* 0 0o 0 o0 0 -R* 0 0o 0 o0 0
0 12R% 0 0 0 6R, O -12R% 0 0O 0 6R,
b b b b
0 0 IRy 0 —6R, 0O 0 O 12R); 0 —6R), 0
0 o o0 R 0 o 0 0 0 -R 0 0
b b b b
0 ob —6RY, 0 4Ry ob 0o 0 b 6R), 0 2R ob
ce_| 0O B6R, O O O 4R 0 -6R, O 0 0 2R
“|-rRE 0 0o 0 o0 0 R 0 o o0 0 0 (20.27)
0 —-12R%, 0O 0 0 -6R), 0 1I2R, O 0 0 -6R
0 0 -I2R); 0 6R;, 0 O 0 12R); 0 6R), 0
0o o0 0 -R 0 o 0 0 o R 0 0
b b b b
0 0 —6R, 0 2RY 0 O 0 6R, 0 4R O
L 0 6R, 0 0 0 2R 0 -6R, O 0 0 4R

The transformation to the global system is the subject of Exercise 20.8.

§20.6.2. Space Beam Stiffness Module

The computation of the stiffness matrix K © of the two-node, prismatic space beam-column element
is done by Mathematica module SpaceBeamColumn2Stiffness. Thisislisted in Figure 20.18.
The module isinvoked as

Ke = SpaceBeamColumn2Stiffness[ncoor, {Em,Gm}, {A,Izz,Iyy,Jxx}, options]
(20.28)
The arguments are

ncoor Nodecoordinatesof elementarrangedas{ { x1,y1,z1},{x2,y2,z2},{x3,y3,23} },
in which {x3,y3,z3} specifies an orientation node 3 that defines the local frame.

See §20.4.1.
Em Elastic modulus.
Gm Shear modulus.
A Cross section area.
Izz Moment of inertia of cross section area respect to axis z.
Iyy Moment of inertia of cross section area respect to axis y.
Jxx Inertia with respect to X that appearsin torsiona rigidity GJ.

options A list of processing options. For thiselement ishasonly one entry: { numer }. This
isalogical flag with thevalue True or False. If True the computations are carried
out in floating-point arithmetic. If False symbolic processing is assumed.

The module returnsthe 12 x 12 element stiffness matrix as function value.
The implementation logic and testing of this element is the subject of Exercises 20.8 and 20.9.

Notes and Bibliography

All dementsimplemented here are formulated in most books dealing with matrix structural analysis. Przemie-
niecki [603] has been recommended in Chapter 1 on account of being inexpensive. | mplementation and testing
procedures are rarely covered.

The use of rigid links for offsetting degrees of freedom is briefly covered in §7.8 of the textbook [149].
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Exercises

Homework Exercisesfor Chapter 20
Implementation of One-Dimensional Elements

EXERCISE 20.1 [C:15] Download the plane bar stiffness module and their testers and verify the test results
reported here. Comment on whether the stiffness matrix Ke has the correct rank of 1.

EXERCISE 20.2 [C:15] Download the space bar stiffness module and their testers and verify the test results
reported here. Comment on whether the computed stiffness matrix Ke has the correct rank of 1.

EXERCISE 20.3 [C:15] Download the plane beam-column stiffness module and their testers and verify the
test results reported here. Comment on whether the computed stiffness matrix Ke has the correct rank of 3.

EXERCISE 20.4 [A+C:30] Explainwhy the spacebar element hasrank 1 although it has 6 degrees of freedom
and 6 rigid body modes. (According to theformulagivenin Chapter 19, the correct rank shouldbe6—6 = 0.)

EXERCISE 20.5 [C:25] Implement the plane bar, plane beam-column and space bar stiffness element module
in alower level programming language and check them by writing a short test driver. [Do not bother about
the mass modules.] Your choices are C, Fortran 77 or Fortran 90. (C++ is overkill for thiskind of software).

EXERCISE 20.6 [A:25] Explain why the eigenvalues of K*® of any the elements given here do not change if
the {Xx, y, z} globa axes change.

EXERCISE 20.7 [A+C:30] (Advanced) Implement a 3-node space bar element. Hint: use the results of
Exercise 16.5 and transform the local stiffnessto global coordinates viaa 3 x 9 transformation matrix. Test
the element and verify that it has two nonzero eigenvalues.

EXERCISE 20.8 [D+A:2_5l Explain the logic of the space beam module listed in Figure 20.18. Assume that
the local stiffness matrix K~ stored in Kebar is correct (it has been trranscribed from [603]. Instead, focus on
how the local to global transformation is built and applied.

EXERCISE 20.9 [C:25] Test the space beam element of Figure 20.18 using the scripts given in Figures E20.1
and E20.2, and report results. Comment on whether the element exhibits the correct rank of 6.

ClearAI[L,Em G A | zz, lyy, IJXX];

ncoor ={{0, 0, 0}, {1, 8,4}}; Enr54; G=30;

A=18; 12z=36; |yy=72; JIxx=27;

Ke= SpaceBeantCol um2Sti f f ness[ ncoor, {Em G}, {A | zz, | yy, Ixx}, {True}];
Print["Nurmerical Elem Stiff Mtrix: "];

Print[ Set Preci sion[Ke, 4]//Matri xForn;

Print["Ei genval ues of Ke=", Chop[ Ei genval ues[Ke]]];

Ficure E20.1. Script for numeric testing of the space beam module of Figure 20.18.

ClearAllI[L,EmGmA | zz, lyy, JxX];

ncoor ={{0, 0, 0}, {2*L, 2*L, L}/ 3};

Ke=SpaceBeanCol um2sti f f ness[ ncoor, {Em G}, {A | zz, l yy, Ixx}, {Fal se}];
kf ac=Em Ke=Si npli fy[ Ke/ kf ac] ;

Print["Nunmerical Elem Stiff Mtrix: "];

Print[kfac," ", Ke//MtrixForn;

Print["Ei genval ues of Ke=", kfac,"*", Ei genval ues[ Ke]];

Fraure E20.2. Script for symbolic testing of the space beam module of Figure 20.18.
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