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Abstract 

We present a new Collatz Structure Table which guarantees that any 
value within the table iterates down to 1 in accordance with the Collatz 
Conjecture. Proving that all natural numbers are within the bounds of 
this new table is considerably more difficult. 

We present a new Collatz Rank Table which explicitly considers every 
odd number, and shows their first Collatz sequence steps to the next odd 
number. This table has mathematically elegant, and regular (repeating) 
features. 

We can now (v1.50) show where the Rank values occur within the 
Structure Table. 

 

By using features from both tables we can prove that either there are no 
exceptions at all to the Collatz Conjecture, or there is an infinity of 
infinite chains of counter-examples to the Collatz Conjecture. 

 

 

 

 

Other names for this same problem / sequence include: 

Ulam conjecture, Kakutani’s problem, Thwaites conjecture, 
Hasse’s algorithm, Syracuse problem, 3n + 1 problem, 
3x + 1 problem, Hailstone sequence. 
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Introduction 

Much has been written about the Collatz iteration sequence. We assume 
that readers fall into two broad camps: (1) those who have barely heard 
of it, and (2) those who know it quite well. 

For those who have barely heard of it, we have provided a very readable 
introduction, written primarily for school children.1 

For those who know it quite well, a full historical context and prior work 
is either redundant, or can readily be found online. It is also redundant 
to quote work which was not consulted in the course of writing this 
paper. 

Since there are subtly different variants of the Collatz sequence in the 
literature, we define the variant being used here for the sake of clarity.  

▪ Start from any positive integer 
▪ If the value is even then divide it by two, . . . . . . . . . . . . . . . . . .  

else multiply it by 3 and add 1. 
▪ Repeat the previous step if the resultant value is greater than 

one. 
 

We are led to believe that professional mathematicians dislike 
explanatory drawings as a matter of principle. However, we know for a 
fact that professional engineers are very fond of explanatory drawings, 
even if these may be considered as a mental crutch by giant-brained 
mathematicians. We therefore make no apologies for using such a 
drawing as the opening explanatory tool for this paper. 

 

1 Introduction to Convergence of the Collatz Sequence, 2021, Green, L.O. 

 

It will be highly beneficial to have both the text and the drawing overleaf 
visible at the same time, either by having two instances of a PDF viewer 
on a dual-monitor computer, or even going ‘old-school’ and printing the 
drawing out, especially on A3 paper. 

http://lesliegreen.byethost3.com/articles/collatz.pdf
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Collatz Structure Table 

L0 is the terminating sequence. Note that L5 columns values ‘jump over’ the darker blue L4 columns to get to the inner L4 columns. L5 4437 ↗ L4 13312. 

 

 

L5 L4 L4 L4 L4 L5

 L6 141984 70992 35496 17748 8874 ► 4437 ► 3072 13312 54272 218112

► ► 1536 ▼ 6656 ▼ 27136 ▼ 109056 ◄ 9045 ◄ 18090 36180 72360 144720 289440 L6 

L6 35488 17744 8872 4436 2218 ► 1109 ► 768 3328 13568 54528 ◄ ◄

► ► 384 ▼ 1664 ▼ 6784 ▼ 27264 ◄ 2261 ◄ 4522 9044 18088 36176 72352 L6

L6 8864 4432 2216 1108 554 ► 277 ► 192 832 3392 13632 ◄ ◄

► ► 96 ▼ 416 ▼ 1696 ▼ 6816 ◄ 565 ◄ 1130 2260 4520 9040 18080 L6

 L6 2208 1104 552 276 138 ► 69 ► 48 208 848 3408 ◄ ◄

► ► 24 ▼ 104 ▼ 424 ▼ 1704 ◄ 141 ◄ 282 564 1128 2256 4512 L6 

L6 544 272 136 68 34 ► 17 ► 12 52 212 852 ◄ ◄

▲ ▲ ▲ 6 26 106 426 ◄ 35 ◄ 70 140 280 560 1120 L6

L7 181 45 11 ▲ ▲ ▲

▼ ▼ ▼ ▼ 23 93 373 L7

L0 L3 3 13 53 213

1 ◄ 2

4 ▼ ▼ ▼ ▼

▲ 8 L1

16 ◄ 5 ◄ 10 20 40 80 160 320 640 L2

▲ 32 ◄ ◄ ◄

64 ◄ 21 ◄ 42 84 168 336 672 1344 2688 L2 

▲ 128 ◄ ◄ ◄

256 ◄ 85 ◄ 170 340 680 1360 2720 5440 10880 L2

▲ 512 ◄ ◄ ◄

1024 ◄ 341 ◄ 682 1364 2728 5456 10912 21824 43648 L2

▲ 2048 ◄ ◄ ◄

4096 ◄ 1365 ◄ 2730 5460 10920 21840 43680 87360 174720 L2 

▲ 8192 ◄ ◄ ◄

16384 ◄ 5461 ◄ 10922 21844 43688 87376 174752 349504 699008 L2

▲ 32768 ◄ ◄ ◄

65536 ◄ 21845 ◄ 43690 87380 174760 349520 699040 1398080 2796160 L2  
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Key to the Collatz Structure Table 

Throughout this paper we will make claims (assertions) which will typically 
be justified immediately below in brown text if the explanation is 
adequately brief. This enables the reader to quickly scan over 
uninteresting claims to find ‘the good stuff’. 

The claims are numbered so they can be easily quoted in case any are 
disputed, inadequately convincing, or circular. 

The Structure Table is defined by iteration Levels, ranging from L0 to some 
indefinitely large value. L0 is the iteration Level closest to the termination 
point, 1. It does not take any great intelligence to realise that the L0 values 
are all powers of 2. 

Clearly every Level shown extends infinitely in the increasing direction, but 
we have not explicitly shown ellipses at these points.  

C01: If you start from any L0 value it is a known direct path to 
termination. 

Any 2k value reaches 1 after k divide-by-2 steps. 

C02: Whilst there are infinitely many of these ‘easy’ known starting points, 
they have a very low density. 

In a range up to some huge value, H, we have log2(H) / H per-unit L0 
starting points, which is almost none in this asymptotic sense. 

C03: Unless you actually start from an L0 value, the only way to get to an 
L0 value is from an L1 value. 

(3 + 1) from all integer values does not produce all possible 2k 
values. The L1 set is defined as all those that do produce 2k values. 

C04: Only half of L0 values can be reached from L1. 

(3 + 1) from all integer values produces all possible 22k values. The 
L1 set is defined as all those that produce 22k values. 

 

C05: Unless you actually start from that specific L1 value, it cannot be 
reached except from an L2 value. 

L1 values are all odd. The only way to reach an odd value is from an 
even value using the divide-by-two operation. L2 values are all the 
power-of-two multiples of their respective L1 values. 

C06: All L1 values are reachable. 
All L1 values can be used as the starting value. Each L1 value is the 
root of its own power-of-two multiplied chain, known as L2. 

C07: All L2 values are power-of-two multiples of their respective L1 root 
values. 

By definition. 

C08: One third of L2 chains cannot be reached from L3. 
These L2 values are highlighted by a darker blue shade, and with a 
red cross on that row. You can start on say 42, or you can get to 42 
by starting on 168, then dividing down to 42. 

C09: ‘Unreachable’ even-Level chains are all multiples of 3. 

Even-Levels can only be reached by a (3 + 1) step from an odd 
Level (unless you start from within that even Level. There is no 
possible integer n such that (3n + 1) is evenly divisible by 3. 

C10: A value, V, in an odd Level can be reached in exactly two ways. 
This is a generalisation of C05 above. 
(1) You start from that value. 
(2) A divide-by-two step from 2V in the even-Level above. 

C11: Any even-Level, LE, ( E = 2k ) contains only even numbers. 
This is how the table is structured. 
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Watch Out! We are using the capital letters O and E for odd and even 
numbers respectively. L0 and LO are different things, and easy to confuse. 
Hopefully the context will be a clue, as will the colour! 

C12: Any odd numbered Level LO, (O = 2k+1) contains only odd numbers. 
This is how the table is structured. 

C13: If an iteration sequence starts on, or reaches, an even Level, the 
sequence can always iterate down to an odd value in an odd Level with 
the next lower index number (eg L32  L31) 

Even values can always be divided by 2 until the result is odd. 

C14: If an iteration sequence starts on, or reaches, an odd value 
(necessarily in an odd Level), the sequence will always iterate down to an 
even value (necessarily in an even Level) with the next lower index 
number (eg L31  L30) 

An odd value, (2k + 1), is transformed into an even value by the 

(3 + 1) step. (2k + 1)  3(2k + 1) + 1 = 6k + 4 = 2(3k + 2) 
The iteration is ‘down’ in the sense that it is closer to termination, 
and has a lower L-index. The actual value is of course larger. 

C15: The value 1, the termination point, is not considered to be on a Level. 
This is just a definition. Originally 1 was in the L0 set, but that gives 
an odd value in an even level, which is against the general ‘evenness 
rule’ for an even Level. 

Definitions: We define any value in an odd-Level as the root of the 

infinite chain of power-of-two multiples of it which occur in the next Level 
up. So, for example, 5, which occurs in L1 is the root of the chain { 10, 20, 
40, 80, 160, 320, 640, … } in L2. 

Infinite chains also occur within odd Levels, related by the (4 + 1) 

recurrence relation, for example: { 3, 13, 53, 213, 853, 3413, … }. 

The lowest value in such a chain is also called a root. 

Key Claims 

You should appreciate that the table becomes increasingly difficult to 
draw as the number of Levels increases. In our drawing, L3 is very poorly 
represented as we should have five L3 rows and we only have one.  

However, the values in each set are easily computer generated, and we 
list some of them out in a later section. 

 

Below are the most difficult issues to resolve:  

 

C20: Any natural number as a starting point can be found on this table, 
provided the table has been drawn with an adequate number of Levels. 

At this stage it is not clear if or how we could justify this claim. 

 
C21: Any natural number on this table is unique (never duplicated). 

We justify this later, starting with claim C30. 

C22: Having found the unique starting point within the table, there is a 
guaranteed monotonic progression from one Level to the next, eventually 
arriving at the termination point, 1. 

Monotonic progression is built-in to the fabric of the table. See also 
C13, C14. If C20 is true then this claim is immediately true. 

C23: All possible starting points terminate on 1 (The Collatz Conjecture). 
This is simply a restatement of C22. The “wandering off to infinity” 
possibility is expressly excluded. 

C24: No value within the table can form a looped sequence. 
Having demonstrated a monotonic progression through the Levels 
in C22, it is not necessary to separately address loops.  
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Level L0 

This is a very easy set to generate and count. Up to some definite value, H, 

we have 2k  H. k =  log2(H)   

The funny brackets around the log( ) function above are called the 
floor( ) function. For positive values it just means throw away any 
fractional part in the decimal value. 

The count will be k as we do not include 20 = 1 within L0. 

However, we also need values in the table as intermediate points, since 
the Collatz sequence is known to internally generate values which exceed 
the initial starting value ‘considerably’. (See the Appendix) 

We therefore have two values to consider. Firstly we would ideally like an 
exact count of numbers in a table of starting values, in order to at least 
demonstrate that all starting values exist within the bounds of the table. 
Secondly we need some larger value to give confidence that all 
intermediate values have been considered. For this purpose we use 10H², 
the requirement for which is demonstrated in the Appendix. 

As an initial ‘confidence builder’ we will create a small table to handle all 
starting values up to 8² = 64.  

L0 = 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 
32768. 

The count is 6.      k =  log2(8²)  =  6.000  = 6 

In the 8 x 8 table, these values are already very sparse. 

Initially the visual presentation was done in MS Excel. It was then realised 
that only two colours could be created using the built-in conditional field 
shading. It was therefore necessary to write a C++ program from scratch 
to produce the presentations. 

Number 1, the termination point, is at the top left in grey. 

Number 9 would be on the left, one row down from the top. 

L0 = 2, 4, 8, 16, 32, 64. 
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It should be evident that L0, L2, L4, … only contain even values (C11) 
Likewise L1, L3, L5, … only contain odd values (C12) It should also come as 
no surprise that an even L-index number corresponds to even values since 
the indexing was set up  that way. 

Uniqueness and coverage are the two key aspects of the Structure Table 
which need to be established. It is essential that every counting number 
up to some limit, H, is available exactly once within the Levels structure. 
Certainly we are 100% confident that within the L0 section there are no 
duplicated values, since we have a strictly increasing set of powers-of-two 
(C31). It remains to be shown that no such duplicated values occur in any 
other even-indexed Level (C39). 

Level L1 

L1 values are necessarily odd. There is a simple formula for their values: 

3

122 −k

  for k > 1 

Note that k > 1. For k = 1 we get an L1 value of 1, which would be a 
duplicate, and this is strictly forbidden. 

There are two things to demonstrate here: 

(1) ( )12|3 2 −k
 so all the values are integers 2 

The assertion  3 | (22k – 1) reads as “3 evenly divides (22k – 1)” 

(2) 
3

122 −k

  is odd, as required 3 

Both of these have been posed and answered on a maths puzzle website 
for school-kids, linked below. Both are also proved in C60 further on. 

In Level L1, and indeed in every odd Level, successive values in a chain can 

be found using (4 + 1) steps, as discussed in a later section. 
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We can see that the odd Levels have an ‘every-other-value’ connection to 
the even-Level below (closer to termination). Why? 

 

2 https://aplusclick.org/t.htm?q=10886 
3 https://aplusclick.org/t.htm?q=10913 

https://aplusclick.org/t.htm?q=10886
https://aplusclick.org/t.htm?q=10913
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Considering mod 3 values, we have exactly 3 possibilities: { 0, 1, 2 }. 

We can represent some general value V, optimised for mod 3 arithmetic 
as V = 3k + r, where all symbols here and below are natural numbers 
(including zero). 

For r = 0: 
  V = 3k 
2V = 6k = 3k1 
4V = 6k1 = 3k2 

Doubling, as happens in every even-Level set, does not change the mod 3 
residue. A number which is divisible by 3, remains divisible by 3 after 
being doubled any number of times. 
 
For r = 1: 

  V = 3k + 1 
2V = 6k + 2 = 3k1 + 2 
4V = 6k1 + 4 = 3k2 + (3 + 1) = 3(k2 + 1) + 1 = 3k3 + 1 

Doubling, as happens in every even-Level set, changes a mod 3 residue of 
1 to 2, and back again, in an infinitely repeating pattern. Clearly any value 
of the form 3k + 1 is evenly divisible by 3 after you subtract 1 from it. It is 
also clear that any value of the form 3k is no longer divisible by 3 when 
you subtract one from it, as seen in C09 earlier. 

Asymptotically, there are half as many values in L1 as in L0. 

There are actually only 2 L1 values in our 8 x 8 starting value grid. 
 
L1 = 5, 21, 85, 341, 1365, 5461. 

L0 = 2, 4, 8, 16, 32, 64 (in yellow) 

L1 = 5, 21 (in green) 
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Even up to L10 the grid is still not very full. Shades of green are odd-Level 
values. Shades of blue are even-Level values. 
 

 
 

In the tabulation which follows, each even Level has been printed in 
powers-of-two chains. L0 has exactly one chain. L1 has exactly one chain. 

All the rest have multiple chains. Odd Levels give rise to (4 + 1) chains. 

First 7 Levels for a starting grid of 8 x 8 

--------- LEVEL 0 
2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768,  
 
--------- LEVEL 1 
5, 21, 85, 341, 1365, 5461,  
 
--------- LEVEL 2 
10, 20, 40, 80, 160, 320, 640, 1280, 2560, 5120, 10240, 20480, 40960,  
42, 84, 168, 336, 672, 1344, 2688, 5376, 10752, 21504,  
170, 340, 680, 1360, 2720, 5440, 10880, 21760,  
682, 1364, 2728, 5456, 10912, 21824,  
2730, 5460, 10920, 21840,  
10922, 21844,  
 
--------- LEVEL 3 
3, 13, 53, 213, 853, 3413, 13653,  
113, 453, 1813, 7253,  
227, 909, 3637, 7281,  
 
--------- LEVEL 4 
6, 12, 24, 48, 96, 192, 384, 768, 1536, 3072, 6144, 12288, 24576,  
26, 52, 104, 208, 416, 832, 1664, 3328, 6656, 13312, 26624,  
106, 212, 424, 848, 1696, 3392, 6784, 13568, 27136,  
426, 852, 1704, 3408, 6816, 13632, 27264,  
1706, 3412, 6824, 13648, 27296,  
6826, 13652, 27304, 27306,  
226, 452, 904, 1808, 3616, 7232, 14464, 28928,  
906, 1812, 3624, 7248, 14496, 28992,  
3626, 7252, 14504, 29008,  
14506, 29012,  



  Structure of Collatz Sequence 

Leslie Green CEng MIEE 10 of 33 v1.72: 13 Aug 2022 

454, 908, 1816, 3632, 7264, 14528, 29056,  
1818, 3636, 7272, 14544, 29088,  
7274, 14548, 29096,  
14562, 29124,  
 
--------- LEVEL 5 
17, 69, 277, 1109, 4437,  
35, 141, 565, 2261, 9045,  
1137, 4549,  
2275, 9101,  
75, 301, 1205, 4821,  
2417, 9669,  
4835,  
151, 605, 2421, 9685,  
4849,  
 
--------- LEVEL 6 
34, 68, 136, 272, 544, 1088, 2176, 4352, 8704, 17408, 34816,  
138, 276, 552, 1104, 2208, 4416, 8832, 17664, 35328,  
554, 1108, 2216, 4432, 8864, 17728, 35456,  
2218, 4436, 8872, 17744, 35488,  
8874, 17748, 35496,  
70, 140, 280, 560, 1120, 2240, 4480, 8960, 17920, 35840,  
282, 564, 1128, 2256, 4512, 9024, 18048, 36096,  
1130, 2260, 4520, 9040, 18080, 36160,  
4522, 9044, 18088, 36176,  
18090, 36180,  
2274, 4548, 9096, 18192, 36384,  
9098, 18196, 36392,  
4550, 9100, 18200, 36400,  
18202, 36404,  

150, 300, 600, 1200, 2400, 4800, 9600, 19200, 38400,  
602, 1204, 2408, 4816, 9632, 19264, 38528,  
2410, 4820, 9640, 19280, 38560,  
9642, 19284, 38568,  
4834, 9668, 19336, 38672,  
19338, 38676,  
9670, 19340, 38680,  
302, 604, 1208, 2416, 4832, 9664, 19328, 38656,  
1210, 2420, 4840, 9680, 19360, 38720,  
4842, 9684, 19368, 38736,  
19370, 38740,  
9698, 19396, 38792,  
 
--------- LEVEL 7 
11, 45, 181, 725, 2901, 11605,  
369, 1477, 5909,  
739, 2957, 11829,  
23, 93, 373, 1493, 5973,  
753, 3013, 12053,  
1507, 6029, 6065,  
3033, 12133,  
6067,  
401, 1605, 6421,  
803, 3213, 12853,  
1611, 6445,  
3223, 12893,  
201, 805, 3221, 12885,  
403, 1613, 6453, 12913,  
6465, 
 

It should be noted that to save space on the odd Levels, not all values on 

the same line are in the same (4 + 1) chain. 
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Numbers in Levels 
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Whilst there are hardly any L0 starting values, each successive even Level has increasingly more starting values in it. 

Above we show an even Level with the next Level up (which is odd) in the same colour, but with a triangular marker. There are roughly half as many 
starting values in the odd Level immediately above an even Level. 
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Uniqueness 

C30: No value in an even Level (eg L32) can ever equal a value in any odd 
Level (eg L31, L39, L27). 

An odd number cannot equal an even number, (C11, C12) 

C31: No value is duplicated within the L0 Level itself. 
The L0 Level consists of strictly increasing powers of 2. 

C32: No value within an even Level is duplicated within that Level (unless 
there is a duplication in the odd Level from which it is formed). 

Without loss of generality, pick an example even-Level such as L32. 
Each chain consists of 2k multiples of the odd root of that chain in 
the L31 Level. Taking two distinct roots in the L31 Level, such as p 
and q, 

p  2m  q  2n         by the Fundamental Theorem of Arithmetic. 

C33: Chains in even-numbered Levels cannot cross, intersect, or meet, 
regardless of them being within the same Level, or otherwise. 

Working up from a root value using a multiply-by-two at each step, 
there is no possibility to go two separate ways. From any value k, 

the 2 step is always 2k, which is then deterministically in the same 
chain, and within the same Level. 

C34: No even-value is duplicated within the table unless an odd root value 
is duplicated within the table. 

Taking two distinct roots anywhere within the table, such as p & q,    

p  2m  q  2n   by the Fundamental Theorem of Arithmetic. 

 
 
C35: No L0 value is duplicated within the table. 

L0 values could only be duplicated in even-Levels (see C30). Even-
Levels are odd-multiples of 2n values. 

2m  (2k+1)  2n     for k  > 0 

by the Fundamental Theorem of Arithmetic. 

C36: All L1 values are unique within the L1 set. 
L1 values are uniquely generated from the distinct and strictly 
increasing values in the L0 set. 

C37: All L1 values are unique within the table. 
L1 values are uniquely generated from the distinct and strictly 
increasing values in the L0 set. The L0 values are distinct within the 
table according to claim C35. There is no other way to create an L1 
value, so the L1 values are unique within the table. 

C38: All L2 values are unique within the table. 
According to C34, all values in L2 are unique within the table since 
they are uniquely generated from L1 values which are themselves 
unique according to C37. 

C39: All values within all Levels are distinct (unique) within the table. 
L0 values are all unique within the table according to claim C35. All 
L1 values are distinct within the table as they are uniquely derived 
from L0. All L2 values are distinct within the table as they are 
uniquely derived from L1. Repeating this same process indefinitely, 
every higher Level is uniquely derived from the Level below. It 
means all values within the Levels are distinct. 

This result means that the Uniqueness claim of C21 is now justified. 
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Collatz Rank Table, R1 values 

We temporarily put aside the Structure Table, and consider a new table, 
the Rank Table. We consider all odd numbers in the first column, and all 

(3 + 1) Collatz values generated from the odd numbers. We then divide 
by 2 in successive columns until an odd number is reached. It is this odd 
number which defines the rank of the initial odd number. 

In this table a chain starts with an odd value, and is guaranteed to 
terminate in a different odd value, all on the same row of the table. Note 
that terminate / termination have a completely different meaning for this 
table compared to the Structure Table. 

To be clear, starting with a 9 in the left-most column, the 9 is a Rank 2 (R2) 
value because the chain terminates at 7 in the R2 column. 

Starting from 3, every other odd number is an R1 value, 
{ 3, 7, 11, 15, 19, … }.            R1 values are of the form (4k – 1) for k > 0. 

C50: The Rank table has 100% coverage over the odd natural numbers. 
The table is listed for all odd natural numbers. 

The R1 termination values in the R1 column are separated by numerical 
gaps of 6, { 5, 11, 17, 23, 29, … }. R1 termination values are of the form 
(6k – 1) for k > 0. 

We will use ↗ (up) to represent the Collatz (3 + 1) step, and ↘ (down) to 

represent a divide-by-two step. 

C51: An R1 value is of the form (4k – 1) and terminates in the odd number 
(6k – 1), where k has the same value throughout. 

(4k – 1)  ↗  3(4k – 1) +  1 =  12k – 3 + 1 =  (12k – 2)  ↘  (6k – 1) 

The value (6k – 1) is clearly odd, so the (4k – 1) chain had only one 
possible divide-by-two step, and hence was in R1. 

An R1 chain ends at a greater value than its start, since  (6k – 1) > (4k – 1)  

odd 3x+1 R1 R2 R3 R4 R5 R6 R7 R8

1

3 10 5

5 16 8 4 2 1

7 22 11

9 28 14 7

11 34 17

13 40 20 10 5

15 46 23

17 52 26 13

19 58 29

21 64 32 16 8 4 2 1

23 70 35

25 76 38 19

27 82 41

29 88 44 22 11

31 94 47

33 100 50 25

35 106 53

37 112 56 28 14 7

39 118 59

41 124 62 31

43 130 65

45 136 68 34 17

47 142 71

49 148 74 37

51 154 77

53 160 80 40 20 10 5

55 166 83

57 172 86 43

59 178 89

61 184 92 46 23

63 190 95

65 196 98 49

67 202 101

69 208 104 52 26 13

71 214 107

73 220 110 55

75 226 113

77 232 116 58 29

79 238 119

81 244 122 61

83 250 125

85 256 128 64 32 16 8 4 2 1

87 262 131

89 268 134 67

91 274 137

93 280 140 70 35

95 286 143

97 292 146 73

99 298 149

101 304 152 76 38 19

103 310 155

105 316 158 79

107 322 161

109 328 164 82 41

111 334 167

113 340 170 85

115 346 173

117 352 176 88 44 22 11

119 358 179

121 364 182 91

123 370 185

125 376 188 94 47

127 382 191

129 388 194 97

131 394 197

133 400 200 100 50 25

135 406 203  
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Collatz Rank Table, R2 values 

Note that a Rank Table chain is distinct from a Sequence Table L-chain. In 
the Rank Table, a chain starts from an odd number, gets boosted by the 

Collatz (3 + 1) operation, gets all the factors of two divided out, and ends 
up at a different odd value to the starting value. In an L-set, values are 
either all even or all odd (C11, C12). 

 

An R2 chain also has a systematic repeating pattern. The starting R2 values 
are { 9, 17, 25, 33, 41, 49, 57, … }, being of the form (8k + 1). The resultant 
values are { 7, 13, 19, 25, 31, 37, 43, 49, … }, having the value (6k + 1). 

C52: An R2 value is of the form (8k + 1) and terminates in the odd number 
(6k + 1), where k has the same value throughout. 

(8k + 1)  ↗  3(8k + 1) + 1 =  (24k + 4)  ↘  (12k + 2)  ↘  (6k + 1) 

The value (6k + 1) is clearly odd, so the (8k + 1) chain had exactly 
two divide-by-two steps, and hence was in R2. 

The value at the end of an R2 chain is always lesser than at the start since   
(6k+1) < (8k+1) 

It should be observed that developed values within the Rank Table are not 
unique. (The ‘3’ chain contains {10, 5} and so does the ‘13’ chain.) 

C53: The Rank of an odd value is uniquely determined within the Collatz 
Rank Table. 

Each odd value occurs exactly once in the odd number column. The 
developed sequence of even numbers must necessarily terminate 
on an odd number when the number of factors of two has been 
depleted. This occurs exactly once within the table. 

odd 3x+1 R1 R2 R3 R4 R5 R6 R7 R8

1

3 10 5

5 16 8 4 2 1

7 22 11

9 28 14 7

11 34 17

13 40 20 10 5

15 46 23

17 52 26 13

19 58 29

21 64 32 16 8 4 2 1

23 70 35

25 76 38 19

27 82 41

29 88 44 22 11

31 94 47

33 100 50 25

35 106 53

37 112 56 28 14 7

39 118 59

41 124 62 31

43 130 65

45 136 68 34 17

47 142 71

49 148 74 37

51 154 77

53 160 80 40 20 10 5

55 166 83

57 172 86 43

59 178 89

61 184 92 46 23

63 190 95

65 196 98 49

67 202 101

69 208 104 52 26 13

71 214 107

73 220 110 55

75 226 113

77 232 116 58 29

79 238 119

81 244 122 61

83 250 125

85 256 128 64 32 16 8 4 2 1

87 262 131

89 268 134 67

91 274 137

93 280 140 70 35

95 286 143

97 292 146 73

99 298 149

101 304 152 76 38 19

103 310 155

105 316 158 79

107 322 161

109 328 164 82 41

111 334 167

113 340 170 85

115 346 173

117 352 176 88 44 22 11

119 358 179

121 364 182 91

123 370 185

125 376 188 94 47

127 382 191

129 388 194 97

131 394 197

133 400 200 100 50 25

135 406 203  
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Collatz Rank Table, R3 values 

R3 values are { 13, 29, 45, 61, 77, 93, … }, all of the form (16k – 3). 

R3 chains terminate in { 5, 11, 17, 23, 29,  … }, all having the value (6k – 1). 

 

C54: An R3 value is of the form (16k – 3) and terminates in the odd 
number (6k – 1), where k has the same value throughout. 

(16k – 3)  ↗  3(16k – 3) + 1 = 

(48k – 8)  ↘  (24k – 4)  ↘  (12k – 2)  ↘  (6k – 1) 

The (6k – 1) terminating value is clearly odd after exactly 3 divide-
by-two operations, so the initial (16k – 3) value was in R3. 

 

C55: The Rank Table has 100% implicit (but not explicit) coverage over the 
natural numbers. 

C50 shows explicit coverage for all odd natural numbers. The even 
values {6, 12, 18, 24, 30, 36,  … } are all missing from within the 
body of the Rank Table. We can imagine such values as being 
power-of-two multiples of the odd values, extending off to the left. 
In any case, even values must eventually become odd after a 
sufficient number of divide-by-two steps, so even values are 
implicitly covered, but not explicitly. 

 

 

odd 3x+1 R1 R2 R3 R4 R5 R6 R7 R8

1

3 10 5

5 16 8 4 2 1

7 22 11

9 28 14 7

11 34 17

13 40 20 10 5

15 46 23

17 52 26 13

19 58 29

21 64 32 16 8 4 2 1

23 70 35

25 76 38 19

27 82 41

29 88 44 22 11

31 94 47

33 100 50 25

35 106 53

37 112 56 28 14 7

39 118 59

41 124 62 31

43 130 65

45 136 68 34 17

47 142 71

49 148 74 37

51 154 77

53 160 80 40 20 10 5

55 166 83

57 172 86 43

59 178 89

61 184 92 46 23

63 190 95

65 196 98 49

67 202 101

69 208 104 52 26 13

71 214 107

73 220 110 55

75 226 113

77 232 116 58 29

79 238 119

81 244 122 61

83 250 125

85 256 128 64 32 16 8 4 2 1

87 262 131

89 268 134 67

91 274 137

93 280 140 70 35

95 286 143

97 292 146 73

99 298 149

101 304 152 76 38 19

103 310 155

105 316 158 79

107 322 161

109 328 164 82 41

111 334 167

113 340 170 85

115 346 173

117 352 176 88 44 22 11

119 358 179

121 364 182 91

123 370 185

125 376 188 94 47

127 382 191

129 388 194 97

131 394 197

133 400 200 100 50 25

135 406 203  
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Collatz Rank Table, R4 values & beyond 

R4 values are { 5, 37, 69, 101, 133, … }, all of the form (32k + 5). 

R4 chains terminate in { 1, 7, 13, 19, 25,  }, all having the value (6k + 1). 
 

C56: An R4 value is of the form (32k + 5) and terminates in the odd 
number (6k + 1), where k has the same value throughout. 

(32k + 5)  ↗  3(32k + 5) + 1 = 

(96k + 16)  ↘  (48k + 8 )  ↘  (24k + 4)  ↘  (12k + 2)  ↘  (6k + 1) 

The (6k + 1) terminating value is clearly odd after exactly 4 divide-
by-two operations, so the initial (32k + 5) value was in R4. 

 

C57: An R5 value is of the form (64k – 11) and terminates in the odd 
number (6k – 1), where k has the same value throughout. 

(64k – 11)  ↗  3(64k – 11) + 1 = 

(192k – 32)  ↘  (96k – 16 )  ↘  (48k – 8) 

↘ (24k – 4)  ↘  (12k – 2)  ↘  (6k – 1) 

The (6k – 1) terminating value is clearly odd after exactly 5 divide-
by-two operations, so the initial (64k – 11) value was in R5. 

 

C58: An R6 value is of the form (128k + 21) and terminates in the odd 
number (6k + 1), where k has the same value throughout. 

(128k + 21)  ↗  3(128k + 21) + 1 = 

(384k + 64)  ↘  (192k + 32)  ↘  (96k + 16 )  ↘  (48k + 8) 

↘  (24k + 4 ) ↘  (12k + 2)  ↘  (6k + 1) 

The (6k + 1) terminating value is clearly odd after exactly 6 divide-
by-two operations, so the initial (128k + 21) value was in R6. 

odd 3x+1 R1 R2 R3 R4 R5 R6 R7 R8

1

3 10 5

5 16 8 4 2 1

7 22 11

9 28 14 7

11 34 17

13 40 20 10 5

15 46 23

17 52 26 13

19 58 29

21 64 32 16 8 4 2 1

23 70 35

25 76 38 19

27 82 41

29 88 44 22 11

31 94 47

33 100 50 25

35 106 53

37 112 56 28 14 7

39 118 59

41 124 62 31

43 130 65

45 136 68 34 17

47 142 71

49 148 74 37

51 154 77

53 160 80 40 20 10 5

55 166 83

57 172 86 43

59 178 89

61 184 92 46 23

63 190 95

65 196 98 49

67 202 101

69 208 104 52 26 13

71 214 107

73 220 110 55

75 226 113

77 232 116 58 29

79 238 119

81 244 122 61

83 250 125

85 256 128 64 32 16 8 4 2 1

87 262 131

89 268 134 67

91 274 137

93 280 140 70 35

95 286 143

97 292 146 73

99 298 149

101 304 152 76 38 19

103 310 155

105 316 158 79

107 322 161

109 328 164 82 41

111 334 167

113 340 170 85

115 346 173

117 352 176 88 44 22 11

119 358 179

121 364 182 91

123 370 185

125 376 188 94 47

127 382 191

129 388 194 97

131 394 197

133 400 200 100 50 25

135 406 203  
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C59: An even-Ranked number, RE, is of the form (2E+1k + (2E – 1)/3 ) and 
terminates in the value (6k + 1). 

(2E+1  k + (2E – 1)/3) ↗  3(2E+1  k + (2E – 1)/3) ) +1 = 3  2E+1  k +2E 

=  2E (6k + 1)  ↘  … ↘  22 (6k + 1)  ↘  21 (6k + 1)  ↘  (6k + 1) 

The E-index denotes the number of divide-by-two operations 
necessary before the odd value (6k + 1) is reached. 

C60: (2E – 1)/3  is an odd integer 
(2E – 1) = (22k – 1) = (2k – 1) (2k + 1) 
Exactly one of the three contiguous integers { (2k – 1), 2k, (2k + 1) } is 
divisible by 3. Clearly 2k is not divisible by 3, as it has no factors of 3 
in its prime factorisation. Therefore one of the two factors (2k – 1) & 
(2k + 1) is divisible by 3, making (22k – 1) divisible by 3. This shows 
that (2E – 1)/3  is an integer. 2E is even. (2E – 1) is therefore odd. 
Dividing by 3 removed the factor of 3. It did not remove a factor of 
2. If (2E – 1) were even, it would have stayed even. It is odd, and 
remains odd after being divided by 3. 

C61: An odd-Ranked number, RO, is of the form (2O+1k – (2O + 1)/3 ) and 
terminates in the value (6k – 1). 

(2O+1  k – (2O + 1)/3)  ↗  3(2O+1  k – (2O + 1)/3) ) + 1 = 

3  2O+1  k – 2O =  2O (6k – 1) ↘ …  

↘  22 (6k – 1)  ↘  21 (6k – 1)  ↘  (6k – 1) 

The O-index denotes the number of divide-by-two operations 
necessary before the odd value (6k – 1) is reached. 

C62: (2O + 1)/3  is an odd integer 
3 | (22k – 1)   from C60 above 

3 | 2(22k – 1) = (22k+1 – 2)      as 2 does not affect divisibility by 3 
3 | (22k+1 + 1)             adding 3 does not affect divisibility by 3 

Doubling (22k – 1)/3  made it even. Adding 3/3 makes it odd. 

C63: Only values in R1 are increased at the end of a chain. All other RN 
values are strictly decreased. 

See the results in this table. Note that the value of k at the end is 
the same as that at the start. 

 start end 

R1 4k – 1 22k – 1 6k – 1 

R2 8k + 1 23k + 1 6k + 1 

R3 16k – 3 24k – 3 6k – 1 

R4 32k + 5 25k + 5 6k + 1 

R5 64k – 11 26k – 11 6k – 1 

R6 128k + 21 27k + 21 6k + 1 
    

RE ------ 2E+1k + (2E – 1)/3 6k + 1 

RO ------ 2O+1k – (2O + 1)/3 6k – 1 

 
C64: Since one half of all odd values are in R1, half of all odd values give 
rise to increasing end-of-chain values. 

The odd naturals form an infinite set. Given that the modern 
mathematics of infinity 4 has not yet penetrated the consciousness 
of the majority of readers, we can talk instead about the relative 
densities of values. 

In this asymptotic sense, one half of all natural numbers are odd 
(2k – 1), with half of these being in R1 and therefore of the form 
(4k – 1). The rest { R2, R3, R4, R5, R6, R7, R8, R9, …  } sum to 

¼ = {1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256 + … }, 

meaning they form the other half which are not in R1. 

 

4 The TRUE Mathematics of Infinity for Scientists and Engineers, 2019, Green, 
L.O. (v1.20, 2021) 

http://lesliegreen.byethost3.com/articles/infinity.pdf
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C65: All R1 chains can be converted into longer equivalent 5 R3 chains by 

applying a (4 + 1) operation to the starting value. Two extra even values 
are added to the start of the even-part of the chain. 

Example: R1: 3 – { 10, 5 } goes to R3: 13 – { 40, 20, 10, 5 } 

Start from a specific R1 value, (4k – 1). Apply the (4 +1) operation 
to get   4(4k – 1) + 1 = 16k – 3. This is indeed an R3 value from an 
R1 value, but does the chain end in the same way? 

(4k – 1)   ↗  3(4k – 1) +  1 = (12k – 2) start of the even values 

(16k – 3) ↗  3(16k – 3) + 1 = 48k – 8 = 4(12k – 2) 

Note that the value k is consistent between the two lines above, 
and is not just a dummy variable. 

C66: All R2 chains can be converted into longer equivalent R4 chains by 

applying a (4 + 1) operation to the starting value. Two extra even values 
are added to the start of the even-part of the chain. 

Example: R2: 9 – { 28,14,7 } goes to R4: 37 – { 112,56,28,14,7 } 

Start from a specific R2 value, (8k + 1). Apply the (4 +1) operation 
to get   4(8k + 1) + 1 = 32k + 5 This is indeed an R4 value from an 
R2 value, but does the chain end in the same way? 

(8k + 1) ↗  3(8k + 1) +  1 = (24k + 4) start of the even values 

(32k + 5) ↗  3(32k + 5) + 1 = 96k +16 = 4(24k + 4) 

As before it is the same value of k in both lines above. 

 

5 Whilst we do not wish to endorse the general concepts presented in the following 

paper, we do wish to acknowledge the (4 + 1) inspiration from section 2 of Maya 
Ahmed’s paper “A window to the Convergence of a Collatz Sequence”, (2015). 

C67: All R3 chains can be converted into longer equivalent R5 chains by 

applying a (4 + 1) operation to the starting value. Two extra even values 
are added to the start of the even-part of the chain. 

Example: R3: 13 –  {40, 20, 10, 5}  goes to  
     R5: 53 – {160, 80, 40, 20, 10, 5} 

Start from a specific R3 value, (16k – 3). Apply the (4 +1) operation 
to get   4(16k – 3) + 1 = (64k – 11).  This is indeed an R5 value from 
an R3 value, but does the chain end in the same way? 

(16k – 3)  ↗   3(16k – 3) +  1 = (48k – 8) start of the even values 

(64k – 11)  ↗  3(64k – 11) + 1 = (192k – 32) = 4(48k – 8) 

As before it is the same value of k in both lines above. 

 

What we have said is that up to some huge value, 2H, we have H odd 
numbers, H/2 are in R1, H/4 are in R2, H/8 are in R3, and so on. By 
converting R1 values to R3 values, R2 values to R4 values, and R3 values to 
R5 values, and so on, we seem to have reduced the amount of starting 
values we need to consider. This is a fallacy. All we have done is shove the 
R1, R2, and R3 values further up the number line (beyond 2H) where they 
are not so visible. It is a typical ‘infinity paradox’ waiting to happen, so we 
must ensure that we don’t fall into such an obvious and embarrassing 
trap. 

 

All we are actually trying to do is to consolidate the Ranks to make them 
more similar to the Structure Table Levels. 
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C68: All RE chains can be converted into longer equivalent RE’ chains by 

applying a (4 + 1) operation to the starting value. Two extra even values 
are added to the start of the even-part of the chain. E’ = E+2. 

Start from a generic RE value,              (2E+1k + (2E – 1)/3) 

Apply the (4 +1) operation to get    4(2E+1k + (2E – 1)/3) + 1 = 
                      (2E+3k + (2E+2 – 4)/3) +1 = (2E’+1k + (2E’ – 1)/3) – 3/3 + 1 = 
                                                                   (2E’+1k + (2E’ – 1)/3) 
This is indeed an RE’ value from an RE value. 

(2E+1k + (2E – 1)/3) ↗ 3(2E+1k + (2E – 1)/3) + 1 = (32E+1k + 2E) – 1 + 1 

(2E’+1k + (2E’ – 1)/3)  ↗   32E’+1k + 2E’   =           4(32E+1k + 2E) 

The values of E and k are the same for both lines above.  

 
C69: All RO chains can be converted into longer equivalent RO’ chains by 

applying a (4 + 1) operation to the starting value. Two extra even values 
are added to the start of the even-part of the chain. O’ = O+2. 

Start from a generic RO value,            (2O+1k – (2O + 1)/3). 

Apply the (4 +1) operation to get   4(2O+1k – (2O + 1)/3) + 1 = 
                     (2O+3 – (2O+2 + 4)/3) + 1 = (2O’+1k – (2O’ + 1)/3) – 3/3 + 1 = 
                                                                  (2O’+1k – (2O’ + 1)/3) 

This is indeed an RO’ value from an RO value. 

(2O+1k – (2O + 1)/3) ↗  3(2O+1k –(2O + 1)/3) + 1 = (32O+1k– 2O) – 1 + 1 

(2O’+1k – (2O’ + 1)/3)  ↗  (32O’+1k – 2O’) =           4(32O+1k – 2O) 

The values of O and k are the same for both lines above.  

 

Relating the Rank Table to the Structure Table 

The Rank Table is guaranteed to give 100% coverage over the natural 
numbers (C55). Every RN is guaranteed to terminate in a different value to 
its starting value. If we can relate the 100% coverage to the Structure 
Table then our work is complete. 

If we consider the L0 set in the Structure Table, we see those values in 
many different chains within the Rank Table. For example { 5, 21, 85, … } 
go increasingly far up the L0 chain. There are infinitely many starting 
points within the Rank Table, each of successively increasing ranks (two 
ranks at a time), which end up in L0. The (odd) starting points are of 
course within L1. More accurately, they compose L1, with the values 
(22k – 1)/3. 

To be clear about what we actually need, there is no point in finding 
Levels in the Structure Table and relating them back to the Rank Table. 
What we want to do is to find any value in the Rank Table and then ensure 
that this value is available in the Structure Table. If we can do this, then 
the 100% coverage of the Rank Table passes over to 100% coverage by the 
Structure Table. 

As an example, can we find a home for all R1 values within the Structure 
Table? They are of the form (4k – 1), but indeterminately far from the L0 
termination sequence. 

R1 = { 3, 7, 11, … }. 3 is easy to find in L3, but 7 is not even seen in the 
Structure Table up to L7. In fact 7 is in L9, whilst 11 is in L7. 

The problem is that there are infinitely many starting values within the 
Rank Table, so this does not reduce the difficulty of proving that we have 
100% coverage of the naturals within the Structure Table. 
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Rank Values within the Structure Table 

We have seen that L1 starts at 5, and subsequent elements in L1 are 

related by the (4 + 1) recurrence relation. There is only one such chain in 
L1. In L3 we have an indefinite number of such chains, each ending in a 
distinct L1 element, although L1 elements which are divisible by 3 do not 
support such chains (shaded in blue). Of course the blue elements in L1 do 
support infinite chains in L2. 

 

Level 3 Level 2 Level 1 

853 213 53 13 3 ↗↘ 5 

 21 

29013 7253 1813 453 113 ↗↘↘ 85 

58197 14549 3637 909 227 ↗↘ 341 

 1365 

1864021 466005 116501 29125 7281 ↗↘↘ 5461 

3728213 932053 233013 58253 14563 ↗↘ 21845 

 

 

The yellow shaded root elements in L3 are R1 values. The unshaded root 
elements in L3 are R2 values. 

 

We have already seen (C65) that an R1 value is converted to a related R3 

value by using the (4 + 1) operation. Likewise an R2 value is converted to 
a related R4 value (C66) using the same operation. It means we can 
additionally label the Structure Table values with Ranks. 

 

Level 3 Level 2 Level 1 

853 213 53 13 3 ↗↘ 5 

R9  R7   R5   R3   R1   

 

Level 3 Level 2 Level 1 

29013 7253 1813 453 113 ↗↘↘ 85 

R10 R8 R6  R4   R2   

 

We now know how to place all Rank values within the Structure Table 
pattern. This is sadly not the same as saying that all Rank values are 
actually in the Structure Table. 

 

C70: The root elements in odd Levels are either R1 or R2 values. 

Suppose the root element had a Rank above 2. Each odd Level chain 

increases from the root value using the (4 + 1) relation. This means 
that a lower value could be achieved by subtracting 1, then dividing 
by 4. In such a case the identified value could not in fact be a root, 
the root being the lowest value in the chain. In the same way that 

the (4 + 1) operation gives a resultant two Ranks above the 
starting value, the reverse operation lowers the Rank by two. 
Neither R1 nor R2 can be reduced by two Ranks. Therefore the 
roots of odd Levels are either R1 or R2 values. 
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The yellow shaded L5 root elements are R1 values. The unshaded root 
elements in L5 are R2 values. 

The blue shaded elements in L3 are divisible by 3, and therefore do not 
support chains in L5. There is of course an infinite chain from these values 
in L4. 

 

Level 5 Level 4 Level 3 

4437 1109 277 69 17 ↗↘↘ 13 

9045 2261 565 141 35 ↗↘ 53 

 213 

291157 72789 18197 4549 1137 ↗↘↘ 853 

 

19285 4821 1205 301 75 ↗↘ 113 

 453 

618837 154709 38677 9669 2417 ↗↘↘ 1813 

1237845 309461 77365 19341 4835 ↗↘ 7253 

 

38741 9685 2421 605 151 ↗↘ 227 

 909 

1241429 310357 77589 19397 4849 ↗↘↘ 3637 

2483029 620757 155189 38797 9699 ↗↘ 14549 

Stray Values 

We define a stray value as an example of a natural number which cannot 
be found within the Structure Table. This contradicts claim C20, which 
remains unproven. 

If there is even one stray value, then we can label p as the minimum such 
value. We suppose that such a value could exist and consider the 
implications. 

Clearly p cannot be even as p/2 < p, contradicting the original definition. 
Whilst we have said that p is not within the Structure Table, the rules that 
form the Structure Table nevertheless have to be upheld as they come 
directly from the Collatz rules. Specifically, there has to be an infinite chain 

of 2 even values numerically above p. Additionally, unless p is divisible by 

3, there has to be a chain of (4 + 1) odd values above p as well. 

From C70, p has to be of Rank 1 (R1) or Rank 2 (R2) as it is the lowest 
element of the odd chain (by definition). However, we can further limit p 
to being an R1 value because an R2 value would make a new stray value q 
with q < p, which is not allowed by our definition of p as the minimum 
stray value. 

In summary, if p exists, it has to 
be an R1 value and therefore of 
the form (4k – 1) according to 
C51. We can also explicitly write 
down the value of q as (6k – 1). 
Needless to say, there is also a 
power-of-twos multiple chain 
above q as well. 

 

  Here is what we know so far. 

… …

1024p 1024(3p + 1)

512p 512(3p + 1)

256p 256(3p + 1)

128p 128(3p + 1)

64p 64(3p + 1)

32p 32(3p + 1)

16p 16(3p + 1)

8p 8(3p + 1)

4p 4(3p + 1)

2p 2(3p + 1)

p = (4k-1) ↗ (3p + 1)

q  = (3p + 1)/2 = 6k-1
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We have assumed for simplicity that p is divisible by 3 so the (4 + 1) odd 
chain is not required. 

The ellipses at the top of the power-of-two multiples chains mean carry on 
in the same way indefinitely (forever). 

q can be in R1 or R2, but not in R3+ as that would make the resultant r < p, 
which is not allowed by our prior definition of p. 

… …

1024p 1024(3p + 1) …

512p 512(3p + 1) 1024(3q + 1)

256p 256(3p + 1) 512(3q + 1)

128p 128(3p + 1) 256(3q + 1)

64p 64(3p + 1) 128(3q + 1)

32p 32(3p + 1) 64(3q + 1)

16p 16(3p + 1) 32(3q + 1)

8p 8(3p + 1) 16(3q + 1)

4p 4(3p + 1) 8(3q + 1)

2p 2(3p + 1) 4(3q + 1)

p = (4k-1) ↗ (3p + 1) 2(3q + 1)

q  = (3p + 1)/2 = 6k - 1 ↗ (3q + 1) = 2(9k - 1)

9k - 1

4.5k - 0.5

r   2.25k - 0.25  

 

There are two possibilities for r:       r = 9k – 1   and    r = 4.5k – 0.5. 

If p and r were equal we would have a simple loop. In fact a longer loop, if 
it were possible, would have to be pretty large, as we shall see later. 

Of course we have already demonstrated that the Structure Table has no 
loops (C24). That demonstration does not relate to our application here 
because we have postulated the existence of a stray value which does not 
exist within the Structure Table. 

Notice that the stray table we built up is not actually the Structure Table 
since it is not rooted at 1. The key point of the Structure Table is that as 
you proceed through its Levels, you make definite and steady progress 
towards the goal of termination. 

The stray table we have partially built has exactly three possibilities: 

1) it terminates eventually 
2) it loops indefinitely 
3) it diverges to infinity 

 
C72: If any part of the stray table meets any part of the Structure Table, 
the stray table ceases to exist. 

The stray table follows all the rules of a path through the Structure 
Table, with the exception that stray table has no route to 
termination. If any part of the stray table meets any part of the 
Structure Table, a route to termination has been found. Each 
branch of the stray table can then be labelled with a Level, and that 
branch will already exist within a Structure table of adequate size. 
The stray table is no longer stray, and ceases to exist as defined. 

 

From C72 above, a stray table cannot have any branch which terminates 
(in the sense of reaching 1), hence it must either loop or diverge. 

So far we have a stray table with 4 odd root values in it: p, q, r, and a so-
far unnamed one, say s. Each has an infinite power-of-two set of multiples 
above it. At least three of these infinite chains also have an infinite set of 
odd values coming off from every other even value. 

The infinite power-of-two multiples of p chain may or may not have an 
infinite chain of odd values coming off from it, depending on its divisibility 
by 3. As seen in C09, a chain of even values which is also divisible by 3 

cannot be reached by the Collatz (3 + 1) operation. 
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Below we show the current state of the stray table. 

Even-value chains are shaded light blue. Odd-value chains are shaded light 
green. 

We have not added an odd chain to the left of the even column rooted on 
p on the (pessimistic) assumption that p is evenly divisible by 3. 

We have already demonstrated that p, q, r, and s are distinct values. Other 
than possibly p, they are also not multiples of 3, since they are all of the 
form (6k ± 1). As a result, all values shown in this (infinite) table are also 
distinct, again using the Fundamental Theorem of Arithmetic argument. 

There is an infinite column of power-of-two multiples of q going upwards. 
From this column there is another infinite odd column to the left where 

the (3 + 1) steps feed into the even column. From each odd value we get 
an infinite row of power-of-two multiples of the odd values. 

On the next page we show another set of (3 + 1) steps to every other 
even value, but the table is getting difficult to read. Some actual example 
numbers, and arrows (overleaf), make the drawing less difficult to 
understand, but it nevertheless takes some work. 

 

 

 

 

… … …

1024p … 8(1024p  + 341) 4(1024p  + 341) 2(1024p  + 341) 1024p  + 341 ↗ 1024(3p + 1)

512p 512(3p + 1) … …

256p … 8(256p  + 85) 4(256p  + 85) 2(256p  + 85) 256p  + 85 ↗ 256(3p + 1) … 8(1024q  + 341) 4(1024q  + 341) 2(1024q  + 341) 1024q  + 341 ↗ 1024(3q + 1)

128p 128(3p + 1) 512(3q + 1) … …

64p … 8(64p  + 21) 4(64p  + 21) 2(64p  + 21) 64p  + 21 ↗ 64(3p + 1) … 8(256q  + 85) 4(256q  + 85) 2(256q  + 85) 256q  + 85 ↗ 256(3q + 1) … 8(1024r  + 341) 4(1024r  + 341) 2(1024r  + 341) 1024r  + 341 ↗ 1024(3r + 1)

32p 32(3p + 1) 128(3q + 1) 512(3r + 1)

16p … 8(16p  + 5) 4(16p  + 5) 2(16p  + 5) 16p  + 5 ↗ 16(3p + 1) … 8(64q  + 21) 4(64q  + 21) 2(64q  + 21) 64q  + 21 ↗ 64(3q + 1) … 8(256r  + 85) 4(256r  + 85) 2(256r  + 85) 256r  + 85 ↗ 256(3r + 1)

8p 8(3p + 1) 32(3q + 1) 128(3r + 1)

4p … 8(4p  + 1) 4(4p  + 1) 2(4p  + 1) 4p  + 1 ↗ 4(3p + 1) … 8(16q  + 5) 4(16q  + 5) 2(16q  + 5) 16q  + 5 ↗ 16(3q + 1) … 8(64r  + 21) 4(64r  + 21) 2(64r  + 21) 64r  + 21 ↗ 64(3r + 1)

2p 2(3p + 1) 8(3q + 1) 32(3r + 1)

p      p ↗ (3p + 1) … 8(4q  + 1) 4(4q  + 1) 2(4q  + 1) 4q  + 1 ↗ 4(3q + 1) … 8(16r  + 5) 4(16r  + 5) 2(16r  + 5) 16r  + 5 ↗ 16(3r  + 1)

… 2(3q + 1) 8(3r  + 1)

q      q ↗ (3q + 1) … 8(4r  + 1) 4(4r  + 1) 2(4r  + 1) 4r  + 1 ↗ 4(3r  + 1)

… 2(3r + 1)

r      r ↗ (3r + 1)

…

s   
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Showing a numerical example is helpful, even though it cannot be real in 
the sense of finding a genuine stray starting point (which may not actually 
exist). 27 is a multiple of 3, like our postulated value of p, so there are no 
feed-in points to the left of the power-of-two multiples of p (=27) column. 

Notice that we do have some darker blue rows (and the darker blue 
column above p),  which are the ‘unreachable’ divisible-by-3 sets, also 
seen in the Structure Table. These were mentioned earlier with respect to 
L2 (C08, C09). 
 

 
… … …

27648 … 223912 111956 55978 27989 ↗ 83968

13824 41984 … …

6912 … 55976 27988 13994 6997 ↗ 20992 … 338600 169300 84650 42325 ↗ 126976

3456 10496 63488 … …

1728 … 13992 6996 3498 1749 ↗ 5248 … 84648 42324 21162 10581 ↗ 31744 … 256680 128340 64170 32085 ↗ 96256

864 2624 15872 48128

432 … 3496 1748 874 437 ↗ 1312 … 21160 10580 5290 2645 ↗ 7936 … 64168 32084 16042 8021 ↗ 24064

216 ↗ ↗ 656 ↗ ↗ 3968 12032

108 … 872 436 218 109 ↗ 328 … 5288 2644 1322 661 ↗ 1984 … 16040 8020 4010 2005 ↗ 6016

54 # ↗ # 164 # ↗ # 992 ↗ 3008

27   27 ↗ 82 … 1320 660 330 165 ↗ 496 … 4008 2004 1002 501 ↗ 1504

# # # … 248 # 752

1165 145 291 41   41 ↗ 124 … 1000 500 250 125 ↗ 376

2330 290 582 # # # … ↗ ↗ 188

4660 580 1164 7053 881 1763 31   31 ↗ 94

9320 1160 2328 14106 1762 3526 …

18640 2320 4656 28212 3524 7052 333 2673 83 47 

… … … 56424 7048 14104 666 5346 166

… … … 1332 10692 332

2664 21384 664

… … …  
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C73: Every third power-of-two multiple chain rooted in odd values which 

feed in (via a (3 + 1) step) to a power-of-two multiple of an odd value are 
evenly divisible by 3. (In other words the darker blue rows in the table 
above) 

We know that all end values from a Rank chain are of the form 

(6k ± 1). Suppose q = (6k – 1). Using the direct (4 + 1) method we 
then get 

4q + 1  =  4(6k – 1) + 1  =  24k – 3  =  3k’    (divisible by 3) 

Suppose q = (6k + 1). Using the direct (4 + 1) method we then get 

4q + 1  =  4(6k + 1) + 1  =  24k + 5  =  3k’ + 2 

16q + 5 = 16(6k + 1) +  5 = 96k + 21 = 3k’    (divisible by 3) 

k’ is a dummy variable in all the lines above (inconsistent values). 

This has showed the starting values, but not yet the 1-in-3 rule. 

The even number chain above q is 2n  q. The every-other-one 

divisible by 3 rule gives the 22n  q rule we have seen before. The 

new 1-in-3 of these divisible by 9 rule is effectively for   26n  q. 

9 | (26n – 1)  is easy to demonstrate numerically, and is proved in 
C74 below. 

C74:   9 | (26n – 1) or  (26n – 1) = 9k 

(26 – 1) =   (23 + 1)(23 – 1) = 9(23 – 1)  
(212 – 1) = (26 + 1)(26 – 1) = 9(23 – 1)(26 + 1)  

(224 – 1) = (212 + 1)(212 – 1) = 9(23 – 1)(26 + 1)(212 + 1) 
(248 – 1) = (224 + 1)(224 – 1) = 9(23 – 1)(26 + 1)(212 + 1)(224 + 1) 

(26 – 1) (212 – 1) = 218 – 212 – 26 + 1 = (218 – 1) – (212 – 1) – (26 – 1)    
(218 – 1) = (26 – 1) (212 – 1) + (212 – 1) + (26 – 1),         all divisible by 9 

 
(26 – 1) (26n – 1) = 26n+6 – 26n – 26 + 1 = (26n+6 – 1) – (26n – 1) – (26 – 1)    
(26(n+1) – 1) = (26 – 1) (26n – 1) + (26n – 1) + (26 – 1)    

When n=1, all the RHS terms are (26 – 1), and we have shown above 
that these are all divisible by 9. Since all the terms on the RHS are 
divisible by 9, their sum, and hence the LHS, is also divisible by 9. 
We have shown that if  9 | (26n – 1), then   9 | (26(n+1) – 1), and 
also shown that the n=1 case is true. Using mathematical induction 
we have therefore proved that the general case is true. 
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We now proceed to count the numbers produced in the stray table based 
on the single value q and up to some huge limit, H, assuming that q is 
relatively small compared to H. 

(1) Even numbers above q, amounting to log2(H) 
(2) Odd numbers to every-other even number in (1) above = ½ log2(H) 

(3) Even numbers from each odd number in (2) above = ½ log2(H)  log2(H) 

(4) Odd numbers from ⅓ of the even numbers from (3) ⅙ log2(H)  log2(H) 
We lose 1 in 3 chains, and then every other term from each 
remaining chain, making only ⅓ of the even values accessible from 
an odd value. 

(5) Even numbers from each odd number in (4) above = 

 ⅙ log2(H)  log2(H)  log2(H) 
(6) Odd numbers from 1/3 of the even numbers from (5) above = 
… 
 
 
We have the sum: 

 S = (3/2) log2(H) + (2/3) [log2(H)]² + (2/3²) [log2(H)]³ + … 
 

Since   log2(H) ≫ 10    we have a strictly divergent series.6 

 
It is important to note that all of the values we are counting here are 
strictly greater than q. It means that as we iterate through the counting 
sequence above, the values get increased steadily by some factor, say k.  
 

 

6 On the Summation of Divergent series using the  rules, 2018, Green, L.O. 
(v1.80, 2021). 

At some point the previous implicit assumption that H ≫ knq will break 

down, making the rate of divergence at least slow down, and possibly 
making the series no longer divergent. 
 
(1) becomes log2(H) – log2(q) = log2(H/q) 
(2) becomes ½ log2(H/q) 

(3) becomes ½ log2(H/q)  log2(H/(kq)) 

(4) becomes ⅙ log2(H/q)  log2(H/(kq)) 

(5) becomes ⅙ log2(H/q)  log2(H/(kq)) log2(H/(k²q) 

An approximated value of 8 for k would be both relevant and convenient. 
This is nevertheless a difficult sum. 
 
Of course S was just for q. We demonstrated that there had to be at least 
2 similar root values, and actually as many more as were needed to form a 
loop (if such a loop could exist). 

As you can easily see, the hope was to show that a stray value, and hence 
a stray infinite chain, and hence an infinite collection of infinitely long 
chains, demonstrated that such a set must necessarily intersect with the 
Structure Table, and therefore could not be stray. But we have not 
achieved this goal. Infinity does not mean “all”. 

Consider the natural numbers. There are infinitely many of them. Now 
consider the natural numbers which are evenly divisible by 7. There are 
infinitely many. Nobody would be so idiotic as to assert that because there 
are infinitely many natural numbers, and infinitely many natural numbers 
evenly divisible by 7, that all natural numbers are evenly divisible by 7. The 
infinities are distinct. 

One could argue this case using either the -rules or density, neither of 
which are especially well known. 

http://lesliegreen.byethost3.com/articles/divergent.pdf
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Here we could (unintentionally) make the logical fallacy less easy to spot. 

5  2n generates an infinite chain (set) of even numbers. 

7 x 2m also generates an infinite chain (set) of even numbers. But these 
infinite sets are disjoint and do not cover the field of even numbers. 

It would be very reasonable to argue that the Structure Table is an ‘after-
the-fact’ construct. Only values which are known to be convergent appear 
on such a table. 

It is also very reasonable to consider that the Structure Table is a Reverse 
Collatz table, in the sense that it is built upwards from the root value 1. Of 
course in the actual construction we search all possible “upwards” paths 
(further from termination, but not always greater in numerical value). 

At any branch point, we always go in both directions. In the normal 
iteration sequence these branch points are merge points. They only occur 
in even Levels at values of the form (3k + 1). 

More on Loops 

Since numbers up to 1020 are known to be convergent under Collatz, we 

can simplify an UP step, (3 + 1), to 3 without too much error. In this 

case loops occur when the product of UP steps (3) and DOWN steps, (/2), 
is close to one. 

Clearly 
mn 23    for n  1, due to the Fundamental Theorem of 

Arithmetic. However, the addition of 1 into the Collatz UP step means the 
inequality cannot be definitely excluded. If we try to look for cases where 

1
2

3


m

n

 we soon get a problem because even using doubles we get 

an overflow when n > 646. Instead we take natural logs and expect a 
result close to zero, then round m to the nearest integer, and see how 
close we got. In C++ we have: 

 

The log( ) function gives the natural log. 

Notice that without the 1 in the UP steps, the product of steps can be 
calculated in any order. When the 1 is included, the exact order of UP and 
DOWN steps becomes relevant if enough significant digits are considered. 
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First we allow quite a large ratio in order to check the maths ‘manually’ 
using a calculator. 

 

Then we can reduce the ratio to get a better approximation. 

 

Since the variable delta is obtained by subtracting two very nearly equal 
values, after having multiplied the logs by some large numbers, we must 
be losing accuracy from the supposed 15 digit accuracy of the original log 
function. 

The point is we have to do some significant error analysis to work out the 
uncertainty in the ratio values, but it certainly looks like loops, if any, have 
to be longer than hundreds of thousands of steps. 

If we tweak the calculation for improved accuracy 

 

it makes no visible difference at the displayed resolution shown above. 

The point is we could use a full long double library, with long double logs, 
and we could then reduce the ratios closer and closer to one, but all we 
get is a higher bound for any possible loop size. That is not very interesting 
from an analytic point of view since it does not tell us whether or not 
loops can occur. 

 

Conclusion 

The numerical testing for loops shows that any loop must be at least 
hundreds of thousands of steps long, but no amount of numerical testing 
is likely to settle the question concerning loops (unless an actual loop is 
found). 

Using C72 we can certainly say that there are either infinitely many 
counter-examples to the Collatz Conjecture, or absolutely none at all. No 
in-between cases are possible. 
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Appendix: Computational Results 

We can never hope to prove anything with computation alone. However, we can gain insight into the problem. 

Collatz Iteration Sequence - required number of Levels
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Collatz Iteration Sequence: Maximum Iterated Value

y = 0.4135x
1.9572
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