

The Portland Group

 CUDA Fortran
 Programming Guide and Reference

 Release 2011

While every precaution has been taken in the preparation of this document, The Portland Group® (PGI®), a wholly-owned subsidiary of STMicroelectronics, Inc., makes no

warranty for the use of its products and assumes no responsibility for any errors that may appear, or for damages resulting from the use of the information contained herein.

The Portland Group retains the right to make changes to this information at any time, without notice. The software described in this document is distributed under license from

STMicroelectronics and/or The Portland Group and may be used or copied only in accordance with the terms of the license agreement ("EULA").

PGI Workstation, PGI Server, PGI Accelerator, PGF95, PGF90, PGFORTRAN, and PGI Unified Binary are trademarks; and PGI, PGHPF, PGF77, PGCC, PGC++, PGI Visual Fortran,

PVF, PGI CDK, Cluster Development Kit, PGPROF, PGDBG, and The Portland Group are registered trademarks of The Portland Group Incorporated. Other brands and names are

property of their respective owners.

No part of this document may be reproduced or transmitted in any form or by any means, for any purpose other than the purchaser's or the end user's personal use without the

express written permission of STMicroelectronics and/or The Portland Group.

PGI® Cuda Fortran
Copyright © 2010-2011 STMicroelectronics, Inc.

All rights reserved.

Printed in the United States of America

Release 2010, version 10.8, August 2010

Release 2010, version 10.9, September 2010

Release 2011, version 11.0, November 2010

Release 2011, version 11.3, March 2011

Release 2011, version 11.4, April 2011

ID: 1196951

Technical support: trs@pgroup.com

Sales: sales@pgroup.com

Web: www.pgroup.com

iii

Contents
Preface .. ix

Intended Audience ... ix

Organization .. ix

Conventions ... ix

Terminology ... x

Related Publications .. x

1. Introduction .. 1

2. Programming Guide .. 3

CUDA Fortran Kernels .. 3

Thread Blocks .. 4

Memory Hierarchy .. 4

Subroutine / Function Qualifiers .. 4

Attributes(host) .. 5

Attributes(global) .. 5

Attributes(device) ... 5

Restrictions .. 5

Variable Qualifiers .. 5

Attributes(device) ... 5

Attributes(constant) .. 6

Attributes(shared) ... 6

Attributes(pinned) .. 6

Datatypes in Device Subprograms ... 6

Predefined Variables in Device Subprograms .. 7

Execution Configuration ... 7

Asynchronous concurrent execution .. 8

Concurrent Host and Device Execution .. 8

Concurrent Stream Execution ... 8

Kernel Loop Directive .. 8

Restrictions on the CUF kernel directive ... 10

Building a CUDA Fortran Program ... 11

Emulation Mode ... 11

iv

3. Reference ... 13

New Subroutine and Function Attributes ... 13

Host Subroutines and Functions .. 13

Global Subroutines .. 13

Device Subroutines and Functions ... 14

Restrictions on Device Subprograms .. 14

Variable Attributes ... 14

Device data .. 14

Constant data .. 15

Shared data .. 16

Value dummy arguments .. 17

Pinned arrays ... 17

Allocating Device and Pinned Arrays .. 17

Allocating Device Memory .. 17

Allocating Device Memory Using Runtime Routines .. 18

Allocating Pinned Memory .. 18

Data transfer between host and device memory ... 19

Data Transfer Using Assignment Statements ... 19

Implicit Data Transfer in Expressions ... 19

Data Transfer Using Runtime Routines ... 20

Invoking a kernel subroutine .. 20

Device code ... 21

Datatypes allowed ... 21

Builtin variables .. 21

Fortran intrinsics .. 22

New Intrinsic Functions ... 24

Warp-Vote Operations .. 26

Atomic Functions .. 27

Restrictions .. 29

Host code .. 29

SIZEOF Intrinsic .. 29

Fortran Modules ... 29

4. Runtime APIs .. 33

Initialization ... 33

Device Management ... 33

cudaGetDeviceCount .. 33

cudaSetDevice ... 33

cudaSetDeviceFlags .. 33

cudaGetDevice .. 34

cudaGetDeviceProperties .. 34

cudaChooseDevice ... 34

Thread Management .. 34

cudaThreadSynchronize ... 34

cudaThreadExit ... 34

Memory Management .. 34

PGI® Cuda Fortran

v

cudaMalloc .. 35

cudaMallocPitch .. 35

cudaFree .. 35

cudaMallocArray ... 35

cudaFreeArray .. 36

cudaMemset ... 36

cudaMemset2D ... 36

cudaMemcpy .. 36

cudaMemcpyAsync .. 36

cudaMemcpy2D .. 37

cudaMemcpy2DAsync .. 37

cudaMemcpyToArray .. 37

cudaMemcpy2DToArray .. 37

cudaMemcpyFromArray .. 37

cudaMemcpy2DFromArray .. 38

cudaMemcpyArrayToArray .. 38

cudaMemcpy2DArrayToArray .. 38

cudaMalloc3D .. 38

cudaMalloc3DArray ... 38

cudaMemset3D ... 38

cudaMemcpy3D .. 39

cudaMemcpy3DAsync .. 39

cudaMemcpyToSymbol ... 39

cudaMemcpyFromSymbol ... 39

cudaMemcpyToSymbolAsync ... 39

cudaMemcpyFromSymbolAsync ... 40

cudaGetSymbolAddress ... 40

cudaGetSymbolSize .. 40

cudaHostAlloc ... 40

cudaHostGetDevicePointer .. 41

cudaMallocHost .. 41

cudaFreeHost .. 41

cudaMemGetInfo ... 41

Stream Management .. 41

cudaStreamCreate .. 41

cudaStreamQuery .. 42

cudaStreamSynchronize .. 42

cudaStreamDestroy .. 42

Event Management .. 42

cudaEventCreate .. 42

cudaEventRecord .. 42

cudaEventQuery .. 43

cudaEventSynchronize .. 43

cudaEventDestroy .. 43

cudaEventElapsedTime ... 43

Error Handling ... 43

vi

cudaGetLastError .. 43

cudaGetErrorString .. 43

Version Management ... 44

cudaDriverGetVersion .. 44

cudaRuntimeGetVersion .. 44

5. Examples .. 45

Matrix Multiplication Example ... 45

Source Code Listing ... 45

Source Code Description .. 47

6. Contact Information .. 49

vii

Tables
2.1. Intrinsic Datatypes .. 6

3.1. Device Code Intrinsic Datatypes .. 21

3.2. Fortran Numeric and Logical Intrinsics .. 22

3.3. Fortran Mathematical Intrinsics .. 22

3.4. Fortran Numeric Inquiry Intrinsics .. 23

3.5. Fortran Bit Manipulation Intrinsics .. 23

3.6. Fortran Reduction Intrinsics ... 23

3.7. Fortran Random Number Intrinsics ... 24

3.8. Arithmetic and Bitwise Atomic Functions .. 27

3.9. Counting Atomic Functions ... 28

3.10. Compare and Swap Atomic Function .. 29

3.11. CUDA Builtin Routines ... 30

viii

ix

Preface
This document describes CUDA Fortran, a small set of extensions to Fortran that supports and is built upon the

CUDA computing architecture.

Intended Audience
This guide is intended for application programmers, scientists and engineers proficient in programming with

the Fortran, C, and/or C++ languages. The PGI tools are available on a variety of operating systems for the X86,

AMD64, and Intel 64 hardware platforms. This guide assumes familiarity with basic operating system usage.

Organization
The organization of this document is as follows:

Chapter 1, “Introduction”

contains a general introduction

Chapter 2, “Programming Guide”

serves as a programming guide for CUDA Fortran

Chapter 3, “Reference”

describes the CUDA Fortran language reference

Chapter 4, “Runtime APIs”

describes the interface between CUDA Fortran and the CUDA Runtime API

Chapter 5, “Examples”

provides sample code and an explanation of the simple example.

Conventions
This guide uses the following conventions:

italic

is used for emphasis.

Terminology

x

Constant Width

is used for filenames, directories, arguments, options, examples, and for language statements in the text,

including assembly language statements.

Bold

is used for commands.

[item1]

in general, square brackets indicate optional items. In this case item1 is optional. In the context of p/t-

sets, square brackets are required to specify a p/t-set.

{ item2 | item 3}

braces indicate that a selection is required. In this case, you must select either item2 or item3.

filename ...

ellipsis indicate a repetition. Zero or more of the preceding item may occur. In this example, multiple

filenames are allowed.

FORTRAN

Fortran language statements are shown in the text of this guide using a reduced fixed point size.

C/C++

C/C++ language statements are shown in the test of this guide using a reduced fixed point size.

The PGI compilers and tools are supported on both 32-bit and 64-bit variants of the Linux and Windows

operating systems on a variety of x86-compatible processors. There are a wide variety of releases and

distributions of each of these types of operating systems.

Terminology
If there are terms in this guide with which you are unfamiliar, PGI provides a glossary of terms which you can

access at www.pgroup.com/support/definitions.htm

Related Publications
The following documents contain additional information related to CUDA Fortran programming.

• ISO/IEC 1539-1:1997, Information Technology – Programming Languages – FORTRAN, Geneva, 1997

(Fortran 95).

• NVIDIA CUDA Programming Guide, NVIDIA, Version 3.1.1, 7/21/2010. Available online at http://

www.nvidia.com/cuda.

• NVIDIA CUDA Compute Unified Device Architecture Reference Manual, NVIDIA, Version 3.1, June 2010.

Available online at http://www.nvidia.com/cuda.

• PGI Users Guide, The Portland Group, Release 10.9, September, 2009. Available online at http://

www.pgroup.com/doc/pgiug.pdf.

1

Chapter 1. Introduction
Welcome to Release 2011 of PGI CUDA Fortran, a small set of extensions to Fortran that supports and is built

upon the CUDA computing architecture.

Graphic processing units or GPUs have evolved into programmable, highly parallel computational units with

very high memory bandwidth, and tremendous potential for many applications. GPU designs are optimized

for the computations found in graphics rendering, but are general enough to be useful in many data-parallel,

compute-intensive programs.

NVIDIA introduced CUDA™, a general purpose parallel programming architecture, with compilers and

libraries to support the programming of NVIDIA GPUs. CUDA comes with an extended C compiler, here

called CUDA C, allowing direct programming of the GPU from a high level language. The programming model

supports four key abstractions: cooperating threads organized into thread groups, shared memory and barrier

synchronization within thread groups, and coordinated independent thread groups organized into a grid.

A CUDA programmer must partition the program into coarse grain blocks that can be executed in parallel.

Each block is partitioned into fine grain threads, which can cooperate using shared memory and barrier

synchronization. A properly designed CUDA program will run on any CUDA-enabled GPU, regardless of the

number of available processor cores.

CUDA Fortran includes a Fortran 2003 compiler and tool chain for programming NVIDIA GPUs using Fortran.

PGI 2011 includes support for CUDA Fortran on Linux, Mac OS X and Windows. CUDA Fortran is an analog

to NVIDIA's CUDA C compiler. Compared to the PGI Accelerator directives-based model and compilers, CUDA

Fortran is a lower-level explicit programming model with substantial runtime library components that give

expert programmers direct control of all aspects of GPGPU programming.

The CUDA Fortran extensions described in this document allow the following operations in a Fortran program:

• Declaring variables that are allocated in the GPU device memory

• Allocating dynamic memory in the GPU device memory

• Copying data from the host memory to the GPU memory, and back

• Writing subroutines and functions to execute on the GPU

• Invoking GPU subroutines from the host

• Allocating pinned memory on the host

2

• Allocating pinned memory on the host

• Using asynchronous transfers between the host and GPU

3

Chapter 2. Programming Guide
This chapter introduces the CUDA programming model through examples written in CUDA Fortran. For a

reference for CUDA Fortran, refer to Chapter 3, “Reference,” on page 13.

CUDA Fortran Kernels
CUDA Fortran allows the definition of Fortran subroutines that execute in parallel on the GPU when called from

the Fortran program which has been invoked and is running on the host. Such a subroutine is called a device

kernel or kernel.

A call to a kernel specifies how many parallel instances of the kernel must be executed; each instance will be

executed by a different CUDA thread. The CUDA threads are organized into thread blocks, and each thread has

a global thread block index, and a local thread index within its thread block.

A kernel is defined using the attributes(global) specifier on the subroutine statement; a kernel is

called using special chevron syntax to specify the number of thread blocks and threads within each thread

block:

! Kernel definition
attributes(global) subroutine ksaxpy(n, a, x, y)
 real, dimension(*) :: x,y
 real, value :: a
 integer, value :: n, i
 i = (blockidx%x-1) * blockdim%x + threadidx%x
 if(i <= n) y(i) = a * x(i) + y(i)
end subroutine

! Host subroutine
subroutine solve(n, a, x, y)
 real, device, dimension(*) :: x, y
 real :: a
 integer :: n
 ! call the kernel
 call ksaxpy<<<n/64, 64>>>(n, a, x, y)
end subroutine

In this case, the call to the kernel ksaxpy specifies n/64 thread blocks, each with 64 threads. Each thread

is assigned a thread block index accessed through the built-in blockidx variable, and a thread index

accessed through threadidx. In this example, each thread performs one iteration of the common SAXPY

loop operation.

Thread Blocks

4

Thread Blocks
Each thread is assigned a thread block index accessed through the built-in blockidx variable, and a thread

index accessed through threadidx. The thread index may be a one-, two-, or three-dimensional index.

In CUDA Fortran, the thread index for each dimension starts at one. A unique thread ID is assigned to each

thread, computed from the thread index.

For a one-dimensional thread block, the thread index is equal to the thread ID. For a two-dimensional thread

block of size (Dx,Dy), the thread ID is equal to (x+Dx(y-1)). For a three-dimensional thread block of size

(Dx,Dy,Dz), the thread ID is (x+Dx(y-1)+Dy(z-1)).

Threads in the same thread block may cooperate by using shared memory, and by synchronizing at a barrier

using the SYNCTHREADS() intrinsic. Each thread in the block waits at the call to SYNCTHREADS() until all

threads have reached that call. The shared memory acts like a low-latency, high bandwidth software managed

cache memory. Currently, the maximum number of threads in a thread block is 512.

A kernel may be invoked with many thread blocks, each with the same thread block size. The thread blocks

are organized into a one- or two-dimensional grid of blocks, so each thread has a thread index within the

block, and a block index within the grid. When invoking a kernel, the first argument in the chevron <<<>>>

syntax is the grid size, and the second argument is the thread block size. Thread blocks must be able to

execute independently; two thread blocks may be executed in parallel or one after the other, by the same core

or by different cores.

Memory Hierarchy
CUDA Fortran programs have access to several memory spaces. On the host side, the host program can directly

access data in the host main memory. It can also directly copy data to and from the device global memory;

such data copies require DMA access to the device, so are slow relative to the host memory. The host can also

set the values in the device constant memory, again implemented using DMA access.

On the device side, data in global device memory can be read or written by all threads. Data in constant

memory space is initialized by the host program; all threads can read data in constant memory. Accesses to

constant memory are typically faster than accesses to global memory, but it is read-only to the threads and

limited in size. Threads in the same thread block can access and share data in shared memory; data in shared

memory has a lifetime of the thread block. Each thread can also have private local memory; data in thread

local memory may be implemented as processor registers or may be allocated in the global device memory;

best performance will often be obtained when thread local data

Subroutine / Function Qualifiers
A subroutine or function in CUDA Fortran has an additional attribute, designating whether it is executed on

the host or on the device, and if the latter, whether it is a kernel, called from the host, or called from another

device subprogram.

• A subprogram declared with attributes(host), or with the host attribute by default, is called a host

subprogram.

• A subprogram declared with attributes(global) or attributes(device) is called a device

subprogram.

Chapter 2. Programming Guide

5

• A subroutine declared with attributes(global) is also called a kernel subroutine.

Attributes(host)
The host attribute, specified on the subroutine or function statement, declares that the subroutine or function

is to be executed on the host. Such a subprogram can only be called from another host subprogram. The

default is attributes(host), if none of the host, global, or device attributes is specified.

Attributes(global)
The global attribute may only be specified on a subroutine statement; it declares that the subroutine is a

kernel subroutine, to be executed on the device, and may only be called from the host using a kernel call

containing the chevron syntax and runtime mapping parameters.

Attributes(device)
The device attribute, specified on the subroutine or function statement, declares that the subprogram is to

be executed on the device; such a routine must be called from a subprogram with the global or device

attribute.

Restrictions
The following restrictions apply to subprograms:

• A device subprogram must not be recursive.

• A device subprogram must not contain variables with the SAVE attribute, or with data initialization.

• A kernel subroutine may not also have the device or host attribute.

• A device subprogram must not have optional arguments. Dummy arguments in a device subprogram must

not have the pointer attribute.

• Calls to a kernel subroutine must specify the execution configuration, as described in “Predefined Variables

in Device Subprograms,” on page 7. Such a call is asynchronous, that is, the host routine making the

call continues to execute before the device has completed its execution of the kernel subroutine.

• Device subprograms may not be contained in a host subroutine or function, and may not contain any

subroutines or functions.

Variable Qualifiers
Variables in CUDA Fortran have a new attribute, which declares in which memory the data is allocated. By

default, variables declared in modules or host subprograms are allocated in the host main memory. At most

one of the device, constant, shared, or pinned attributes may be specified for a variable.

Attributes(device)
A variable with the device attribute is called a device variable, and is allocated in the device global memory.

• If declared in a module, the variable may be accessed by any subprogram in that module and by any

subprogram that uses the module.

Datatypes in Device Subprograms

6

• If declared in a host subprogram, the variable may be accessed by that subprogram or subprograms

contained in that subprogram.

A device array may be an explicit-shape array, an allocatable array, or an assumed-shape dummy array. An

allocatable device variable has a dynamic lifetime, from when it is allocated until it is deallocated. Other device

variables have a lifetime of the entire application.

Attributes(constant)

A variable with the constant attributes is called a device constant variable. Device constant variables are

allocated in the device constant memory space. If declared in a module, the variable may be accessed by any

subprogram in that module and by any subprogram that uses the module. Device constant data may not be

assigned or modified in any device subprogram, but may be modified in host subprograms. Device constant

variables may not be allocatable, and have a lifetime of the entire application.

Attributes(shared)

A variable with the shared attributed is called a device shared variable or a shared variable. A shared

variable may only be declared in a device subprogram, and may only be accessed within that subprogram,

or by other device subprograms to which it is passed as an argument. A shared variable may not be data

initialized. A shared variable is allocated in the device shared memory for a thread block, and has a lifetime

of the thread block. It can be read or written by all threads in the block, though a write in one thread is only

guaranteed to be visible to other threads after the next call to the SYNCTHREADS() intrinsic.

Attributes(pinned)

A variable with the pinned attributes is called a pinned variable. A pinned variable must be an allocatable

array. When a pinned variable is allocated, it will be allocated in host pagelocked memory. The advantage of

using pinned variables is that copies from page-locked memory to device memory are faster than copies from

normal paged host memory. Some operating systems or installations may restrict the use, availability, or size of

page-locked memory; if the allocation in page-locked memory fails, the variable will be allocated in the normal

host paged memory.

Datatypes in Device Subprograms
The following intrinsic datatypes are allowed in device subprograms and device data:

Table 2.1. Intrinsic Datatypes

Type Type Kind

integer 1,2,4,8

logical 1,2,4,8

real 4,8

double precision equivalent to real(kind=8)

Chapter 2. Programming Guide

7

complex 4,8

character(len=1) 1

Derived types may contain members with these intrinsic datatypes or other allowed derived types.

Predefined Variables in Device Subprograms
Device subprograms have access to block and grid indices and dimensions through several builtin read-only

variables. These variables are of type dim3; the module cudafor defines the derived type dim3 as follows:

type(dim3)
 integer(kind=4) :: x,y,z
end type

These predefined variables, except for warpsize, are not accessible in host subprograms.

• The variable threadidx contains the thread index within its thread block; for one- or two-dimensional

thread blocks, the threadidx%y and/or threadidx%z components have the value one.

• The variable blockdim contains the dimensions of the thread block; blockdim has the same value for all

thread blocks in the same grid.

• The variable blockidx contains the block index within the grid; as with threadidx, for one-dimensional

grids, blockidx%y has the value one. The value of blockidx%z is always one.

• The variable griddim contains the dimensions of the grid; the value of griddim%z is always one.

• The variable is warpsize is declared to be type integer. Threads are executed in groups of 32, called

warps; warpsize contains the number of threads in a warp.

Execution Configuration
A call to a kernel subroutine must specify an execution configuration. The execution configuration defines

the dimensionality and extent of the grid and thread blocks that execute the subroutine. It may also specify a

dynamic shared memory extent, in bytes, and a stream identifier, to support concurrent stream execution on

the device.

A kernel subroutine call looks like this:

call kernel<<<grid,block[,bytes[,streamid]]>>>(arg1,arg2,…)

where

• grid and block are either integer expressions (for one-dimensional grids and thread blocks), or are

type(dim3), for one- or two-dimensional grids and one-, two-, or three-dimensional thread blocks.

• If grid is type(dim3), the value of grid%z must be one, and block%x and block%y must be equal

to or greater than one.

• If block is type(dim3), the value of each component must be equal to or greater than one, and the

product of the component values must be less than or equal to 512.

• The value of bytes must be an integer; it specifies the number of bytes of shared memory to be allocated

for each thread block, in addition to the statically allocated shared memory. This memory is used for the

Asynchronous concurrent execution

8

assumed-size shared variables in the thread block; see Section 3.2.3. If not specified, its value is treated as

zero.

• The value of streamid must be an integer greater than or equal to zero; it specifies the stream to which

this call is associated.

Asynchronous concurrent execution
There are two components to asynchronous concurrent execution with CUDA Fortran.

Concurrent Host and Device Execution
When a host subprogram calls a kernel subroutine, the call actually returns to the host program before the

kernel subroutine begins execution. The call can be treated as a kernel launch operation, where the launch

actually corresponds to placing the kernel on a queue for execution by the device. In this way, the host can

continue executing, including calling or queueing more kernels for execution on the device. By calling the

runtime routine cudaThreadSynchronize, the host program can synchronize and wait for all previously

launched or queued kernels.

Programmers must be careful when using concurrent host and device execution; in cases where the host

program reads or modifies device or constant data, the host program should synchronize with the device to

avoid erroneous results.

Concurrent Stream Execution
Operations involving the device, including kernel execution and data copies to and from device memory, are

implemented using stream queues. An operation is placed at the end of the stream queue, and will only be

initiated when all previous operations on that queue have been completed.

An application can manage more concurrency by using multiple streams. Each user-created stream manages

its own queue; operations on different stream queues may execute out-of-order with respect to when they were

placed on the queues, and may execute concurrently with each other.

The default stream, used when no stream identifier is specified, is stream zero; stream zero is special in that

operations on the stream zero queue will begin only after all preceding operations on all queues are complete,

and no subsequent operations on any queue begin until the stream zero operation is complete.

Kernel Loop Directive
CUDA Fortran allows automatic kernel generation and invocation from a region of host code containing one

or more tightly nested loops. Launch configuration and mapping of the loop iterations onto the hardware is

controlled and specified as part of the directive body using the familiar CUDA chevron syntax. As with any

kernel, the launch is asynchronous. The program can use cudaThreadSynchronize() or CUDA Events to wait

for the completion of the kernel.

The work in the loops specified by the directive is executed in parallel, across the thread blocks and grid; it

is the programmer's responsibility to ensure that parallel execution is legal and produces the correct answer.

The one exception to this rule is a scalar reduction operation, such as summing the values in a vector or

matrix. For these operations, the compiler handles the generation of the final reduction kernel, inserting

synchronization into the kernel as appropriate.

Chapter 2. Programming Guide

9

Syntax
The general form of the kernel directive is:

 !$cuf kernel do[(n)] <<< grid, block >>>

The compiler maps the launch configuration specified by the grid and block values onto the outermost

n loops, starting at loop n and working out. The grid and block values can be an integer scalar or a

parenthesized list. Alternatively, using asterisks tells the compiler to choose a thread block shape and/or

compute the grid shape from the thread block shape and the loop limits. Loops which are not mapped onto

the grid and block values are run sequentially on each thread.

Example 1
 !$cuf kernel do(2) <<< (*,*), (32,4) >>>
 do j = 1, m
 do i = 1, n
 a(i,j) = b(i,j) +c(i,j)
 end do
 end do

In this example, the directive defines a two-dimensional thread block of size 32x4.

The body of the doubly-nested loop is turned in the kernel body:

ThreadIdx%x runs from 1 to 32 and is mapped onto the inner i loop.

ThreadIdx%y runs from 1 to 4 and is mapped onto the outer j loop.

The grid shape, specified as (*,*), is computed by the compiler and runtime by

dividing the loop trip counts n and m by the thread block size, so all iterations are

computed.

Example 2
 !$cuf kernel do <<< *, 256 >>>
 do j = 1, m
 do i = 1, n
 a(i,j) = b(i,j) +c(i,j)
 end do
 end do

Without an explicit n on the do, the schedule applies just to the outermost loop, that is,

the default value is 1.

In this case, only the outer j loop is run in parallel with a thread block size of 256.

The inner i dimension is run sequentially on each thread.

You might consider if the code in Example 2 would perform better if the two loops were interchanged.

Alternatively, you could specify a configuration like the following in which the threads read and write the

matrices in coalesced fashion.

 !$cuf kernel do(2) <<< *, (256,1) >>>
 do j = 1, m
 do i = 1, n
 a(i,j) = b(i,j) +c(i,j)
 end do
 end do

Kernel Loop Directive

10

Example 3
In Example 2, the 256 threads in each block each do one element of the matrix addition. Further expansion

of the work along the i direction and all work across the j dimension is handled by the mapping onto the grid

dimensions.

To "unroll" more work into each thread, specify non-asterisk values for the grid, as illustrated here:

 !$cuf kernel do(2) <<< (1,*), (256,1) >>>
 do j = 1, m
 do i = 1, n
 a(i,j) = b(i,j) +c(i,j)
 end do
 end do

Now the threads in a thread block handle all values in the i direction, in concert, incrementing by 256. One

thread block is created for each j. Specifically, the j loop is mapped onto the grid x-dimension, because the

compiler skips over the constant 1 in the i loop grid size. In CUDA built-in language, gridDim%x is equal to m.

Restrictions on the CUF kernel directive
The following restrictions apply to CUF kernel directives:

• If the directive specifies n dimensions, it must be followed by at least that many tightly-nested DO loops.

• The tightly-nested DO loops must have invariant loop limits: the lower limit, upper limit, and increment

must be invariant with respect to any other loop in the kernel do.

• There can be no GOTO or EXIT statements within or between any loops that have been mapped onto the

grid and block configuration values.

• The body of the loops may contain assignment statements, IF statements, loops, and GOTO statements.

• Only CUDA Fortran dataypes are allowed within the loops.

• CUDA Fortran intrinsic functions are allowed, if they are allowed in device code, but the device-specific

intrinsics such as syncthreads, atomic functions, etc. are not.

• Subroutine and function calls to attributes(device) subprograms are allowed if they are in the same module

as the code containing the directive.

• Arrays used or assigned in the loop must have the device attribute.

• Implicit loops and F90 array syntax are not allowed within the directive loops.

• Scalars used or assigned in the loop must either have the device attribute, or the compiler will make a

device copy of that variable live for the duration of the loops, one for each thread. Except in the case

of reductions; when a reduction has a scalar target, the compiler generates a correct sequence of

synchronized operations to produce one copy either in device global memory or on the host.

Summation Example

The simplest directive form for performing a dot product on two device arrays takes advantage of the

properties for scalar use outlined previously.

Chapter 2. Programming Guide

11

 rsum = 0.0
 !$cuf kernel do <<< *, * >>>
 do i = 1, n
 rsum = rsum + x(i) * y(i)
 end do

For reductions, the compiler recognizes the use of the scalar and generates just one final result.

This CUF kernel can be followed by another CUF kernel in the same subprogram:

 !$cuf kernel do <<< *, * >>>
 do i = 1, n
 rsum = x(i) * y(i)
 z(i) = rsum
 end do

In this CUF kernel, the compiler recognizes rsum as a scalar temporary which should be allocated locally on

every thread. However, use of rsum on the host following this loop is undefined.

Building a CUDA Fortran Program
CUDA Fortran is supported by the PGI Fortran compilers when the filename uses a CUDA Fortran extension.

The .cuf extension specifies that the file is a free-format CUDA Fortran program; the .CUF extension may

also be used, in which case the program is processed by the preprocessor before being compiled. To compile

a fixed-format program, add the command line option –Mfixed. CUDA Fortran extensions can be enabled in

any Fortran source file by adding the –Mcuda command line option.

Emulation Mode
PGI Fortran compilers support an emulation mode for program development on workstations or systems

without a CUDA-enabled GPU and for debugging. To build a program using emulation mode, compile and link

with the –Mcuda=emu command line option. In emulation mode, the device code is compiled for and runs on

the host, allowing the programmer to use a host debugger.

It’s important to note that the emulation is far from exact. In particular, emulation mode may execute a single

thread block at a time. This will not expose certain errors, such as memory races. In emulation mode, the host

floating point units and intrinsics are used, which may produce slightly different answers than the device units

and intrinsics.

12

13

Chapter 3. Reference
This chapter is the CUDA Fortran Language Reference.

New Subroutine and Function Attributes
CUDA Fortran adds new attributes to subroutines and functions. This chapter describes how to specify the new

attributes, their meaning and restrictions.

A Subroutine may have the host, global, or device attribute, or may have both host and device attribute.

A Function may have the host or device attribute, or both. These attributes are specified using the

attributes(attr) prefix on the Subroutine or Function statement; if there is no attributes prefix on the

subprogram statement, then default rules are used, as described in the following sections.

Host Subroutines and Functions

The host attribute may be explicitly specified on the Subroutine or Function statement as follows:

attributes(host) subroutine sub(…)
attributes(host) integer function func(…)
integer attributes(host) function func(…)

The host attributes prefix may be preceded or followed by any other allowable subroutine or function prefix

specifiers (recursive, pure, elemental, function return datatype). A subroutine or function with the host

attribute is called a host subroutine or function, or a host subprogram. A host subprogram is compiled for

execution on the host processor. A subprogram with no attributes prefix has the host attribute by default.

Global Subroutines

The global attribute may be explicitly specified on the Subroutine statement as follows:

attributes(global) subroutine sub(…)

Functions may not have the global attribute. A subroutine with the global attribute is called a kernel

subroutine. A kernel subroutine may not be recursive, pure, or elemental, so no other subroutine prefixes

are allowed. A kernel subroutine is compiled as a kernel for execution on the device, to be called from a host

routine using an execution configuration. A kernel subroutine may not be contained in another subroutine or

function, and may not contain any other subprogram.

Variable Attributes

14

Device Subroutines and Functions
The device attribute may be explicitly specified on the Subroutine or Function statement as follows:

attributes(device) subroutine sub(…)
attributes(device) datatype function func(…)
datatype attributes(device) function func(…)

A subroutine or function with the device attribute may not be recursive, pure, or elemental, so no other

subroutine or function prefixes are allowed, except for the function return datatype. A subroutine or function

with the device or kernel attribute is called a device subprogram. A device subprogram is compiled for

execution on the device. A subroutine or function with the device attribute must appear within a Fortran

module, and may only be called from device subprograms in the same module.

Restrictions on Device Subprograms
A subroutine or function with the device or global attribute must satisfy the following restrictions:

• It may not be recursive, nor have the recursive prefix on the subprogram statement.

• It may not be pure or elemental, nor have the pure or elemental prefix on the subprogram statement.

• It may not contain another subprogram.

• It may not be contained in another subroutine or function.

For more information, refer to “Device code,” on page 21.

Variable Attributes
CUDA Fortran adds new attributes for variables and arrays. This section describes how to specify the new

attributes and their meaning and restriction.

Variables declared in a device subprogram may have one of four attributes: they may be declared to be in

device global memory, in constant memory space, in the thread block shared memory, or in thread local

memory.

Variables in modules may be declared to be in device global memory or constant memory space.

CUDA Fortran adds a new attribute for allocatable arrays in host memory; the array may be declared to be in

pinned memory, that is, in page-locked host memory space. The advantage of using pinned memory is that

transfers between the device and pinned memory are faster and can be asynchronous.

Device data
A variable or array with the device attribute is defined to reside in the device global memory. The device

attribute can be specified with the attributes statement, or as an attribute on the type declaration

statement. The following example declares two arrays, a and b, to be device arrays of size 100.

real :: a(100)
attributes(device) :: a
real, device :: b(100)

Chapter 3. Reference

15

These rules apply to device data:

• An allocatable device array dynamically allocates device global memory.

• Device variables and arrays may not have the Pointer or Target attributes.

• Device variables and arrays may appear in modules, but may not be in a Common block or an Equivalence

statement.

• Members of a derived type may not have the device attribute unless they are allocatable.

• Device variables and arrays may be passed as actual arguments to host and device subprograms; in that

case, the subprogram interface must be explicit (in the Fortran sense), and the matching dummy argument

must also have the device attribute.

• Device variables and arrays declared in a host subprogram cannot have the Save attribute.

In host subprograms, device data may only be used in the following manner:

• In declaration statements

• In Allocate and Deallocate statements

• As an argument to the Allocated intrinsic function

• As the source or destination in a data transfer assignment statement

• As an actual argument to a kernel subroutine

• As an actual argument to another host subprogram or runtime API call

• As a dummy argument in a host subprogram

A device array may have the allocatable attribute, or may have adjustable extent.

Constant data
A variable or array with the constant attribute is defined to reside in the device constant memory space. The

constant attribute can be specified with the attributes statement, or as an attribute on the type declaration

statement. The following example declares two arrays, c and d, to be constant arrays of size 100.

real :: c(100)
attributes(constant) :: c
real, constant :: d(100)

These rules apply to constant data:

• Constant data may not have the Pointer, Target, or Allocatable attributes.

• Constant variables and arrays may appear in modules, but may not be in a Common block or an

Equivalence statement.

• Members of a derived type may not have the constant attribute.

• Arrays with the constant attribute must have fixed size.

Variable Attributes

16

• Constant variables and arrays may be passed as actual arguments to host and device subprograms, as long

as the subprogram interface is explicit, and the matching dummy argument also has the constant attribute.

• Within device subprograms, variables and arrays with the constant attribute may not be assigned or

modified.

• Within host subprograms, variables and arrays with the constant attribute may be read and written.

In host subprograms, data with the constant attribute may only be used in the following manner:

• In declaration statements

• As the source or destination in a data transfer assignment statement

• As an actual argument to another host subprogram

• As a dummy argument in a host subprogram

Shared data

A variable or array with the shared attribute is defined to reside in the shared memory space of a thread block.

A shared variable or array may only be declared and used inside a device subprogram. The shared attribute

can be specified with the attributes statement, or as an attribute on the type declaration statement. The

following example declares two arrays, s and t, to be shared arrays of size 100.

real :: c(100)
attributes(shared) :: c
real, shared :: d(100)

These rules apply to shared data:

• Shared data may not have the Pointer, Target, or Allocatable attributes.

• Shared variables may not be in a Common block or Equivalence statement.

• Members of a derived type may not have the shared attribute.

• Shared variables and arrays may be passed as actual arguments to from a device subprogram to another

device subprogram, as long as the interface is explicit and the matching dummy argument has the shared

attribute.

Shared arrays that are not dummy arguments may be declared as assumed-size arrays; that is, the last

dimension of a shared array may have an asterisk as its upper bound:

real, shared :: x(*)

Such an array has special significance. Its size is determined at run time by the call to the kernel. When the

kernel is called, the value of the bytes argument in the execution configuration is used to specify the number

of bytes of shared memory that is dynamically allocated for each thread block. This memory is used for the

assumed-size shared memory arrays in that thread block; if there is more than one assumed-size shared

memory array, they are all implicitly equivalenced, starting at the same shared memory address. Programmers

must take this into account when coding.

Chapter 3. Reference

17

If a shared array is not a dummy argument and not assumed-size, it must be fixed size.

Value dummy arguments
In device subprograms, following the rules of Fortran, dummy arguments are passed by default by reference.

This means the actual argument must be stored in device global memory, and the address of the argument

is passed to the subprogram. Scalar arguments can be passed by value, as is done in C, by adding the value

attribute to the variable declaration.

attributes(global) subroutine madd(a, b, n)
 real, dimension(n,n) :: a, b
 integer, value :: n

In this case, the value of n can be passed from the host without needing to reside in device memory. The

variable arrays corresponding to the dummy arguments a and b must be set up before the call to reside on the

device.

Pinned arrays
An allocatable array with the pinned attribute will be allocated in special page-locked host memory, when

such memory is available. An array with the pinned attribute may be declared in a module or in a host

subprogram. The pinned attribute can be specified with the attributes statement, or as an attribute on

the type declaration statement. The following example declares two arrays, p and q, to be pinned allocatable

arrays.

real :: p(:)
allocatable :: p
attributes(pinned) :: p
real, allocatable, pinned :: q(:)

Pinned arrays may be passed as arguments to host subprograms regardless of whether the interface is explicit,

or whether the dummy argument has the pinned and allocatable attributes. Where the array is deallocated, the

declaration for the array must still have the pinned attribute, or the deallocation may fail.

Allocating Device and Pinned Arrays
This section describes extensions to the Allocate statement, specifically for dynamically allocating device arrays

and host pinned arrays, and other supported methods for allocating device memory.

Allocating Device Memory
Device arrays can have the allocatable attribute. These arrays are dynamically allocated in host subprograms

using the Allocate statement, and dynamically deallocated using the Deallocate statement. If a device array

declared in a host subprogram does not have the Save attribute, it will be automatically deallocated when the

subprogram returns.

real, allocatable, device :: b(:)
allocate(b(5024),stat=istat)
…
if(allocated(b)) deallocate(b)

Allocating Device and Pinned Arrays

18

Scalar variables can be allocated on the device using the Fortran 2003 allocatable scalar feature. To use these,

declare and initialize the scalar on the host as:

integer, allocatable, device :: ndev
allocate(ndev)
ndev = 100

The language also supports the ability to create the equivalent of automatic and local device arrays without

using the allocate statement. These arrays will also have a lifetime of the subprogram as is usual with the

Fortran language:

subroutine vfunc(a,c,n)
 real, device :: adev(n)
 real, device :: atmp(4)
 …
end subroutine vfunc ! adev and atmp are deallocated

Allocating Device Memory Using Runtime Routines
For programmers comfortable with the CUDA C programming environment, Fortran interfaces to the CUDA

memory management runtime routines are provided. These functions return memory which will bypass certain

Fortran allocatable properties such as automatic deallocation, and thus the arrays are treated more like C

malloc’ed areas. Mixing standard Fortran allocate/deallocate with the runtime Malloc/Free for a given array is

not supported.

The cudaMalloc function can be used to allocate single-dimensional arrays of the supported intrinsic data-

types, and cudaFree can be used to free it:

real, allocatable, device :: v(:)
istat = cudaMalloc(v, 100)
…
istat = cudaFree(v)

For a complete list of the memory management runtime routines, refer to “Memory Management,” on page

34.

Allocating Pinned Memory
Allocatable arrays with the pinned attribute are dynamically allocated using the Allocate statement. The

compiler will generate code to allocate the array in host page-locked memory, if available. If no such memory

space is available, or if it is exhausted, the compiler allocates the array in normal paged host memory.

Otherwise, pinned allocatable arrays work and act like any other allocatable array on the host.

real, allocatable, pinned :: p(:)
allocate(p(5000),stat=istat)
…
if(allocated(p)) deallocate(p)

To determine whether or not the allocation from page-locked memory was successful, an additional PINNED

keyword is added to the allocate statement. It returns a logical success value.

logical plog
allocate(p(5000), stat=istat, pinned=plog)
if (.not. plog) then
. . .

Chapter 3. Reference

19

Data transfer between host and device memory
This section provides methods to transfer data between the host and device memory.

Data Transfer Using Assignment Statements
You can copy variables and arrays from the host memory to the device memory by using simple assignment

statements in host subprograms.

• An assignment statement where the left hand side is a device variable or device array or array section, and

the right hand is a host variable or host array or array section, copies data from the host memory to the

device global memory.

• An assignment statement where the left hand side is a host variable or host array or array section, and the

right hand side is a device variable or device array or array section, copies data from the device global

memory to the host memory.

• An assignment statement with a device variable or device array or array section on both sides of the

assignment statement copies data between two device variables or arrays.

Similarly, you can use simple assignment statements to copy or assign variables or arrays with the constant

attribute.

Note

Using assignment statements to read or write device or constant data implicitly uses CUDA stream

zero. This means such data copies are synchronous, meaning the data copy waits until all previous

kernels and data copies complete.

Implicit Data Transfer in Expressions
Some limited data transfer can be enclosed within expressions. In general, the rule of thumb is all arithmetic

or operations must occur on the host, which normally only allows one device array to appear on the right-

hand-side of an expression. Compiler-generated temporary arrays are generated to accommodate the host

copies of device data as needed. For instance, if a, b, and c are conforming host arrays, and adev, bdev, and

cdev are conforming device arrays, the following expressions are legal:

a = adev

adev = a

b = a + adev

c = x * adev + b

The following expressions are not legal as they either promote a false impression of where the actual

computation occurs, or would be more efficient written in another way, or both:

c = adev + bdev
adev = adev + a
b = sqrt(adev)

Invoking a kernel subroutine

20

Elemental transfers are supported by the language but will perform poorly. Array slices are also supported,

and their performance is dependent on the size of the slice, amount of contiguous data in the slices, and the

implementation.

Data Transfer Using Runtime Routines
For programmers comfortable with the CUDA C programming environment, Fortran interfaces to the CUDA

memory management runtime routines are provided. These functions can transfer data either from the host to

device, device to host, or from one device array to another.

The cudaMemcpy function can be used to copy data between the host and the GPU:

real, device :: wrk(1024)
real cur(512)
istat = cudaMemcpy(wrk, cur, 512)

For those familiar with the CUDA C routines, the kind parameter to the Memcpy routines is optional in Fortran

since the attributes of the arrays are explicitly declared. Counts expressed in arguments to the Fortran runtime

routines are expressed in terms of data type elements, not bytes.

For a complete list of memory management runtime routines, refer to “Memory Management,” on page 34.

Invoking a kernel subroutine
A call to a kernel subroutine must give the execution configuration for the call. The execution configuration

gives the size and shape of the grid and thread blocks that execute the function, as well as the amount of

shared memory to use for assumed-size shared memory arrays, and the associated stream.

The execution configuration is specified after the subroutine name in the call statement; it has the form:

<<< grid, block, bytes, stream >>>

• grid is an integer, or of type(dim3). If it is type(dim3), the value of grid%z must be one. The

product grid%x*grid%y gives the number of thread blocks to launch. If grid is an integer, it is converted

to dim3(grid,1,1). bl

• block is an integer, or of type(dim3). If it is type(dim3), the number of threads per thread block

is block%x*block%y*block%z, which must be less than the maximum supported by the device. If

block is an integer, it is converted to dim3(block,1,1).

• bytes is optional; if present, it must be a scalar integer, and specifies the number of bytes of shared

memory to be allocated for each thread block to use for assumed-size shared memory arrays. For more

information, refer to “Shared data,” on page 16. If not specified, the value zero is used.

• stream is optional; if present, it must be an integer, and have a value of zero, or a value returned by a call to

cudaStreamCreate. See Section 4.5 on page 41. It specifies the stream to which this call is enqueued.

For instance, a kernel subroutine

attributes(global) subroutine sub(a)

can be called like:

Chapter 3. Reference

21

call sub <<< DG, DB >>> (A)

The function call will fail if the grid or block arguments are greater than the maximum sizes allowed, or if

bytes is greater than the shared memory available, allowing for static shared memory declared in the kernel

and for other dedicated uses, such as the function arguments and execution configuration arguments.

Device code

Datatypes allowed

Variables and arrays with the device, constant, or shared attributes, or declared in device subprograms, are

limited to the types described in this section. They may have any of the intrinsic datatypes in the following table.

Table 3.1. Device Code Intrinsic Datatypes

Type Type Kind

integer 1,2,4(default),8

logical 1,2,4(default),8

real 4(default),8

double precision equivalent to real(kind=8)

complex 4(default),8

character(len=1) 1 (default)

Additionally, they may be of derived type, where the members of the derived type have one of the allowed

intrinsic datatypes, or another allowed derived type.

The system module cudafor includes definitions of the derived type dim3, defined as

type(dim3)
 integer(kind=4) :: x,y,z
end type

Builtin variables

The system module cudafor declares several predefined variables. These variables are read-only. They are

declared as follows:

type(dim3) :: threadidx, blockdim, blockidx, griddim
integer(4) :: warpsize

• The variable threadidx contains the thread index within its thread block; for one- or two-dimensional

thread blocks, the threadidx%y and/or threadidx%z components have the value one.

• The variable blockdim contains the dimensions of the thread block; blockdim has the same value for all

threads in the same grid; for one- or two-dimensional thread blocks, the blockdim%y and/or blockdim

%z components have the value one.

Device code

22

• The variable blockidx contains the block index within the grid; as with threadidx, for one-

dimensional grids, blockidx%y has the value one. The value of blockidx%z is always one. The value of

blockidx is the same for all threads in the same thread block.

• The variable griddim contains the dimensions of the grid; the value of griddim%z is always one. The

value of griddim is the same for all threads in the same grid; the value of griddim%z is always one; the

value of griddim%y is one for one-dimensional grids.

• The variables threadidx, blockdim, blockidx, and griddim are available only in device

subprograms.

• The variable warpsize contains the number of threads in a warp. It has constant value, currently defined

to be 32.

Fortran intrinsics

This section lists the Fortran intrinsic functions allowed in device subprograms.

Fortran Numeric and Logical Intrinsics

Table 3.2. Fortran Numeric and Logical Intrinsics

Name Argument Datatypes Name Argument Datatypes

abs integer, real, complex int integer, real, complex

aimag complex logical logical

aint real max integer, real

anint real min integer, real

ceiling real mod integer, real

cmplx real or (real,real) modulo integer, real

conjg complex nint real

dim integer, real real integer, real, complex

floor real sign integer, real

Fortran Mathematical Intrinsics

Table 3.3. Fortran Mathematical Intrinsics

Name Argument Datatypes Name Argument Datatypes

acos real log real, complex

asin real log10 real

atan real sin real, complex

atan2 (real,real) sinh real

Chapter 3. Reference

23

cos real, complex sqrt real, complex

cosh real tan real

exp real, complex tanh real

Fortran Numeric Inquiry Intrinsics

Table 3.4. Fortran Numeric Inquiry Intrinsics

Name Argument Datatypes Name Argument Datatypes

bit_size integer precision real, complex

digits integer, real radix integer, real

epsilon real range integer, real, complex

huge integer, real selected_int_kind integer

maxexponent real selected_real_kind (integer,integer)

minexponent real tiny real

Fortran Bit Manipulation Intrinsics

Table 3.5. Fortran Bit Manipulation Intrinsics

Name Argument Datatypes Name Argument Datatypes

btest integer ishft integer

iand integer ishftc integer

ibclr integer leadz integer

ibits integer mvbits integer

ibset integer not integer

ieor integer popcnt integer

ior integer poppar integer

Fortran Reduction Intrinsics

Table 3.6. Fortran Reduction Intrinsics

Name Argument Datatypes Name Argument Datatypes

all logical minloc integer, real

any logical minval integer, real

count logical product integer, real, complex

Device code

24

maxloc integer, real sum integer, real, complex

maxval integer, real

Fortran Random Number Intrinsics

Table 3.7. Fortran Random Number Intrinsics

Name Argument Datatypes

random_number real

random_seed integer

New Intrinsic Functions

This section describes the new intrinsic functions and subroutines supported in device subprograms.

Synchronization Functions

The synchronization functions control the synchronization of various threads during execution of thread

blocks.

syncthreads

syncthreads_count

syncthreads_and

syncthread_or

threadfence

threadfence_block

threadfence_system

For detailed information on these functions, refer to “Thread Management,” on page 34.

SYNCTHREADS

The syncthreads intrinsic subroutine acts as a barrier synchronization for all threads in a single thread

block; it has no arguments:

void syncthreads()

Sometimes threads within a block access the same addresses in shared or global memory, thus creating

potential read-after-write, write-after-read, or write-after-write hazards for some of these memory accesses.

To avoid these potential issues, use syncthreads()to specify synchronization points in the kernel. . This

intrinsic acts as a barrier at which all threads in the block must wait before any thread is allowed to proceed.

Threads within a block cooperate and share data by synchronizing their execution to coordinate memory

accesses.

Each thread in a thread block pauses at the syncthreads call until all threads have reached that call. If any

thread in a thread block issues a call to syncthreads, all threads must also reach and execute the same call

statement, or the kernel fails to complete correctly.

Chapter 3. Reference

25

SYNCTHREADS_AND

integer syncthreads_and(int_value)

syncthreads_and, like syncthreads, acts as a barrier at which all threads in the block must wait before

any thread is allowed to proceed. In addition, syncthreads_and evaluates the integer argument int_value

for all threads of the block and returns non-zero if and only if int_value evaluates to non-zero for all of them.

SYNCTHREADS_COUNT

integer syncthreads_count(int_value)

syncthreads_count, like syncthreads, acts as a barrier at which all threads in the block must wait

before any thread is allowed to proceed. In addition, syncthreads_count evaluates the integer argument

int_value for all threads of the block and returns the number of threads for which int_value evaluates to

non-zero.

SYNCTHREADS_OR

integer syncthreads_or(int_value)

syncthreads_or, like syncthreads, acts a as a barrier at which all threads in the block must wait

before any thread is allowed to proceed. In addition, syncthreads_or evaluates the integer argument

int_value for all threads of the block and returns non-zero if and only if int_value evaluates to non-zero for

any of them.

Memory Fences

In general, when a thread issues a series of writes to memory in a particular order, other threads

may see the effects of these memory writes in a different order. You can use threadfence(),

threadfence_block(), and threadfence_system() to create a memory fence to enforce ordering.

For example, suppose you use a kernel to compute the sum of an array of N numbers in one call. Each block

first sums a subset of the array and stores the result in global memory. When all blocks are done, the last

block done reads each of these partial sums from global memory and sums them to obtain the final result. To

determine which block is finished last, each block atomically increments a counter to signal that it is done with

computing and storing its partial sum. If no fence is placed between storing the partial sum and incrementing

the counter, the counter might increment before the partial sum is stored.

THREADFENCE

void threadfence()

threadfence acts as a memory fence, creating a wait. Typically, when a thread issues a series of writes to

memory in a particular order, other threads may see the effects of these memory writes in a different order.

threadfence() is one method to enforce a specific order. All global and shared memory accesses made by

the calling thread prior to threadfence() are visible to:

• All threads in the thread block for shared memory accesses

• All threads in the device for global memory accesses

Device code

26

THREADFENCE_BLOCK

void threadfence_block()

threadfence_block acts as a memory fence, creating a wait until all global and shared memory accesses

made by the calling thread prior to threadfence_block() are visible to all threads in the thread block for

all accesses.

THREADFENCE_SYSTEM

void threadfence_system()

threadfence_system acts as a memory fence, creating a wait until all global and shared memory accesses

made by the calling thread prior to threadfence_system() are visible to:

• All threads in the thread block for shared memory accesses

• All threads in the device for global memory accesses

• Host threads for page-locked host memory accesses

threadfence_system() is only supported by devices of compute capability 2.0 or higher.

GPU_TIME

The gpu_time intrinsic returns the value of the clock cycle counter on the GPU. It has a single argument:

integer(8) clock
call gpu_time(clock)

The argument to gpu_time is set to the value of the clock cycle counter. The clock frequency can be

determined by calling cudaGetDeviceProperties, as described in “cudaGetDeviceProperties,” on page

34.

Warp-Vote Operations

Warp-vote operations are only supported by devices with compute capability 1.2 and higher. Each of these

functions has a single argument.

ALLTHREADS

The allthreads function is a warp-vote operation with a single scalar logical argument:

if(allthreads(a(i)<0.0)) allneg = .true.

The function allthreads evaluates its argument for all threads in the current warp. The value of the

function is .true. only if the value of the argument is .true. for all threads in the warp.

Chapter 3. Reference

27

ANYTHREAD

The anythread function is a warp-vote operation with a single scalar logical argument:

if(anythread(a(i)<0.0)) allneg = .true.

The function anythread evaluates its argument for all threads in the current warp. The value of the function

is .false. only if the value of the argument is .false. for all threads in the warp.

BALLOT

The ballot function is a warp-vote operation with a single integer argument:

unsigned integer ballot(int_value)

The function ballot evaluates the argument int_value for all threads of the warp and returns an integer

whose Nth bit is set if and only if int_value evaluates to non-zero for the Nth thread of the warp.

This function is only supported by devices of compute capability 2.0.

Example:
if(ballot(int_value)) allneg = .true.

Atomic Functions
The atomic functions read and write the value of their first operand, which must be a variable or array element

in shared memory (with the shared attribute) or in device global memory (with the device attribute). Atomic

functions are only supported by devices with compute capability 1.1 and higher. Compute capability 1.2 or

higher is required if the first argument has the shared attribute.

The atomic functions return correct values even if multiple threads in the same or different thread blocks try to

read and update the same location without any synchronization.

Arithmetic and Bitwise Atomic Functions

These atomic functions read and return the value of the first argument. They also combine that value with

the value of the second argument, depending on the function, and store the combined value back to the first

argument location. Both arguments must be of type integer(kind=4).

Note

The return value for each of these functions is the first argument, mem.

These functions are:

Table 3.8. Arithmetic and Bitwise Atomic Functions

Function Additional Atomic Update

atomicadd(mem, value) mem = mem + value

atomicsub(mem, value) mem = mem – value

Device code

28

atomicmax(mem, value) mem = max(mem,value)

atomicmin(mem, value) mem = min(mem,value)

atomicand(mem, value) mem = iand(mem,value)

atomicor(mem, value) mem = ior(mem,value)

atomicxor(mem, value) mem = ieor(mem,value)

atomicexch(mem, value) mem = value

Counting Atomic Functions

These atomic functions read and return the value of the first argument. They also compare the first argument

with the second argument, and stores a new value back to the first argument location, depending on the result

of the comparison. These functions are intended to implement circular counters, counting up to or down from

a maximum value specified in the second argument. Both arguments must be of type integer(kind=4).

Note

The return value for each of these functions is the first argument, mem.

These functions are:

Table 3.9. Counting Atomic Functions

Function Additional Atomic Update

atomicinc(mem, imax) if (mem<imax) then
 mem = mem+1
else
 mem = 0
endif

atomicdec(mem, imax) if (mem<imax .and. mem>0) then
 mem = mem-1
else
 mem = imax
endif

Compare and Swap Atomic Function

This atomic function reads and returns the value of the first argument. It also compares the first argument

with the second argument, and atomically stores a new value back to the first argument location if the first and

second argument are equal. All three arguments must be of type integer(kind=4).

Note

The return value for this function is the first argument, mem.

The function is:

Chapter 3. Reference

29

Table 3.10. Compare and Swap Atomic Function

Function Additional Atomic Update

atomiccas(mem,comp,val) if (mem == comp) then
mem = val
endif

Restrictions
This section lists restrictions on statements and features that can appear in device subprograms.

• Objects with the Pointer and Allocatable attribute are not allowed.

• Automatic arrays must be fixed size.

• Optional arguments are not allowed.

• Objects with character type must have LEN=1; character substrings are not supported.

• Recursive subroutines and functions are not allowed.

• STOP and PAUSE statements are not allowed.

• Input/Output statements are not allowed: READ, WRITE, PRINT, FORMAT, NAMELIST, OPEN, CLOSE,

BACKSPACE, REWIND, ENDFILE, INQUIRE.

• Alternate return specifications are not allowed.

• ENTRY statements are not allowed.

• Floating point exception handling is not supported.

• Fortran intrinsic functions not listed in Section 3.6.3 are not supported.

• Subroutine and function calls are supported only if they can be inlined.

• Cray pointers are not supported.

Host code
Host subprograms may use intrinsic functions, such as the new sizeof intrinsic function.

SIZEOF Intrinsic
A call to sizeof(A), where A is a variable or expression, returns the number of bytes required to hold the

value of A.

integer(kind=4) :: i, j
j = sizeof(i) ! this assigns the value 4 to j

Fortran Modules
A Fortran module provides access to declaring interfaces to many of the CUDA device builtin routines.

Fortran Modules

30

To access this module, do one of the following:

• Add this line to your Fortran program:

use cudadevice

• Add this line to your C program:

#include <cudadevice.h>

You can also use these routines in CUDA Fortran global and device subprograms, in CUF kernels, and in PGI

Accelerator compute regions in Fortran as well as in C. Further, the PGI compilers come with implementations

of these routines for host code, though these implementaiions are not specifically optimized for the host.

Table 3.11 lists the CUDA builtin routines that are available:

Table 3.11. CUDA Builtin Routines

-brev _brevll _clz _clzll

_cosf _dadd_rd _dadd_rn _dadd_ru

_dadd_rz _ddiv_rd _ddiv_rn _ddiv_ru

_ddiv_rz _dmul_rd _dmul_rn _dmul_ru

_dmul_rz _double2float_rd _double2float_rn _double2float_ru

_double2float_rz _double2hiint _double2int_rd _double2int_rn

_double2int_ru _double2int_rz _double2ll_rd _double2ll_rn

_double2ll_ru _double2ll_rz _double2uint_rd _double2uint_rn

_double2uint_ru _double2uint_rz _double2ull_rd _double2ull_rn

_double2ull_ru _double2ull_rz _double_as_long_long _drcp_rd

_drcp_rn _drcp_ru _drcp_rz _dsqrt_rd

_dsqrt_rn _dsqrt_ru _dsqrt_rz _exp10f

_expf _fadd_rd _fadd_rn _fadd_ru

_fadd_rz _fdiv_rd _fdiv_rn _fdiv_ru

_fdiv_rz fdivide fdividef _fdividef

_ffs _ffsll _float2half_rn _float2int_rd

_float2int_rn _float2int_ru _float2int_rz _float2ll_rd

_float2ll_rn _float2ll_ru _float2ll_rz _float_as_int

_fma_rd _fma_rn _fma_ru _fma_rz

_fmaf_rd _fmaf_rn _fmaf_ru _fmaf_rz

_fmul_rd _fmul_rn _fmul_ru _fmul_rz

_frcp_rd _frcp_rn _frcp_ru _frcp_rz

_fsqrt_rd _fsqrt_rn _fsqrt_ru _fsqrt_rz

_half2float_rn _hiloint2double _int2double_rd _int2double_rn

Chapter 3. Reference

31

_int2double_ru _int2double_rz _int2float_rd _int2float_rn

_int2float_ru _int2float_rz _int_as_float _ll2double_rd

_ll2double_rn _ll2double_ru _ll2double_rz _ll2float_rd

_ll2float_rn _ll2float_ru _ll2float_rz _log10f

_log2f _logf _longlong_as_double _mul24

_mulhi _popc _popcll _powf

_sad _saturatef _sinf _tanf

_uint2double_rd _uint2double_rn _uint2double_ru _uint2double_rz

_uint2float_rd _uint2float_rn _uint2float_ru _uint2float_rz

_ull2double_rd _ull2double_rn _ull2double_ru _ull2double_rz

_ull2float_rd _ull2float_rn _ull2float_ru _ull2float_rz

_umul24 _umulhi _usad

32

33

Chapter 4. Runtime APIs
The system module cudafor defines the interfaces to the Runtime API routines.

Most of the runtime API routines are integer functions that return an error code; they return a value of zero if

the call was successful, and a nonzero value if there was an error. To interpret the error codes, refer to “Error

Handling,” on page 43.

Initialization
No explicit initialization is required; the runtime initializes and connects to the device the first time a runtime

routine is called or a device array is allocated.

Tip
When doing timing runs, be aware that initialization can add some overhead.

Device Management
Use the functions in this section for device management.

cudaGetDeviceCount
integer function cudaGetDeviceCount(numdev)
 integer, intent(out) :: numdev

cudaGetDeviceCount assigns the number of available devices to its first argument.

cudaSetDevice
integer function cudaSetDevice(devnum)
 integer, intent(in) :: devnum

cudaSetDevice selects the device to associate with this host thread.

cudaSetDeviceFlags
integer function cudaSetDevice(flags)
 integer, intent(in) :: flags

cudaSetDeviceFlags records how the CUDA runtime interacts with this host thread.

Thread Management

34

cudaGetDevice
integer function cudaGetDevice(devnum)
 integer, intent(out) :: devnum

cudaGetDevice assigns the device number associated with this host thread to its first argument.

cudaGetDeviceProperties
integer function cudaGetDeviceProperties(prop, devnum)
 type(cudadeviceprop), intent(out) :: prop
 integer, intent(in) :: devnum

cudaGetDeviceProperties returns the properties of a given device.

cudaChooseDevice
integer function cudaChooseDevice (devnum, prop)
 integer, intent(out) :: devnum
 type(cudadeviceprop), intent(in) :: prop

cudaChooseDevice assigns the device number that best matches the properties given in prop to its first

argument.

Thread Management
Sometimes threads within a block access the same addresses in shared or global memory, thus creating

potential read-after-write, write-after-read, or write-after-write hazards for some of these memory accesses. To

avoid these potential issues, use the functions in this section for thread management.

cudaThreadSynchronize
integer function cudaThreadSynchronize()

cudaThreadSynchronize blocks execution of the host subprogram until all preceding kernels and

operations are complete. It may return an error condition if one of the preceding operations fails.

cudaThreadExit
integer function cudaThreadExit()

cudaThreadExit explicitly cleans up all runtime-related CUDA resources associated with the host thread.

Any subsequent CUDA calls or operations will reinitialize the runtime.

Calling cudaThreadExit is optional; it is implicitly called when the host thread exits.

Memory Management
Many of the memory management routines can take device arrays as arguments. Some can also take C types,

provided through the Fortran 2003 iso_c_binding module, as arguments to simplify interfacing to existing

CUDA C code.

Chapter 4. Runtime APIs

35

CUDA Fortran has extended the F2003 derived type TYPE(C_PTR) by providing a C device pointer, defined in

the cudafor module, as TYPE(C_DEVPTR). Consistent use of TYPE(C_PTR) and TYPE(C_DEVPTR), as

well as consistency checks between Fortran device arrays and host arrays, should be of benefit.

Currently, it is possible to construct a Fortran device array out of a TYPE(C_DEVPTR) by using an

extension of the iso_c_binding subroutine c_f_pointer. Under CUDA Fortran, c_f_pointer will take a

TYPE(C_DEVPTR) as the first argument, an allocatable device array as the second argument, a shape as

the third argument, and in effect transfer the allocation to the Fortran array. Similarly, there is also a function

C_DEVLOC() defined which will create a TYPE(C_DEVPTR) that holds the C address of the Fortran device

array argument. Both of these features are subject to change when, in the future, proper Fortran pointers for

device data are supported.

Use the functions in this section for memory management.

cudaMalloc
integer function cudaMalloc(devptr, count)

cudaMalloc allocates data on the device. devptr may be any allocatable, one-dimensional device array of a

supported type specified in Table 3.1, “Device Code Intrinsic Datatypes,” on page 21. The count is in terms of

elements. Or, devptr may be of TYPE(C_DEVPTR), in which case the count is in bytes.

cudaMallocPitch
integer function cudaMallocPitch(devptr, pitch, width, height)

cudaMallocPitch allocates data on the device. devptr may be any allocatable, two-dimensional device

array of a supported type specified in Table 3.1, “Device Code Intrinsic Datatypes,” on page 21. The width is

in terms of number of elements. The height is an integer.

cudaMallocPitch may pad the data, and the padded width is returned in the variable pitch. devptr

may also be of TYPE(C_DEVPTR), in which case the integer values are expressed in bytes.

cudaFree
integer function cudaFree(devptr)

cudaFree deallocates data on the device. devptr may be any allocatable device array of a supported

type specified in Table 3.1, “Device Code Intrinsic Datatypes,” on page 21. Or, devptr may be of

TYPE(C_DEVPTR).

cudaMallocArray
integer function cudaMallocArray(carray, cdesc, width, height)
 type(cudaArrayPtr) :: carray
 type(cudaChannelFormatDesc) :: cdesc
 integer :: width, height

cudaMallocArray allocates a data array on the device.

Memory Management

36

cudaFreeArray
integer function cudaFreeArray(carray)
 type(cudaArrayPtr) :: carray

cudaFreeArray frees an array that was allocated on the device.

cudaMemset
integer function cudaMemset(devptr, value, count)

cudaMemset sets a location or array to the specified value. devptr may be any device scalar or array of a

supported type specified in Table 3.1, “Device Code Intrinsic Datatypes,” on page 21. The value must match

in type and kind. The count is in terms of elements. Or, devptr may be of TYPE(C_DEVPTR), in which case

the count is in term of bytes, and the lowest byte of value is used.

cudaMemset2D
integer function cudaMemset2D(devptr, pitch, value, width, height)

cudaMemset2D sets an array to the specified value. devptr may be any device array of a supported type

specified in Table 3.1, “Device Code Intrinsic Datatypes,” on page 21. The value must match in type and

kind. The pitch, width, and height are in terms of elements. Or, devptr may be of TYPE(C_DEVPTR),

in which case the pitch, width, and height are in terms of bytes, and the lowest byte of value is used.

cudaMemcpy
integer function cudaMemcpy(dst, src, count, kdir)

cudaMemcpy copies data from one location to another. dst and src may be any device or host,

scalar or array, of a supported type specified in Table 3.1, “Device Code Intrinsic Datatypes,” on page

21. The count is in terms of elements. kdir may be optional; for more information, refer to “Data

Transfer Using Runtime Routines,” on page 20. If kdir is specified, it must be one of the defined enums

cudaMemcpyHostToDevice, cudaMemcpyDeviceToHost, or cudaMemcpyDeviceToDevice.

Alternatively, dst and src may be of TYPE(C_DEVPTR) or TYPE(C_PTR), in which case the count is in term

of bytes.

cudaMemcpyAsync
integer function cudaMemcpyAsync(dst, src, count, kdir, stream)

cudaMemcpy copies data from one location to another. dst and src may be any device or host,

scalar or array, of a supported type specified in Table 3.1, “Device Code Intrinsic Datatypes,” on page

21. The count is in terms of elements. kdir may be optional; for more information, refer to “Data

Transfer Using Runtime Routines,” on page 20. If kdir is specified, it must be one of the defined enums

cudaMemcpyHostToDevice, cudaMemcpyDeviceToHost, or cudaMemcpyDeviceToDevice.

Alternatively, dst and src may be of TYPE(C_DEVPTR) or TYPE(C_PTR), in which case the count is in term

of bytes.

This function operates on page-locked host memory only. The copy can be associated with a stream by passing

a non-zero stream argument; otherwise the stream argument is optional and defaults to zero.

Chapter 4. Runtime APIs

37

cudaMemcpy2D
integer function cudaMemcpy2D(dst, dpitch, src, spitch, width, height, kdir)

cudaMemcpy2D copies data from one location to another. dst and src may be any device or host array,

of a supported type specified in Table 3.1, “Device Code Intrinsic Datatypes,” on page 21. The width

and height are in terms of elements. kdir may be optional; for more information, refer to “Data

Transfer Using Runtime Routines,” on page 20. If kdir is specified, it must be one of the defined enums

cudaMemcpyHostToDevice, cudaMemcpyDeviceToHost, or cudaMemcpyDeviceToDevice.

Alternatively, dst and src may be of TYPE(C_DEVPTR) or TYPE(C_PTR), in which case the width and

height are in term of bytes.

cudaMemcpy2DAsync
integer function cudaMemcpy2DAsync(dst, dpitch, src, spitch, width,
 height, kdir, stream)

cudaMemcpy2D copies data from one location to another. dst and src may be any device or host array,

of a supported type specified in Table 3.1, “Device Code Intrinsic Datatypes,” on page 21. The width

and height are in terms of elements. kdir may be optional; for more information, refer to “Data

Transfer Using Runtime Routines,” on page 20. If kdir is specified, it must be one of the defined enums

cudaMemcpyHostToDevice, cudaMemcpyDeviceToHost, or cudaMemcpyDeviceToDevice.

Alternatively, dst and src may be of TYPE(C_DEVPTR) or TYPE(C_PTR), in which case the width and

height are in term of bytes.

This function operates on page-locked host memory only. The copy can be associated with a stream by passing

a non-zero stream argument, otherwise the stream argument is optional and defaults to zero.

cudaMemcpyToArray
integer function cudaMemcpyToArray(dsta, dstx, dsty, src, count, kdir)
 type(cudaArrayPtr) :: dsta
 integer :: dstx, dsty, count, kdir

cudaMemcpyToArray copies array data to and from the device.

cudaMemcpy2DToArray
integer function cudaMemcpy2DToArray(dsta, dstx, dsty, src,
 spitch, width, height, kdir)
 type(cudaArrayPtr) :: dsta
 integer :: dstx, dsty, spitch, width, height, kdir

cudaMemcpy2DToArray copies array data to and from the device.

cudaMemcpyFromArray
integer function cudaMemcpyFromArray(dst, srca, srcx, srcy, count, kdir)
 type(cudaArrayPtr) :: srca
 integer :: dstx, dsty, count, kdir

cudaMemcpyFromArray copies array data to and from the device.

Memory Management

38

cudaMemcpy2DFromArray
integer function cudaMemcpy2DFromArray(dst, dpitch, srca, srcx, srcy,
 width, height, kdir)
 type(cudaArrayPtr) :: srca
 integer :: dpitch, srcx, srcy, width, height, kdir

cudaMemcpy2DFromArray copies array data to and from the device.

cudaMemcpyArrayToArray
integer function cudaMemcpyArrayToArray(dsta, dstx, dsty,
 srca, srcx, srcy, count, kdir)
 type(cudaArrayPtr) :: dsta, srca
 integer :: dstx, dsty, srcx, srcy, count, kdir

cudaMemcpyArrayToArray copies array data to and from the device.

cudaMemcpy2DArrayToArray
integer function cudaMemcpy2DArrayToArray(dsta, dstx, dsty,
 srca, srcx, srcy, width, height, kdir)
 type(cudaArrayPtr) :: dsta, srca
 integer :: dstx, dsty, srcx, srcy, width, height, kdir

cudaMemcpy2DArrayToArray copies array data to and from the device.

cudaMalloc3D
integer function cudaMalloc3D(pitchptr, cext)
 type(cudaPitchedPtr), intent(out) :: pitchptr
 type(cudaExtent), intent(in) :: cext

cudaMalloc3D allocates data on the device. pitchptr is a derived type defined in the cudafor module.

cext is also a derived type which holds the extents of the allocated array. Alternatively, pitchptr may be any

allocatable, three-dimensional device array of a supported type specified in “Datatypes allowed,” on page 21.

cudaMalloc3DArray
integer function cudaMalloc3DArray(carray, cdesc, cext)
 type(cudaArrayPtr) :: carray
 type(cudaChannelFormatDesc) :: cdesc
 type(cudaExtent) :: cext

cudaMalloc3DArray allocates array data on the device.

cudaMemset3D
integer function cudaMemset3D(pitchptr, value, cext)
 type(cudaPitchedPtr) :: pitchptr
 integer :: value
 type(cudaExtent) :: cext

cudaMemset3D sets elements of an array, the extents in each dimension specified by cext, which was

allocated with cudaMalloc3D to a specified value.

Chapter 4. Runtime APIs

39

cudaMemcpy3D
integer function cudaMemcpy3D(p)
 type(cudaMemcpy3DParms) :: p

cudaMemcpy3D copies elements from one 3D array to another as specified by the data held in the derived

type p.

cudaMemcpy3DAsync
integer function cudaMemcpy3D(p, stream)
 type(cudaMemcpy3DParms) :: p
 integer :: stream

cudaMemcpy3DAsync copies elements from one 3D array to another as specified by the data held in the

derived type p.

This function operates on page-locked host memory only. The copy can be associated with a stream by passing

a non-zero stream argument.

cudaMemcpyToSymbol
integer function cudaMemcpyToSymbol(symbol, src, count, offset, kdir)
 type(cudaSymbol) :: symbol
 integer :: count, offset, kdir

cudaMemcpyToSymbol copies data from the source to a device area in global or constant memory space

referenced by a symbol. src may be any host scalar or array of a supported type as specified in “Datatypes

allowed,” on page 21. The count is in terms of elements.

cudaMemcpyFromSymbol
integer function cudaMemcpyFromSymbol(dst, symbol, count, offset, kdir)
 type(cudaSymbol) :: symbol
 integer :: count, offset, kdir

cudaMemcpyFromSymbol copies data from a device area in global or constant memory space referenced

by a symbol to a destination on the host. dst may be any host scalar or array of a supported type specified in

“Datatypes allowed,” on page 21. The count is in terms of elements.

cudaMemcpyToSymbolAsync
integer function cudaMemcpyToSymbolAsync(symbol, src, count, offset, kdir, stream)
 type(cudaSymbol) :: symbol
 integer :: count, offset, kdir
 integer, optional :: stream

cudaMemcpyToSymbol copies data from the source to a device area in global or constant memory space

referenced by a symbol. src may be any host scalar or array of a supported type specified in “Datatypes

allowed,” on page 21. The count is in terms of elements.

This function operates on page-locked host memory only. The copy can be associated with a stream by passing

a non-zero stream argument.

Memory Management

40

cudaMemcpyFromSymbolAsync
integer function cudaMemcpyFromSymbolAsync(dst, symbol, count, offset, kdir, stream)
 type(cudaSymbol) :: symbol
 integer :: count, offset, kdir
 integer, optional :: stream

cudaMemcpyFromSymbol copies data from a device area in global or constant memory space referenced

by a symbol to a destination on the host. dst may be any host scalar or array of a supported type specified in

“Datatypes allowed,” on page 21. The count is in terms of elements.

This function operates on page-locked host memory only. The copy can be associated with a stream by passing

a non-zero stream argument.

cudaGetSymbolAddress
integer function cudaGetSymbolAddress(devptr, symbol)
 type(C_DEVPTR) :: devptr
 type(cudaSymbol) :: symbol

cudaGetSymbolAddress returns in the devptr argument the address of symbol on the device. A

symbol can be set to an external device name via a character string.

The following code sequence initializes a global device array “vx” from a CUDA C kernel:

type(cudaSymbol) :: csvx
type(c_devptr) :: cdvx
real, allocatable, device :: vx(:)
csvx = “vx”
Istat = cudaGetSymbolAddress(cdvx, csvx)
Call c_f_pointer(cdvx, vx, 100)
Vx = 0.0

cudaGetSymbolSize
integer function cudaGetSymbolSize(size, symbol)
 integer :: size
 type(cudaSymbol) :: symbol

cudaGetSymbolSize sets the variable size to the size of a device area in global or constant memory

space referenced by the symbol.

cudaHostAlloc
integer function cudaHostAlloc(hostptr, size, flags)
 type(C_PTR) :: hostptr
 integer :: size, flags

cudaHostAlloc allocates pinned memory on the host. It returns in hostptr the address of the page-

locked allocation, or returns an error if the memory is unavailable. Size is in bytes. The flags argument

enables different options to be specified that affect the allocation. The normal iso_c_binding subroutine

c_f_pointer can be used to move the type(c_ptr) to a Fortran pointer.

Chapter 4. Runtime APIs

41

cudaHostGetDevicePointer
integer function cudaHostGetDevicePointer(devptr, hostptr, flags)
 type(C_DEVPTR) :: devptr
 type(C_PTR) :: hostptr
 integer :: flags

cudaHostGetDevicePointer returns a pointer to a device memory address corresponding to the pinned

memory on the host. hostptr is a pinned memory buffer that was allocated via cudaHostAlloc().

It returns in devptr an address that can be passed to, and read and written by, a kernel which runs on

the device. The flags argument is provided for future releases. The normal iso_c_binding subroutine

c_f_pointer can be used to move the type(c_devptr)to a device array.

cudaMallocHost
integer function cudaMallocHost(hostptr, size)
 type(C_PTR) :: hostptr
 integer :: size

cudaMallocHost allocates pinned memory on the host. It returns in hostptr the address of the

page-locked allocation, or returns an error if the memory is unavailable. size is in bytes. The normal

iso_c_binding subroutine c_f_pointer can be used to move the type(c_ptr) to a Fortran pointer.

cudaFreeHost
integer function cudaFreeHost(hostptr)
 type(C_PTR) :: hostptr

cudaFreeHost deallocates pinned memory on the host allocated with cudaMalloHost.

cudaMemGetInfo
integer function cudaMemGetInfo(free, total)
 integer(kind=cuda_count_kind) :: free, total

cudaMemGetInfo returns the amount of free and total memory available for allocation on the device. The

returned values units are in bytes.

Stream Management
Use the functions in this section for stream management.

cudaStreamCreate
integer function cudaStreamCreate(stream)
 integer, intent(out) :: stream

cudaStreamCreate creates an asynchronous stream and assigns its identifier to its first argument.

Event Management

42

cudaStreamQuery

integer function cudaStreamQuery(stream)
 integer, intent(in) :: stream

cudaStreamQuery tests whether all operations enqueued to the selected stream are complete; it returns

zero (success) if all operations are complete, and the value cudaErrorNotReady if not. It may also return

another error condition if some asynchronous operations failed.

cudaStreamSynchronize

integer function cudaStreamSynchronize(stream)
 integer, intent(in) :: stream

cudaStreamSynchronize blocks execution of the host subprogram until all preceding kernels and

operations associated with the given stream are complete. It may return error codes from previous,

asynchronous operations.

cudaStreamDestroy

integer function cudaStreamDestroy(stream)
 integer, intent(in) :: stream

cudaStreamDestroy releases any resources associated with the given stream.

Event Management
Use the functions in this section to manage events.

cudaEventCreate

integer function cudaEventCreate(event)
 type(cudaEvent), intent(out) :: event

cudaEventCreate creates an event object and assigns the event identifier to its first argument

cudaEventRecord

integer function cudaEventRecord(event, stream)
 type(cudaEvent), intent(in) :: event
 integer, intent(in) :: stream

cudaEventRecord issues an operation to the given stream to record an event. The event is recorded

after all preceding operations in the stream are complete. If stream is zero, the event is recorded after all

preceding operations in all streams are complete.

Chapter 4. Runtime APIs

43

cudaEventQuery
integer function cudaEventQuery(event)
 type(cudaEvent), intent(in) :: event

cudaEventQuery tests whether an event has been recorded. It returns success (zero) if the event

has been recorded, and cudaErrorNotReady if it has not. It returns cudaErrorInvalidValue if

cudaEventRecord has not been called for this event.

cudaEventSynchronize
integer function cudaEventSynchronize(event)
 type(cudaEvent), intent(in) :: event

cudaEventSynchronize blocks until the event has been recorded. It returns a value of

cudaErrorInvalidValue if cudaEventRecord has not been called for this event.

cudaEventDestroy
integer function cudaEventDestroy(event)
 type(cudaEvent), intent(in) :: event

cudaEventDestroy destroys the resources associated with an event object.

cudaEventElapsedTime
integer function cudaEventElapsedTime(time, start, end)
 float :: time
 type(cudaEvent), intent() :: start, end

cudaEventElapsedTime computes the elapsed time between two events (in milliseconds). It returns

cudaErrorInvalidValue if either event has not yet been recorded. This function is only valid with events

recorded on stream zero.

Error Handling
Use the functions in this section for error handling.

cudaGetLastError
integer function cudaGetLastError()

cudaGetLastError returns the error code that was most recently returned from any runtime call in this

host thread.

cudaGetErrorString
function cudaGetErrorString(errcode)
 integer, intent(in) :: errcode
 character*(*) :: cudaGetErrorString

cudaGetErrorString returns the message string associated with the given error code.

Version Management

44

Version Management
Use the functions in this section for version management.

cudaDriverGetVersion
integer function cudaDriverGetVersion(iversion)
 integer :: iversion

cudaDriverGetVersion returns the version number of the installed CUDA driver as iversion. If no

driver is installed, then it returns 0 as iversion.

This function automatically returns cudaErrorInvalidValue if the iversion argument is NULL.

cudaRuntimeGetVersion
integer function cudaRuntimeGetVersion(iversion)
 integer :: iversion

cudaRuntimeGetVersion returns the version number of the installed CUDA Runtime as iversion.

This function automatically returns cudaErrorInvalidValue if the iversion argument is NULL.

45

Chapter 5. Examples
This chapter contains

For up-to-date information about the state of the current release, visit the frequently asked questions (FAQ)

section of the pgroup.com web page at: www.pgroup.com/support/index.htm

Matrix Multiplication Example
This example shows a program to compute the product C of two matrices A and B, as follows:

• Each thread block computes one 16x16 submatrix of C;

• Each thread within the block computes one element of the submatrix.

The submatrix size is chosen so the number of threads in a block is a multiple of the warp size (32) and is less

than the maximum number of threads per thread block (512).

Each element of the result is the product of one row of A by one column of B. The program computes the

products by accumulating submatrix products; it reads a block submatrix of A and a block submatrix of B,

accumulates the submatrix product, then moves to the next submatrix of A rowwise and of B columnwise. The

program caches the submatrices of A and B in the fast shared memory.

For simplicity, the program assumes the matrix sizes are a multiple of 16, and has not been highly optimized

for execution time.

Source Code Listing
! start the module containing the matmul kernel
module mmul_mod
 use cudafor
contains
 ! mmul_kernel computes A*B into C where
 ! A is NxM, B is MxL, C is then NxL
 attributes(global) subroutine mmul_kernel(A, B, C, N, M, L)
 real :: A(N,M), B(M,L), C(N,L)
 integer, value :: N, M, L
 integer :: i, j, kb, k, tx, ty
 ! submatrices stored in shared memory
 real, shared :: Asub(16,16), Bsub(16,16)
 ! the value of C(i,j) being computed

Matrix Multiplication Example

46

 real :: Cij
 ! Get the thread indices
 tx = threadidx%x
 ty = threadidx%y
 ! This thread computes C(i,j) = sum(A(i,:) * B(:,j))
 i = (blockidx%x-1) * 16 + tx
 j = (blockidx%y-1) * 16 + ty
 Cij = 0.0
 ! Do the k loop in chunks of 16, the block size
 do kb = 1, M, 16
 ! Fill the submatrices
 ! Each of the 16x16 threads in the thread block
 ! loads one element of Asub and Bsub
 Asub(tx,ty) = A(i,kb+ty-1)
 Bsub(tx,ty) = B(kb+tx-1,j)
 ! Wait until all elements are filled
 call syncthreads()
 ! Multiply the two submatrices
 ! Each of the 16x16 threads accumulates the
 ! dot product for its element of C(i,j)
 do k = 1,16
 Cij = Cij + Asub(tx,k) * Bsub(k,ty)
 enddo
 ! Synchronize to make sure all threads are done
 ! reading the submatrices before overwriting them
 ! in the next iteration of the kb loop
 call syncthreads()
 enddo
 ! Each of the 16x16 threads stores its element
 ! to the global C array
 C(i,j) = Cij
 end subroutine mmul_kernel

! The host routine to drive the matrix multiplication
 subroutine mmul(A, B, C)
 real, dimension(:,:) :: A, B, C
 ! allocatable device arrays
 real, device, allocatable, dimension(:,:) :: Adev,Bdev,Cdev
 ! dim3 variables to define the grid and block shapes
 type(dim3) :: dimGrid, dimBlock

 ! Get the array sizes
 N = size(A, 1)
 M = size(A, 2)
 L = size(B, 2)
 ! Allocate the device arrays
 allocate(Adev(N,M), Bdev(M,L), Cdev(N,L))

 ! Copy A and B to the device
 Adev = A(1:N,1:M)
 Bdev(:,:) = B(1:M,1:L)

 ! Create the grid and block dimensions
 dimGrid = dim3(N/16, L/16, 1)
 dimBlock = dim3(16, 16, 1)
 call mmul_kernel<<<dimGrid,dimBlock>>>(Adev, Bdev, Cdev, N, M, L)

 ! Copy the results back and free up memory
 C(1:N,1:L) = Cdev
 deallocate(Adev, Bdev, Cdev)
 end subroutine mmul
end module mmul_mod

Chapter 5. Examples

47

Source Code Description
This source code module mmul_mod has two subroutines. The host subroutine mmul is a wrapper for the

kernel routine mmul_kernel.

MMUL

This host subroutine has two input arrays, A and B, and one output array, C, passed as assumed-shape arrays.

The routine performs the following operations:

• It determines the size of the matrices in N, M, and L.

• It allocates device memory arrays Adev, Bdev, and Cdev.

• It copies the arrays A and B to Adev and Bdev using array assignments.

• It fills dimGrid and dimBlock to hold the grid and thread block sizes.

• It calls mmul_kernel to compute Cdev on the device.

• It copies Cdev back from device memory to C.

• It frees the device memory arrays.

Because the data copy operations are synchronous, no extra synchronization is needed between the copy

operations and the kernel launch.

MMUL_KERNEL

This kernel subroutine has two device memory input arrays, A and B, one device memory output array, C, and

three scalars giving the array sizes. The thread executing this routine is one of 16x16 threads cooperating in a

thread block. This routine computes the dot product of A(i,:)*B(:,j) for a particular value of i and j,

depending on the block and thread index.

It performs the following operations:

• It determines the thread indices for this thread.

• It determines the i and j indices, for which element of C(i,j) it is computing.

• It initializes a scalar in which it will accumulate the dot product.

• It steps through the arrays A and B in blocks of size 16.

• For each block, it does the following steps:

• It loads one element of the submatrices of A and B into shared memory.

• It synchronizes to make sure both submatrices are loaded by all threads in the block.

• It accumulates the dot product of its row and column of the submatrices.

• It synchronizes again to make sure all threads are done reading the submatrices before starting the next

block.

• Finally, it stores the computed value into the correct element of C.

48

49

Chapter 6. Contact Information
You can contact The Portland Group at:

The Portland Group

STMicroelectronics, Inc.

Two Centerpointe Drive

Lake Oswego, OR 97035 USA

The PGI User Forum is monitored by members of the PGI engineering and support teams as well as other

PGI customers. The forum newsgroups may contain answers to commonly asked questions. Log in to the PGI

website to access the forum:

www.pgroup.com/userforum/index.php

Or contact us electronically using any of the following means:

Fax

Sales

Support

WWW

+1-503-682-2637

sales@pgroup.com

trs@pgroup.com

www.pgroup.com

All technical support is by email or submissions using an online form at www.pgroup.com/support. Phone

support is not currently available.

Many questions and problems can be resolved at our frequently asked questions (FAQ) site at

www.pgroup.com/support/faq.htm.

PGI documentation is available at www.pgroup.com/resources/docs.htm or in your local copy of the

documentation in the release directory doc/index.htm.

50

	PGI® Cuda Fortran
	Contents
	Preface
	Intended Audience
	Organization
	Conventions
	Terminology
	Related Publications

	Chapter 1. Introduction
	Chapter 2. Programming Guide
	CUDA Fortran Kernels
	Thread Blocks
	Memory Hierarchy
	Subroutine / Function Qualifiers
	Attributes(host)
	Attributes(global)
	Attributes(device)
	Restrictions

	Variable Qualifiers
	Attributes(device)
	Attributes(constant)
	Attributes(shared)
	Attributes(pinned)

	Datatypes in Device Subprograms
	Predefined Variables in Device Subprograms
	Execution Configuration
	Asynchronous concurrent execution
	Concurrent Host and Device Execution
	Concurrent Stream Execution

	Kernel Loop Directive
	Restrictions on the CUF kernel directive

	Building a CUDA Fortran Program
	Emulation Mode

	Chapter 3. Reference
	New Subroutine and Function Attributes
	Host Subroutines and Functions
	Global Subroutines
	Device Subroutines and Functions
	Restrictions on Device Subprograms

	Variable Attributes
	Device data
	Constant data
	Shared data
	Value dummy arguments
	Pinned arrays

	Allocating Device and Pinned Arrays
	Allocating Device Memory
	Allocating Device Memory Using Runtime Routines
	Allocating Pinned Memory

	Data transfer between host and device memory
	Data Transfer Using Assignment Statements
	Implicit Data Transfer in Expressions
	Data Transfer Using Runtime Routines

	Invoking a kernel subroutine
	Device code
	Datatypes allowed
	Builtin variables
	Fortran intrinsics
	Fortran Numeric and Logical Intrinsics
	Fortran Mathematical Intrinsics
	Fortran Numeric Inquiry Intrinsics
	Fortran Bit Manipulation Intrinsics
	Fortran Reduction Intrinsics
	Fortran Random Number Intrinsics

	New Intrinsic Functions
	Synchronization Functions
	SYNCTHREADS
	SYNCTHREADS_AND
	SYNCTHREADS_COUNT
	SYNCTHREADS_OR
	Memory Fences
	THREADFENCE
	THREADFENCE_BLOCK
	THREADFENCE_SYSTEM
	GPU_TIME

	Warp-Vote Operations
	ALLTHREADS
	ANYTHREAD
	BALLOT

	Atomic Functions
	Arithmetic and Bitwise Atomic Functions
	Counting Atomic Functions
	Compare and Swap Atomic Function

	Restrictions

	Host code
	SIZEOF Intrinsic

	Fortran Modules

	Chapter 4. Runtime APIs
	Initialization
	Device Management
	cudaGetDeviceCount
	cudaSetDevice
	cudaSetDeviceFlags
	cudaGetDevice
	cudaGetDeviceProperties
	cudaChooseDevice

	Thread Management
	cudaThreadSynchronize
	cudaThreadExit

	Memory Management
	cudaMalloc
	cudaMallocPitch
	cudaFree
	cudaMallocArray
	cudaFreeArray
	cudaMemset
	cudaMemset2D
	cudaMemcpy
	cudaMemcpyAsync
	cudaMemcpy2D
	cudaMemcpy2DAsync
	cudaMemcpyToArray
	cudaMemcpy2DToArray
	cudaMemcpyFromArray
	cudaMemcpy2DFromArray
	cudaMemcpyArrayToArray
	cudaMemcpy2DArrayToArray
	cudaMalloc3D
	cudaMalloc3DArray
	cudaMemset3D
	cudaMemcpy3D
	cudaMemcpy3DAsync
	cudaMemcpyToSymbol
	cudaMemcpyFromSymbol
	cudaMemcpyToSymbolAsync
	cudaMemcpyFromSymbolAsync
	cudaGetSymbolAddress
	cudaGetSymbolSize
	cudaHostAlloc
	cudaHostGetDevicePointer
	cudaMallocHost
	cudaFreeHost
	cudaMemGetInfo

	Stream Management
	cudaStreamCreate
	cudaStreamQuery
	cudaStreamSynchronize
	cudaStreamDestroy

	Event Management
	cudaEventCreate
	cudaEventRecord
	cudaEventQuery
	cudaEventSynchronize
	cudaEventDestroy
	cudaEventElapsedTime

	Error Handling
	cudaGetLastError
	cudaGetErrorString

	Version Management
	cudaDriverGetVersion
	cudaRuntimeGetVersion

	Chapter 5. Examples
	Matrix Multiplication Example
	Source Code Listing
	Source Code Description
	MMUL
	MMUL_KERNEL

	Chapter 6. Contact Information

