Q)

- The Portland Group

—

i
(

While every precaution has been taken in the preparation of this document, The Portland Group® (PGI®), a wholly-owned subsidiary of STMicroelectronics, Inc., makes no
warranty for the use of its products and assumes no responsibility for any errors that may appear, or for damages resulting from the use of the information contained herein.
The Portland Group retains the right to make changes to this information at any time, without notice. The software described in this document is distributed under license from
STMicroelectronics and/or The Portland Group and may be used or copied only in accordance with the terms of the license agreement ("EULA").

PGI Workstation, PGI Server, PGI Accelerator, PGF95, PGF90, PGFORTRAN, and PGI Unified Binary are trademarks; and PGI, PGHPE, PGF77, PGCC, PGC++, PGI Visual Fortran,
PVE PGI CDK, Cluster Development Kit, PGPROE, PGDBG, and The Portland Group are registered trademarks of The Portland Group Incorporated. Other brands and names are
property of their respective owners.

No part of this document may be reproduced or transmitted in any form or by any means, for any purpose other than the purchaser's or the end user's personal use without the
express written permission of STMicroelectronics and/or The Portland Group.

PGI® Cuda Fortran
Copyright © 2010-2011 STMicroelectronics, Inc.
All rights reserved.

Printed in the United States of America
Release 2010, version 10.8, August 2010
Release 2010, version 10.9, September 2010
Release 2011, version 11.0, November 2010
Release 2011, version 11.3, March 2011
Release 2011, version 11.4, April 2011

Technical support: trs@pgroup.com
Sales: sales@pgroup.com
Web: www.pgroup.com

ID: 1196951

Contents

PLEEACE ... ix
Intended AUGIENCEcovviiiiiiiiiiiiecie ettt ettt et e e baeenbeebeesneaeans ix
OFZANIZALIONeveieiiiiitcee ettt ix
COMVEITIONSetveieeeee e e ettt e e e ettt e e e e e e sttt bttt e e e e s e ettt bbbt e eeaeessantbbbbeeeeeeessannebbbbaeeaaaeens ix
TEIMUNOLOZY ...ttt ettt ettt X
Related PUDLCAtONSocovviiiieiiiiii ettt et e e st e e beeenbeeaee e X

L INEPOAUCHIONooovviiic e 1

2. Programming GUIAE ..ot 3
CUDA FOrtran KernelSc..cooiviiiiiiiiiiiiiiiie ettt sabe e e naaeeara e 3
TREEAd BIOCKSeiiiiieiiiieeie ettt sttt et e e et e e et eeeaaeeenaeas 4
MemOTY HICTATCHYooviiiiiiiiiiiiiiiii it 4
Subroutine / Function QUALIETSccoviiiiiiiiiiii s 4

AREIDUIES (ROSE) ...ttt e e 5
AUEIDULES (ZLODAL) .. e 5
AREIDUIES (AEVICE) ...ttt ettt e et e et e e e e eaaeeeeens 5
RESILICTIONS ...ttt 5
Variable QUALTIEESccoeviiiiiieii ettt 5
AREIDUIES (AEVICE) ...ttt ettt e et e et e e e e eaaeeeeens 5
AREIDUIES (CONSEANE) ...ttt ettt e ettt e e e et ae e e e e enaaeeeeeaees 6
AREDUIES (SNATEA) ..ot 6
AUEIDULES (PINNEA) ..ottt 6
Datatypes in Device SUDPIOZIAMSccoeiiiriiiiiiiiiiiiiiiiet s 6
Predefined Variables in Device SUDPIOZIAMScc.evviriiiiiiiiiiiieneic e 7
Execution CONfIGUIAtIONccoeiiiiiiiiiiiiiti it 7
Asynchronous CONCUITENt EXECUONeouveruieiiriiiiietiiie ettt 8
Concurrent Host and Device EXECUtIONcccveiiiiiiiiiiiiiieiieeicese e 8
Concurrent Stream EXECULIONc..uvviviiieiiiiiiiiiiiiecee e 8
Kernel LOOP DIFECHVEcoviiiiriiiiiiiiiiiett ettt 8
Restrictions on the CUF kernel dir€Ctivecccooiieiiiiiiiiiiiiiiee e 10
Building a CUDA Fortran Programccccoceviiiiiiiiniiniiiienieicse et 11
EMUIAtON MOGEcvvvviiiiiieiite ettt et e e et e e e stbeeeabeesnaeeens 11

B REICICINCE ... e ettt ettt e et e ete e e et 13

New Subroutine and Function AfriDULESooiiiiiiiiiiiiiicce e 13
Host Subroutines and FUNCHONScoiviiiiiiiiiiiieiie et 13
GLODAL SUDTOULNESoovieiiiieiieiiie ettt et e 13
Device Subroutines and FUNCHONSccoouiiiiieiiiiiieiie e 14
Restrictions on DeviCe SUDPIOZIAMSccveeiieiiiiiieiiieiiie et esiee st siee e siee e e siee s 14

Variable AUIIDULESc.eoiveiieiiiie ettt e et s e e e ereessaebeenbeeseenne s 14
DEVICE QAevveviieeieeiieie ettt ettt e sba e e et e te et e e st e steesbeenaenneenae s 14
CONSEANE QAL ...ttt ettt ettt et e et e et eerb e et e enbeesaee e 15
SRATEA AALA ...t 16
Value dummy argUmeNntsc.ecoviiruieiieaiiieiieetie e eite et e ee ettt ebe e 17
PINNEA ALTAYSovvieiiieiii ettt ettt et st et e et e sbeesrbeenteeenaeen 17

Allocating Device and PINEd ALTAYScovieiieiiiiiieiie ettt 17
Allocating DeVICE MEIMOTYcouvieuieiiiieiieiieenieesteesiee st estee sttt e steeesbeesbeessbeeteesnbeessee e 17
Allocating Device Memory Using Runtime ROUINESccoveiiierieiiiiiniiiiieiiecieeieee 18
Allocating Pinned MEMOTYcc.eoiuieiiiiiieiieeiie s eiee sttt sttt eesbee e e steeenee e 18

Data transfer between host and device MEMOTYcccceoviiiiiiiiiiiniiiiieie e 19
Data Transfer Using Assignment SEAEMENLSccveeuierreeiienieaiieniieeieesieesreesieesneeens 19
Implicit Data Transfer in EXPreSSionscccvevviiiieiieiiiienieiieesie et 19
Data Transfer Using RuUntime ROULNEScoouiiriieiiiiiiieiiiiiiesie e 20

Invoking a kernel SUDTOULNEocueiiiiiiiiiiiiiieii e 20

DEVICE COUR ...ttt ettt ettt ettt et e e ab e e bt e e ab e et eenb e e bt eenbeennteenbee e 21
DAAYPES ALOWEAc.vviiviieiiiiiieiie e 21
BUiltin VAriablescooviiiiiiiiiiiieiie e 21
FOTLran INLINSICSvvvveieeeriiiiiiiieie et e ettt e e e s st e e e e e e e 22
New Intrinsic FUNCHONSvvviiiiiiiiiiiiii e 24
WArP-VOte OPEIAONSc.veverviriirieriireeteastestestestetestesteereeteeseeseesaessebe s e sbessesaesseeseeneens 26
ALOMIC FUNCHONS ...ooooiiiiiiiiiiiiie e e e e e 27
RESILICHONS ...eeeeeiiiiiiiiiieie ettt e e sttt e e s e sttt reeeeeeenns 29

HOSE COUR ..ttt ettt ettt et e e bt e et e et e e nbeenbeestbeenbee s 29
SIZEOF INELINSIC ovvvveeeeiiiiieee i et e s e e e s 29

FOTtran MOGUIESooouviiiiiiiiietie ettt ettt b ettt e e saeeebeeanbe s 29

4. RUNGME APISco.oooooiiiieiceeeceeeee e 33

IIHALZATONovviiiiiiie et ettt ettt ettt 33

Device MANAGEIMENLocouiiiiiiiiiiiiiiiiiii i 33
CUAAGEDEVICECOUNLEevvieeiiiiiiieiie ettt ettt ettt ettt 33
CUAASEIDIEVICE ...ttt ettt ettt et ettt et e e e e 33
CUAASEIDVICEFIAZSovviiiiiiiiiiiicct e 33
CUAAGELDEVICEivvieiiieiie ettt ettt et 34
CUAAGEIDEVICEPTOPLTHESevveviiiiiiiiiieit ettt 34
CUAACROO0SEDEVICEeeiiiieiieiie ettt et sttt e e 34

Thread MANAZEMENLcc.iviiriiiiiiiiiiii ettt 34
cudaThreadSynchronizec..cooviiiiiiiiiiiii e 34
CUAATRIEAAEXILc.vviiieieiie et 34

MemOry MANAZEMENLEcvieuririietiiiteitt ettt ettt ettt ettt et sttt ettt e 34

PGI® Cuda Fortran

CUAAMALLOC ... 35
CUAAMALLOCPIECR ... 35
CUAAFTER ...t 35
CUAAMALLOCATTAY ...ttt et 35
CUAAFTEEALTAYc.evetiiii ettt bbbttt ettt 36
CUAAMEINISEEevieeiete ettt ettt ettt bbbt ebe e 36
CUAAMEIMSEE2ZD)cvenite ettt bbbt ettt 36
CUAAMEINICPY ...ttt bbb bbbttt 36
CUAAMEIMCPYASYIIC ...ttt bbbttt ettt ettt 36
CUAAMEMCPY2D ...t 37
CUAAMEMCPY2DASYIIC ...t 37
CUAAMEMCPYTOALTAYeovviiiriiieniieiie ettt 37
CUAAMEMCPY2DTOALTAYoovviiieiiiiiiiiieieet et 37
CUAAMEMCPYFTOMALTAYovviiiiiiiiiiiiiet e 37
CUdaAMemCPY2DFTOMALTAYc..eouviriiiiieiiiiicit e 38
CUAAMEMCPYALTAYTOALTAYoovviiriiieiiiiit ettt 38
CUdaAMemCPY2DAITAYTOALTAYc..eoviiiiiriieiiiiteit ettt 38
CUAAMALIOC3D ... 38
CUAAMALOCBDAITAY ..ottt 38
CUAAMEMSEIZD ...eoviiiiiteit e 38
CUAAMEMCPYBD ...t 39
CUAAMEMCPYZDASYIIC ...ttt 39
cudaMemcpyToSYmDOLcocvoriiiiiiiii 39
cudaMemcpyFromSymbolcc.cooviiiiiiiiiiii 39
cudaMemcpyTOSYMDOIASYIICcovevviiiiriiiiiiiciie e 39
cudaMemcpyFromSymbOIASYNCcoveriiiiiriiiiiiiiic e 40
CUAAGELSYMDOIAAAIESSeovviiiiiiiiii e 40
CUAAGEISYMDOISIZE ..ot 40
CUAAHOSIAIIOC ..o 40
CUAAHOSIGEIDEVICEPOINLETeevviieiiieiii ittt 41
CUAAMALOCHOSE ...t 41
CUAAFTEEHOSE ...ttt 41
CUAAMEMGELINTO ... 41
Stream MANAZEMENLEc..evuririiitiriietieite ettt ettt ettt ettt ettt ettt ettt st 41
CUAASIIEAMOICALEeveiiiieiieiie ittt ettt ettt 41
CUAASLIEAMQUETYeovviiiiiieiii ettt ettt 42
CUdaStreamSYNCRTONIZEcceeviiiiiiiiiiii e 42
CUAASLIEAMDESIIOYevviiiiiieitieit ettt ettt 42
EVENt MANAZEMENEc..eouviiiiiiiiiiiiiett ettt ettt 42
CUAAEVENICIOALE ..ottt 42
CUAAEVENIRECOTAooviiiiiiiiici e 42
CUAAEVENIQUETY ...ttt ettt ettt 43
CUAAEVENISYNCRTONIZEc..veviiiiiiiiiiiiicet e 43
CUAAEVENIDESIIOYevviiiiiiiiiii ittt ettt 43
CUdaEVentEIapSedTimecc.cooviiiiiiiiiiiiii e 43
Error HANALNGovoiiiiiiiiiii e 43

Vi

cudaGetLastError ..

cudaGetErrorString

Version Management

CUAADTIVEIGEEVEISIONeeveeeeeee e e et e e e e et e e e e e e e e e e e e e e e e eeeeeeeeeeeaanas
CUJARUNGMEGEIVEISIONeeeeeeeeeeeee e et e e e ettt e et e e e et et e e e e e e e e e e e e eaeeaereenns

5. Examples

Matrix Multiplication EXAMPIEcoooiiiiriiiiiiiiiiii et
SOUICE COAE LASHNGeevviiviieiiiiiie ittt et sate et e e e
Source Code DESCIIPHOMNcuieiuiiiiieiie ittt ettt ettt ettt et e etbeebeesteeebeeenreas

6. Contact Information

Tables

2.1, INLENSIC DALALYPESovvivviririetieriete ettt ettt ettt eta et e et et e et e eaeeteetsessass e b et et eeaeereereeneas 6
3.1. Device Code INtrinSiC DALALYPESevvveevieiiieeiieiiieeiie et etie ettt eieestbeebeesbeesteesrbeasaeessbeenseesnnaans 21
3.2. Fortran Numeric and Logical INEEINSICSccvvevviiriieiieiiieiie ettt 22
3.3. Fortran Mathematical TNELINSICScovviivieriieiiieiie ittt ettt ettt sbeesieessbeeeee s 22
3.4. Fortran Numeric INQUIiry INEEANSICSccveeviiieriiiiiie ettt eae e 23
3.5. Fortran Bit Manipulation INEENSICSc.veervierieiiieiie ettt ettt sre et e e 23
3.6. Fortran Reduction INLLNSICScviiviiiiiiiiitiitiete ettt eve et evesveeve e v 23
3.7. Fortran Random Number INEHNSICSoovveruiiiiriieiiiieiieit e 24
3.8. Arithmetic and Bitwise ALOMIC FUNCHONSc.oovuviiiiiiiiieiiieiie et 27
3.9. Counting ALOMIC FUNCHONSceiiiiiiiiiiiiiiiitiee it e e e e e s re e e e e e e e 28
3.10. Compare and SWap AtOMIC FUNCHONooviiiiiriiiiiiiiic et 29
3.11. CUDA BUiltin ROULNEScovieiiiiiieiieiiteiie ettt ettt et enae et et esbaesnbeesteesnse e 30

Vii

viii

Preface

This document describes CUDA Fortran, a small set of extensions to Fortran that supports and is built upon the
CUDA computing architecture.

Intended Audience

This guide is intended for application programmers, scientists and engineers proficient in programming with
the Fortran, C, and/or C++ languages. The PGI tools are available on a variety of operating systems for the X86,
AMDG64, and Intel 64 hardware platforms. This guide assumes familiarity with basic operating system usage.

Organization

The organization of this document is as follows:
Chapter 1, “Introduction”
contains a general introduction

Chapter 2, “Programming Guide”
serves as a programming guide for CUDA Fortran

Chapter 3, “Reference”
describes the CUDA Fortran language reference

Chapter 4, “Runtime APIs"
describes the interface between CUDA Fortran and the CUDA Runtime API

Chapter 5, “Examples”
provides sample code and an explanation of the simple example.

Conventions
This guide uses the following conventions:

italic
is used for emphasis.

Terminology

Constant Wdth
is used for filenames, directories, arguments, options, examples, and for language statements in the text,
including assembly language statements.

Bold
is used for commands.

[item1 |
in general, square brackets indicate optional items. In this case item1 is optional. In the context of p/t-
sets, square brackets are required to specify a p/t-set.

{ item2 | item 3}
braces indicate that a selection is required. In this case, you must select either item2 or item3.

filename ...
ellipsis indicate a repetition. Zero or more of the preceding item may occur. In this example, multiple
filenames are allowed.

FORTRAN
Fortran language statements are shown in the text of this guide using a reduced fixed point size.

C/C++
C/C++ language statements are shown in the test of this guide using a reduced fixed point size.

The PGI compilers and tools are supported on both 32-bit and 64-bit variants of the Linux and Windows
operating systems on a variety of x86-compatible processors. There are a wide variety of releases and
distributions of each of these types of operating systems.

Terminology

If there are terms in this guide with which you are unfamiliar, PGI provides a glossary of terms which you can
access at www.pgroup.com/support/definitions.btm

Related Publications

The following documents contain additional information related to CUDA Fortran programming.
e ISO/IEC 1539-1:1997, Information Technology — Programming Languages — FORTRAN, Geneva, 1997
(Fortran 95).

* NVIDIA CUDA Programming Guide, NVIDIA, Version 3.1.1, 7/21/2010. Available online at http://
www.nvidia.com/cuda.

e NVIDIA CUDA Compute Unified Device Architecture Reference Manual, NVIDIA, Version 3.1, June 2010.
Available online at http://www.nvidia.com/cuda.

e PGI Users Guide, The Portland Group, Release 10.9, September, 2009. Available online at http://
www.pgroup.com/doc/pgiug.pdf.

Chapter 1. Introduction

Welcome to Release 2011 of PGI CUDA Fortran, a small set of extensions to Fortran that supports and is built
upon the CUDA computing architecture.

Graphic processing units or GPUs have evolved into programmable, highly parallel computational units with
very high memory bandwidth, and tremendous potential for many applications. GPU designs are optimized
for the computations found in graphics rendering, but are general enough to be useful in many data-parallel,
compute-intensive programs.

NVIDIA introduced CUDA™, a general purpose parallel programming architecture, with compilers and
libraries to support the programming of NVIDIA GPUs. CUDA comes with an extended C compiler, here

called CUDA C, allowing direct programming of the GPU from a high level language. The programming model
supports four key abstractions: cooperating threads organized into thread groups, shared memory and barrier
synchronization within thread groups, and coordinated independent thread groups organized into a grid.

A CUDA programmer must partition the program into coarse grain blocks that can be executed in parallel.
Each block is partitioned into fine grain threads, which can cooperate using shared memory and barrier
synchronization. A properly designed CUDA program will run on any CUDA-enabled GPU, regardless of the
number of available processor cores.

CUDA Fortran includes a Fortran 2003 compiler and tool chain for programming NVIDIA GPUs using Fortran.
PGI 2011 includes support for CUDA Fortran on Linux, Mac OS X and Windows. CUDA Fortran is an analog

to NVIDIA's CUDA C compiler. Compared to the PGI Accelerator directives-based model and compilers, CUDA
Fortran is a lower-level explicit programming model with substantial runtime library components that give
expert programmers direct control of all aspects of GPGPU programming.

The CUDA Fortran extensions described in this document allow the following operations in a Fortran program:

e Declaring variables that are allocated in the GPU device memory

Allocating dynamic memory in the GPU device memory

Copying data from the host memory to the GPU memory, and back

e Writing subroutines and functions to execute on the GPU

Invoking GPU subroutines from the host

Allocating pinned memory on the host

e Allocating pinned memory on the host

e Using asynchronous transfers between the host and GPU

Chapter 2. Programming Guide

This chapter introduces the CUDA programming model through examples written in CUDA Fortran. For a
reference for CUDA Fortran, refer to Chapter 3, “Reference,” on page 13.

CUDA Fortran Kernels

CUDA Fortran allows the definition of Fortran subroutines that execute in parallel on the GPU when called from
the Fortran program which has been invoked and is running on the host. Such a subroutine is called a device
kernel or kernel.

A call to a kernel specifies how many parallel instances of the kernel must be executed; each instance will be
executed by a different CUDA thread. The CUDA threads are organized into thread blocks, and each thread has
a global thread block index, and a local thread index within its thread block.

A kernel is defined using the at t ri but es(gl obal) specifier on the subroutine statement; a kernel is
called using special chevron syntax to specify the number of thread blocks and threads within each thread
block:

I Kernel definition
attributes(global) subroutine ksaxpy(n, a, X, y)

real, dinmension(*) :: X,y
real, value :: a
integer, value :: n, i

i = (bl ocki dx%-1) * bl ockdi n®&x + threadi dx%
if(i <=n) y(i) =a* x(i) + y(i)
end subroutine

I Host subroutine
subroutine solve(n, a, X, y)

real, device, dinmension(*) :: X, y
real :: a
integer :: n

I call the kerne
cal | ksaxpy<<<n/ 64, 64>>>(n, a, X, Y)
end subroutine

In this case, the call to the kernel ksaxpy specifies n/ 64 thread blocks, each with 64 threads. Each thread
is assigned a thread block index accessed through the built-in bl ocki dx variable, and a thread index
accessed through t hr eadi dx. In this example, each thread performs one iteration of the common SAXPY
loop operation.

Thread Blocks

Thread Blocks

Each thread is assigned a thread block index accessed through the built-in bl ocki dx variable, and a thread
index accessed through t hr eadi dx. The thread index may be a one-, two-, or three-dimensional index.

In CUDA Fortran, the thread index for each dimension starts at one. A unique thread ID is assigned to each
thread, computed from the thread index.

For a one-dimensional thread block, the thread index is equal to the thread ID. For a two-dimensional thread
block of size (D,,D,), the thread ID is equal to (x+Dy(y-1)). For a three-dimensional thread block of size
(DyD),D,), the thread ID is (x+Dy(y-1)+Dy(2-1)).

Threads in the same thread block may cooperate by using shared memory, and by synchronizing at a barrier
using the SYNCTHREADS() intrinsic. Each thread in the block waits at the call to SYNCTHREADS() until all
threads have reached that call. The shared memory acts like a low-latency, high bandwidth software managed
cache memory. Currently, the maximum number of threads in a thread block is 512.

A kernel may be invoked with many thread blocks, each with the same thread block size. The thread blocks
are organized into a one- or two-dimensional grid of blocks, so each thread has a thread index within the
block, and a block index within the grid. When invoking a kernel, the first argument in the chevron <<<>>>
syntax is the grid size, and the second argument is the thread block size. Thread blocks must be able to
execute independently; two thread blocks may be executed in parallel or one after the other, by the same core
or by different cores.

Memory Hierarchy

CUDA Fortran programs have access to several memory spaces. On the host side, the host program can directly
access data in the host main memory. It can also directly copy data to and from the device global memory;
such data copies require DMA access to the device, so are slow relative to the host memory. The host can also
set the values in the device constant memory, again implemented using DMA access.

On the device side, data in global device memory can be read or written by all threads. Data in constant
memory space is initialized by the host program,; all threads can read data in constant memory. Accesses to
constant memory are typically faster than accesses to global memory, but it is read-only to the threads and
limited in size. Threads in the same thread block can access and share data in shared memory; data in shared
memory has a lifetime of the thread block. Each thread can also have private local memory; data in thread
local memory may be implemented as processor registers or may be allocated in the global device memory;
best performance will often be obtained when thread local data

Subroutine / Function Qualifiers

A subroutine or function in CUDA Fortran has an additional attribute, designating whether it is executed on
the host or on the device, and if the latter, whether it is a kernel, called from the host, or called from another
device subprogram.

e A subprogram declared with at t r i but es(host), or with the host attribute by default, is called a host
subprogram.

* A subprogram declared with at t ri but es(gl obal) orattri but es(device) is called a device
subprogram.

Chapter 2. Programming Guide

¢ Asubroutine declared with at t ri but es(gl obal) is also called a kernel subroutine.

Attributes(host)

The host attribute, specified on the subroutine or function statement, declares that the subroutine or function
is to be executed on the host. Such a subprogram can only be called from another host subprogram. The
default is at t r i but es(host), if none of the host , gl obal , or devi ce attributes is specified.

Attributes(global)

The gl obal attribute may only be specified on a subroutine statement; it declares that the subroutine is a
kernel subroutine, to be executed on the device, and may only be called from the host using a kernel call
containing the chevron syntax and runtime mapping parameters.

Attributes(device)

The devi ce attribute, specified on the subroutine or function statement, declares that the subprogram is to
be executed on the device; such a routine must be called from a subprogram with the gl obal or devi ce
attribute.

Restrictions
The following restrictions apply to subprograms:

e A device subprogram must not be recursive.
* A device subprogram must not contain variables with the SAVE attribute, or with data initialization.
e A kernel subroutine may not also have the devi ce or host attribute.

* A device subprogram must not have optional arguments. Dummy arguments in a device subprogram must
not have the pointer attribute.

e (alls to a kernel subroutine must specify the execution configuration, as described in “Predefined Variables
in Device Subprograms,” on page 7. Such a call is asynchronous, that is, the host routine making the
call continues to execute before the device has completed its execution of the kernel subroutine.

* Device subprograms may not be contained in a host subroutine or function, and may not contain any
subroutines or functions.

Variable Qualifiers

Variables in CUDA Fortran have a new attribute, which declares in which memory the data is allocated. By
default, variables declared in modules or host subprograms are allocated in the host main memory. At most
one of the devi ce, const ant , shar ed, or pi nned attributes may be specified for a variable.

Attributes(device)
A variable with the devi ce attribute is called a device variable, and is allocated in the device global memory.

e If declared in a module, the variable may be accessed by any subprogram in that module and by any
subprogram that uses the module.

Datatypes in Device Subprograms

e If declared in a host subprogram, the variable may be accessed by that subprogram or subprograms
contained in that subprogram.

A device array may be an explicit-shape array, an allocatable array, or an assumed-shape dummy array. An
allocatable device variable has a dynamic lifetime, from when it is allocated until it is deallocated. Other device
variables have a lifetime of the entire application.

Attributes(constant)

A variable with the const ant attributes is called a device constant variable. Device constant variables are
allocated in the device constant memory space. If declared in a module, the variable may be accessed by any
subprogram in that module and by any subprogram that uses the module. Device constant data may not be
assigned or modified in any device subprogram, but may be modified in host subprograms. Device constant
variables may not be allocatable, and have a lifetime of the entire application.

Attributes(shared)

A variable with the shar ed attributed is called a device shared variable or a shared variable. A shared
variable may only be declared in a device subprogram, and may only be accessed within that subprogram,
or by other device subprograms to which it is passed as an argument. A shared variable may not be data
initialized. A shared variable is allocated in the device shared memory for a thread block, and has a lifetime
of the thread block. It can be read or written by all threads in the block, though a write in one thread is only
guaranteed to be visible to other threads after the next call to the SYNCTHREADS() intrinsic.

Attributes(pinned)

A variable with the pi nned attributes is called a pinned variable. A pinned variable must be an allocatable
array. When a pinned variable is allocated, it will be allocated in host pagelocked memory. The advantage of
using pinned variables is that copies from page-locked memory to device memory are faster than copies from
normal paged host memory. Some operating systems or installations may restrict the use, availability, or size of

page-locked memory; if the allocation in page-locked memory fails, the variable will be allocated in the normal
host paged memory.

Datatypes in Device Subprograms

The following intrinsic datatypes are allowed in device subprograms and device data:

Table 2.1. Intrinsic Datatypes

Type Type Kind

i nt eger 1,2,4,8

| ogi cal 1,2,4,8

real 48

doubl e precision equivalent to r eal (ki nd=8)

Chapter 2. Programming Guide

conpl ex 4.8

character (1 en=1) 1

Derived types may contain members with these intrinsic datatypes or other allowed derived types.

Predefined Variables in Device Subprograms

Device subprograms have access to block and grid indices and dimensions through several builtin read-only
variables. These variables are of type di n8; the module cudaf or defines the derived type di n8 as follows:

type(di nB)
i nteger(kind=4) :: Xx,y,z
end type

These predefined variables, except for war psi ze, are not accessible in host subprograms.

¢ The variable t hr eadi dx contains the thread index within its thread block; for one- or two-dimensional
thread blocks, the t hr eadi dx% and/or t hr eadi dx% components have the value one.

o The variable bl ockdi mcontains the dimensions of the thread block; bl ockdi mhas the same value for all
thread blocks in the same grid.

e The variable bl ocki dx contains the block index within the grid; as with threadidx, for one-dimensional
grids, bl ocki dx% has the value one. The value of bl ocki dx% is always one.

e The variable gr i ddi mcontains the dimensions of the grid; the value of gr i ddi n?& is always one.
e The variable is war psi ze is declared to be type integer. Threads are executed in groups of 32, called

warps; war psi ze contains the number of threads in a warp.

Execution Configuration

A call to a kernel subroutine must specify an execution configuration. The execution configuration defines
the dimensionality and extent of the grid and thread blocks that execute the subroutine. It may also specify a
dynamic shared memory extent, in bytes, and a stream identifier, to support concurrent stream execution on
the device.

A kernel subroutine call looks like this:

call kernel <<<grid, bl ock[, bytes[, stream d]]>>>(argl, arg2, ..)

where

e gridand bl ock are either integer expressions (for one-dimensional grids and thread blocks), or are
t ype(di n8), for one- or two-dimensional grids and one-, two-, or three-dimensional thread blocks.

e Ifgridistype(dinB),thevalue of gri d% must be one, and bl ock% and bl ock% must be equal
to or greater than one.

e Ifbl ock ist ype(di nB), the value of each component must be equal to or greater than one, and the
product of the component values must be less than or equal to 512.

e The value of byt es must be an integer; it specifies the number of bytes of shared memory to be allocated
for each thread block, in addition to the statically allocated shared memory. This memory is used for the

Asynchronous concurrent execution

assumed-size shared variables in the thread block; see Section 3.2.3. If not specified, its value is treated as
zero.

e The value of st r eani d must be an integer greater than or equal to zero; it specifies the stream to which
this call is associated.

Asynchronous concurrent execution

There are two components to asynchronous concurrent execution with CUDA Fortran.

Concurrent Host and Device Execution

When a host subprogram calls a kernel subroutine, the call actually returns to the host program before the
kernel subroutine begins execution. The call can be treated as a kernel launch operation, where the launch
actually corresponds to placing the kernel on a queue for execution by the device. In this way, the host can
continue executing, including calling or queueing more kernels for execution on the device. By calling the
runtime routine cudaThr eadSynchr oni ze, the host program can synchronize and wait for all previously
launched or queued kernels.

Programmers must be careful when using concurrent host and device execution; in cases where the host
program reads or modifies device or constant data, the host program should synchronize with the device to
avoid erroneous results.

Concurrent Stream Execution

Operations involving the device, including kernel execution and data copies to and from device memory, are
implemented using stream queues. An operation is placed at the end of the stream queue, and will only be
initiated when all previous operations on that queue have been completed.

An application can manage more concurrency by using multiple streams. Each user-created stream manages
its own queue; operations on different stream queues may execute out-of-order with respect to when they were
placed on the queues, and may execute concurrently with each other.

The default stream, used when no stream identifier is specified, is stream zero; stream zero is special in that
operations on the stream zero queue will begin only after all preceding operations on all queues are complete,
and no subsequent operations on any queue begin until the stream zero operation is complete.

Kernel Loop Directive

CUDA Fortran allows automatic kernel generation and invocation from a region of host code containing one
or more tightly nested loops. Launch configuration and mapping of the loop iterations onto the hardware is
controlled and specified as part of the directive body using the familiar CUDA chevron syntax. As with any
kernel, the launch is asynchronous. The program can use cudaThreadSynchronize() or CUDA Events to wait
for the completion of the kernel.

The work in the loops specified by the directive is executed in parallel, across the thread blocks and grid; it
is the programmer's responsibility to ensure that parallel execution is legal and produces the correct answer.
The one exception to this rule is a scalar reduction operation, such as summing the values in a vector or
matrix. For these operations, the compiler handles the generation of the final reduction kernel, inserting
synchronization into the kernel as appropriate.

Chapter 2. Programming Guide

Syntax

The general form of the kernel directive is:
I $cuf kernel do[(n)] <<< grid, block >>>

The compiler maps the launch configuration specified by the grid and block values onto the outermost

n loops, starting at loop 7 and working out. The grid and block values can be an integer scalar or a
parenthesized list. Alternatively, using asterisks tells the compiler to choose a thread block shape and/or
compute the grid shape from the thread block shape and the loop limits. Loops which are not mapped onto
the grid and block values are run sequentially on each thread.

Example 1
I $cuf kernel do(2) <<< (*,%*), (32,4) >>>
doj =1, m
doi =1, n
a(i,j) =b(i,j) +c(i,j)
end do
end do

In this example, the directive defines a two-dimensional thread block of size 32x4.

The body of the doubly-nested loop is turned in the kernel body:

ThreadIdx%x runs from 1 to 32 and is mapped onto the inner 7 loop.
ThreadIdx%y runs from 1 to 4 and is mapped onto the outer 7 loop.

The grid shape, specified as (*,*), is computed by the compiler and runtime by
dividing the loop trip counts 7 and m by the thread block size, so all iterations are

computed.
Example 2

| $cuf kernel do <<< *, 256 >>>

doj =1, m
doi =1, n

a(i,j) =b(i,j) +c(i,j)

end do

end do

Without an explicit 7 on the do, the schedule applies just to the outermost loop, that is,
the default value is 1.

In this case, only the outer j loop is run in parallel with a thread block size of 256.

The inner 7 dimension is run sequentially on each thread.

You might consider if the code in Example 2 would perform better if the two loops were interchanged.
Alternatively, you could specify a configuration like the following in which the threads read and write the
matrices in coalesced fashion.

I Scuf kernel do(2) <<< *, (256,1) >>>
doj =1, m
doi =1, n
a(i,j) =b(i,j) +c(i,j)
end do
end do

Kernel Loop Directive

Example 3

In Example 2, the 256 threads in each block each do one element of the matrix addition. Further expansion
of the work along the 7 direction and all work across the j dimension is handled by the mapping onto the grid
dimensions.

To "unroll" more work into each thread, specify non-asterisk values for the grid, as illustrated here:

I $cuf kernel do(2) <<< (1,*), (256,1) >>>
doj =1, m
doi =1, n
a(i,j) =b(i,j) +c(i,j)
end do
end do

Now the threads in a thread block handle all values in the 7 direction, in concert, incrementing by 256. One
thread block is created for each j. Specifically, the 7 loop is mapped onto the grid x-dimension, because the
compiler skips over the constant 1 in the 7 loop grid size. In CUDA built-in language, gridDim%x is equal to m.

Restrictions on the CUF kernel directive

The following restrictions apply to CUF kernel directives:

» If the directive specifies 7 dimensions, it must be followed by at least that many tightly-nested DO loops.

* The tightly-nested DO loops must have invariant loop limits: the lower limit, upper limit, and increment
must be invariant with respect to any other loop in the kernel do.

e There can be no GOTO or EXIT statements within or between any loops that have been mapped onto the
grid and block configuration values.

e The body of the loops may contain assignment statements, IF statements, loops, and GOTO statements.
 Only CUDA Fortran dataypes are allowed within the loops.

e CUDA Fortran intrinsic functions are allowed, if they are allowed in device code, but the device-specific
intrinsics such as syncthreads, atomic functions, etc. are not.

* Subroutine and function calls to attributes(device) subprograms are allowed if they are in the same module
as the code containing the directive.

e Arrays used or assigned in the loop must have the device attribute.
e Implicit loops and F90 array syntax are not allowed within the directive loops.

e Scalars used or assigned in the loop must either have the device attribute, or the compiler will make a
device copy of that variable live for the duration of the loops, one for each thread. Except in the case
of reductions; when a reduction has a scalar target, the compiler generates a correct sequence of
synchronized operations to produce one copy either in device global memory or on the host.

Summation Example

The simplest directive form for performing a dot product on two device arrays takes advantage of the
properties for scalar use outlined previously.

10

Chapter 2. Programming Guide

rsum= 0.0
| $cuf kernel do <<< *, * >>>
doi =1, n

rsum = rsum+ x(i) * y(i)
end do

For reductions, the compiler recognizes the use of the scalar and generates just one final result.

This CUF kernel can be followed by another CUF kernel in the same subprogram:

| $cuf kernel do <<< *, * >>>
doi =1, n

rsum= x(i) * y(i)

z(i) = rsum
end do

In this CUF kernel, the compiler recognizes rsum as a scalar temporary which should be allocated locally on
every thread. However, use of rsum on the host following this loop is undefined.

Building a CUDA Fortran Program

CUDA Fortran is supported by the PGI Fortran compilers when the filename uses a CUDA Fortran extension.
The . cuf extension specifies that the file is a free-format CUDA Fortran program; the . CUF extension may
also be used, in which case the program is processed by the preprocessor before being compiled. To compile
a fixed-format program, add the command line option —M i xed. CUDA Fortran extensions can be enabled in
any Fortran source file by adding the —~Mcuda command line option.

Emulation Mode

PGI Fortran compilers support an emulation mode for program development on workstations or systems
without a2 CUDA-enabled GPU and for debugging. To build a program using emulation mode, compile and link
with the —-Mcuda=enu command line option. In emulation mode, the device code is compiled for and runs on
the host, allowing the programmer to use a host debugger.

It's important to note that the emulation is far from exact. In particular, emulation mode may execute a single
thread block at a time. This will not expose certain errors, such as memory races. In emulation mode, the host
floating point units and intrinsics are used, which may produce slightly different answers than the device units
and intrinsics.

11

12

Chapter 3. Reference

This chapter is the CUDA Fortran Language Reference.

New Subroutine and Function Attributes

CUDA Fortran adds new attributes to subroutines and functions. This chapter describes how to specify the new
attributes, their meaning and restrictions.

A Subroutine may have the host, global, or device attribute, or may have both host and device attribute.

A Function may have the host or device attribute, or both. These attributes are specified using the
attributes(attr) prefix on the Subroutine or Function statement; if there is no attributes prefix on the
subprogram statement, then default rules are used, as described in the following sections.

Host Subroutines and Functions
The host attribute may be explicitly specified on the Subroutine or Function statement as follows:

attributes(host) subroutine sub(..)
attributes(host) integer function func(..)
i nteger attributes(host) function func(..)

The host attributes prefix may be preceded or followed by any other allowable subroutine or function prefix
specifiers (recursive, pure, elemental, function return datatype). A subroutine or function with the host
attribute is called a host subroutine or function, or a host subprogram. A host subprogram is compiled for
execution on the host processor. A subprogram with no attributes prefix has the host attribute by default.

Global Subroutines
The global attribute may be explicitly specified on the Subroutine statement as follows:

attributes(global) subroutine sub(..)

Functions may not have the global attribute. A subroutine with the global attribute is called a kernel
subroutine. A kernel subroutine may not be recursive, pure, or elemental, so no other subroutine prefixes
are allowed. A kernel subroutine is compiled as a kernel for execution on the device, to be called from a host
routine using an execution configuration. A kernel subroutine may not be contained in another subroutine or
function, and may not contain any other subprogram.

13

Variable Attributes

Device Subroutines and Functions

The device attribute may be explicitly specified on the Subroutine or Function statement as follows:

attributes(device) subroutine sub(..)
attributes(device) datatype function func(..)
dat at ype attri butes(device) function func(..

A subroutine or function with the device attribute may not be recursive, pure, or elemental, so no other
subroutine or function prefixes are allowed, except for the function return datatype. A subroutine or function
with the device or kernel attribute is called a device subprogram. A device subprogram is compiled for
execution on the device. A subroutine or function with the device attribute must appear within a Fortran
module, and may only be called from device subprograms in the same module.

Restrictions on Device Subprograms

A subroutine or function with the device or global attribute must satisfy the following restrictions:

e It may not be recursive, nor have the recursive prefix on the subprogram statement.

e It may not be pure or elemental, nor have the pure or elemental prefix on the subprogram statement.

e It may not contain another subprogram.

e It may not be contained in another subroutine or function.

For more information, refer to “Device code,” on page 21.

Variable Attributes

CUDA Fortran adds new attributes for variables and arrays. This section describes how to specify the new
attributes and their meaning and restriction.

Variables declared in a device subprogram may have one of four attributes: they may be declared to be in

device global memory, in constant memory space, in the thread block shared memory, or in thread local
memory.

Variables in modules may be declared to be in device global memory or constant memory space.

CUDA Fortran adds a new attribute for allocatable arrays in host memory; the array may be declared to be in
pinned memory, that is, in page-locked host memory space. The advantage of using pinned memory is that
transfers between the device and pinned memory are faster and can be asynchronous.

Device data

14

A variable or array with the device attribute is defined to reside in the device global memory. The device
attribute can be specified with the at t r i but es statement, or as an attribute on the type declaration
statement. The following example declares two arrays, a and b, to be device arrays of size 100.

real :: a(1l00)
attri butes(device) :: a
real, device :: b(100)

Chapter 3. Reference

These rules apply to device data:

e An allocatable device array dynamically allocates device global memory.
e Device variables and arrays may not have the Pointer or Target attributes.

e Device variables and arrays may appear in modules, but may not be in 2 Common block or an Equivalence
statement.

e Members of a derived type may not have the device attribute unless they are allocatable.

e Device variables and arrays may be passed as actual arguments to host and device subprograms; in that
case, the subprogram interface must be explicit (in the Fortran sense), and the matching dummy argument
must also have the device attribute.

* Device variables and arrays declared in a host subprogram cannot have the Save attribute.
In host subprograms, device data may only be used in the following manner:

¢ In declaration statements

In Allocate and Deallocate statements

e As an argument to the Allocated intrinsic function

As the source or destination in a data transfer assignment statement

As an actual argument to a kernel subroutine

As an actual argument to another host subprogram or runtime API call

e As a dummy argument in a host subprogram
A device array may have the allocatable attribute, or may have adjustable extent.

Constant data

A variable or array with the constant attribute is defined to reside in the device constant memory space. The
constant attribute can be specified with the at t r i but es statement, or as an attribute on the type declaration
statement. The following example declares two arrays, ¢ and d, to be constant arrays of size 100.

real :: c¢(100)
attributes(constant) :: c
real, constant :: d(2100)

These rules apply to constant data:

e Constant data may not have the Pointer, Target, or Allocatable attributes.

¢ Constant variables and arrays may appear in modules, but may not be in a Common block or an
Equivalence statement.

e Members of a derived type may not have the constant attribute.

e Arrays with the constant attribute must have fixed size.

15

Variable Attributes

e Constant variables and arrays may be passed as actual arguments to host and device subprograms, as long
as the subprogram interface is explicit, and the matching dummy argument also has the constant attribute.

e Within device subprograms, variables and arrays with the constant attribute may not be assigned or
modified.

¢ Within host subprograms, variables and arrays with the constant attribute may be read and written.

In host subprograms, data with the constant attribute may only be used in the following manner:

In declaration statements

As the source or destination in a data transfer assignment statement

As an actual argument to another host subprogram

As 2 dummy argument in a host subprogram

Shared data

A variable or array with the shared attribute is defined to reside in the shared memory space of a thread block.
A shared variable or array may only be declared and used inside a device subprogram. The shared attribute
can be specified with the at t r i but es statement, or as an attribute on the type declaration statement. The
following example declares two arrays, s and t , to be shared arrays of size 100.

real :: c(100)
attributes(shared) :: c
real, shared :: d(100)

These rules apply to shared data:

e Shared data may not have the Pointer, Target, or Allocatable attributes.
e Shared variables may not be in a Common block or Equivalence statement.
e Members of a derived type may not have the shared attribute.

e Shared variables and arrays may be passed as actual arguments to from a device subprogram to another
device subprogram, as long as the interface is explicit and the matching dummy argument has the shared
attribute.

Shared arrays that are not dummy arguments may be declared as assumed-size arrays; that is, the last
dimension of a shared array may have an asterisk as its upper bound:

real, shared :: x(%*)

Such an array has special significance. Its size is determined at run time by the call to the kernel. When the
kernel is called, the value of the byt es argument in the execution configuration is used to specify the number
of bytes of shared memory that is dynamically allocated for each thread block. This memory is used for the
assumed-size shared memory arrays in that thread block; if there is more than one assumed-size shared
memory array, they are all implicitly equivalenced, starting at the same shared memory address. Programmers
must take this into account when coding.

16

Chapter 3. Reference

If a shared array is not a dummy argument and not assumed-size, it must be fixed size.

Value dummy arguments

In device subprograms, following the rules of Fortran, dummy arguments are passed by default by reference.
This means the actual argument must be stored in device global memory, and the address of the argument

is passed to the subprogram. Scalar arguments can be passed by value, as is done in C, by adding the value
attribute to the variable declaration.

attri butes(global) subroutine madd(a, b, n)
real, dinmension(n,n) :: a, b
integer, value :: n

In this case, the value of n can be passed from the host without needing to reside in device memory. The

variable arrays corresponding to the dummy arguments a and b must be set up before the call to reside on the
device.

Pinned arrays

An allocatable array with the pinned attribute will be allocated in special page-locked host memory, when
such memory is available. An array with the pinned attribute may be declared in 2 module or in a host
subprogram. The pinned attribute can be specified with the at t r i but es statement, or as an attribute on
the type declaration statement. The following example declares two arrays, p and g, t o be pinned allocatable

arrays.

real :: p(:)

allocatable :: p
attributes(pinned) :: p

real, allocatable, pinned :: q(:)

Pinned arrays may be passed as arguments to host subprograms regardless of whether the interface is explicit,
or whether the dummy argument has the pinned and allocatable attributes. Where the array is deallocated, the
declaration for the array must still have the pinned attribute, or the deallocation may fail.

Allocating Device and Pinned Arrays

This section describes extensions to the Allocate statement, specifically for dynamically allocating device arrays
and host pinned arrays, and other supported methods for allocating device memory.

Allocating Device Memory

Device arrays can have the allocatable attribute. These arrays are dynamically allocated in host subprograms
using the Allocate statement, and dynamically deallocated using the Deallocate statement. If a device array

declared in a host subprogram does not have the Save attribute, it will be automatically deallocated when the
subprogram returns.

real, allocatable, device :: b(:)
al | ocat e(b(5024), st at =i stat)

if(allocated(b)) deall ocate(b)

17

Allocating Device and Pinned Arrays

Scalar variables can be allocated on the device using the Fortran 2003 allocatable scalar feature. To use these,
declare and initialize the scalar on the host as:

i nteger, allocatable, device :: ndev
al | ocat e(ndev)
ndev = 100

The language also supports the ability to create the equivalent of automatic and local device arrays without
using the allocate statement. These arrays will also have a lifetime of the subprogram as is usual with the
Fortran language:
subroutine vfunc(a,c, n)

real, device :: adev(n)

real, device :: atnp(4)

end subroutine vfunc I adev and atnp are deal | ocat ed

Allocating Device Memory Using Runtime Routines

For programmers comfortable with the CUDA C programming environment, Fortran interfaces to the CUDA
memory management runtime routines are provided. These functions return memory which will bypass certain
Fortran allocatable properties such as automatic deallocation, and thus the arrays are treated more like C
malloc’ed areas. Mixing standard Fortran allocate/deallocate with the runtime Malloc/Free for a given array is
not supported.

The cudaMalloc function can be used to allocate single-dimensional arrays of the supported intrinsic data-
types, and cudaFree can be used to free it:

real, allocatable, device :: v(:)
istat = cudaMal |l oc(v, 100)

i stat = cudaFree(v)

For a complete list of the memory management runtime routines, refer to “Memory Management,” on page
34.

Allocating Pinned Memory

18

Allocatable arrays with the pinned attribute are dynamically allocated using the Allocate statement. The
compiler will generate code to allocate the array in host page-locked memory, if available. If no such memory
space is available, or if it is exhausted, the compiler allocates the array in normal paged host memory.
Otherwise, pinned allocatable arrays work and act like any other allocatable array on the host.

real, allocatable, pinned :: p(:)
al | ocat e(p(5000), st at =i st at)

{f(allocated(p)) deal | ocat e(p)

To determine whether or not the allocation from page-locked memory was successful, an additional PINNED
keyword is added to the allocate statement. It returns a logical success value.

| ogi cal pl og
al | ocat e(p(5000), stat=istat, pinned=plog)
if (.not. plog) then

Chapter 3. Reference

Data transfer between host and device memory

This section provides methods to transfer data between the host and device memory.

Data Transfer Using Assignment Statements

You can copy variables and arrays from the host memory to the device memory by using simple assignment
statements in host subprograms.

e An assignment statement where the left hand side is a device variable or device array or array section, and
the right hand is a host variable or host array or array section, copies data from the host memory to the
device global memory.

* An assignment statement where the left hand side is a host variable or host array or array section, and the
right hand side is a device variable or device array or array section, copies data from the device global
memory to the host memory.

* An assignment statement with a device variable or device array or array section on both sides of the
assignment statement copies data between two device variables or arrays.

Similarly, you can use simple assignment statements to copy or assign variables or arrays with the constant
attribute.

Note

Using assignment statements to read or write device or constant data implicitly uses CUDA stream
zero. This means such data copies are synchronous, meaning the data copy waits until all previous
kernels and data copies complete.

Implicit Data Transfer in Expressions

Some limited data transfer can be enclosed within expressions. In general, the rule of thumb is all arithmetic
or operations must occur on the host, which normally only allows one device array to appear on the right-
hand-side of an expression. Compiler-generated temporary arrays are generated to accommodate the host
copies of device data as needed. For instance, if a, b, and ¢ are conforming host arrays, and adev, bdev, and
cdev are conforming device arrays, the following expressions are legal:

a = adev
adev = a
b = a + adev

C =x * adev + b
The following expressions are not legal as they either promote a false impression of where the actual
computation occurs, or would be more efficient written in another way, or both:

c = adev + bdev
adev = adev + a
b = sqrt(adev)

19

Invoking a kernel subroutine

Elemental transfers are supported by the language but will perform poorly. Array slices are also supported,
and their performance is dependent on the size of the slice, amount of contiguous data in the slices, and the
implementation.

Data Transfer Using Runtime Routines

For programmers comfortable with the CUDA C programming environment, Fortran interfaces to the CUDA
memory management runtime routines are provided. These functions can transfer data either from the host to
device, device to host, or from one device array to another.

The cudaMentpy function can be used to copy data between the host and the GPU:

real, device :: wk(1024)
real cur(512)
i stat = cudaMenctpy(wk, cur, 512)

For those familiar with the CUDA C routines, the kind parameter to the Memcpy routines is optional in Fortran
since the attributes of the arrays are explicitly declared. Counts expressed in arguments to the Fortran runtime
routines are expressed in terms of data type elements, not bytes.

For a complete list of memory management runtime routines, refer to “Memory Management,” on page 34.

Invoking a kernel subroutine

20

A call to a kernel subroutine must give the execution configuration for the call. The execution configuration
gives the size and shape of the grid and thread blocks that execute the function, as well as the amount of
shared memory to use for assumed-size shared memory arrays, and the associated stream.

The execution configuration is specified after the subroutine name in the call statement; it has the form:
<<< grid, block, bytes, stream >>>
e gridisan integer, or of t ype(di n8) . Ifitis t ype(di nB), the value of gri d% must be one. The

product gr i d%*gri d% gives the number of thread blocks to launch. If grid is an integer, it is converted
todi nB(grid,1,1).bl

* Dbl ock is an integer, or of t ype(di n8) . Ifitis t ype(di nB) , the number of threads per thread block
is bl ock%* bl ock%* bl ock%, which must be less than the maximum supported by the device. If
bl ock is an integer, it is converted to di n8(bl ock, 1, 1) .

* byt es is optional; if present, it must be a scalar integer, and specifies the number of bytes of shared
memory to be allocated for each thread block to use for assumed-size shared memory arrays. For more
information, refer to “Shared data,” on page 16. If not specified, the value zero is used.

e stream is optional; if present, it must be an integer, and have a value of zero, or a value returned by a call to
cudaStreamCreate. See Section 4.5 on page 41. It specifies the stream to which this call is enqueued.

For instance, a kernel subroutine

attributes(gl obal) subroutine sub(a)

can be called like:

Chapter 3. Reference

call sub <<< DG DB >>> (A)

The function call will fail if the gr i d or bl ock arguments are greater than the maximum sizes allowed, or if
bytes is greater than the shared memory available, allowing for static shared memory declared in the kernel
and for other dedicated uses, such as the function arguments and execution configuration arguments.

Device code

Datatypes allowed

Variables and arrays with the device, constant, or shared attributes, or declared in device subprograms, are
limited to the types described in this section. They may have any of the intrinsic datatypes in the following table.

Table 3.1. Device Code Intrinsic Datatypes

Type Type Kind

i nt eger 1,2,4(default),8

| ogi cal 1,2,4(default),8

real 4(default),8

doubl e precision equivalent to r eal (ki nd=8)
conpl ex 4(default),8

character (1 en=1) 1 (default)

Additionally, they may be of derived type, where the members of the derived type have one of the allowed
intrinsic datatypes, or another allowed derived type.

The system module cudaf or includes definitions of the derived type di n8, defined as
type(di nB)

i nteger(kind=4) :: x,y,z
end type

Builtin variables

The system module cudaf or declares several predefined variables. These variables are read-only. They are
declared as follows:

type(dinB) :: threadi dx, bl ockdi m bl ockidx, griddim
integer(4) :: warpsize

e The variable t hr eadi dx contains the thread index within its thread block; for one- or two-dimensional
thread blocks, the t hr eadi dx%y and/or t hr eadi dx% components have the value one.

¢ The variable bl ockdi mcontains the dimensions of the thread block; bl ockdi mhas the same value for all

threads in the same grid; for one- or two-dimensional thread blocks, the bl ockdi nb4y and/or bl ockdi m
% components have the value one.

21

Device code

e The variable bl ocki dx contains the block index within the grid; as with t hr eadi dx, for one-

dimensional grids, bl ocki dx% has the value one. The value of bl ocki dx% is always one. The value of

bl ocki dx is the same for all threads in the same thread block.

e The variable gr i ddi mcontains the dimensions of the grid; the value of gr i ddi n®& is always one. The
value of gr i ddi mis the same for all threads in the same grid; the value of gr i ddi n®@ is always one; the
value of gr i ddi nt4y is one for one-dimensional grids.

e The variables t hr eadi dx, bl ockdi m bl ocki dx, and gri ddi mare available only in device

subprograms.

e The variable war psi ze contains the number of threads in a warp. It has constant value, currently defined
to be 32.

Fortran intrinsics

This section lists the Fortran intrinsic functions allowed in device subprograms.

Fortran Numeric and Logical Intrinsics

Table 3.2. Fortran Numeric and Logical Intrinsics

Name Argument Datatypes
abs integer, real, complex
ai mag complex

ai nt real

ani nt real

cei ling real

cnpl x real or (real,real)
conj g complex

dim integer, real

fl oor real

Fortran Mathematical Intrinsics

Name Argument Datatypes

i nt integer, real, complex
| ogi cal logical

max integer, real

mn integer, real

nod integer, real

modul o integer, real

ni nt real

r eal integer, real, complex
sign integer, real

Table 3.3. Fortran Mathematical Intrinsics

Name Argument Datatypes
acos real

asin real

at an real

at an2 (real,real)

22

Name Argument Datatypes
| og real, complex

| 0g10 real

sin real, complex

si nh real

cos real, complex
cosh real
exp real, complex

Fortran Numeric Inquiry Intrinsics

Chapter 3. Reference

sqrt real, complex
tan real
tanh real

Table 3.4. Fortran Numeric Inquiry Intrinsics

Name Argument Datatypes
preci si on real, complex

radi x integer, real

range integer, real, complex

sel ect ed_i nt _ki nd |integer

Name Argument Datatypes
bit_size integer

digits integer, real

epsi | on real

huge integer, real
maxexponent real

m nexponent real

sel ect ed_r eal _ki nd | (integer,integer)

Fortran Bit Manipulation Intrinsics

Table 3.5. Fortran Bit Manipulation Intrinsics

Name Argument Datatypes
bt est integer
i and integer
i belr integer
ibits integer
i bset integer
i eor integer
i or integer

Fortran Reduction Intrinsics

Table 3.6. Fortran Reduction Intrinsics

Name Argument Datatypes
al | logical
any logical
count logical

tiny real
Name Argument Datatypes
i shft integer
ishftc integer
| eadz integer
nvbits integer
not integer
popcnt integer
poppar integer
Name Argument Datatypes
m nl oc integer, real
m nval integer, real
product integer, real, complex

23

Device code

max| oc integer, real sum integer, real, complex

maxval integer, real

Fortran Random Number Intrinsics

Table 3.7. Fortran Random Number Intrinsics

Name Argument Datatypes
random number real
random seed integer

New Intrinsic Functions

This section describes the new intrinsic functions and subroutines supported in device subprograms.

Synchronization Functions

The synchronization functions control the synchronization of various threads during execution of thread
blocks.

synct hr eads t hr eadf ence
synct hr eads_count t hr eadf ence_bl ock
synct hr eads_and t hreadf ence_system

synct hread_or

For detailed information on these functions, refer to “Thread Management,” on page 34.

SYNCTHREADS

24

The synct hr eads intrinsic subroutine acts as a barrier synchronization for all threads in a single thread
block; it has no arguments:

voi d synct hreads()

Sometimes threads within a block access the same addresses in shared or global memory, thus creating
potential read-after-write, write-after-read, or write-after-write hazards for some of these memory accesses.
To avoid these potential issues, use synct hr eads() to specify synchronization points in the kernel. . This
intrinsic acts as a barrier at which all threads in the block must wait before any thread is allowed to proceed.
Threads within a block cooperate and share data by synchronizing their execution to coordinate memory
accesses.

Each thread in a thread block pauses at the synct hr eads call until all threads have reached that call. If any
thread in a thread block issues a call to synct hr eads, all threads must also reach and execute the same call
statement, or the kernel fails to complete correctly.

Chapter 3. Reference

SYNCTHREADS_AND

i nteger syncthreads_and(i nt_val ue)

synct hr eads_and, like synct hr eads, acts as a barrier at which all threads in the block must wait before
any thread is allowed to proceed. In addition, synct hr eads_and evaluates the integer argument in¢_value
for all threads of the block and returns non-zero if and only if i#¢_value evaluates to non-zero for a// of them.

SYNCTHREADS_COUNT

i nteger syncthreads_count (i nt_val ue)

synct hr eads_count , like synct hr eads, acts as a barrier at which all threads in the block must wait
before any thread is allowed to proceed. In addition, synct hr eads_count evaluates the integer argument
int_value for all threads of the block and returns the number of threads for which in¢_value evaluates to
non-zero.

SYNCTHREADS_OR

i nteger syncthreads_or (i nt_val ue)

synct hreads_or, like synct hr eads, acts a as a barrier at which all threads in the block must wait
before any thread is allowed to proceed. In addition, synct hr eads_or evaluates the integer argument
int_value for all threads of the block and returns non-zero if and only if int_value evaluates to non-zero for
any of them.

Memory Fences

In general, when a thread issues a series of writes to memory in a particular order, other threads
may see the effects of these memory writes in a different order. You can use t hr eadf ence(),
t hr eadf ence_bl ock(),andt hr eadf ence_syst en() to create a memory fence to enforce ordering.

For example, suppose you use a kernel to compute the sum of an array of N numbers in one call. Each block
first sums a subset of the array and stores the result in global memory. When all blocks are done, the last
block done reads each of these partial sums from global memory and sums them to obtain the final result. To
determine which block is finished last, each block atomically increments a counter to signal that it is done with
computing and storing its partial sum. If no fence is placed between storing the partial sum and incrementing
the counter, the counter might increment before the partial sum is stored.

THREADFENCE

voi d t hreadf ence()

t hr eadf ence acts as a memory fence, creating a wait. Typically, when a thread issues a series of writes to
memory in a particular order, other threads may see the effects of these memory writes in a different order.

t hr eadf ence() is one method to enforce a specific order. All global and shared memory accesses made by
the calling thread prior to t hr eadf ence() are visible to:

e All threads in the thread block for shared memory accesses

e All threads in the device for global memory accesses

25

Device code

THREADFENCE_BLOCK

voi d t hr eadf ence_bl ock()

t hr eadf ence_bl ock acts as a memory fence, creating a wait until all global and shared memory accesses
made by the calling thread prior to t hr eadf ence_bl ock() are visible to all threads in the thread block for
all accesses.

THREADFENCE_SYSTEM

voi d t hreadf ence_systen()

t hr eadf ence_syst emacts as 2 memory fence, creating a wait until all global and shared memory accesses
made by the calling thread prior to t hr eadf ence_syst en() are visible to:

e All threads in the thread block for shared memory accesses
* All threads in the device for global memory accesses

¢ Host threads for page-locked host memory accesses
t hr eadf ence_syst en() is only supported by devices of compute capability 2.0 or higher.

GPU_TIME
The gpu_t i ne intrinsic returns the value of the clock cycle counter on the GPU. It has a single argument:

i nteger(8) clock
call gpu_tinme(cl ock)

The argument to gpu_t i me is set to the value of the clock cycle counter. The clock frequency can be

determined by calling cudaGet Devi cePr oper ti es, as described in “cudaGetDeviceProperties,” on page
34.

Warp-Vote Operations

Warp-vote operations are only supported by devices with compute capability 1.2 and higher. Each of these
functions has a single argument.

ALLTHREADS
The al | t hr eads function is a warp-vote operation with a single scalar logical argument:

if(allthreads(a(i)<0.0)) allneg = .true.

The function al | t hr eads evaluates its argument for all threads in the current warp. The value of the
function is . t r ue. only if the value of the argument is . t r ue. for all threads in the warp.

26

Chapter 3. Reference

ANYTHREAD

The anyt hr ead function is a warp-vote operation with a single scalar logical argument:

i f(anythread(a(i)<0.0)) allneg = .true.

The function anyt hr ead evaluates its argument for all threads in the current warp. The value of the function
is. f al se. onlyif the value of the argument is . f al se. for all threads in the warp.

BALLOT

The bal | ot function is a warp-vote operation with a single integer argument:

unsi gned i nteger ball ot (int_val ue)

The function bal | ot evaluates the argument i nt _val ue for all threads of the warp and returns an integer
whose Nth bit is set if and only if i nt _val ue evaluates to non-zero for the Nth thread of the warp.

This function is only supported by devices of compute capability 2.0.

Example:
if(ballot(int_value)) allneg = .true.
Atomic Functions

The atomic functions read and write the value of their first operand, which must be a variable or array element
in shared memory (with the shared attribute) or in device global memory (with the device attribute). Atomic
functions are only supported by devices with compute capability 1.1 and higher. Compute capability 1.2 or
higher is required if the first argument has the shared attribute.

The atomic functions return correct values even if multiple threads in the same or different thread blocks try to
read and update the same location without any synchronization.

Arithmetic and Bitwise Atomic Functions

These atomic functions read and return the value of the first argument. They also combine that value with
the value of the second argument, depending on the function, and store the combined value back to the first
argument location. Both arguments must be of type integer (kind=4).

Note

The return value for each of these functions is the first argument, mem

These functions are:

Table 3.8. Arithmetic and Bitwise Atomic Functions

Function Additional Atomic Update
atom cadd(nmem val ue) mem = mem + val ue
atom csub(nmem val ue) nmem = nmem - val ue

27

Device code

atom cmax(nmem val ue) mem = max(nem val ue)
atom cmin(mem val ue) mem = m n(nem val ue)
atom cand(nmem val ue) mem = i and(nmem val ue)
atom cor(nmem val ue) mem = i or (nem val ue)
at om cxor(nmem val ue) mem = i eor (nmem val ue)
at om cexch(nem val ue) mem = val ue

Counting Atomic Functions

Compare and Swap Atomic Function

28

These atomic functions read and return the value of the first argument. They also compare the first argument
with the second argument, and stores a new value back to the first argument location, depending on the result
of the comparison. These functions are intended to implement circular counters, counting up to or down from
a maximum value specified in the second argument. Both arguments must be of type integer (kind=4).

Note

The return value for each of these functions is the first argument, mem

These functions are:

Table 3.9. Counting Atomic Functions

Function Additional Atomic Update
atom cinc(nem inmax) if (menxi max) then
mem = memtl
el se
mem = 0
endi f
atom cdec(nmem inmax) if (menxi max .and. nenk0) then

mem = nmem 1
el se

mem = i max
endi f

This atomic function reads and returns the value of the first argument. It also compares the first argument
with the second argument, and atomically stores a new value back to the first argument location if the first and

second argument are equal. All three arguments must be of type integer (kind=4).

Note

The return value for this function is the first argument, mem

The function is:

Chapter 3. Reference

Table 3.10. Compare and Swap Atomic Function

Function Additional Atomic Update
at oni ccas(nem conp, val) if (mem== conp) then
mem = val
endi f

Restrictions

This section lists restrictions on statements and features that can appear in device subprograms.

¢ Objects with the Pointer and Allocatable attribute are not allowed.

e Automatic arrays must be fixed size.

e Optional arguments are not allowed.

e Objects with character type must have LEN=1; character substrings are not supported.
e Recursive subroutines and functions are not allowed.

e STOP and PAUSE statements are not allowed.

e Input/Output statements are not allowed: READ, WRITE, PRINT, FORMAT, NAMELIST, OPEN, CLOSE,
BACKSPACE, REWIND, ENDFILE, INQUIRE.

e Alternate return specifications are not allowed.

» ENTRY statements are not allowed.

* Floating point exception handling is not supported.

e Fortran intrinsic functions not listed in Section 3.6.3 are not supported.
e Subroutine and function calls are supported only if they can be inlined.

e Cray pointers are not supported.

Host code

Host subprograms may use intrinsic functions, such as the new si zeof intrinsic function.

SIZEOF Intrinsic

Acallto si zeof (A), where Ai s avariable or expression, returns the number of bytes required to hold the
value of A.

integer(kind=4) :: i, j
j = sizeof (i) ! this assigns the value 4 to j

Fortran Modules

A Fortran module provides access to declaring interfaces to many of the CUDA device builtin routines.

29

Fortran Modules

To access this module, do one of the following:

e Add this line to your Fortran program:
use cudadevi ce

* Add this line to your C program:

#i ncl ude <cudadevi ce. h>

You can also use these routines in CUDA Fortran global and device subprograms, in CUF kernels, and in PGI
Accelerator compute regions in Fortran as well as in C. Further, the PGI compilers come with implementations
of these routines for host code, though these implementaiions are not specifically optimized for the host.

Table 3.11 lists the CUDA builtin routines that are available:

Table 3.11. CUDA Builtin Routines

-brev _brevll _clz _clzl

_cosf _dadd_rd _dadd_rn _dadd_ru
_dadd_rz _ddiv_rd _ddiv_rn _ddiv_ru
_ddiv_rz _dmul_rd _dmul_rn _dmul_ru
_dmul_rz _double2float_rd _double2float_rn _double2float_ru
_double2float_rz _double2hiint _double2int_rd _double2int_rn
_double2int_ru _double2int_rz _double2ll_rd _double2ll_rn
_double2ll_ru _double2ll_rz _double2uint_rd _double2uint_rn
_double2uint_ru _double2uint_rz _double2ull_rd _double2ull_rn
_double2ull_ru _double2ull_rz _double_as_long_long |_drcp_rd
_drcp_rn _drcp_ru _drep_rz _dsqrt_rd
_dsqrt_rn _dsqrt_ru _dsqrt_rz _explof

_expf _fadd_rd _fadd_rn _fadd_ru
_fadd_rz _fdiv_rd _fdiv_rn _fdiv_ru
_fdiv_rz fdivide fdividef _fdividef

_ffs _ffsll _float2half_rn _float2int_rd
_float2int_rn _float2int_ru _float2int_rz _float2ll_rd
_float2ll_rn _float2ll_ru _float2ll_rz _float_as_int
_fma_rd _fma_rn _fma_ru _fma_rz

_fmaf rd _fmaf rn _fmaf ru _fmaf 1z
_fmul_rd _fmul_rn _fmul_ru _fmul_rz
_frep_rd _frcp_r _frep_ru _frep_rz
_fsqrt_rd _fsqrt_rn _fsqrt_ru _fsqrt_rz
_half2float_rn _hiloint2double _int2double_rd _int2double_rn

30

Chapter 3. Reference

_int2double_ru

_int2double_rz

_int2float_rd

_int2float_rn

_int2float_ru _int2float_rz _int_as_float _lI2double_rd
_l12double_rn _l12double_ru _l12double_rz _l12float_rd
_l12float_rn _l12float_ru _2float_rz _log10f
_log2f _logf _longlong_as_double _mul24
_mulhi _popc _popcll _powf

_sad _saturatef _sinf _tanf

_uint2double_rd

_uint2double_rn

_uint2double_ru

_uint2double_rz

_uint2float_rd

_uint2float_rn

_uint2float_ru

_uint2float_rz

_ull2double_rd

_ull2double_rn

_ull2double_ru

_ull2double_rz

_ull2float_rd

_ull2float_rn

_ull2float_ru

_ull2float_rz

_umul24

_umulhi

_usad

31

32

Chapter 4. Runtime APIs

The system module cudaf or defines the interfaces to the Runtime API routines.

Most of the runtime API routines are integer functions that return an error code; they return a value of zero if
the call was successful, and a nonzero value if there was an error. To interpret the error codes, refer to “Error
Handling,” on page 43.

Initialization

No explicit initialization is required; the runtime initializes and connects to the device the first time a runtime
routine is called or a device array is allocated.

Tip

When doing timing runs, be aware that initialization can add some overhead.

Device Management

Use the functions in this section for device management.

cudaGetDeviceCount
i nteger function cudaGet Devi ceCount (nundev)
integer, intent(out) :: nundev

cudaGet Devi ceCount assigns the number of available devices to its first argument.

cudaSetDevice
i nteger function cudaSet Device(devnum)
integer, intent(in) :: devnum

cudaSet Devi ce selects the device to associate with this host thread.

cudaSetDeviceFlags
i nteger function cudaSet Device(flags)
integer, intent(in) :: flags

cudaSet Devi ceFl ags records how the CUDA runtime interacts with this host thread.

33

Thread Management

cudaGetDevice

i nteger function cudaGet Devi ce(devnum)
integer, intent(out) :: devhum

cudaGet Devi ce assigns the device number associated with this host thread to its first argument.

cudaGetDeviceProperties
i nteger function cudaGet Devi ceProperties(prop, devnum)
type(cudadevi ceprop), intent(out) :: prop
integer, intent(in) :: devnum

cudaGet Devi cePr operti es returns the properties of a given device.

cudaChooseDevice
i nteger function cudaChooseDevice (devhum prop)
integer, intent(out) :: devnhum
type(cudadevi ceprop), intent(in) :: prop

cudaChooseDevi ce assigns the device number that best matches the properties given in pr op to its first
argument.

Thread Management

Sometimes threads within a block access the same addresses in shared or global memory, thus creating
potential read-after-write, write-after-read, or write-after-write hazards for some of these memory accesses. To
avoid these potential issues, use the functions in this section for thread management.

cudaThreadSynchronize
i nteger function cudaThreadSynchr oni ze()

cudaThr eadSynchr oni ze blocks execution of the host subprogram until all preceding kernels and
operations are complete. It may return an error condition if one of the preceding operations fails.

cudaThreadExit

i nteger function cudaThreadExit ()

cudaThr eadExi t explicitly cleans up all runtime-related CUDA resources associated with the host thread.
Any subsequent CUDA calls or operations will reinitialize the runtime.

Calling cudaThreadExit is optional; it is implicitly called when the host thread exits.

Memory Management

Many of the memory management routines can take device arrays as arguments. Some can also take C types,
provided through the Fortran 2003 iso_c_binding module, as arguments to simplify interfacing to existing
CUDA C code.

34

Chapter 4. Runtime APIs

CUDA Fortran has extended the F2003 derived type TYPE(C_PTR) by providing a C device pointer, defined in
the cudaf or module, as TYPE(C_DEVPTR) . Consistent use of TYPE(C_PTR) and TYPE(C_DEVPTR), as
well as consistency checks between Fortran device arrays and host arrays, should be of benefit.

Currently, it is possible to construct a Fortran device array out of a TYPE(C_DEVPTR) by using an
extension of the iso_c_binding subroutine c¢_f_pointer. Under CUDA Fortran, c_{_pointer will take a

TYPE(C_DEVPTR) as the first argument, an allocatable device array as the second argument, a shape as
the third argument, and in effect transfer the allocation to the Fortran array. Similarly, there is also a function
C DEVLOC() defined which will create a TYPE(C_DEVPTR) that holds the C address of the Fortran device
array argument. Both of these features are subject to change when, in the future, proper Fortran pointers for
device data are supported.

Use the functions in this section for memory management.

cudaMalloc
i nteger function cudaMal | oc(devptr, count)

cudaMal | oc allocates data on the device. devpt r may be any allocatable, one-dimensional device array of a
supported type specified in Table 3.1, “Device Code Intrinsic Datatypes,” on page 21. The count is in terms of
elements. Or, devpt r may be of TYPE(C_DEVPTR), in which case the count is in bytes.

cudaMallocPitch

i nteger function cudaMal | ocPitch(devptr, pitch, w dth, height)

cudaMal | ocPi t ch allocates data on the device. devpt r may be any allocatable, two-dimensional device
array of a supported type specified in Table 3.1, “Device Code Intrinsic Datatypes,” on page 21. The wi dt h is
in terms of number of elements. The hei ght is an integer.

cudaMal | ocPi t ch may pad the data, and the padded width is returned in the variable pi t ch. devpt r
may also be of TYPE(C_DEVPTR), in which case the integer values are expressed in bytes.
cudaFree

i nteger function cudaFree(devptr)

cudaFr ee deallocates data on the device. devpt r may be any allocatable device array of a supported
type specified in Table 3.1, “Device Code Intrinsic Datatypes,” on page 21. Or, devpt r may be of
TYPE(C_DEVPTR).
cudaMallocArray
i nteger function cudaMal | ocArray(carray, cdesc, wi dth, height)
type(cudaArrayPtr) :: carray
t ype(cudaChannel For mat Desc) :: cdesc

integer :: wdth, height

cudaMal | ocArr ay allocates a data array on the device.

35

Memory Management

cudaFreeArray

i nteger function cudaFreeArray(carray)
type(cudaArrayPtr) :: carray

cudaFr eeArr ay frees an array that was allocated on the device.

cudaMemset

i nteger function cudaMenset (devptr, value, count)

cudaMenset sets a location or array to the specified value. devpt r may be any device scalar or array of a
supported type specified in Table 3.1, “Device Code Intrinsic Datatypes,” on page 21. The val ue must match
in type and kind. The count is in terms of elements. Or, devpt r may be of TYPE(C_DEVPTR), in which case
the count is in term of bytes, and the lowest byte of val ue is used.

cudaMemset2D

i nteger function cudaMenset2D(devptr, pitch, value, w dth, height)

cudaMenset 2D sets an array to the specified value. devpt r may be any device array of a supported type
specified in Table 3.1, “Device Code Intrinsic Datatypes,” on page 21. The val ue must match in type and
kind. The pi t ch, wi dt h, and hei ght are in terms of elements. Or, devpt r may be of TYPE(C_DEVPTR),
in which case the pi t ch, wi dt h, and hei ght are in terms of bytes, and the lowest byte of val ue is used.

cudaMemcpy

i nteger function cudaMentpy(dst, src, count, kdir)

cudaMenctpy copies data from one location to another. dst and sr ¢ may be any device or host,

scalar or array, of a supported type specified in Table 3.1, “Device Code Intrinsic Datatypes,” on page

21. The count is in terms of elements. kdi r may be optional; for more information, refer to “Data

Transfer Using Runtime Routines,” on page 20. If kdi r is specified, it must be one of the defined enums
cudaMentpyHost ToDevi ce, cudaMentpyDevi ceToHost , or cudaMentpyDevi ceToDevi ce.
Alternatively, dst and sr ¢ may be of TYPE(C_DEVPTR) or TYPE(C_PTR), in which case the count is in term
of bytes.

cudaMemcpyAsync

36

i nteger function cudaMencpyAsync(dst, src, count, kdir, strean)

cudaMenctpy copies data from one location to another. dst and sr ¢ may be any device or host,

scalar or array, of a supported type specified in Table 3.1, “Device Code Intrinsic Datatypes,” on page

21. The count is in terms of elements. kdi r may be optional; for more information, refer to “Data

Transfer Using Runtime Routines,” on page 20. If kdi r is specified, it must be one of the defined enums
cudaMentpyHost ToDevi ce, cudaMentpyDevi ceToHost , or cudaMentpyDevi ceToDevi ce.
Alternatively, dst and sr ¢ may be of TYPE(C_DEVPTR) or TYPE(C_PTR), in which case the count is in term
of bytes.

This function operates on page-locked host memory only. The copy can be associated with a stream by passing
a non-zero stream argument; otherwise the st r eamargument is optional and defaults to zero.

Chapter 4. Runtime APIs

cudaMemcpy2D
i nteger function cudaMencpy2D(dst, dpitch, src, spitch, wi dth, height, kdir)

cudaMencpy 2D copies data from one location to another. dst and sr ¢ may be any device or host array,
of a supported type specified in Table 3.1, “Device Code Intrinsic Datatypes,” on page 21. The wi dt h

and hei ght are in terms of elements. kdi r may be optional; for more information, refer to “Data
Transfer Using Runtime Routines,” on page 20. If kdi r is specified, it must be one of the defined enums
cudaMentpyHost ToDevi ce, cudaMentpyDevi ceToHost , or cudaMentpyDevi ceToDevi ce.
Alternatively, dst and sr ¢ may be of TYPE(C_DEVPTR) or TYPE(C_PTR), in which case the wi dt h and
hei ght are in term of bytes.

cudaMemcpy2DAsync

i nteger function cudaMencpy2DAsync(dst, dpitch, src, spitch, w dth,
hei ght, kdir, stream

cudaMencpy 2D copies data from one location to another. dst and sr ¢ may be any device or host array,
of a supported type specified in Table 3.1, “Device Code Intrinsic Datatypes,” on page 21. The wi dt h

and hei ght are in terms of elements. kdi r may be optional; for more information, refer to “Data
Transfer Using Runtime Routines,” on page 20. If kdi r is specified, it must be one of the defined enums
cudaMentpyHost ToDevi ce, cudaMentpyDevi ceToHost , or cudaMentpyDevi ceToDevi ce.
Alternatively, dst and sr ¢ may be of TYPE(C_DEVPTR) or TYPE(C_PTR), in which case the wi dt h and
hei ght are in term of bytes.

This function operates on page-locked host memory only. The copy can be associated with a stream by passing
a non-zero st r eamargument, otherwise the st r eamargument is optional and defaults to zero.
cudaMemcpyToArray
i nteger function cudaMencpyToArray(dsta, dstx, dsty, src, count, kdir)
type(cudaArrayPtr) :: dsta

integer :: dstx, dsty, count, kdir

cudaMenctpy ToAr r ay copies array data to and from the device.

cudaMemcpy2DToArray

i nteger function cudaMencpy2DToArray(dsta, dstx, dsty, src,
spitch, width, height, kdir)
type(cudaArrayPtr) :: dsta
integer :: dstx, dsty, spitch, width, height, kdir

cudaMenctpy2DToAr r ay copies array data to and from the device.

cudaMemcpyFromArray
i nteger function cudaMencpyFromArray(dst, srca, srcx, srcy, count, kdir)
type(cudaArrayPtr) :: srca
integer :: dstx, dsty, count, kdir

cudaMencpyFr omAr r ay copies array data to and from the device.

37

Memory Management

cudaMemcpy2DFromArray

i nteger function cudaMencpy2DFromArray(dst, dpitch, srca, srcx, srcy,
wi dt h, hei ght, kdir)
type(cudaArrayPtr) :: srca
integer :: dpitch, srcx, srcy, width, height, kdir

cudaMencpy2DFr omAr r ay copies array data to and from the device.

cudaMemcpyArrayToArray

i nteger function cudaMencpyArrayToArray(dsta, dstx, dsty,
srca, srcx, srcy, count, kdir)
type(cudaArrayPtr) :: dsta, srca
integer :: dstx, dsty, srcx, srcy, count, kdir

cudaMencpyAr ray ToAr r ay copies array data to and from the device.

cudaMemcpy2DArrayToArray

i nteger function cudaMencpy2DArrayToArray(dsta, dstx, dsty,
srca, srcx, srcy, width, height, kdir)
type(cudaArrayPtr) :: dsta, srca
integer :: dstx, dsty, srcx, srcy, width, height, kdir

cudaMenctpy2DAr r ay ToAr r ay copies array data to and from the device.

cudaMalloc3D

i nteger function cudaMal | oc3D(pitchptr, cext)
type(cudaPi tchedPtr), intent(out) :: pitchptr
type(cudaExtent), intent(in) :: cext

cudaMal | oc3Dallocates data on the device. pi t chpt r is a derived type defined in the cudaf or module.
cext is also a derived type which holds the extents of the allocated array. Alternatively, pi t chpt r may be any
allocatable, three-dimensional device array of a supported type specified in “Datatypes allowed,” on page 21.

cudaMalloc3DArray
i nteger function cudaMal | oc3DArray(carray, cdesc, cext)
type(cudaArrayPtr) :: carray
type(cudaChannel For mat Desc) :: cdesc

type(cudaExtent) :: cext

cudaMal | oc3DAr r ay allocates array data on the device.

cudaMemset3D

i nteger function cudaMenset 3D(pitchptr, value, cext)
type(cudaPi tchedPtr) :: pitchptr
integer :: value
type(cudaExtent) :: cext

cudaMenset 3D sets elements of an array, the extents in each dimension specified by cext , which was
allocated with cudaMal | oc3Dto a specified value.

38

Chapter 4. Runtime APIs

cudaMemcpy3D

i nteger function cudaMencpy3D(p)
type(cudaMentpy3DParns) :: p

cudaMentpy 3D copies elements from one 3D array to another as specified by the data held in the derived

type p.
cudaMemcpy3DAsync

i nteger function cudaMencpy3D(p, strean
type(cudaMentpy3DParns) :: p
integer :: stream

cudaMentpy3DAsync copies elements from one 3D array to another as specified by the data held in the
derived type p.

This function operates on page-locked host memory only. The copy can be associated with a stream by passing
anon-zero st r eamargument.

cudaMemcpyToSymbol

i nteger function cudaMencpyToSynbol (synbol, src, count, offset, kdir)
type(cudaSynbol) :: synbol
integer :: count, offset, kdir

cudaMentpyToSymbol copies data from the source to a device area in global or constant memory space
referenced by a symbol . sr ¢ may be any host scalar or array of a supported type as specified in “Datatypes
allowed,” on page 21. The count is in terms of elements.

cudaMemcpyFromSymbol

i nteger function cudaMencpyFronSynbol (dst, synbol, count, offset, kdir)
type(cudaSynbol) :: synbol
integer :: count, offset, kdir

cudaMencpyFr onSynbol copies data from a device area in global or constant memory space referenced
by a synbol to a destination on the host. dst may be any host scalar or array of a supported type specified in
“Datatypes allowed,” on page 21. The count is in terms of elements.

cudaMemcpyToSymbolAsync

i nteger function cudaMencpyToSynbol Async(synbol, src, count, offset, kdir, stream
type(cudaSynbol) :: synbol
integer :: count, offset, kdir
i nteger, optional :: stream

cudaMencpyToSynbol copies data from the source to a device area in global or constant memory space
referenced by a synbol . sr c may be any host scalar or array of a supported type specified in “Datatypes
allowed,” on page 21. The count is in terms of elements.

This function operates on page-locked host memory only. The copy can be associated with a stream by passing
a non-zero stream argument.

39

Memory Management

cudaMemcpyFromSymbolAsync

i nteger function cudaMencpyFronSynbol Async(dst, synbol, count, offset, kdir, stream
type(cudaSynbol) :: synbol
integer :: count, offset, kdir
i nteger, optional :: stream

cudaMencpyFr onSynbol copies data from a device area in global or constant memory space referenced
by a symbol to a destination on the host. dst may be any host scalar or array of a supported type specified in
“Datatypes allowed,” on page 21. The count is in terms of elements.

This function operates on page-locked host memory only. The copy can be associated with a stream by passing
a non-zero stream argument.

cudaGetSymbolAddress

i nteger function cudaGet Synbol Addr ess(devptr, symbol)
type(C _DEVPTR) :: devptr
type(cudaSynbol) :: synbol

cudaGet Synbol Addr ess returns in the devpt r argument the address of synbol on the device. A
synbol can be set to an external device name via a character string.

The following code sequence initializes a global device array “vx” from a CUDA C kernel:

type(cudaSynbol) :: csvx

type(c_devptr) :: cdvx

real, allocatable, device :: vx(:)

csvx = “vx”

I stat = cudaGet Synbol Addr ess(cdvx, csvx)
Call c_f_pointer(cdvx, vx, 100)

Vx = 0.0

cudaGetSymbolSize

i nteger function cudaGet Synmbol Si ze(si ze, synbol)

integer :: size

type(cudaSynbol) :: symbol
cudaGet Synbol Si ze sets the variable si ze to the size of a device area in global or constant memory
space referenced by the synbol .

cudaHostAlloc

i nteger function cudaHost Al |l oc(hostptr, size, flags)
type(C_PTR) :: hostptr
integer :: size, flags

cudaHost Al | oc allocates pinned memory on the host. It returns in host pt r the address of the page-
locked allocation, or returns an error if the memory is unavailable. Si ze is in bytes. The f | ags argument
enables different options to be specified that affect the allocation. The normal iso_c_binding subroutine
c_{f_pointer can be used to move the type(c_ptr) to a Fortran pointer.

40

Chapter 4. Runtime APIs

cudaHostGetDevicePointer

i nteger function cudaHost Get Devi cePoi nter (devptr, hostptr, flags)
type(C _DEVPTR) :: devptr
type(C _PTR) :: hostptr
integer :: flags

cudaHost Get Devi cePoi nt er returns a pointer to a device memory address corresponding to the pinned
memory on the host. host pt r is a pinned memory buffer that was allocated via cudaHost Al 1 oc() .
It returns in devpt r an address that can be passed to, and read and written by, a kernel which runs on
the device. The f | ags argument is provided for future releases. The normal iso_c_binding subroutine
c_{f_pointer can be used to move the type(c_devptr)to a device array.
cudaMallocHost
i nteger function cudaMal | ocHost (hostptr, size)
type(C_PTR) :: hostptr

i nteger :: size

cudaMal | ocHost allocates pinned memory on the host. It returns in host pt r the address of the
page-locked allocation, or returns an error if the memory is unavailable. si ze is in bytes. The normal
iso_c_binding subroutine c_{_pointer can be used to move the type(c_ptr) to a Fortran pointer.

cudaFreeHost

i nteger function cudaFreeHost (hostptr)
type(C_PTR) :: hostptr

cudaFr eeHost deallocates pinned memory on the host allocated with cudaMal | oHost .

cudaMemGetinfo

i nteger function cudaMenGetInfo(free, total)
i nt eger (ki nd=cuda_count_kind) :: free, total

cudaMentGet | nf o returns the amount of free and total memory available for allocation on the device. The
returned values units are in bytes.

Stream Management

Use the functions in this section for stream management.

cudaStreamCreate

i nteger function cudaStreanCreate(stream)
integer, intent(out) :: stream

cudaSt r eantCr eat e creates an asynchronous st r eamand assigns its identifier to its first argument.

41

Event Management

cudaStreamQuery

i nteger function cudaStreamuery(stream)
integer, intent(in) :: stream

cudaSt r eanQuer y tests whether all operations enqueued to the selected st r eamare complete; it returns
zero (success) if all operations are complete, and the value cudaEr r or Not Ready if not. It may also return
another error condition if some asynchronous operations failed.

cudaStreamSynchronize

i nteger function cudaStreanBSynchroni ze(stream)
integer, intent(in) :: stream

cudasSt r eanSynchr oni ze blocks execution of the host subprogram until all preceding kernels and
operations associated with the given st r eamare complete. It may return error codes from previous,
asynchronous operations.

cudaStreamDestroy

i nteger function cudaStreanmDestroy(stream)
integer, intent(in) :: stream

cudaSt r eanDest r oy releases any resources associated with the given st r eam

Event Management

Use the functions in this section to manage events.

cudaEventCreate

i nteger function cudaEvent Create(event)
type(cudaEvent), intent(out) :: event

cudaEvent Cr eat e creates an event object and assigns the event identifier to its first argument

cudaEventRecord
i nteger function cudaEvent Record(event, stream)
type(cudaEvent), intent(in) :: event
integer, intent(in) :: stream

cudaEvent Recor d issues an operation to the given st r eamto record an event . The event is recorded
after all preceding operations in the stream are complete. If st r eamis zero, the event is recorded after all
preceding operations in all streams are complete.

42

Chapter 4. Runtime APIs

cudaEventQuery
i nteger function cudaEvent Query(event)
type(cudaEvent), intent(in) :: event

cudaEvent Query tests whether an event has been recorded. It returns success (zero) if the event
has been recorded, and cudaEr r or Not Ready if it has not. It returns cudaEr r or | nval i dval ue if
cudaEvent Recor d has not been called for this event.

cudaEventSynchronize
i nteger function cudaEvent Synchroni ze(event)
type(cudaEvent), intent(in) :: event

cudaEvent Synchr oni ze blocks until the event has been recorded. It returns a value of
cudaError | nval i dval ue if cudaEvent Recor d has not been called for this event.

cudaEventDestroy
i nteger function cudaEvent Destroy(event)
type(cudaEvent), intent(in) :: event

cudaEvent Dest r oy destroys the resources associated with an event object.

cudaEventElapsedTime
i nteger function cudaEvent El apsedTine(time, start, end)
float :: time
type(cudaEvent), intent() :: start, end

cudaEvent El apsedTi me computes the elapsed time between two events (in milliseconds). It returns
cudakEr ror I nval i dVal ue if either event has not yet been recorded. This function is only valid with events
recorded on stream zero.

Error Handling

Use the functions in this section for error handling.

cudaGetLastError
i nteger function cudaGetLastError()
cudaGet Last Er r or returns the error code that was most recently returned from any runtime call in this
host thread.

cudaGetErrorString

function cudaGet ErrorString(errcode)
integer, intent(in) :: errcode
character*(*) :: cudaGetErrorString

cudaGet Err or St ri ng returns the message string associated with the given error code.

43

Version Management

Version Management

Use the functions in this section for version management.

cudaDriverGetVersion

i nteger function cudaDriver Get Versi on(i versi on)
integer :: iversion

cudaDri ver Get Ver si on returns the version number of the installed CUDA driver as i ver si on. If no
driver is installed, then it returns 0 as i ver si on.

This function automatically returns cudaEr r or I nval i dVval ue if the i ver si on argument is NULL.

cudaRuntimeGetVersion

i nteger function cudaRunti meGet Ver si on(i versi on)
integer :: iversion

cudaRunt i meGet Ver si on returns the version number of the installed CUDA Runtime as i ver si on.

This function automatically returns cudaEr r or I nval i dVval ue if the i ver si on argument is NULL.

44

Chapter 5. Examples

This chapter contains

For up-to-date information about the state of the current release, visit the frequently asked questions (FAQ)
section of the pgroup.com web page at: www.pgroup.com/support/index.htm

Matrix Multiplication Example

This example shows a program to compute the product C of two matrices A and B, as follows:

e Fach thread block computes one 16x16 submatrix of C;

e Each thread within the block computes one element of the submatrix.

The submatrix size is chosen so the number of threads in a block is a multiple of the warp size (32) and is less
than the maximum number of threads per thread block (512).

Each element of the result is the product of one row of A by one column of B. The program computes the
products by accumulating submatrix products; it reads a block submatrix of A and a block submatrix of B,
accumulates the submatrix product, then moves to the next submatrix of A rowwise and of B columnwise. The
program caches the submatrices of A and B in the fast shared memory.

For simplicity, the program assumes the matrix sizes are a multiple of 16, and has not been highly optimized
for execution time.

Source Code Listing

I start the nmodul e containing the matmul kernel
nmodul e mmul _nod
use cudaf or
cont ai ns
I mmul _kernel conputes A*B into C where
I Ais \xM Bis ML, Cis then NxL
attributes(gl obal) subroutine mmul _kernel(A, B, C N M L)
real :: A(NNM, B(ML), C(NL)
integer, value :: N M L
integer :: i, j, kb, k, tx, ty
| submatrices stored in shared nmenory
real, shared :: Asub(16,16), Bsub(16, 16)
I the value of C(i,j) being conputed

45

Matrix Multiplication Example

real :: Gj
I Get the thread indices
tx = threadi dx%
ty = threadi dx%
I This thread conmputes C(i,j) = sum(A(i,:) * B(:,j))
i (bl ocki dx%-1) * 16 + tx
j (bl ocki dx%y-1) * 16 + ty
Gj =0.0
! Do the k loop in chunks of 16, the bl ock size
do kb =1, M 16
I Fill the submatrices
| Each of the 16x16 threads in the thread bl ock
| | oads one el enent of Asub and Bsub
Asub(tx,ty) = A(i, kb+ty-1)
Bsub(tx,ty) = B(kb+tx-1,j)
I Wait until all elenents are filled
call syncthreads()
I Multiply the two submatrices
I Each of the 16x16 threads accunul ates the
I dot product for its elenent of C(i,])

do k = 1,16
Gj = Cij + Asub(tx, k) * Bsub(k,ty)
enddo

I Synchroni ze to make sure all threads are done
I reading the submatrices before overwiting them
I in the next iteration of the kb | oop
call syncthreads()
enddo
I Each of the 16x16 threads stores its el ement
I to the global C array
qi.j) = aj

end subroutine nmul _kernel

I The host routine to drive the matrix nultiplication
subroutine mul (A, B, C)

real, dimension(:,:) :: A B, C
I allocatable device arrays
real, device, allocatable, dinmension(:,:) :: Adev, Bdev, Cdev

I dinB variables to define the grid and bl ock shapes
type(dinB) :: dim&id, dinBlock

Get the array sizes
size(A 1
size(A 2
size(B, 2
Al l ocate the device arrays

al | ocate(Adev(N,M, Bdev(ML), Cdev(N L))

~— — —

!
N
M
L
!

I Copy A and B to the device
Adev = A(1:N 1: M
Bdev(:,:) = B(1: M 1:L)

| Create the grid and bl ock di mensi ons

dinid = din8(V16, L/16, 1)

di nBl ock = di nB(16, 16, 1)

call mmul _kernel <<<di m&i d, di mBl ock>>>(Adev, Bdev, Cdev,

I Copy the results back and free up nenory
C(1:N 1:L) = Cdev
deal | ocat e(Adev, Bdev, Cdev)

end subroutine mul

end nodul e mmul _nod

46

Chapter 5. Examples

Source Code Description

This source code module mul _nod has two subroutines. The host subroutine mul is a wrapper for the
kernel routine mul _ker nel .

MMUL

This host subroutine has two input arrays, A and B, and one output array, C, passed as assumed-shape arrays.
The routine performs the following operations:

It determines the size of the matrices in N, M and L.

It allocates device memory arrays Adev, Bdev, and Cdev.

It copies the arrays A and B to Adev and Bdev using array assignments.
It fills di nGri d and di nBl ock to hold the grid and thread block sizes.
It calls mmul _ker nel to compute Cdev on the device.

It copies Cdev back from device memory to C.

It frees the device memory arrays.

Because the data copy operations are synchronous, no extra synchronization is needed between the copy
operations and the kernel launch.

MMUL_KERNEL

This kernel subroutine has two device memory input arrays, A and B, one device memory output array, C, and
three scalars giving the array sizes. The thread executing this routine is one of 16x16 threads cooperating in a
thread block. This routine computes the dot product of A(i , :) *B(:, j) for a particular value of i andj ,
depending on the block and thread index.

It performs the following operations:

It determines the thread indices for this thread.

It determines the i and j indices, for which element of C(i , j) itis computing.

It initializes a scalar in which it will accumulate the dot product.

It steps through the arrays A and B in blocks of size 16.

For each block, it does the following steps:

e It loads one element of the submatrices of Aand B into shared memory.

* It synchronizes to make sure both submatrices are loaded by all threads in the block.
e It accumulates the dot product of its row and column of the submatrices.

e It synchronizes again to make sure all threads are done reading the submatrices before starting the next
block.

Finally, it stores the computed value into the correct element of C.

47

48

Chapter 6. Contact Information

You can contact The Portland Group at:

The Portland Group
STMicroelectronics, Inc.
Two Centerpointe Drive

Lake Oswego, OR 97035 USA

The PGI User Forum is monitored by members of the PGI engineering and support teams as well as other
PGI customers. The forum newsgroups may contain answers to commonly asked questions. Log in to the PGI
website to access the forum:

www.pgroup.com/userforum/index.php

Or contact us electronically using any of the following means:

Fax +1-503-682-2637
Sales sales@pgroup.com
Support trs@pgroup.com
WWwW WWW.pgroup.com

All technical support is by email or submissions using an online form at www.pgroup.com/support. Phone
support is not currently available.

Many questions and problems can be resolved at our frequently asked questions (FAQ) site at
www.pgroup.com/support/faq.htm.

PGI documentation is available at www.pgroup.com/resources/docs.htm or in your local copy of the
documentation in the release directory doc/index.htm.

49

50

	PGI® Cuda Fortran
	Contents
	Preface
	Intended Audience
	Organization
	Conventions
	Terminology
	Related Publications

	Chapter 1. Introduction
	Chapter 2. Programming Guide
	CUDA Fortran Kernels
	Thread Blocks
	Memory Hierarchy
	Subroutine / Function Qualifiers
	Attributes(host)
	Attributes(global)
	Attributes(device)
	Restrictions

	Variable Qualifiers
	Attributes(device)
	Attributes(constant)
	Attributes(shared)
	Attributes(pinned)

	Datatypes in Device Subprograms
	Predefined Variables in Device Subprograms
	Execution Configuration
	Asynchronous concurrent execution
	Concurrent Host and Device Execution
	Concurrent Stream Execution

	Kernel Loop Directive
	Restrictions on the CUF kernel directive

	Building a CUDA Fortran Program
	Emulation Mode

	Chapter 3. Reference
	New Subroutine and Function Attributes
	Host Subroutines and Functions
	Global Subroutines
	Device Subroutines and Functions
	Restrictions on Device Subprograms

	Variable Attributes
	Device data
	Constant data
	Shared data
	Value dummy arguments
	Pinned arrays

	Allocating Device and Pinned Arrays
	Allocating Device Memory
	Allocating Device Memory Using Runtime Routines
	Allocating Pinned Memory

	Data transfer between host and device memory
	Data Transfer Using Assignment Statements
	Implicit Data Transfer in Expressions
	Data Transfer Using Runtime Routines

	Invoking a kernel subroutine
	Device code
	Datatypes allowed
	Builtin variables
	Fortran intrinsics
	Fortran Numeric and Logical Intrinsics
	Fortran Mathematical Intrinsics
	Fortran Numeric Inquiry Intrinsics
	Fortran Bit Manipulation Intrinsics
	Fortran Reduction Intrinsics
	Fortran Random Number Intrinsics

	New Intrinsic Functions
	Synchronization Functions
	SYNCTHREADS
	SYNCTHREADS_AND
	SYNCTHREADS_COUNT
	SYNCTHREADS_OR
	Memory Fences
	THREADFENCE
	THREADFENCE_BLOCK
	THREADFENCE_SYSTEM
	GPU_TIME

	Warp-Vote Operations
	ALLTHREADS
	ANYTHREAD
	BALLOT

	Atomic Functions
	Arithmetic and Bitwise Atomic Functions
	Counting Atomic Functions
	Compare and Swap Atomic Function

	Restrictions

	Host code
	SIZEOF Intrinsic

	Fortran Modules

	Chapter 4. Runtime APIs
	Initialization
	Device Management
	cudaGetDeviceCount
	cudaSetDevice
	cudaSetDeviceFlags
	cudaGetDevice
	cudaGetDeviceProperties
	cudaChooseDevice

	Thread Management
	cudaThreadSynchronize
	cudaThreadExit

	Memory Management
	cudaMalloc
	cudaMallocPitch
	cudaFree
	cudaMallocArray
	cudaFreeArray
	cudaMemset
	cudaMemset2D
	cudaMemcpy
	cudaMemcpyAsync
	cudaMemcpy2D
	cudaMemcpy2DAsync
	cudaMemcpyToArray
	cudaMemcpy2DToArray
	cudaMemcpyFromArray
	cudaMemcpy2DFromArray
	cudaMemcpyArrayToArray
	cudaMemcpy2DArrayToArray
	cudaMalloc3D
	cudaMalloc3DArray
	cudaMemset3D
	cudaMemcpy3D
	cudaMemcpy3DAsync
	cudaMemcpyToSymbol
	cudaMemcpyFromSymbol
	cudaMemcpyToSymbolAsync
	cudaMemcpyFromSymbolAsync
	cudaGetSymbolAddress
	cudaGetSymbolSize
	cudaHostAlloc
	cudaHostGetDevicePointer
	cudaMallocHost
	cudaFreeHost
	cudaMemGetInfo

	Stream Management
	cudaStreamCreate
	cudaStreamQuery
	cudaStreamSynchronize
	cudaStreamDestroy

	Event Management
	cudaEventCreate
	cudaEventRecord
	cudaEventQuery
	cudaEventSynchronize
	cudaEventDestroy
	cudaEventElapsedTime

	Error Handling
	cudaGetLastError
	cudaGetErrorString

	Version Management
	cudaDriverGetVersion
	cudaRuntimeGetVersion

	Chapter 5. Examples
	Matrix Multiplication Example
	Source Code Listing
	Source Code Description
	MMUL
	MMUL_KERNEL

	Chapter 6. Contact Information

