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Displacement Method)

6.1 lntroductaon

It was explained at the outset that the matrix methods had a considerable con-

ceptual advaniage over earlier manual methods of structural analysis, which was a

.orrr.qr.n"" of tneir generality so that speciflc forms of structure did not require

fundamentally different treatment. However, there is great advantage in treating the

triangulated, simply connected framework in some detail, using these structures

.r*rrriiully u, ,.hi.I", to the understanding of fully automatic computer methods'

There is only one stress resultant and deformation per member to be considered,

namely, the axial force and extension, and the joint-equilibrium equations are only

two in number and are appropriately expressed as the zero summations of hori-

zontaland vertical forces. ii thi anatysis of these frames can be fully automated, it
is then a simple step to extend the treatment to rigidly connected frameworks'

It is useful now to consider what is meant by a fully automatic analysis of a

structure. Since a computer performs arithmetic accurately and quickly, and, if one

is taking the trouble to use such a machine in structural analysis, it is axiomatic that

it shouli perform all the calculations and not merely a part of them' It follows that

the aim in constructing a program to analyze triangulated frameworks should include

the presentation to the machi"e of the minimum amount of data necessary to describe

a framework and its loads. Further, the output from the machine should not only

include the displacements and stress resultants in an ordered and fully identified

manner, but also the input data should be printed to enable ready verification' It is

clear that the essential matrix required in the displacement method is the frame-
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stiffness matrix [r(], and one way of generating it is from the statics matrix lA) and
the member-stiffness matrix [S] by the operation

(6.1)

member-stiffness
is member data
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Sec. 6.2 Scheme for General Displacement Analysis

consisting of length, area, and elastic modulus of each member in turn. It is approp-
riate then to consider how the statics matrix [A] may be automatically generated, for,
if this is available, together with the load vector (or matrix for multiple load sets) and
the initial-strain vector, the operations already outlined in chapter 5 may be set in
motion.

6.2 Scheme for General Displacement Analysis

The principal stages in a computer program to analyze any type of linear-elastic
framework should now be obvious and are set out in Fig. 6.1. It is clear that a frame

Eqy ic-dc!srib-e-4_nuglqrisally-!y*e-ssrip-s-af-uu!0!e$,. etg 1"b93ppl@a&q-1-p?
would be the count of the joints and_!h,e_1qe-!qbg1s. The joint coordinates are obviously
required, bo that an oiigln of iJoidinates has to be chosen, and some means must be
found to indicate whether or not eacb joint may deform elastically in the horizontal
and vertical directions. In other words, the machine has to be informed about the
frame-support conditions. A simple way of achieving this is to couple with each pair
of joint coordinates a pair of integers, each of which may have the value of 0 or 1,

depending upon whether the horizontal and vertical movement at the joint is restrained
or not restrained. The summation of all these integers will then inform the computer
of the degree of kinematic indeterminacy of the structure, which is also the order of
the frame-stiffness matrix. The truss already treated in Chapters 2 and 5 has been used
to illustrate these concepts in Fig. 6.2. An origin for coordinates is required, and for
convenience it has been placed at joint number,rl. All the joints have been numbered
sequentially, and the member-numbering system used previously has been retained.
However, the direction of load W, has been changed to conform with the first quad-
rant system chosen for the frame coordinates. The member data have been included
in Fig. 6.2, and it is obvious that the area of section and elastic modulus for each
member is required as well as the connection data of two integers per member to
indicate which joints are connected by each member. It is clear that the frame as
sketched in the figure is fully described in every aspect, except for the loading con-
ditions, by the tabulated numbers.

In a computer program groups of numbers of the type shown in Fig. 6.2 are
conveniently identified as one- or two-dimensional arrays with names chosen in
accordance with the rules for variables pertinent to the particular programming
language. Within this limitation, the names are usually selected to remind the pro-
grammer of the significance of the data. The coordinate data might well be identified
by the arcay ICORD] and the information about joint restraint or freedom could be
stored in ar.affay VTYPE\ The member-connection data could be a two-dimensional
array denotedby IMCONI with the member areas and moduli held in lAREAland
[E], respectively. These names are acceptable FORTRAN variables but may not be

acceptable in other programming languages. If the single-value variables JCT and
NM are chosen to represent the count of the joints and members, respectively, the
analysis may proceed in a quite general manner, applicable, in the present context,
to any plane truss.
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Fig. 6.2 Truss description in numeric form

Frame description in numeric form:

number of joints
number of members

restraint indicators at joints Jl to J5

member-connection integers with area and modulus

for each member

IMCONI IAREAI tEl

With reference again to Fig. 6.1, the operations required to construct the member-

stiffness array [S] are trivial in nature. The array dimension is (he same as the number

of stress resultants, which in the context of a pinned truss is the same as the number

of members (NM). All the terms in the array would first be set to zero and then the

diagonal terms evaluated from the expression E(I)|A(I)|L(1), where the length of the

i,h tember Z(1) would be computed from the coordinates of its ends, stored in the

array lCORDl, and identified from the array lMCONl.
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Fig. 6.3 Construction of statics matrix [A]

The generation of the statics matrix [r{] will require the automation of the manual
operations already shown for the simple truss in Fig. 5.1. The end result shown in
this figure would be achieved in the following stages, with reference now to Fig. 6.3.

Every joint must be examined in turn, and, for each joint, every member is studied
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in turn to find the ones framing into the joint. Such information is contained in the

array IMCON]. If a member f*-"t into a joint, it is then necessary to locate the far

end of the member so that the length and inclination may be found using the co-

ordinate data stored in the array lcoRDlt. Finally, it is necessary to study the array

lJTYPElto see if a static equation needs to be generated. This will be_the case whenever

itr" int.g.. 1is found in the array, and, for the frame in Fig' 6'2'itis clear that the

only equations to be generated will correspond with the two possible movements of

tneloint J2. The *"qrr"n., of rows in the statics array will correspond to the sequence

in which these unit integers are encountered in the array IJTYPEI, whereas the

column number is deteririned by the identification number of the member under

consideration.
It is interesting to compare the relative amounts of work involved in generating

the statics array for the frame in Fig. 5.1 by hand and by the computer-programmed

system just described. The experienced analyst recognizes immediately from the

diug.u* that only two static equations are required and that these express horizontal

anJ vertical equilibrium at the loaded joint. The computer, on the other hand, has

to study each of the five joints with a search made through all four members every

time to find the ones framing into a joint. It goes through the motions of establishing

10 equations before it finally determines the coefficients of the relevant pair'

Witn tfr" statics and member-stiffness arrays now available, the analysis can

proceed following the theory outlined in chapter 5. The frame-stiffness matrix [K]

is generated as in equation (O.t), and the load vector {W} or the load matrix P/l input

and stored as a column-wise extension to the stiffness matrix. The load matrix would

take the form of a collection of the multiple load vectors if analysis for more than

one load set is required. The initial-strain vector {xE} would also be input, premulti-

plied by the product t4l.ts1 and added to the first load vector following the theory

"*pr"rr.d 
in equation tS.ffl. l" this way, when initial strain effects alone are of

interest, the first load vector would be input with zero terms throughout. Wit[ the

coefficients and right-hand sides for the frame-stiffness equations now assembled,

an appropriate equation solver such as the Gauss-Jordan scheme in Fig' 4'12 may be

,..d io froduce ttr" 3oirt deformations which will appear in that part of the aug-

mented [K] array where initially the load matrix was located. Stress resultants would

then be computed from the additional operation,

lsRl : [s]'[,4]r.[x] (6.2)

and, since initial-strain effects were added only to the first load set, it will be necessary,

following equation (5.13), for the product tsl'{n"} to be deducted from the first

column only of the array [SR]. The stress-resultant array has been indicated as two

dimensional rather than as a vector, since multiple load sets are involved' Stress

resultants produced by each load set will appear in the corresponding column of the

[SR] array.
Finaily, as a check on accumulated round-off errors, if not of data inaccuracies,

the stress-resultant array [SR] may be premultiplied by the statics aruay lAf, and the

result, according to equation (5.14), should be the initial load matrix.
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6.3 Program for the Analysis of Plane and Space
Trusses

If the steps outlined in the previous section were programmed for a machine,

it would be inevitable that the programmer, with increasing skill and confidence,

would soon begin to effect improvements with the general aim of increasing the speed

of the calculation and reducing the sizes of the arrays needed to hold the results of

intermediate calculations. Equally inevitable would be his realization that a little extra

effort would make the program suitable for space as well as plane, simply connected

frameworks. The statici-matrix generator would need to deal with three rather than

two equilibrium equations per joint and the coordinate and joint-type arrays would

have tlree rather than the two columns, as shown in Fig. 6.4(a), where these arrays

have been sketched diagramatically.
The computed arrays in Fig. 6.4(b) would soon receive close attention with a

view to conserving storage space, and the large array [S] consisting of nonzero terms

only down the diagonal would be replaced by a single-column array or vector con-

taining only these nonzero terms. Other improvements may well be to conserve

storag! spate at the expense of increased calculation if the result were to make the

program-suitable for considerably larger frames when using a particular machine.

i, th" ptogram listed in Appendix 6.1, all the computed arrays are eliminated except

for the staiics array [r{], which is overwritten by the subsequently developed sets of
numbers, at the price of regenerating it when it is further needed to produce the final

two matrices. The progressive overwriting of the statics array by the rows of the frame'

stiffness matrix [r<] will introduce errors into the latter, which are subsequently elimi-

nated through making use of the theoretical knowledge that this array must be

symmetrical about the leading diagonal.

The programmer would next study the load matrix fWl,which would be tedious

to prepare by hana when load cases only involve loads at a few joints so that zeros

have to be entered for all the remaining unloaded joints where elastic movements

can occur. Again at the small price of extra computing time, he would think first of

the simplest way of informing a machine of a load set and then arrange additional

instructions for the load vector to be automatically generated and placed directly

beside the augmented [,|(] array, which itself, by this time, would have overwritten

the statics array. Hence, at the cost of a small amount of extra calculation, the data

array lWlmay be completely eliminated. Automating the construction of the initial-

strain vecior is not possible in the general case, where it may include lack-of-fit terms,

but, if the assumption is made that only temperature effects are involved and that all

members have the same coefficient of expansion, the construction of {xE } can be

automated, and the only data needed at the input stage would be the coefficient of

expansion and the temperature rise.

All these improvements have been made in the program listed in Appendix 6'l

and are the explanation of why a step-by-step examination of such a listing can be a

ptzzlingexperience for a relative novice in programming' Additional improvements

u.. poriiut. and are associated with taking advantage of the symmetry of the [K]
ur.uy to cut its size almost in half at the price of more complexity in the equation-
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solving routine. The possibility that this array may be "sparse" or may have mainly
zero terms well away from the diagonal could be examined with a view to a simul-
taneous saving in storage and calculating time; this subject of band-width control
will be examined further in a later chapter.

No attempt will be made here to give a step-by-step explanation of the program

listing in Appendix 6.1; the principal purpose in attaching the list of some 210 state-

ments is to provide a practical demonstration of the physical size and relative order of
complexity of a program in unsophisticated FORTRAN, which can theoretically

handle any determinate or redundant plane or space truss with simple connections.

The size of frame that can be analyzed is of course determined by the initial statements

in which the arrays are dimensioned, and these dimensions must not exceed the avail-

able memory of any particular machine. To keep the listing as concise as possible,

the program does not include the desirable features ofoutputting data for verification

and ofrecalculating loads as a final check on both data and accumulated errors. Some

brief notes have been added at the beginning of Appendix 6.1 to show the principal

blocks in the program, and the results of the application of the program to the

redundant truss in Fig.6.2 have been set out in Appendix 6.2.The answers may be

compared with the previous results in influence-coefficient form in Figs. 2.8, 2.10,

and2.ll, where the force method was used, and in Fig. 5.5, where the displacement

method was used.

Appendix 6.1 FORTRAN LISTING OF PROGRAM CESI

General Notes

1. The frame-identification number is the value of the variable J.I, whereas JJI is tead as 2

or 3 for a plane or a space truss, respectively.

2. Member and joint data are input in the general region of statement lines fi)3G{110.

3. The statics matrix is generated by statement lines 033H610.

4. The initial-strain vector for temperature effects is assembled by statement lines 0630-O680.

5. The frame-stiffness matrix overwrites the statics affay as a consequence of statement

lines 069G{810.

6. Load sets are input and the load matrix assembled with temperature effects added to the

first set only by statement lines 0820-1160.

7. The stiffness equations are solved using Gauss-Jordan elimination with pivotal selection

in statement lines 1170-1400.

8. Titles and deformations are output by statement lines 141G-1730.

9. Stress resultants are calculated, requiring the regeneration ofthe statics array, in statement

lines 1740-1910, and stress resultants are output as a consequence of statement lines

1920-2001.
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001 0

0020
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Appendix 6.1 FORTRAI

o47O 170 lF(JTrr
0480 180 NA:ti
0490 A(NA"M):
0500 190 lF(JTYI

0510 200 NA:tt
0520 A(NA,M):
0530 210 lF(JJ.,-
0540 220 lF(JTil
0550 230 NA:l|
0560 A(NA,M):
0570 240 IF(NA-

0580 250 NK:il
0590 260 COrIl
0600 NJ:NK
0610 270 COrIl
0620 lF(lsw) E
0630 280 lFCrBl

0640 282 DO 2l
0650 283 CSATI

0660 DO 2&l l=
0665 DEFX(!2!,
0670 DO 284J'
0680 284 DEEXI

0690 289 DO3E

0700 DO2$lt=
0710 290CSAr
0720 DO 31Ol=

0730 TEMP:O
0740 DO3mr
0750 300 TErt
0760 310 oECt

0770 DO 3201'
0780 320 A(JJ
0790 DO 3illl,
0800 Do 3inJ
o81o 33oA(JJ
0820 LSC:L
0830 340 REAI

0840 LSC:1lS
08s0 lF(KK)/f,
0860 350 DO:
0870 360 A(U
0880 I:LSC-
0890 LSN(l)=
0900 DO 'lf,l
0910 READ(ll

0920 lF(JJJ-
0930 370 BEf
O940 380 ll=
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FORTRAN LISTING OF PROGRAM CES7 (Contd.)

Program CES/

coMMoN coRD(20,3),JTypE(20,3),ARE A(27),A(27,3O),CSAT(27),

+ DEFx(27,4),LSN (4),SR(27,4),MCON (27,2),OLEN (27)
$FILE CEFIL*
1 0 READ(1 ),JJ,JJJ.JCT,NM,TR,ALPHA,E
rF(JJ)20,30,30

20 STOP- c, :
30 rF(E)40,40,50

40 E:207000.0
50 DO 60 l:1,JCT
60 READ (1 ).(cORD (t.J),J : 1,JJJ), (JTypE(t,J),J = 1.JJJ)
DO 70 l:1,NM
70 READ (1 ),(MCON(t,J).J:1,2),AREA(t)
L:O
DO 80 l:1,JCT
DO 80 J:1,JJJ
80 L: L+JTYPE(l,J)
DO 100 l:1,NM
JI:MCON(1,1)
J2: ru69111',r,
x: CORD(J1,1 ) - CORD(J2,1 )

Y: cORD(J1,2) - cORD(J2,2)
tF(JJJ-2)95,9s,96r '
95 OLEN (l) : SORT([1X+Y*Y)
GO TO 100

96 z: CORD(J1,3) - cORD(J2,3)
OLEN (l) : SORT(X*X+Y*Y+Z*Z)
1OO CONTINUE.
rF(ALPHA) 105,104,105
104 ALPHA:.00001 1

105 ISW:1
110 NJ:0
NK:0
DO 90 l:1,1
DO 90 J:1,NM
90 A(r,J):0.
DO270J:1,JCT
DO 260 M:1,NM
NA: NJ

r F(J - MCON(M.1 ))l 30,1 20,1 30
120 JF: MCON(M,2)
GOTO150
1 30 rF(J - MCON (M,2))260,1 40.260
140 JF:MCON(M,1)
150 x: CORD(JF,1 ) - CORD(J,1 )

Y: cORD(JF,2) - cORD(J,2)
rF(JJJ - 2)170,17O,160

1 60 Z= CORD (JF,3) - CORD(J.3)
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FORTRAN LISTING OF PROGRAM CESI (Contd.)

1 70 rF(JTYPE(J,1 ))1 90,1 90,1 80
180 NA:NA+1
A(NA.M): -XlOLEN(M)
1 90 r F (JTYPE (J,2))21 0.21 O,20O

200 NA: NA* 1

A(NA,M): -YlOLEN(M)
21 0 r F(JJJ - 2)240,240,220
220 r F (JTYPE ( J,3)) 240,240,230
230 NA:NA*1
A(NA,M): -zloLEN(M)
240 I F(NA- N K)260,260,250
250 NK: NA

260 CONTINUE

NJ: NK

270 CONTINUE

rF(rsw) 890,890,280
280 rF(TR)282,289,282
282DO 283 l:1,NM
283 CSAT(l) : E*AREA(l)*ALPHA{,TR
DO 284 l:1,1
DEFX(r,2):0.
DO 284 J:1,NM
284 DEFx(t,2) : D EFx(1,2) + A(l,J)*cSAr(J )

289 DO 320 J:1,1
DO 290 l:1,NM
290 CSAT(l) : E*AREA(l)*A(J,l)/OLEN (l)
DO 3101:J,L
TEMP:0.
DO 300 K:1,NM
300 TEMP :TEMP+A(l,K)*cSAT(K)
310 DEFX(r,1):TEMP
DO 320 t:1,1
320 A(J,l): DEFX(r,1)

DO 330 l:1,1
DO 330 J:1,1
330 A(J,r):A(r,J)
LSC: L
340 READ(1 ),KK,LN
LSC: LSC * 1

rF(KK) 470,470,350

350 DO 360 l:1,1
360 A(r,LSC):0.
l:LSC-L
LSN (I) : KK

DO 460 l:1,1N
READ(1 ), JN,XF,YF

rF(JJJ-2) 380,380,370
370 READ(1 ),ZF
380 LL:O
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Chap. 6 Automatic Analysis of Triangulated Frameworks

FORTRAN LISTING OF PROGRAM CfSf (Contd.)

LJ:JN-1
lF(LJ) 395,395,38s

385 DO 390 J:1,1J
DO 390 K:1,JJJ
390 LL: LL*JTYPE(J,K)
39s rF(JTYPE(JN,1 )) 410,410,400

400 LL:LL*1
A(LL,LSC):XF
41 o r F(JTYPE(JN,2)) 430,430,420

420 LL:LL*1
A(LL,LSC):YF
430 rF(JJJ -2) 460,460,440

440 rF(JTYPE(J N,3)) 460,460,450

450 LL:LL*1
A(LL,LSC) : ZF

460 CONTINUE

GO TO 340

470 lF(TR) 480,500,480

480 LS:L*1
DO 490 l:1,1
490 A(l.LS):A(l,LS) + DEFX(1,2)

500 KJ:LSC-1
NLS:KJ_L
DO 680 l:1,L
lP1 :l+1
rEMP:ABS(A(l,l))
K:t
DO 590 J: l,L

lF(ABS(A(J,r)) -rEM P) 590,5e0,s85

58s K:J
TEMP: ABS(A(J,l))
590 CONTINUE

rF(K-l) 600,620,600

600 DO 610 J: l,KJ

TEMP:A(l,J)
A(l,J):A(K,J)
610 A(K,J):TEMP
620 rF(A(l,l)) 640 998,640

640 rEMP:1./A(l.l)
DO 650 J: l,KJ

650 A(l,J) : A(l,J)*TEM P

DO 680 J :1,1
rF(r-J) 660,680,660

660 TEMP:A(J,l)
DO 670 K:lPl,KJ
670 A(J,K) : A(J,K) -rEM PxA(l,K)

680 CONTINUE

PRINT 7OO,JJ

Appendix
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1420 7g
1€0 Pn
1440 73
1450 Pn

1460 7{
1470 IX
1480 Xr"
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1500 7E

1510 tt
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FORTRAN LISTING OF PROGRAM CESr (Contd.)

700 FoRMAT(37H LTNEAR ELASTIC ANALYSIS OF TRUSS NO.,t5//l)
PRINT 73O,ALPHA,TR

730 FO RMAT(1 6H COEFF. EXPANSION,Fl 1 .8,1 0H TEM P.RIS E,F7.2/ / )

PRINT 740

740 FORMAT(23H THE JOrNT DEFORMATIONS//)

DO 870 l:1,NLS
KL: L* |

PRINT" "
PRTNT 750,LSN(l)
750 FORMAT(37H DISPLACEMENTS CAUSED

LL:0
BY LOAD SET NO., l3l/)

FRINT" JOINT X.DEFLECTION Y.DEFLECTION Z.DEFLECTION"

DO 870 J:1,JCT
r F(JTYPE(J,1 ) ) 7 80,7 80,7 7 0

770 LL:LL*1
AA:A(LL,KL)
GO TO 790

780 AA: -0.
790 rF(JTYPE(J,2)) 81 0.81 0,800

800 LL:LL*1
AB:A(LL,KL)
co ro 820

810 AB: -0.
820 rF(JJJ -2) 825,825,830

825 AC:0.
co ro 860

830 tF(JTYPE(J,3)) 850,850,840

840 LL:LL*1
Ac:A(LL,KL)
co ro 860

850 AC: -0.
860 PRINT 861,J,AA,AB,AC

861 FO R MAT( I 8,F1 4.5,2F',1 3.5)

870 CONTINUE

DO 880 l:1,1
DO 880 J:1,NLS
K: L+J
880 DEFX(l,J):A(l,K)
ISW: _1

GO TO 110

890 DO 900 l:1,NM
rEMP : E*AREA(l)/OLEN(l)
DO 900 J:1,L
900 A(J,l) :A(J.l)*TEMP
DO 920 l:1,NM
DO 920 J:1,NLS
sR(l,J):0.
DO 920 K:1.L
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Appendix 6.1 FORTRAN LISTING OF PROGRAM CESI (Contd.)

1880 920 sR(l,J):SR(l,J)+A(K,l)*DEFx(K,J)
1890 rF(TR) 930,950,930
1900 930 DO 940 l:1,NM
1910 940 sR(1,1):SR(1,1)-E*AREA(l)*ALPHA*TR
1920 950 PRINT" "
1921 PRTNT 960

1930 960 FORMAT(24H AX|AL FORCES lN MEMBERS//)

1940 DO 990 l:1,NLS
1945 PRINT" "
1950 PRrNT 970,LSN(r)

1955 PRINT"

1960 970 FORMAT(38H AXIAL TENSIONS CAUSED BY LOAD SEr NO., l3//)
1970 PRINT" MEMBER AXIAL TENSION STRESS"

1980 DO 990 J:1,NM
1990 SrRS:SR(J,l)/AREA(J)
2000 990 PRrNT 991,J.SR(J,l),STRS
2001 991 FORMAT(|8,F14.5.F1 1.3)

2OO5 PRINT" "
2010 GO TO 999

2O2O 998 PRINT'' ZERO DIVISION IN EOUATION SOLUTION"

2030 999 PRINT 1000,JJ

2040 1000 FoRMAT(33H ANALYSIS COMPLETED FOB TRUSS NO.,t5///l)
2050 GO TO 10

2060 END

Appendix 6.2 ANALYSIS OF TRUSS EXAMPLE BY PROGRAM CEST

The essential data are as set out inFig.6.2. Four load sets were considered with no external
loads in set 1, so that the results for this set include only the deformations and stress resultants

associated with the nominated temperature rise of 100'. Load set 2 involved only a horizontal
load of unit value at joint 2, and a downward vertical load of unit value comprised load set 3.

Load set 4 was taken as a combination of sets 2 and 3. The entire data list in the free-
formatted sequence required by the program for the frame is set out below.

JJ, JJJ, JCT, NM
TR, d, E
Joint I data
Joint 2 data
Joint 3 data
Joint 4 data
Joint 5 data
Members l and2
Members 3 and 4
Load set 1

Load set 2
Load set 3
Load set 4
(End ofload sets)

Appendix

Appendix 6.2 ANALYSIS OF

'ti

LINEAR ELASTIC ANALI

COEFF.EXPANSION .M

THE JOINT DEFORMAT]

DISPLACEMENTS CAI'S

JOINT X-DEFT.E

1 .(m
2 .fln
3 .(n
4 .(m
5 -(xr

DISPLACEMENTS CAT.IS

JOINT X-DERT
1 -(A
2.ffi
3.m
4 -(n
5.m

DISPLACEMENTS CATT;

JOINT X.DERI
1-m
2-fr
3 .(E
4 .{Itr
5 .(Ir

DISPLACEMENTS CAT.IS

JOINT X.DERI
1.m
2 .UI
3-m
4-d
5 .(n

AXIAL FORCES IN Mfl

AXIAL TENSIONS CAT'S

METC
1

2
3
1

22 5 4
100 0.0000059 30000
0 0 00
3 0 1l
0 4 00
3 4 00
6 4 00
t2 0.1
24 0.1
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Appendix 6,2 ANALYSIS OF TRUSS EXAMPLE BY PROGRAM CESI (Contd.)

Truss Analysis by Program CFSf

LINEAR ELASTIC,ANALYSIS OF TRUSS NO. 2

coEFF.EXPANStON .00000590 TEMP.RISE 1 00.00

THE JOINT DEFORMATIONS

DISPLACEMENTS CAUSED BY LOAD SET NO. 1

JOINT X.DEFLECTION Y.DEFLECTION

1 .00000 .00000

89

2 .OO124

3 .00000

4 .00000

-.00303
.00000

.00000

.00000

.00000

-.00066
.00000

Z-DEFLECTION

.00000

.00000

.000p0

.00000

.00000

Z.DEFLECTION

.00000

.00000

.00000

.00000

.00000

Z.DEFLECTION

.00000

.00000

.00000

.00000

.00000

Z-DEFLECTION

.00000

.00000

.00000

.00000

.00000

DISPLACEMENTS CAUSED BY LOAD SET NO. 2

JOINT X.DEFLECTION Y.DEFLECTION

1 .00000 .00000

2 .00070 .00000

3 .00000 .00000

4 .00000 .00000

5 .00000 .00000

DISPLACEMENTS CAUSED BY LOAD SET NO. 3

JOINT X.DEFLECTION Y-DEFLECTION

ET
il3
trl
3-

Dts

4 .00000 .00000

5 .00000 .00000

DISPLACEMENTS CAUSED BY LOAD SET NO. 4

JOINT X.DEFLECTION Y-DEFLECTION

.00000 .00000

.00070 -.00066

.00000 .00000

.00000 .00000

_00000 .00000

AXIAL FORCES IN MEMBERS

AXIAL TENSIONS CAUSED BY LOAD SET NO. 1

1 .00000

2 .00000

3 .00000

1

2

3

4
5

MEMBER AXIAL STRESS STRESS

1 -.53397 - 5.340

2 .13015 1.301

3 .50372 5.037

4 -.75979 -7.598
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Appendix 6.2 ANALYSTS OF TRUSS EXAMPLE BY PROGRAM CEST (Contd.)

AXIAL TENSIONS CAUSED BY LOAD SET NO. 2

MEMBER

1

2

3

4

MEMBER

1

2

3

4

AXIAL TENSION

.69832

.25140

.00000

-.25140

STRESS

6.983
2.514

.000

-2.514

AXIAL TENSIONS CAUSED BY LOAD SET NO. 3

MEMBER

1

2

3

4

, ., ' i nnnlvsts coMPLETED FoB TRUSS No. 2
.L-

AXIAL TENSIONS CAUSED BY LOAD SET NO. 4

AXIAL TENSION STRESS

.00000 .000

.31621 3.162

.49407 4.941

.31621 3.162

AXIAL TENSION STRESS

.69832 6.983

.56760 5.676

.49407 4.941

.06491 .648 7.1 lntr

The,
ninear+Ia
&velopm
for is asst

per meml

&e force
of kinem
of a plan
bacause I

tf,'o orth
,ngarded
tbe degrt
sn in
edrantat
srucnm
uaken int

mFigT
I:l assul

made in
,r hindra
dares th
resulta.n
di$ribtr


