
Trivial DMA Architecture
The slides that follow illustrate the high level functionality and data path interconnect for the Trivial DMA Engine which is distributed in the Trivial DMA example provided with the Modular PCIe SOPC Builder

Bridge examples..

Here is an overview of what each slide contains:

Page 2 – Implementation Strategy – this slide shows the high level strategy for integrating the Modular PCIe SOPC Builder Bridge with the trivial DMA engine.

Page 3 – High Level Architecture – this slide illustrates the architecture of the trivial DMA engine.

Page 4 – High Level Architecture, How it works – this is the same slide as the High Level Architecture with additional text added to describe the functionality of the structure.

General Description
The Trivial DMA engine interfaces with the PCIe host thru a very basic 64-bit DMA descriptor format. The format is defined as such:

descriptor 64-bit: { desc_type[0 : 0], reserved[14 : 0], channel[7 : 0], word_count[7 : 0], address[31 : 0] }

 desc_type : 1 bit field : specifies descriptor type

 : 1'b0 = write descriptor

 : 1'b1 = read descriptor

 reserved : 15 bit field : value does not matter

 : set to ZERO

 channel : 8 bit field : specifies what Avalon ST channel the returning read data shall occupy, meaningless for write descriptors

 : 8'bxxxx_xxx0 = write data

 : 8'bxxxx_xxx1 = descriptor data

 word_count : 8 bit field : specifies the number of 64-bit words to be read or written

 : 8'h01 = minimum valid word count

 : 8'hFF = maximum valid word count

 address : 32-bit field : specifies the byte address for the transaction

 : must be a 64-bit word aligned address, i.e. the 3 lsb of the address must be ZERO

These descriptors may be manually pushed into the descriptor slave interface provided by the Trivial DMA engine, or a the Trivial DMA engine can fetch the descriptors itself using it’s read master interface. The

engine must be started by pushing at least one descriptor into it’s descriptor slave, but that descriptor can instruct the engine to then fetch more and more descriptors as it continues to operate. Here’s a simple

example of what a potential descriptor pattern might look like:

Create an initial descriptor to push into the descriptor slave:

 { RD_DESC, DESC, 7, PCIE + 0 } – Read descriptor, reading descriptors, read 7 words, starting at PCIe slave base + 0

Then at PCIe + 0 the Trivial DMA Engine would fetch these descriptors:

 1 - { WR_DESC, xxxx, 128, OCRAM + 0 } – Write descriptor, write 128 words, starting at Onchip RAM base + 0

 2 - { RD_DESC, DATA, 128, PCIE + 0x1000 } – Read descriptor, reading data, read 128 words, starting at PCIe slave base + 0x1000

 3 - { WR_DESC, xxxx, 128, PCIE + 0x2000 } – Write descriptor, write 128 words, starting at PCIe slave base + 0x2000

 4 - { RD_DESC, DATA, 128, OCRAM + 0 } – Read descriptor, reading data, read 128 words, starting at Onchip RAM base + 0

 5 - { WR_DESC, xxxx, 1, PCIE + 0x0 } – Write descriptor, write 1 word, starting at PCIe slave base + 0x0

 6 - { RD_DESC, DATA, 1, PCIE + 0x8 } – Read descriptor, reading data, read 1 words, starting at PCIe slave base + 0x8

 7 - { RD_DESC, DESC, 7, PCIE + 0x100 } – Read descriptor, reading descriptors, read 7 words, starting at PCIe slave base + 0x100

So in this example descriptors 1 and 2 coordinate moving data from PCIe memory to onchip RAM, then descriptors 3 and 4 coordinate moving data from onchip RAM to PCIe memory. Descriptors 5 and 6

coordinate reading descriptor 2 and writing it back over descriptor 1. And finally descriptor 7 coordinates fetching 7 more descriptors.

Page 1 of 4

SOPC Builder System

Trivial DMA

Implementation Strategy

Altera PCIe core is

configured and

instantiated outside of the

SOPC Builder system.

The Modular PCIe SOPC

Builder Bridge architecture

translates PCIe

transactions into Avalon

MM transactions and vice

versa.

The Trival DMA structure

provides a slave interface

that the PCIe host can use

to write an initial descriptor

into. Then the Read

master can be used to

fetch additional descriptors

from the PCIe memory

space. The read and write

masters are used to

transfer data from either

onchip RAM and the PCIe

address space.

PCIe Core

Instance

PCIe TX ST

PCIe RX ST

Modular PCIe

Bridge

PCIe TX ST

PCIe RX ST

Slave

BAR Master

Trival DMA

Descriptor

Slave

Read

Master

Write

Master

Onchip RAM

64-bit

Onchip RAM

32-bit

Two onchip RAM targets

are provided in the SOPC

system, one 64-bit data

path and one 32-bit data

path. The 64-bit RAM

illustrates optimal

performance thru the PCIe

and DMA system, whereas

the 32-bit RAM illustrates

a highly restricted

performance due to it’s

narrower datapath.

Page 2 of 4

Read

Master
SRC

Descriptor

Classify
SRC SNK

Read

Data

DeMUX

SNK

SRC

SRC

Write Data

FIFO
SNK SRC

M

SNK

Trivial DMA

High Level Architecture

Standard SOPC Builder Component

Custom Modular PCIe Component

SNK

Write

Master
MSNK

SNK

Read

Credit

Gate

SRC

SNK

SNK

Read

Descriptor

Separator

SRC

SNK

SRC

a
d

d
r_

d
e

s
c

F
IF

O
S

N
K

S
R

C

d
a

ta
_

d
e

s
c

F
IF

O
S

N
K

S
R

C

Read Data

Credit Reporter
SRCSNK

SRC

Descriptor

FIFO
SNK SRC

a
d

d
r_

d
e

s
c

F
IF

O
S

N
K

S
R

C

Write

Descriptor

Separator

SNK

SRC

Descriptor

MUX
SRC

SNK

SNK

Read/Write

Descriptor

DeMUX

SRC

SNK

SRC
Descriptor

Slave
SRC S

2
5

6
 w

o
rd

s

256 words

2
5

6
 w

o
rd

s

1024 words

2
5

6
 w

o
rd

s

Page 3 of 4

Read

Master
SRC

Descriptor

Classify
SRC SNK

Read

Data

DeMUX

SNK

SRC

SRC

Write Data

FIFO
SNK SRC

M

SNK

Trivial DMA

High Level Architecture

Standard SOPC Builder Component

Custom Modular PCIe Component

SNK

Write

Master
MSNK

SNK

Read

Credit

Gate

SRC

SNK

SNK

Read

Descriptor

Separator

SRC

SNK

SRC

a
d

d
r_

d
e

s
c

F
IF

O
S

N
K

S
R

C

d
a

ta
_

d
e

s
c

F
IF

O
S

N
K

S
R

C

Read Data

Credit Reporter
SRCSNK

SRC

Descriptor

FIFO
SNK SRC

a
d

d
r_

d
e

s
c

F
IF

O
S

N
K

S
R

C

Write

Descriptor

Separator

SNK

SRC

Descriptor

MUX
SRC

SNK

SNK

Read/Write

Descriptor

DeMUX

SRC

SNK

SRC
Descriptor

Slave
SRC S

2
5

6
 w

o
rd

s

256 words

2
5

6
 w

o
rd

s

1024 words

2
5

6
 w

o
rd

s

Why does this structure exist? This structure provides a very trivial DMA capability created

out of standard SOPC Builder components along with some very trivial custom components to

provide the read and write master requirements and descriptor orchestration. The DMA

functionality that this structure can provide is full 64-bit word transfers to and from 64-bit word

aligned addresses.

1 – An initial descriptor or

mulitple descriptors are

written into this Avalon

Slave interface.

2 – This mux merges

descriptors that have been

fetched by the read master

with those that are

manually pushed into the

descriptor slave.

3 – This component

classifies the incoming

descriptors as a read or

write descriptor and

assigned it to an Avalon

ST channel accordingly.

4 – This demuxes the read

and write descriptors

based on the Avalon ST

channel field.

5 – This component

meters out the read

requests for the read

master to ensure that the

write data FIFO is not

overcommitted.

6r – This component strips

the relevant fields out of

the input descriptor and

passes them on to the

read master.

7 – The read master

requires an address

descriptor and a data

descriptor. These are

FIFOed separately to

enhance the read request

pipeline..

8 – The read master posts

read requests out to the

SOPC Builder MM fabric.

9 – The returning read

data is demuxed based on

the channel field which

was encoded in the read

descriptor. The read data

is either data or

descriptors.

6w – This component

strips the relevant fields

out of the input descriptor

and passes them on to the

write master.

10 – This component

signals read data credits

back to the read credit

gate.

11 – This write master

posts write requests out to

the SOPC Builder MM

fabric.

Page 4 of 4

	trivial_dma_architecture.vsd
	Introduction
	Implementation Strategy
	High Level Architecture
	High Level Architecture HIW

