Intel
| mage Processing

Library

Reference Manual

Copyright © 1997, 1998, Intel Corporation
All Rights Reserved

Issued in U.S.A.

Order Number 663791-002

]
-

=

-lTT
RN
non

[T 1]
.
non

[l

213

How to Use This Online Manual

Click to hide or show subtopics when the F Click to go to the previous page.
bookmarks are shown.

Double-click to jump to a topic when the b Click to go to the next page.

bookmarks are shown.

Click to display bookmarks. M Click to go to the last page.

Click to display thumbnails. Click to return back to the previous view.

*‘ Use this button when you need to go back
after using the jump button (see below).

Click to close bookmark or thumbnail Click to go forward from the previous
view. view.

w
w

Click and use on the page to drag the
page in vertical direction.

Click to set 100% of the page view.

Click and drag to the page to magnify the
view.

Click to display the entire page within the
window.

Click and drag to the page to reduce the Click to fill the width of the window.

view.

)| | (=0)

Click and drag the selection cursor to the
page.

Click to open a dialog to search for a word
or multiple words.

Click to go to the first page of the manual. Click jump button on manual pages to

jump to the related subjects. Use the

v | &

return back icon above to go back.

Printing an Online File. Select Print from the File menu to print an online file. The dialog that opens
allows you to print full text, range of pages, or selection.

Viewing Multiple Online Manuals. Select Open from the File menu, and open a .PDF file you need.
Select Cascade from the Window menu to view multiple files.

Resizing the Bookmark Area. Drag the double-headed arrow that appears on the area’s border as
you pass over it.

Jumping to Topics. Throughout the text of this manual, you can jump to different topics by clicking on
keywords printed in green color, underlined style or on page numbers in a box.

To return to the page from which you jumped, use the icon in the tool bar. Try this example:
This softwareis briefly described in the Overview; see pag
If you click on the phrase printed in green color, underlined style, or on the page number, the Overview

opens.

Intel Image Processing Library
Reference Manual

Order Number: 663791-002

World Wide Web: http://developer.intel.com

Revision | Revision History | Date

http://developer.intel.com/design/perftool/perflibst/ipl/index.htm

Information in this document is provided in connection with Intel products. No license, express or implied, by
estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in
Intel's Terms and Conditions of Sale or License Agreement for such products, Intel assumes no liability
whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products
including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any
patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life
saving, or life sustaining applications. Intel may make changes to specifications and product descriptions at
any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or
"undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or
incompatibilities arising from future changes to them.

Intel Architecture processors may contain design defects or errors known as errata which may cause the
product to deviate from published specifications. Current characterized errata are available on request.

Intel, the Intel logo, and Pentium are registered trademarks, and MMX is a trademark of Intel Corporation.
*Third-party brands and names are the property of their respective owners.

Copyright 0 1997, 1998, Intel Corporation. All Rights Reserved.

Contents

Chapter 1 Overview
About ThisS SOftWarecooovviiiieeeee e,
Hardware and Software Requirementscccccveeeee..
About This Manual...........c.oeeiiiiiiiii e
Manual Organizationeeeeeeeeeeemereeeeeeieeeeeeeeeeee
FuNCtion DESCIIPLIONSevveiiiiiiiiiiiiiiiieeeeeeeeee s
Audience for This Manualccooeeeveeiiiiiieiieeeeee
ONlINE VEISION ...cceveciee e
Sources of Related Informationcoeeiiiiiinnnnn.n.
Notational Conventionscccceeieeeiiiiii e,
FOoNt ConVeNtioNSccovviiiii e
Naming CONVENTIONS.........uuuuuriiiiiiiiiieiieeeereeeeeeeeeeeeeeeeeens
Function Name Conventions...........cccceevvevviviieeeeeeevnnnnnn.
X-Y Argument Order CONVeNntionccccccceeeeeeeeeinnnnnnnn.

Chapter 2 Image Architecture
Data ArChiteCIUIeeevieieiiiiieeeeeeeeeee e
COolor MOEIS ...
Data Types and Palettes.............oovvvviviiiiiiiiiiiiin,
The Sequence and Order of Color Channels
Coordinate SYSteMS.......cooviiiiiiiieee e
Image Regions Of INtereSt...........uuvveeiiiiiiiiiiiiiiiiieeeeeeee
Alpha (Opacity) Channel.........ccccccoeiiis
Scanline AlIgNMmeNnt ...
IMage DIMENSIONSuviiiiiiiiiiiiiiiieiiieieeeee et
Execution ArChiteCtUrecvvvvviiiiiiiiiie e
Handling Overflow and Underflow..............cccvvvvevvenennen.
In-Place and Out-of-Place Operationsccccceee

Intel Image Processing Library Reference Manual

IMAQGE TilING ...
THE SIZE oo,
Call-baCKS ..o
ROI'and TiliNgcooooeieeeee e
In-Place Operations and Tiling ...

Chapter 3 Error Handling

GEetEIMStatUS ...
GELEIMMOAE ...
ErTOrSIr e
[L=Lo [T =Tod 1 =t g (o] (R
Error MaCIOS ... covniiieie e

SEAUS COUES ... vveeeereeeieiee et B-§

Application NOTEScooiiiiiiec s
Error Handling Examplecccooiiiiiiiiiiieeeeeeeeee
Adding Your Own Error Handlerccccoiviviiiiiiiineeen.

Chapter 4 Image Creation and Access
Image Header and Attributes ...
Tiling Fields in the Iplimage Structurecccceees
IPITiIleINfo SruCture ...
Creating IMAagESoovvviiiiiiiiiii
CreatelmageHeader............uuvvviiiiiiiiiiiiieieieeeeeeeeeeeeeeeeee
Allocatelmageooooeieeeeee
AllocatelmageFP ...
Deallocatelmagecooovevieiieieiee e
Clonelmage........coooiiiiiii
DealloCAte ...t

Contents

Setting Regions of Interestoooveviiiiiiiiieeeeeeeeeis
CreateRO,
DEIEtERON .. .ceecee e
SEIRON et

Image Borders and Image Tilingeveviiiiiiiiiiiiiiininnnnnn.
SetBorderMOode.........covveviiiiieeeee e
CreateTilelNfo ...
SetTIlelNfO ...

Working in the Windows DIB Environment
TranslateDIB ...
ConvertFrombDIB ...
ConvertFrombDIBSEP ..cccvvvviiiiieeeieeee e
CoNVErtTODIBuuiiiiiceeieee e

R
N
=

R
N
N

R
N
N

R
N
w

R
N

o
N
SN

1
w
H

o
w
D

£
w
o

£
w
o

+
IS
=

Intel Image Processing Library Reference Manual

Vi

Chapter 5 Arithmetic and Logical Operations

MUILIPIYS e
MUILIPIYSEP ...
MUItiplySScale.........oooooiiiii e

A Lo

AN

Image Compositing Based on Opacityccccccceeeeeeeeeeeneeee,
Using Pre-multiplied Alpha Valuesccccciivinnneee.
AlPhaComPpPOSIteocoeeiieiiee
AlphaCompositeCcoooiiiis
PreMultiplyAlpha ...

Contents

Chapter 6 Image Filtering 6-1
Linear FIErS......cccuvviiiiiei e @
BIUE e 6-2
2D Convolutionocceiiiiiiiiii
CreateConvKernel ... 6-5
CreateConvKernelChar............ccooociiiiiiiiiiiiiieeeeeeeeee 6-5
CreateConvKernelFP ... 6-5
GELCONVKEIME ..o 6-6
GEtCONVKEMEICNAN ..o
GetConvKernelFP ...,
DeleteConvKernel.........ccccoovviiiiiiiiieii e
DeleteConvKernelFPcccoocciiiiiiiiiiiiiee e
CONVOIVEZD .ottt 6-8
CONVOIVE2DFP ... 6-8
ConVOIVESEPZ2Dcoooiieeee e 6-11
FIXEAFIIEN .o 6-12
NON-liNear Filtersuuvuiiiiiiiiiiiiiiiiieiieeeee e 6-14
MediaNFIItercovviiiiiiiii 6-15
MAXFIIET .o 6-17
MINFIIET .o, 6-18
Chapter 7 Linear Image Transforms 7-1
Fast Fourier Transformcccoooviiiiiii e 7-1
Real-Complex Packed (RCPack2D) Format 7-1
REAIFT2Doiiiiiiiiiiiiiii 7-4
CCSFF2D .. 7-7)
Discrete Cosine Transformcccooeeveeeeeeceneeneenan, 7-8
DCT2D ittt 7-8

Vi

Intel Image Processing Library Reference Manual

viii

Chapter 8 Morphological Operations 8-1
EFOUE oo 8-2
DAL ...ttt 8-5
OPEN oottt
ClOSE ... 8-7

Chapter 9 Color Space Conversion 9-1

Reducing the Image Bit Resolutioncccccoeeiiviieeeennnn. 9-2
REAUCEBILScvoceicice et
Conversion from Bitonal to Gray Scale Images @
BItONAITOGIAYvoveveircieeieeieei s 9-5
Conversion of Absolute Colors to and from Palette Colors (9-5
Conversion from Color to Gray Scaleccccccoevrrerennn.
COlOITOGIAY......cuiiiiiieeee e @
Conversion from Gray Scale to Color (Pseudo-color)
GrayTOCOIOccviiiiiiiiiin
Conversion of Color MOdElS..........c.coveeeveeveeeeeieeeeeeeene, 9-8
Data ranges in the HLS and HSV Color Models b-9
RGB2HSY ..ottt 9-10
HSV2RGB ...t 9-10
RGBZHLS ... 9-11
HLSZ2RGB ... 9-11
RGBZ2LUV ...t 9-12
LUVZRGB ...ttt 9-12
RGB2XYZ ... 9-13
XYZ2RGB .o 9-13
RGB2YCICD....iiiiie e 9-14
YCICD2RGB.....coiiiiiiiiieecieee et 9-14
RGB2YUV ... 9-15
YUVZRGB ... e 9-15
YCC2RGB... ittt 9-16

Contents

Using Color-Twist MatriCeSuuuvurriirriiiiiiiiiiiiiieeeeeeeenn 9-16
CreateColorTWISToooeiiieeee e 9-17
SetCOIOITWIST. ... 9-18
APPIYCOIOITWIST ..t 9-19
DeleteCOoIOrTWIST.uiiiiiiiiiieieieieeeee e 9-20

Chapter 10 Histogram and Thresholding Functions 10-1

Thresholding ... 10-1
Threshold ... 10-2

Lookup Table (LUT) and Histogram Operations 10-4
The IPILUT StruCture.........cooooeeiiiiiiiieeee e 10-4
CoNtrastSIretCh ..o 10-6
COMPUEEHISTO ... 10-7
HIStOEQUANIZE ... 10-8

Chapter 11 Geometric Transforms 11-1

Changing the Image Size ..o 11-2
W4 o o] 1 ¢ DU PSP UP PR 11-3
DECIMALEciiiiiiiiiiiiiiii e 11-4
RESIZE ..ttt

Changing the Image Orientationcccccccvvviiiviinennnne. 11-6
ROEALE ..o 11-6
GetRotateShiftooooeeie 11-7
YT o] SR 11-10

WaAIPING oot 11-11
SNBAN ..t 11-12
WarpATiNg ..o 11-13
GetAffineBound ... 11-14
GetAffineQuUAdcoove e 11-14
GetAffineTransform ... 11-15
WarpBiliN@Arcovvvviiiiiiiiiii, 11-16
GetBilinearBound..............ooooiiiiiiiiiii 11-18

Intel Image Processing Library Reference Manual

GetBilinearQuadcccooiiiiiiiiiii
GetBilinearTransformcoovvvieeeiiiiiiie e
WarpPerspectiVecooooveiiiie e
GetPerspectiveBoundoooveiiiiiiiiiieeeeee
GetPerspectiveQuadooevviiiieiiiiiiiii e
GetPerspectiveTransformcccceevvvveieiiiieeeiiiiiiceennn.

Chapter 12 Image Statistics Functions

IMage MOMENLSuiiiiiieiiiiei e

MOMENTS ..eei e
GetSpatialMOMENtovviiiiiiieeec e
GetCentralMOmMENtcoeeviiii e
GetNormalizedSpatialMomentcccceeeveviiiiiicennennn.
GetNormalizedCentralMoment..........cccoceveviiieeeceeinnnnnnn.
SpatialMOMENTooeviiiiiiie e
CentralMOMENTo
NormalizedSpatialMomentcoooiiiiiiiiiiiiiiee
NormalizedCentralMoment.........cccccoeeevvvieeeiiieeeieeeeeene,

Appendix A Supported Image Attributes and Operation Modes

Bibliography
Glossary

Index

Contents

Tables

Figures

Table 2-1 Data Orderingcoooeeeiiiieeieieeeeeeee 2-3
Table 3-1 iplError() Status COdESccoeveveeeeeeeeeeereenn B-9
Table 4-1 Image Creation, Data Exchange and

Windows DIB Environment Functions...................... a-1l
Table 4-2 Image Header Attributesccoooevveeeeeiiiiiieeiiinns 4-3
Table 5-1 Image Arithmetic and Logical Operations zll
Table 5-2 Types of Image Compositing Operations 5-22
Table 6-1 Image Filtering Functionscccccciiivnnneee. 6-1

Table 7-1 Linear Image Transform Functions
Table 7-2 FFT Output in RCPack2D Format for Even K....[7-3
Table 7-3 FFT Output in RCPack2D Format for Odd K..... 7-3
Table 7-4 RealFFT2D Output Sample for K=4, L =4[7-3

Table 8-1 Morphological Operation Functions 8-1
Table 9-1 Color Space Conversion Functions 0-1
Table 9-2 Source and Resultant Image Data Types

for Reducing the Bit Resolutioncccceevvvininnees 9-4
Table 9-3 Source and Resultant Image Data Types

for Conversion from Color to Gray Scale 9-6
Table 9-4 Source and Resultant Image Data Types

for Conversion from Gray Scale to Color 9-8
Table 10-1 Histogram and Thresholding Functions 10-1
Table 11-1 Image Geometric Transform Functions 11-1
Table 12-1 Image Statistics Functions.............ccccoevvvvvvinnns 12-1

Figure 2-1 Setting an ROI for Multi-lmage Operations
Figure 4-1 RGB Image with a Rectangular ROl and a COI
Figure 8-1 Erosion in a Rectangular ROlcccccceeunine. B-3

xi

Intel Image Processing Library Reference Manual

xii

Examples

Example 3-1 Error FUNCHIONSoooeviiiiieeee 3-10
Example 3-2 Output for the Error Function Program
(IPL_ErrModeParent)ceueeeeeeieiiiiiiiiiieeeeeeeeeeeenn 3-12
Example 3-3 Output for the Error Function Program
(IPL_ErrModeParent)eeuveeeeeeeeiiiiiiiiieeeeeeeeeeeenn 3-12
Example 3-4 A Simple Error Handlerccccoooiiiiins 3-14

Example 4-1 Creating and Deleting an Image Header A-1
Example 4-2 Allocating and Deallocating the Image Data |4-13

Example 4-3 Setting the Border Mode for an Image 1-21
Example 4-4 Allocating an Image and Setting Its

Pixel Values ..., 4-28
Example 4-5 Copying Image Pixel Valuescccc....... 4-30
Example 4-6 Converting IMages...........uvvveeeeiieeeenennininnnnns 4-33
Example 4-7 Using the Function iplGetPixel 4-35

Example 4-8 Translating a DIB Image Into an Iplimage ...|4-39
Example 4-9 Converting a DIB Image Into an Iplimage|4-42
Example 6-1 Computing the 2-dimensional Convolution ..|6-9

Example 6-2 Applying the Median Filterccoovvvneees 6-16
Example 7-1 Computing the FFT of an Image 7-5
Example 7-2 Computing the DCT of an Image
Example 8-1 Code Used to Produce Erosion

in a Rectangular ROIuuuiiiiiiiiiiiiiiiiiieeeeeee 8-4
Example 10-1 Conversion to a Bitonal Image 10-3
Example 10-2 Computing and Equalizing the Image L

HIStOQram......covviiiiiiiiiiii 10-9
Example 11-1 Rotating an Imageccoooevvvvvvviinnnnnne. 11-8
Example 12-1 Computing the Norm of Pixel Values 12-4

Overview

This manual describes the structure, operation and functions of the Intel
Image Processing Library. Thislibrary supports many functions whose
performance can be significantly enhanced on the Intel Architecture (1A),
particularly the MMX™ technology.

The manual describes the library’s data and execution architecture and
provides detailed descriptions of the library functions.

This chapter introduces the Intel Image Processing Library and explains
the organization of this manual.

About This Software

The Intel Image Processing Library focuses on taking advantage of the
parallelism of the SIMD (single-instruction, multiple-data) instructions

that comprise the MMX technology. This technology improves the
performance of computationally intensive image processing functions.
Thus this library includes a set of functions whose performance
significantly improves when used with the Intel Architecture MMX
technology. The library does not support the reading and writing of a wide
variety of image file formats or the display of images.

Hardware and Software Requirements

The Intel Image Processing Library runs on personal computers that are
based on Intel Architecture processors and running Microsoft Windows*,
Windows 95, or Windows NT*. The library integrates into the customer’s
application or library written in C or C++.

1-1

Intel Image Processing Library Reference Manual

About This Manual

This manual provides a background of the image and execution
architecture of the Intel Image Processing Library as well as detailed
descriptions of the library functions. The functions are combined in
groups by their functionality. Each group of functionsis described in a
separate chapter (chapters 3 through 11).

Manual Organization

This manual contains twelve chapters:

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

“Overview” Introduces Intel Image Processing
Library, explains the manual organization and
notational conventions.

fmage Architecture Describes the supported
image architecture (color models, data types,
data order, and so on) as well as the execution
architecture and image tiling.

Error Handling” Provides information on the
error-handling functions included with the
library. User-defined error handler is also
described.

fmage Creation and Acces®Pescribes the
functions used to: create, set, and access image
attributes; set image border and tiling; and
allocate the memory for different data types. The
chapter also describes the functions that facilitate
operations in the window environment.

fmage Arithmetic and Logical Operatiahs
Describes image processing operations that
modify pixel values using simple arithmetic or
logical operations, as well as alpha-blending.

Overview

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Chapter 10

Chapter 11

Chapter 12

“Image Filtering’ Describes linear and non-
linear filtering operations that can be applied to
images.

Linear Image TransformsDescribes the fast
Fourier transform (FFT) and Discrete Cosine
Transform (DCT) implemented in the library.

Morphological Operations Describes the
morphological operations supported in the
library: simple erosion, dilation, opening and
closing.

Color Space ConversidnDescribes the color
space conversions supported in the library; for
example, color reduction from high resolution
color to low resolution color; conversion from
Palette to Absolute color and vice versa;
conversion to different color models.

Mistogram and Thresholding Functidhs
Describes functions that treat an image on a
pixel-by-pixel basis: operations that alter the
histogram of the image; contrast stretching,
histogram computation, histogram equalization
and thresholding.

Image Geometric TransfornisDescribes
geometric transforms: Zoom, Decimate, Rotate,
Mirror, Shear and several warping functions.

Image Statistics FunctioridDescribes the
image statistics functions of the library.
Currently, image norm and moment functions are
supported.

The manual also includes @ppendixthat lists supported image attributes
and operation mode§lossaryof terms,Bibliography, andindex

1-3

Intel Image Processing Library Reference Manual

Function Descriptions

In Chapters 3 through 12, each function is introduced by name (without
thei pl prefix) and a brief description of its purpose. Thisisfollowed by
the function call sequence, more detailed description of the function’s
purpose, and definitions of its arguments. The following sections are
included in each function description:

Arguments Describes all the function arguments.

Discussion Defines the function and describes the operation
performed by the function. Often, code examples
and the equations the function implements are
included.

Return Value If present, describes a value indicating the result
of the function execution.

Application Notes If present, describe any special information
which application programmers or other users of
the function need to know.

See Also If present, lists the names of functions which
perform related tasks.

Audience for This Manual

The manual is intended for the developers of image processing
applications and image processing libraries. Both parts of the audience are
expected to be experienced in using C and to have a working knowledge
of the vocabulary and principles of image processing. The developers of
image processing software can use the Intel Image Processing Library
capabilities to improve performance on IA with MMX technology.

Online Version

This manual is available in an online hypertext format. To obtain a hard
copy of the manual, print the online file using the printing capability of
Adobe* Acrobat, the tool used for the online presentation of the document.

Overview

Sources of Related Information

For more information about computer graphics concepts and objects, refer
to the books and materials listed in the Bibliography. For the latest
information about the Intel Image Processing Library, such as new
releases, product announcements, updates, and online technical support,
check out our Web site at http://devel oper.intel.com.

Notational Conventions

In this manual, notational conventions include;

» Fontsused for distinction between the text and the code
» Naming conventions
» Function name conventions

Font Conventions

The following font conventions are used:

UPPERCASE COURI ER Used in the text for constant identifiers;
for example, | PL_DEPTH_1U.
| ower case courier Mixed with the uppercase in function names

asin Set Execut i onMode; also used for key
wordsin code examples; for example, in the
function call statement voi d i pl Square() .

| owercase m xed with Variablesin arguments and parameters
Upper Case Courier italic discussion; for example, node, dst | mage.

Naming Conventions

The following data type conventions are used by the library:

» Constant identifiers are in uppercase; for example, | PL_SI DE_LEFT.

» All constant identifiers have the | PL prefix.

« All function names havethei pl prefix. In code examples, you can
distinguish the library interface functions from the application
functions by this prefix.

1-5

http://developer.intel.com/design/perftool/perflibst/ipl/

Intel Image Processing Library Reference Manual

% NOTE. Inthismanual, thei pl prefixin function namesis always used in
‘ the code examples. In the text, this prefix is sometimes omitted.

» All image header structures havethe | pI prefix; for example,
I pl I mage, | pl RO .

* Each new part of afunction name starts with an uppercase character,
without underscore; for example, i pl Al phaConposite.

Function Name Conventions

The function names in the library typically begin with thei pl prefix and
have the following general format:

ipl < action > < target > < nod >()
where

action indicates the core functionality; for example,
-Set-,-Create-,0r-Convert-.

t ar get indicates the area where image processing is
being enacted; for example, - ConvKer nel or
- FronDl B.

In a number of cases, the target consists of two
or more words; for example, - ConvKer nel in
the function Cr eat eConvKer nel . Some function
names consist of an act i on or t ar get only; for
example, the functions Mul ti pl y or Real Ff t 2D,
respectively.

mod The nod field is optional and indicates a
modification to the core functionality of a
function. For example, in the name
i pl Al phaConpositeC() , Cindicatesthat this
function is using constant alpha values.

1-6

Overview

X-Y Argument Order Convention

Where applicable, the Intel Image Processing Library functions use the
following order of arguments:

X, y (x first, theny)
nCol s, nRows (columnsfirst, then rows)
wi dt h, height (width first, then height).

1-7

This pageisintentionally left blank. Needed for two-sided printing.

This pageisintentionally left blank. Needed for two-sided printing.

|mage Architecture

This chapter describes the data and execution architecture of the Intel

Image Processing Library. It introduces the library’s color models, data
types, coordinate systems, regions of interest, data alignment, in-place
and not-in-place execution, and image tiling.

Data Architecture

Any image in the Intel Image Processing Library has a header that
describes the image as a list of attributes and pointers to the data
associated with the image. Library functions use the image header to get
the format and characteristics of the image(s) passed to the functions.
Based on the information obtained from the header, the functions make
appropriate calls to set the data structures. Images can have different
organization of data. The library supports numerous data formats that use
different color models, data types, data order, and coordinate systems.

Color Models

The library image format supports the following color models:
* Monochrome or gray scale image (one color channel)

» Color image (3 or 4 color channels)

» Multi-spectral image (any number of channels).

Color models are defined by the number of channels and the colors they
contain. Examples of three-channel models are RGB, HSV, CMY, and
YCC. Examples of four-channel color models are CMYK and RGBA.

Image processing operations can be performed on one or all channels in
the image. The operations are performed without specific identification of
the colors, unless it is a certain color conversion operation where color
identification is required.

2-1

Intel Image Processing Library Reference Manual

2-2

The multi-spectral image (MSI) model is used for general purpose images.
It is used for any kind of multi-spectral data and any kind of image. For
example, the Fourier transform operation writes transform coefficients of
color or monochrome images to this model [0 one channel for each channel
in the input. The result can be viewed as an MSI image. An MS| image
can contain any number of color channels; they may even correspond to
invisible parts of the spectrum. The library functions do not need to
identify any specific MSI image channels.

Data Types and Palettes

The parameter that determines the image data type is the pixel depthin
bits. The data could be signed integer, unsigned integer, or floating-point.
The following data types are supported for various color models
(s=signed, u = unsigned, f = float):

Gray scale 1, 8s, 8u, 16s, 16u, and 32f bits per pixel
Color (three-channel) 8u and 16u bits per channel

Four-channel and MSI 8s, 8u, 16s, 16u, 32s, and 32f bits per channel.

The library supports only absolute color images in which each pixel is
represented by the channel intensities. For example, in an absolute color
24-bit RGB image, three bytes (24 bits) per pixel represent the three
channel intensities. LUT (lookup table) images, that is, palette color
images are not supported. Y ou must convert palette images to absolute
color images for further processing by the library functions. There are
special functions for converting DIB palette images to absolute color
images.

Color images with 8, 16, or 32 bits per channel simply pack each channel,
respectively, into a byte, word, or doubleword. All channels within agiven
image have the same data type.

Signed data (8s, 16s, or 32s) are used for storing the output of some image
processing operations; for example, thisisthe case for transforms such as
FFT. Unless specified otherwise, signed data cannot be used as input to
image processing operations.

Image Architecture

L)

Table 2-1

The Sequence and Order of Color Channels

Channel sequence corresponds to the order of the color channelsin
absolute color images. For example, in an RGB image the channels could
be stored in the sequence RGB or in the sequence BGR.

NOTE. For functions that perform color space conversions or image
format conversions, the channel sequence information is required and
therefore must be provided. All other functions ignore channel sequence.

For images with pixel-oriented data, the channel sequence corresponds to
the color data order for each pixel. Data ordering corresponds to the way

the color datais arranged: by planes or by pixels. Table 2-1 lists the
orderings that are supported for planes and for pixels.

Data Ordering

Data Ordering Description

RGB Example
(channel ordering = RGB)

Pixel-oriented All channels for each pixel

are clustered.

Plane-oriented All image data for each
channel is contiguous
followed by the next

channel.

RGBRGBRGB (line 1)
RGBRGBRGB (line 2)
RGBRGBRGB (line 3)

RRRRRRRRR (line 1)
RRRRRRRRR (line 2) R plane
RRRRRRRRR (line 3)

GGGGGGGGG (line 1)
GGGGGGGGG (line 2) G plane
GGGGGGGGG (line 3)

2-3

Intel Image Processing Library Reference Manual

Coordinate Systems

Two coordinate systems are supported by the library’s image format.

» The origin of the image is in the top left corner, the x values increase
from left to right, and y values increase from top to bottom.

» The origin of the image is in the bottom left corner, the x values
increase from left to right, and y values increase from the bottom to
the top.

Image Regions of Interest

A very important concept in the Intel Image Processing Library
architecture is an image’s region of interest (ROI). All image processing
functions can operate not only on entire images but also on image regions.

Depending on the processing needs, the following image regions can be

specified:

* Channel of interest (COI). A COI can be one or all channels of the
image. By default, unless the COI is changed bystherd ()
function, processing will be carried out on all channels in the image.

« Rectangular region of interest (rectangular ROI). A rectangular
ROl is a portion of the image or, possibly, the entire image. By
default, unless changed by thet RO () function, the entire image is
the rectangular region of interest.

e Mask region of interest (mask ROI). It is specified by another
(bitonal) image pointed to by theasskRO pointer of the pl | mage
structure.

A mask ROI allows an application to determine on a pixel-by-pixel
basis whether to perform an operation. Pixels corresponding to zeros
in the mask are not read (if in a source image) or written (if in the
destination image). Pixels corresponding to 1's in the mask are
processed normally.

The origin of the mask ROl is aligned to the origin of the rectangular
ROI if there is one, or the origin of the image.

An image can simultaneously have any combination of a rectangular ROI,
a mask ROI, and a COIl. Operations are performed on the intersection of

2-4

Image Architecture 2

all applicable ROIs. For example, if an image has both types of ROl and a
COl, operations are performed only on the values of this COI, and only for
those pixels that belong to the intersection of mask ROI and rectangular
ROI.

Both the source and destination image can have aregion of interest. In
such cases, operations will be performed on the intersection of the ROIs.
Thus, an image region of interest specifies some part of an image or the
entire image. Once set, the region information of the image remains the
same until changed by the function Set RO () .

NOTE. Not all functions support mask ROI. For example, FFT functions
use only rectangular ROl and COI even if you specify a mask ROI.

Setting an ROI for Multi-Image Operations

Figure 2-1 illustrates image processing operations that take one or more
input images and store the results onto an output image. (Mask ROIs are
not set for the imagesin this figure.)

All images (input and output) in Figure 2-1 have rectangular ROI s that
specify either the entire image or specific regions set by the Set RO ()
function. Thefirst step isto align the rectangular ROIs of al the images so
that their top left corners coincide. The operation is, then, performed in the
rectangular region where all the images overlap. This scheme gives much
flexibility, effectively enabling trandation of image data (even for equal-
size images) from one region of an input image to another region of an
output image.

To successfully perform an image processing operation, one of the
following conditions must be met for the channel of interest (COI):

» Each image (input and output) has one COl,

« Eachimage (input and output) has al channelsincluded in the ROI

(COI = 0) and al images (input and output) have the same number of
channels (one or more).

2-5

Intel Image Processing Library Reference Manual

If one image (input or output) has one channel in its COI and another
image (input or output) has more than one channel included in its COI, an

error will occur.

Figure 2-1 Setting an ROI for Multi-Image Operations

Input image Output image

ROI

The processing
is performed in
the shaded area

2-6

Image Architecture

Alpha (Opacity) Channel

In addition to the color channels, an image can have one alpha channel,

also known as an opacity channel, which is mainly used for image
compositing operations (see “Image Compositing Based on Opatiity
Chapter 5). The alpha channel must be the last channel in the image.

The interpretation of operations on the alpha channel is usually different
from that for color channels. For example, adding a constant to the RGB
channels in an RGBA image would brighten the image, while adding a
constant to the A (alpha) channel would make the image more opaque.

For this reason, by default most functions ignore the alpha channel if one
is specified. The exceptions are the compositing functions, which use this
channel as the image’s opacity value, and geometric transform functions,
which treat it as any other channel.

To apply any other function to the alpha channel, in fhie nage structure
temporarily set the/ phachannel field to O before calling the function.

Scanline Alighment

Image row data (scanline) can be aligned on doubleword (32-bit) or
guadword (64-bit) boundaries. Each row is padded with zeros if required.
For maximum performance with MMX technology, it is important to have
the image data aligned on quadword boundaries.

Image Dimensions

There is no practical limit of the image size. A long integer is used for the
height and width of the image. This allows you to create images of such
sizes that are much beyond the hardware and OS constraints of today’s
PCs or workstations. For large image support, see &lsage Tiling”

2-7

2 Intel Image Processing Library Reference Manual

Execution Architecture

Handling Overflow and Underflow

Overflow and underflow are handled in each image processing function.
The Image Processing Library uses saturation to prevent the pixel values
from potential overflow or underflow. Thus, when an overflow of a pixel
valueis about to happen, this value is clamped to the maximum
permissible value (for example, 255 for an unsigned byte). Similarly,
when underflow of avalue is about to happen, it is clamped to the
minimum permissible value, which is always zero for the case of unsigned
bytes.

In-Place and Out-of-Place Operations

Image processing operations in the library can be in-place or out-of-place
operations. With an in-place operation, the output image is one of the input
images modified (that is, the pointer to the output image is the same as the
pointer to the input one). With an out-of-place operation, the output image
isanew image, not the same as any of the input images. Not all functions
can perform in-place operations. See Appendix A to check if a partucular
function supports in-place operation.

Image Tiling

Tiling is amethod of image representation in which the image is broken
up into smaller images, or tiles, to allow for complicated memory
management schemes. Conceptually, the whole image would be
reconstructed by arranging the individual tilesin a grid. But the intent of
the tiling mechanism isto allow only afew of these tiles within an image
to reside in memory at one time. The application provides an actual
memory location for atile only when requested to do so.

Most functions can use tiled images in the same way as non-tiled, and
procuce the same results. However, there are some differences,

2-8

Image Architecture

particularly in the call-back requirement (see “ Call-backs for more
information).

This section gives a short overview of image tiling in the Image
Processing Library. In Chapter 4 you will find more information about
tiling, namely, the descriptions of thel el nf o structure, the magel D
parameter, and the functionseat eTi | el nf 0, Set Ti | el nf 0, and

Del eteTil el nfo.

Tile Size

In the Image Processing Library, all tiles must be of the same size,
including those on the edge of an image. The tiles on the edge of an image
must contain valid data up to the border of the image; beyond that, the
pixels are ignored, and the border mode is used instead.

The size of the image tiles is contained withinitheTi | el nf o Structure.
It is restricted to being an even multiple of 8 in each dimension. Typical
tile sizes are 32x32 and 64x64.

For functions that take more than one source image, either all source
images must be tiled with equally-sized tiles or they must all be non-tiled.
The source and destination images tiling and tile sizes need not be the
same.

Call-backs

For tiled images, thepl | mage structure does not contain a pointer to
image data; therefore, functions operating on tiled images must acquire
data tile-by-tile. To do this, the library uses a system of call-backs, in
which the functions request pointers to individual tiles based on need.

The call-back system is implemented (by the library user) as a single
function, the prototype and behavior of which are specified below. When
calledby thelibrary, this function must provide or release one tile’s
worth of data. The function is specified to the library in¢hel Back

field of thel pl Ti | el nf o structure. The prototype is as follows:

2-9

Intel Image Processing Library Reference Manual

2-10

void (*IplCallBack) (const Ipllmage* ing, int xlndex,
int ylndex, int node);

where i ng isthe header of the parent image;

xI ndex and yI ndex arethe indices of the requested tile; they refer to the
tile number, not pixel number, and count from the origin at (0,0);

nmode isone of the following:

| PL_GET_TILE TO READ get atilefor reading;
the tile data must be returned in
img->tilelnfo->til eData
and must not be changed;

| PL_GET_TILE TO WRI TE get atilefor writing;
the tile data must be returned in
img->tilelnfo->til eData
and may be changed;
changes will be reflected in the image;

| PL_RELEASE TI LE release tile; commit writes.

Memory pointers provided by a get function will not be used after the
corresponding release function has been called.

ROI and Tiling

The meaning and behavior of ROI for atiled image are identical to those
for anon-tiled image. Aswith al coordinatesin tiled images, the origin of
the RO is offset from the origin of the image, not of any onetile.

In-Place Operations and Tiling

Many functions can perform in-place operations even with tiling; see
Appendix A to check whether this feature is supported for a particular
function. If the source and destination image pointers are not equal, no
support for source and destination overlap is provided.

Note that the presence of the | pl RO structure does not affect this
restriction.

Error Handling

This chapter describes the error handling facility of the Image Processing
Library. Thelibrary functions report a variety of errorsincluding bad
arguments and out-of-memory conditions. When a function detects an
error, instead of returning a status code, the function signals an error by
callingi pl Set Err St at us() . Thisallowsthe error handling mechanism
to work separately from the normal flow of the image processing code.
Thus, the image processing code is cleaner and more compact as shown in
this example:

Col or Twi st = i pl Set Col or Twi st (data, scalingVal ue);
i f(iplGetErrStatus()<0) /'l check for errors

The error handling system is hidden within the function
i pl Set Col or Twi st () . Asaresult, this statement is uncluttered by error
handling code and closely resembles a mathematical formula.

Y our application should assume that every library function call may result
in some error condition. The Image Processing Library performs extensive
error checks (for example, NULL pointers, out-of-range parameters,
corrupted states) for every library function.

Error macros are provided to simplify the coding for error checking and
reporting. Y ou can modify the way your application handles errors by

callingi pl Redi rect Error () with apointer to your own error handling
function. For more information, see “Adding Your Own Error Handlér

later in this chapter. For even more flexibility, you can replace the whole
error handling facility with your own code. The source code of the default
error handling facility is provided.

The Image Processing Library does not process numerical exceptions (for
example, overflow, underflow, and division by zero). The underlying
floating point library or processor has the responsibility for catching and

3-1

Intel Image Processing Library Reference Manual

reporting these exceptions. A floating-point library is needed if a
processor that handles floating-point is not present. Y ou can attach an
exception handler using an underlying floating-point library for your
application, if your system supports such alibrary.

Error-handling Functions

The following sections describe the error functions in the Image
Processing Library.

Error

Performs basic error
handling.

void iplError(lPLStatus status, const char *func,
const char * context);

status Code that indicates the type of error (see

Table 3-1, “iplError() Status Codég
func Name of the function where the error occurred.
cont ext Additional information about the context in

which the error occurred. If the value of
cont ext iSNULL or empty, this string will not
appear in the error message.

Discussion

Thei pl Error () function must be called whenever any of the library
functions encounters an error. The actual error reporting is handled
differently, depending on whether the program is running in Windows
mode or in console mode. Within each invocation mode, you can set the

Error Handling

error mode flag to alter the behavior of the i pl Error () function. For
more information on the defined error modes, see “ SetErrModé& section.

To simplify the coding for error checking and reporting, the error handling
system of the Image Processing Library supports a set of error macros. See
“Error Macro$ for a detailed description of the error handling macros.

Thei pl Error () function calls the default error reporting function. You
can change the default error reporting function by calling

i pl Redi rect Error (). For more information, see the description of

i pl RedirectError.

GetErrStatus
SetErrStatus

Gets and sets the error codes
that describe the type of
error being reported.

typedef int |PLStatus;
| PLSt atus ipl GetErrStatus();

void iplSetErrStatus(lPLStatus status);

stat us Code that indicates the type of error
(see Table 3-1,iflError() Status Codék

Discussion

Thei pl Get Err St at us() andi pl Set Err St at us() functions get and set
the error status codes that describe the type of error being reported. See
“Status Codésfor descriptions of each of the error status codes.

3-3

Intel Image Processing Library Reference Manual

GetErrMode
SetErrMode

Gets and setsthe error
modes that describe how an
error is processed.

#defi ne | PL_Err ModeLeaf 0
#define | PL_Err ModeParent 1
#define | PL_ErrModeSilent 2

int iplGetErrMde();

voi d ipl Set Err Mbde(int errMde);

err Mbde Indicates how errors will be processed. The
possible values for er r Mbde are
| PL_Err ModelLeaf , | PL_Err ModePar ent , Or
| PL_Err ModeSi | ent .

Discussion
% NOTE. This section describes how the default error handler handles
‘ errors for applications which run in console mode. If your application has

a custom error handler, errorswill be processed differently than
described below

Thei pl Set Err Mode() function sets the error modes that describe how
errors are processed. The defined error modes are | PL_Er r ModeLeaf ,
| PL_Err ModeParent ,and | PL_Err ModeSi | ent .

If you specify | PL_Err ModeLeaf , errors are processed in the “leaves” of
the function call tree. Thiepl Error () function (in console mode) prints
an error message describingat us, f unc, andcont ext . It then
terminates the program.

Error Handling

If you specify | PL_Er r ModePar ent , errors are processed in the “parents”

of the function call tree. Wheirpl Error () is called as the result of

detecting an error, an error message will print, but the program will not
terminate. Each time a function calls another function, it must check to see
if an error has occurred. When an error occurs, the function should call

i pl Error() specifyingl PL_St sBackTr ace, and then return. The macro

| PL_ERRCHK() may be used to perform both the error check and back-
trace call. This passes the error “up” the function call tree until eventually
some parent function (possibiyi n()) detects the error and terminates

the program.

| PL_Err ModeSi | ent is similar tol PL_Er r ModePar ent , except that error
messages are not printed.

| PL_Err Modeleaf is the default, and is the simplest method of processing
errors.! PL_Er r MbdePar ent requires more programming effort, but
provides more detailed information about where and why an error
occurred. All of the functions in the library support both options (that is,
they usdPL_ERRCHK()after function calls). If an application uses the
IPL_ErrModeParenoption, it is essential that it check for errors after all
library functions that it calls.

The status code of the last detected error is stored into the global variable
| pl Last St at us and can be returned by callingl Get Err St at us() .

The value of this variable may be used by the application during the back-
trace process to determine what type of error initiated the back trace.

ErrorStr

Translates an error or status code
into a textual description.

const char* iplErrorStr(1PLStatus status);

stat us Code that indicates the type of error
(see Table 3-1,iflError() Status Codék

3-5

Intel Image Processing Library Reference Manual

Discussion

The functioni pl Error Str () returnsashort string describing st at us.
Use this function to produce error messages for users. The returned
pointer is a pointer to an internal static buffer that may be overwritten on
thenextcall toi pl ErrorStr().

RedirectError

Assigns a new error handler
to call when an error occurs.

| PLErr Cal | Back i pl RedirectError (1 PLErrCall Back func);

func Pointer to the function that will be called when
an error occurs.

Discussion

Thei pl Redi rect Error () function assigns anew function to be called
when an error occurs in the Image Processing Library. If func iSNULL,
i pl Redi rect Error () installs the library’s default error handler.

The return value of pl Redi rect Error () is a pointer to the previously
assigned error handling function.

For the definition of the function typedefLEr r Cal | Back, see the
include filei pl error. h. See Adding Your Own Error Handlérfor
more information on thepl Redi rect Error () function.

Error Handling

Error Macros

The error macros associated with the i pl Error () function are described
below.

#defi ne | PL_ERROR(status, func, context) \
ipl Error((status), (func), (context);

#def i ne | PL_ERRCHK(func, context)\
((iplGetErrStatus()>=0) ? IPL_StsCk \
| PL_ERROR(I PL_St sBackTrace, (func), (context)))

#def i ne | PL_ASSERT(expr, func, context)\
((expr) ? IPL_StsCk\
: I PL_ERROR(I PL_StsInternal, (func), (context)))

#def i ne | PL_RSTERR() (ipl SetErrStatus(lPL_StsCk))

cont ext Provides additional information about the context in
which the error has occurred. If the value of
cont ext iISNULL or empty, this string does not
appear in the error message.

expr An expression that checks for an error condition
and returns FALSE if an error has occurred.

func Name of the function where the error occurred.

stat us Code that indicates the type of error (see Table 3-1,

“i pl Error () Status Code9y

Discussion

Thel PL_ASSERT() macro checks for the error conditiempr and sets
the error statusPL_St sI nt er nal if the error occurred.

Thel PL_ERRCHK() macro checks to see if an error has occurred by
checking the error status. If an error has occurred, ERRCHK() creates
an error back trace message and returns a non-zero value. This macro
should normally be used after any call to a function that might have
signaled an error.

Intel Image Processing Library Reference Manual

3-8

Thel PL_ERROR() macro simply callsthei pl Error () function by
default. This macro is used by other error macros. By changing

| PL_ERROR() Yyou can modify the error reporting behavior without
changing a single line of source code.

Thel PL_RSTERR() macro resetsthe error statusto | PL_ St sk, thus
clearing any error condition. This macro should be used by an application
when it decidesto ignore an error condition.

Status Codes

Table 3-1

Some of the status codes used by the library are listed in Table 3-1. Status
codes are integers, not an enumerated type. This allows an application to
extend the set of status codes beyond those used by the library itself.
Negative codes indicate errors, while non-negative codes indicate success.

iplError() Status Codes

Status Code Value Description

I PL_St sCk 0 No error. The i pl Error () function does
nothing if called with this status code.

| PL_St sBackTr ace -1 Implements a back-trace of the function
calls that lead to an error. If | PL_ERRCHK()
detects that a function call resulted in an
error, it calls | PL_ERROR() with this status
code to provide further context information
for the user.

| PL_StsError -2 An error of unknown origin, or of an origin
not correctly described by the other error
codes.

| PL_St sl nternal -3 An internal “consistency” error, often the

result of a corrupted state structure. These
errors are typically the result of a failed

continued =

Error Handling

Table 3-1

iplError() Status Codes (continued)

Status Code Value Description

| PL_St sNoMem -4 A function attempted to allocate memory
using nal | oc() or arelated function and
was unsuccessful. The message cont ext
indicates the intended use of the memory.

| PL_St sBadArg -5 One of the arguments passed to the
function is invalid. The message cont ext
indicates which argument and why.

| PL_St sBadFunc -6 The function is not supported by the
implementation, or the particular operation
implied by the given arguments is not
supported.

| PL_St sNoConv -7 An iterative convergence algorithm failed to

converge within a reasonable number of
iterations.

Application Notes

Thevariable | pl Last St at us records the status of the last error reported.
Itsvalueisinitially | PL_St sOk. Thevaueof | pl Last St at us isnot
explicitly set by the library function detecting an error. Instead, it is set by
i pl Set Err Status() .

If the application decides to ignore an error, it should reset

| pl Last St at us back to | PL_St sCk (see | PL_RSTERR() under “Error
Macros). An application-supplied error-handling function must update

| pl Last St at us correctly; otherwise the Image Processing Library might
fail. This is because the macreL_ERRCHK() , which is used internally to
the library, refers to the value of this variable.

3-9

Intel Image Processing Library Reference Manual

Error Handling Example

The following example describes the default error handling for a console
application. In the example program, t est . ¢, assume that the function
l'i bFuncB() representsalibrary function such asi pl ?AddS() , and the
function | i bFuncD() representsafunction that is called internally to the
library. In this scenario, mai n() and appFuncA() represent application
code.

The value of the error modeissetto | PL_Er r ModePar ent . The
| PL_Err ModePar ent option produces a more detailed account of the
error conditions.

Example 3-1 Error Functions

/* application main function */
mai n() {
i pl Set Err Mode(| PL_Er r MbdePar ent) ;
appFuncA(5, 45, 1.0);
if (I PL_ERRCHK("main","compute sonmething")) exit(1l);

return O;

}

/* application subroutine */
voi d appFuncA(int orderl, int order2, double a) {

|'i bFuncB(a, orderl);
i f (I PL_ERRCHK("appFuncA", "conmpute using orderl")) return;

i bFuncB(a, order?2);
i f (I PL_ERRCHK("appFuncA", "conmpute using order2")) return;

}

/* do sone nore work */

continued =

3-10

Error Handling

Example 3-1 Error Functions (continued)

/* library function */

void |ibFuncB(double a, int order) {
fl oat *vec;
if (order > 31) {

| PL_ERROR(| PL_St sBadArg, "libFuncB",
"order nust be less than or equal to 31");

return;
}
if ((vec = libFuncD(a, order)) == NULL) {
| PL_ERRCHK("Ii bFuncB", "compute using a");
return;
}
/* code to do sone real work goes here */
free(vec);
} /1 next: library function called internally

doubl e *Ii bFuncD(doubl e a, int order) {
doubl e *vec;
if ((vec=(doubl e*)mal | oc(order*sizeof (double))) == NULL) {

| PL_ERROR(I PL_St sNoMem "I1i bFuncD",
"allocating a vector of doubles");
return NULL;

}

/* do sonething with vec */

return vec;

}

311

Intel Image Processing Library Reference Manual

When the program is run, it produces the output illustrated in Example 3-2.

Example 3-2 Output for the Error Function Program (IPL_ErrModeParent)

IPL Library Error: Invalid argument in function |ibFuncB: order mnust
be less than or equal to 31

called fromfunction appFuncA: conpute using order?2

called fromfunction main: conpute sonething

If the program runswith the | PL_Er r ModeLeaf option instead of
| PL_Er r ModePar ent , only the first line of the above output is produced
before the program terminated.

If the program in Example 3-1 runs out of heap memory while using the
| PL_Err ModePar ent option, then the output illustrated in Example 3-3 is
produced.

Example 3-3 Output for the Error Function Program (IPL_ErrModeParent)

IPL Library Error: Qut of menmory in function |ibFuncD: allocating a
vector of doubles

called fromfunction |ibFuncB: conmpute using a
called fromfunction appFuncA: conpute using orderl

called fromfunction main[]: conmpute sonething

Again, if the program isrun withthe | PL_Er r ModeLeaf option instead of
| PL_Err ModePar ent , only thefirst line of the output is produced.

312

Error Handling

Adding Your Own Error Handler

The Image Processing Library allows you to define your own error
handler. User-defined error handlers are useful if you want your
application to send error messages to a destination other than the standard
error output stream. For example, you can choose to send error messages
to adialog box if your application is running under a Windows system or
you can choose to send error messagesto a specia log file.

There are two methods of adding your own error handler. In the first
method, you can replacethe i pl Error () function or the complete error
handling library with your own code. Note that this method can only be
used at link time.

In the second method, you can usethe i pl Redi rect Error () functionto
replace the error handler at run time. The steps below describe how to
create your own error handler and how to usethe i pl Redi rect Error ()
function to redirect error reporting.

1. Define afunction with the function prototype, | PLEr r Cal | Back, as
defined by the Image Processing Library.

2. Your application should then call thei pl Redi rect Error () function
to redirect error reporting for your own function. All subsequent calls
toi pl Error () will cal your own error handler.

3. Toredirect the error handling back to the default handler, simply call
i pl Redi rect Error () withaNULL pointer.

Example 3-4 illustrates a user-defined error handler function,
ownEr ror (), which simply prints an error message constructed from its
arguments and exits.

3-13

Intel Image Processing Library Reference Manual

3-14

Example 3-4 A Simple Error Handler

| PLSt at us ownError (I PLStatus status, const char *func,

const char *context, const char *file, int line);

{
fprintf(stderr, "IPL Library error: %, ", iplErrorStr(status));
fprintf(stderr, "function %, ", func ? func : "<unknown>");
if (line >0) fprintf(stderr, "line %, ", line);
if (file !'= NULL) fprintf(stderr, "file %, ", file);
if (context) fprintf(stderr, "context %\n", context);
I pl Set Err St at us(st atus);
exit(1);
}
main () {

extern | PLErrCal | Back ownError;

/* Redirect errors to your own error handler */

/*

i pl RedirectError(ownError);
Redirect errors back to the default error handler */

i pl Redi rect Error (NULL);

Image Creation and Access

Table 4-1

This chapter describes the functions that provide the following

functionalities:

» Creating and accessing attributes of images (both tiled and non-tiled)
» Allocating memory for data of required type (see also the functions
CreateConvKernel in Chapter 6 and CreateColorTwist in Chapter 9)

* Manipulating the image

« Working in the Windows DIB (device-independent bitmap)

environment.

Image Creation, Data Exchange and Windows DIB Functions

Group Function Name
Creating i pl Creat el mageHeader
Images

i pl d onel mage

i pl All ocat el mage
i pl Al'l ocat el nrageFP

i pl Deal | ocat el nage

i pl CreateRA

i pl Deal | ocat e

i pl Set RO
i pl Set Bor der Mbde

iplCreateTilelnfo

iplSetTilelnfo

Description

Creates an image header according to
the specified attributes.

Creates a copy of an image.

Allocates memory for image data.

Frees memory for image data pointed
to in the image header.

Creates a region of interest (ROI)
header with specified attributes.

Deallocates header attributes or
image data or ROI or all of the above.

Sets a region of interest for an image.

Sets the mode for handling the border
pixels.

Creates the | pl Ti | el nf o structure.
Sets the tiling information.

Deletes the | pl Ti | el nf o structure.

continued

Intel Image Processing Library Reference Manual

Table 4-1

Functions (continued)

Image Creation, Data Exchange and Windows DIB Environment

Function Name

Memory
Allocation

i pl Mal | oc

i pl Wl | oc

ipliMlloc

i pl sMal | oc

i pl dMval | oc

Data
Exchange

i pl Set
i pl Set FP

i pl Put Pi xel
i pl Get Pi xel
i pl Copy

i pl Exchange

i pl Convert

Windows
DIB

i pl Transl at eDl B

i pl Convert FronDl B

i pl Convert FronDl BSep

i pl Convert ToDl B

Description

Allocates memory aligned to 8 bytes
boundary.

Allocates memory aligned to 8 bytes
boundary for 16-bit words.

Allocates memory aligned to 8 bytes
boundary 32-bit double words.
Allocates memory aligned to 8 bytes
boundary for single float elements.
Allocates memory aligned to 8 bytes
boundary for double float elements.

Frees memory allocated by the
i pl ?Mal | oc functions.

Sets a constant value for all pixels in
the image.

Sets/retrieves the value of the pixel
with coordinates (X, y).

Copies image data from one image to
another.

Exchanges image data between two
images.

Converts images based on the input
and output image requirements.

Translates a DIB image into an
I pl I mage structure.

Converts a DIB image to an
I pl I mage with specified attributes.

Same as above, but uses separate
parameters for DIB header and data.

Converts an | pl | nage to a DIB
image with specified attributes.

Image Creation and Access

Image Header and Attributes

Table 4-2

The Image Processing Library functions operate on asingle format for
images in memory. Thisformat consists of a header of type | PLI nage
containing the information for all image attributes. The header also
contains a pointer to the image data. (See the attributes description in
Chapter 2, section “Data Architecture.) The values that these attributes

can assume are listed in Table 4-2.

Image Header Attributes

Description

Corresponding

Size of the | pl | mage
header (for internal use)

Image Header Revision
ID (internal use)

Number of Channels

Alpha channel number

Bits per channel

Gray only
All images: color, gray,
and multi-spectral

(The signed data is used
only as output for some
image output operations.)

Color model

nSi ze in bytes

ID number

1toN
(including alpha channel, if any)

0 (if not present)
N

| PL_DEPTH_1U (1-hit)
| PL_DEPTH_8U (8-bit unsigned)

| PL_DEPTH_8S (8-bit signed)

| PL_DEPTH_16U (16-bit unsign.)
| PL_DEPTH_16S (16-bit signed)
| PL_DEPTH_32S (32-bit signed)
| PL_DEPTH_32F (32-bit float)

4 character string: “Gray”, “RGB,”
“RGBA", “CMYK,” etc.

1 (Gray)
3 (RGB)
4 (RGBA)

4 (RGBA)

Supported

Supported

(RGB, RGBA)
Not supported
Not supported
Not supported
Not supported
Not supported

Not supported.
Implicitly, RGB
color model.

continued ¥

4-3

Intel Image Processing Library Reference Manual

4-4

Image Header Attributes (continued)

Description

Corresponding
DIB Attribute

Channel sequence

Data Ordering

Origin

Scanline alignment

Image size: height
width

Region of interest (ROI)
Mask

Image size (bytes)
Image data pointer

Aligned width

Border mode of the top,
bottom, left, and right
sides of the image.

Border constant on the
top, bottom, left, and
right side of the image.

Original Image
Image ID

Tiling information

4-character string. Can be “G”,
“GRAY”, “BGR”, “BGRA", “RGB”,
“RGBA”, "HSV”, “HLS”, “XYZ",
“YUV”, “YCr”, “YCC”, or “LUV".

| PL_DATA_ORDER Pl XEL
| PL_DATA_ORDER PLANE

| PL_ORI G N_TL (top left corner)
| PL_ORI G N_BL (bottom left)

| PL_ALI GN_DWORD
| PL_ALI GN_QWORD

Integer
Integer

Pointer to structure

Pointer to another | pl | nage
Integer

Pointer to data

Width (row length in bytes) of
image padded for alignment

BorderMode [4]

BorderConst [4]

Pointer to original image data

(implicitly BGR
for RGB images.)

Supported
Not supported

Supported
Supported

Supported
Not Supported

m
n

Not supported

Not supported

For application use only; ignored by the library.

Pointer to | pl Ti | el nf o structure

Image Creation and Access

Figure 4-1 presents a graphical depiction of an RGB image with a
rectangular ROI and a COl.

Figure 4-1 RGB Image with a Rectangular ROl and a COI

Iplimage
IpIROI* » [pIROI
imageData* Int COI
, /
plane pixel / Rectangular ROI: xOffset
s yOffset
RGBRGB... height
/ | width
« | select ‘
plane(s) ‘
: \
| G
— ® \

R/G/B

OSD05559

Intel Image Processing Library Reference Manual

The C language definition for the | PLI mage structureis given below.

Iplimage Structure Definition

typedef struct _Ipllnmage {

}

I PL. H
i nt nSi ze [* size of ipllmge struct */
i nt I D /* image header version */
i nt nChannel s;
i nt al phaChannel ;
i nt dept h; [* pixel depth in bits */
char col or Model [4] ;
char channel Seq[4] ;
i nt dat aOr der ;
i nt origin;
i nt al i gn; [* 4- or 8-byte align */
i nt wi dt h;
i nt hei ght ;
struct _IplRA *roi; /* pointer to RO if any */

struct _Ipllnmage *maskRO; /*pointer to mask RO if any */
voi d *i magel d; /* use of the application */
struct _IplTilelnfo *tilelnfo; /* contains information

on tiling */

i nt i magesSi ze; /* useful size in bytes */
char *i mageDat a; /* pointer to aligned i nage */
i nt wi dt hSt ep; /* size of aligned line in bytes */
i nt Bor der Mode[4] ; /* the top, bottom Ileft,
and right border node */

i nt Bor der Const [4] ; /* constants for the top, bottom

left, and right border */
char *imageDataOrigin; /* ptr to full, nonaligned i nage */
I pl | mage;

Image Creation and Access

Tiling Fields in the Iplimage Structure

Image tiling in the Image Processing Library was described in Chapter 2.
Thefollowing fieldsfrom the | pl | mage structure are used in tiled images:

struct Ipllmage {

voi d* i magel d;
Ipl Tilelnfo *tilelnfo;

}

Thei magel d field can be used by the application, and isignored by the
library. Theti | el nf o field contains information on tiling. It is described
in the next section.

Thelibrary expects either the ti | el nf o pointer or the i nageDat a pointer
to be NULL. If the former is NULL, theimageis not tiled; if the latter is
NULL, theimage istiled. It isan error condition if both or neither of the
two are NULL.

IpITilelnfo Structure

This structure provides information for image tiling:

typedef struct _IplTilelnfo
{
I pl Cal | Back cal | Back;
void *id;
char* til eData
int wdth, height;
} IplTilelnfo;

Here cal | Back isthe call-back function (see “Call-backs in Chapter 2);

i d is an additional identification fieldyi dt h andhei ght are the tile sizes
for the image; andi | eDat a is the field which the call-back function
should point to the requested tile.

Intel Image Processing Library Reference Manual

Creating Images

There are several ways of creating a new image:

e Construct an | pl | rage header by setting the attributes to appropriate
values, then call the function i pl Al | ocat el nage() to allocate
memory for the image or set the image data pointer to image data
(in acompatible format) that already exists.

e Cadlipl Createl mageHeader () tocreatean | pl | mage header, then
call thefunctioni pl Al | ocat el mage() to alocate memory for the
image or set the image data pointer to existing image data.

e ConvertaDIB imagetoan | pl | mage using the functions
i pl Transl ateDl B() ori pl Convert FronDl B() . Seethe section
“Working in the Windows DIB Environmerit

« Create a copy of existing image by calling Cl onel nage() .

CreatelmageHeader

Createsan| pl | mage
header according to the
specified attributes.

I pl I mage* ipl Creat el mageHeader (i nt nChannel s,

int al phaChannel , int depth, char* col or Mbdel,

char* channel Seq, int dataOrder, int origin, int align,
int width, int height, IplRO* roi, |pllmge* maskRA,
voi d* inmagel D, IplTilelnfo* tilelnfo);

nChannel s Number of channels in the image.

al phaChannel Alpha channel number (O if there is no alpha
channel in the image).

dept h Bit depth of pixels. Can be one of

| PL_DEPTH 1U, | PL_DEPTH_8U,

| PL_DEPTH 8S, | PL_DEPTH 16U,

| PL_DEPTH_16S, | PL_DEPTH_32S, or
| PL_DEPTH_32F. See Table 4-2.

Image Creation and Access

col or Mbdel

channel Seq

dat aOr der

origin

align

hei ght

wi dt h

roi

maskRO

i magel D

tilelnfo

A four-character string describing the color
model: “RGB”, “GRAY”, “HLS" etc.

The sequence of color channels; can be one of
the following: “G”, “GRAY”, “BGR”, “BGRA”",
“RGB”, “RGBA", “HSV”, “HLS", “XYZ",

“YUV”, “YCr”, “YCC”, “LUV". The library

uses this information only for image type
conversions of known image channel formats.

| PL_DATA ORDER Pl XEL oOr
| PL_DATA ORDER PLANE.

The origin of the image. Can b@L_ORI G N_TL
OorlPL_ORIG N BL.

Alignment of image data. Can be
| PL_ALI GN_DWORD Or
| PL_ALI GN_QWORD.

Height of the image in pixels.
Width of the image in pixels.

Pointer to an ROI (region of interest) structure.
This argument can beJLL, which implies that a
region of interest comprises all channels and the
entire image area.

Pointer to the header of another image that
specifies the mask ROI. This argument can be
NULL, which indicates that no mask ROI is used.
A pixel is processed if the corresponding mask
pixel is 1, and is not processed if the mask pixel
is 0. Themaskra field of the mask image’s
header is ignored.

The image ID (field reserved for the use of the
application to identify the image).

The pointer to thepl Ti | el nf o structure
containing information used for image tiling.

Intel Image Processing Library Reference Manual

4-10

Example 4-1

Discussion

Thefunctioni pl Cr eat el nageHeader () createsan | pl | rage header
according to the specified attributes, see Example 4.1. The image data
pointer is set to NULL; no memory for image datais allocated.

Creating and Deleting an Image Header

int exanpled4l(void) {
I pl Il mage *ingh = ipl Createl mageHeader (

3, /'l nunmber of channels
0, /1 no al pha channel
| PL_DEPTH_8U, /1l data of byte type
"REB", /1 col or nodel
"BGER', /] col or order
| PL_DATA ORDER PI XEL, // channel arrangenent
I PL_ORI G N_TL, /1l top left orientation
I PL_ALI GN_QADRD, /1 8 bytes align
150, /1 image width
100, /1 i mage hei ght
NULL, /1 no RO
NULL, // no mask RO
NULL, /1l no image 1D
NULL) ; // not tiled
if(NULL == ingh) return O;
i pl Deal | ocat e(ingh, |PL_I MAGE_HEADER);
return I PL_StsOk == ipl GetErrStatus();

Thefunctioni pl Cr eat el mageHeader () setsthe image size attributein
the header to zero. To allocate memory for image data, call the function
i pl Al'l ocat el mage() .

Image Creation and Access

The mask region of interest specified by the naskrRO pointer is discussed
in the section Image Regions of Interest (Chapter 2). The intersection of
aligned rectangular ROI(s) and maskROI(s) for all source images and the
destination image forms the actual region to be processed.

For geometric transformation functions, such as Zoon() or M rror (), the
shape and orientation of rectangular ROIs and mask ROIs of the source
image changes according to the function. In these cases, the functions
write the results of image processing to the intersection of the destination
ROI and the transformed source ROI.

For more information about geometric transformation, see Chapter 11.

Return Value

The newly constructed | pl | mage header.

4-11

A

Intel Image Processing Library Reference Manual

4-12

Allocatelmage, AllocatelmageFP

Allocates memory for image
data according to the
specified header.

void ipl Al'l ocat el mage(Ilpllmage* image, int doFill,
int fillValue);

void ipl Al'l ocat el mageFP(I pl I mage* image, int doFill,
float fill Value);

i mge An image header with a NULL image data
pointer. The pointer will be set to newly
allocated image data memory after calling this

function.
doFil | A flag: if zero, indicates that the pixel data
should not beinitialized by fi /| val ue.
fill Val ue Theinitial value for pixel data.
Discussion

These functions are used to allocate image data on the basis of a specified
image header. The header must be properly constructed before calling this
function. Note that | PL_DEPTH_32F isthe only admissible depth for

I pl I mage passed intoi pl Al | ocat el mageFP() ; this depth must not be
used for i pl Al | ocat el mage() .

Memory is allocated for the image data according to the attributes
specified in the image header; see Example 4-2. The image data pointer
will then point to the allocated memory. It is highly preferable, for
efficiency considerations, that the scanline alignment attribute (argument
al i gn) inthe image header be set to | PL_ALI GN_QWORD. Thiswill force
the image data to be aligned on a quadword (64-bit) memory boundary.

The functions set the image size attribute in the header to the number of
bytes alocated for the image.

Image Creation and Access

Example 4-2 Allocating and Deallocating the Image Data

int exanple42(void) {

I pl I mage i ng;

char col or Mbdel [4] = "RGB";
char channel Seq[4] = "BGR';

i ng. nSi ze = sizeof(Ipllnage);

i rg. nChannel s = 3;
i ng. al phaChannel = O0;

ing. depth = | PL_DEPTH_16U;

i ng. dat aOrder =

img.origin = I PL_ORI G N_TL;
inmg.align = | PL_ALI GN_QADRD;
img.wi dth = 100;

i mg. hei ght = 100;

img.roi = NULL;

i mg. maskRO = NULL;
inmg.tilelnfo = NULL;

/1 The following fields wll

i mg.wi dt hStep = 0;

i ng. i nageSi ze = 0;

i ng. i mageData = NULL;

i mg. i mageDataOrigin = NULL;

((int)ing. col or Model)
((int)ing. channel Seq)

i pl Al'l ocat el mage(& ng,
i f(NULL i mg. i mageData)

i pl Deal | ocat e(& ng,

0, 0);
return O;

/'l nunber of channels
/1 no al pha channel
/1 data of ushort type

| PL_DATA_ORDER Pl XEL;

[l top left
/1 align

/1 no RO
/1 no nmask RO
/'l not tiled

be set by the function

=* *((int*)col or Model);
=* *((int*)channel Seq);

/1 allocate inmage data
/'l check result

| PL_| MAGE_DATA)

/1 deall ocate image data only

return | pl_StsCk

i pl Get Err Status();

4-13

A

Intel Image Processing Library Reference Manual

4-14

Deallocatelmage

Deallocates (frees) memory
for image data pointed to in
the image header.

voi d i pl Deal | ocat el mage(| pl | mage* |/ mage)

i mge An image header with a pointer to the alocated
image data memory. The image data pointer will
be set to NULL after this function executes.

Discussion

Thefunctioni pl Deal | ocat el mage() isused to free image data memory
pointed to by the i mageDat a member of the image header. The respective
pointer to image data or ROI datais set to NULL after the memory is freed

up.

Clonelmage
Creates a copy of an image.

I pl I mage* ipl C onel mage (const |pllmage* inage);
i mge Header of the image to be cloned.
Discussion

The function creates a copy of i nage, including its data and ROI. The
i magel D, maskRO , and t i | el nf o fields of the copy are set to NULL.

Return Value

A pointer to the created copy of i nage. If the source image istiled, the
function creates a non-tiled image and does not copy the image data.

Image Creation and Access

Deallocate

Deallocates or frees memory
for image header or data or
mask ROI or rectangular
ROI or all four.

void ipl Deall ocate (Ipllmage* inage, int flag)

i mge An image header with a pointer to allocated
image data memory. The image data pointer will
be set to NULL after this function executes.

flag Flag indicating what memory areato free:
| PL_| MAGE_HEADER Free header structure.
| PL_I MAGE_| MAGE Freeimage data, set pointer to NULL.
I PL_I MAGE_RO Free image ROI, set pointer to NULL.
I PL_I MAGE_NASK Free mask image data, set pointer to NULL.

| PL_I MAGE_ALL Free header, image data, mask ROI and
rectangular ROI.

| PL_I MAGE_ALL_W THOUT MASK
Free header, image data, and rectangular ROI.
Discussion

Thefunctioni pl Deal | ocat e() isused to free memory allocated for
header structure, image data, ROI data, mask image data, or all four. The
respective pointer is set to NULL after the memory isfreed up.

4-15

Intel Image Processing Library Reference Manual

Setting Regions of Interest

To set aregion of interest, the function i pl Set RO () uses aROI structure
| pl RO presented below. The | pl RO member of the image header must
point to this| pl RO structure to be effective. This can be done by asimple
assignment. The application may choose to construct the ROI structure
explicitly without the use of the function.

IpIROI Structure Definition

typedef struct _Ipl RO {
unsi gned int coi;

int xOfset;

int yOfset;

int wdth;

i nt height;
} IplRA;

The membersinthel pl RO structure define:

coi The channel of interest number. This parameter
indicates which channel in the original image
will be affected by processing taking placein the
region of interest; coi equal to O indicates that
all channelswill be affected.

xO fset and yOffset The offset from the origin of the rectangular
ROI. (See section “Image Regiorisin Chapter 2
for the description of image regions.)

wi dt h andhei ght The size of the rectangular ROI.

4-16

Image Creation and Access

CreateROI

Allocates and sets the
region of interest (ROI)

structure.
IplRO* iplCreateRO (int coi, int xOfset, int yOfset,
int width, int height);
coi The channel of interest. It can be set to O (for all
channels) or to a specific channel number.
xOffset, yOfset The offsets from the origin of the rectangular
region.
wi dt h, hei ght The size of the rectangular region.
Discussion
Thefunctioni pl Creat eRO () allocates anew ROI structure with the
specified attributes and returns a pointer to this structure. Y ou can delete
this structure by calling i pl Del et eRO () .
Return Value
A pointer to the newly constructed ROI structure or NULL.
DeleteROI

Allocates and sets the
region of interest (ROI)
structure.

void iplDeleteRO(IplRO* roi);

roi The ROI structure to be deleted.

4-17

Intel Image Processing Library Reference Manual

4-18

Discussion

Thefunctioni pl Del et eRO () deallocates a ROI structure previously
created by i pl Creat eRO () .

SetROI

Sets the region of
interest (ROI) structure.

void iplSetRO(IplRO* roi, int coi, int xOfset, int
yOffset, int width, int height);

roi The pointer to the ROI structure to modify in the
original image.
coi The channel of interest in the original image. It

can be set to O (for al channels) or to a specific
channel number.

xOf fset, yOfset The offset from the origin of the rectangular
region.

wi dt h, hei ght The size of the rectangular region.

Discussion

Thefunctioni pl Set RO () setsthe channel of interest and the rectangular
region of interest in the structure r o .

The argument coi defines the number of the channel of interest. The
arguments xO fset and yO f set define the offset from the origin of the
rectangular ROI. The members hei ght and wi dt h define the size of the
rectangular ROI.

Image Creation and Access I

Image Borders and Image Tiling

Many neighborhood operators need intensity values for pixelsthat lie
outside the image, that is, outside the borders of the image. For example, a
3 by 3filter, when operating on the first row of an image, needs to assume
pixel values of the preceding (non-existent) row. A larger filter will
require more rows from the border. These border issues therefore exist at
the top and bottom, left and right sides, and the four corners of the image.
Thelibrary provides afunction i pl Set Bor der Mode that the application
can use to set the border mode within the image. This function specifies
the behavior for handling border pixels.

For tiled images, the border mode is handled in the same way as for non-
tiled images. (Outer tiles might contain extradataif the image size is not
an integer multiple of thetile size, but these values are ignored and the
border mode is used instead.)

SetBorderMode

Sets the mode for handling
the border pixels.

voi d i pl Set Bor der Mode(I pl I mage * src, int npde,
int border, int constVal)

src The image for which the border mode isto be set.
nmode The following modes are supported:
| PL_BORDER CONSTANT Thevalue const Val isused for al
pixels.
| PL_BORDER_REPLI CATE Thelast row or column is replicated for
the border.
| PL_BORDER REFLECT Thelast rows or columns are reflected in
reverse order, as necessary to create the
border.

4-19

Intel Image Processing Library Reference Manual

4-20

| PL_BORDER_W\RAP The required border rows or columns are
taken from the opposite side of the
image.
bor der The side that this function is called for. Can be
an OR of one or more of the following four sides
of an image:
| PL_SI DE_TCP Top side.

| PL_SI DE_BOTTTOM Bottom side.

| PL_SI DE_LEFT Left side.
| PL_SI DE_RI GHT Right side.
| PL_SI DE_ALL All sides.

The top side is aso used to define al border
pixelsin the top left and right corners. Similarly,
the bottom side is used to define the border
pixelsin the bottom left and right corners.

const Val The value to use for the border when the mode is
set to | PL_BORDER CONSTANT.

Discussion

Thefunctioni pl Set Bor der Mode() isused to set the border handling
mode of one or more of the four sides of an image (see Example 4-3).
Intensity values for the border pixels are assumed or created based on the
mode.

Image Creation and Access

Example 4-3 Setting the Border Mode for an Image

int exanpl e43(void) {

I pl I mage *ingh = ipl Creat el mageHeader (3, 0, | PL_DEPTH_8U,
"RGB", "BGR', |PL_DATA ORDER PI XEL, |PL_ORI G N_TL,
| PL_ALI GN_QAORD, 100, 150, NULL, NULL, NULL, NULL);

if(NULL == ingh) return O;

i pl Set Bor der Mbde(i nmgh, | PL_BORDER REPLI CATE, |PL_SIDE TOP|
IPL_SIDE BOTTOM | I PL_SIDE_LEFT | IPL_SIDE_RIGHT, 0);

i pl Deal | ocate(ingh, |PL_I MAGE HEADER);

return Ipl _StsCk == ipl CGetErrStatus();

}

CreateTilelnfo

Createsthe IplTilelnfo
structure.

Ipl Tilelnfo* iplCreateTilelnfo(lplCallBack call Back,
void* id, int width, int height);

cal | Back The call-back function.

id Theimage ID (for application use).
wi dt h, hei ght Thetile sizes.

Discussion

Thefunctioni pl CreateTil el nfo() alocatesanew | pl Til el nfo
structure with the specified attributes and returns a pointer to this
structure. To delete this structure, call i pl Del et eTi | el nfo() .

Return Value
The pointer to the created | pl Ti | el nf o structure or NULL.

Intel Image Processing Library Reference Manual

SetTilelnfo

Setsthe IplTilelnfo
structure fields.

void iplSetTilelnfo(lplTilelnfo* tilelnfo, IplCallBack
cal | Back, void* id, int width, int height);

tilelnfo The pointer to the | pl Ti | el nf o structure.
cal | Back The call-back function.

id Theimage ID (for application use).

wi dt h, hei ght Thetile sizes.

Discussion

This function sets attributes for an existing | pl Ti | el nf o structure.

DeleteTilelnfo

Deletes the I pl Tilelnfo
structure.

void iplDeleteTilelnfo(lplTilelnfo* tilelnfo);

tilelnfo The pointer to the | pl Ti | el nf o structure.

Discussion

Thisfunction deletesthe | pl Ti | el nf o structure previously created by the
CreateTilelnfo function.

4-22

Image Creation and Access I

Memory Allocation Functions

Functions of thei pl ?Mal | oc() group allocate aligned memory blocks for
the image data. The size of allocated memory is specified by the si ze
parameter. The “?” in i pl ?Mal | oc() stands fow, i, s, ord; these letters
indicate the data type in the function names as follows:

i pl Mal 1 oc() byte

i pl wival | oc() 16-bit word

i pliMalloc() 32-bitdouble word

i pl sMal 1 oc() 4-byte single floating-point element

i pl dval I oc() 8-byte double floating-point element

L)

NOTE. The only function to free the memory allocated by any of these
functionsisi pl Free() .

Malloc

Allocates memory aligned to
an 8-byte boundary.

voi d* iplMalloc(int size);

size Size (in bytes) of memory block to allocate.

Discussion
Thei pl Mal 1 oc() function allocates memory block aligned to an 8-byte
boundary. To free this memory, usg Free() .

Return Value

The function returns a pointer to an aligned memory block. If no memory
is available in the system, then tkie L value is returned.

4-23

A

Intel Image Processing Library Reference Manual

4-24

wMalloc

Allocates memory aligned to
an 8-byte boundary for 16-

short* iplw\alloc(int size);

si ze Size in words (16 bits) of memory block to
alocate.

Discussion

Thei pl wival | oc() function allocates memory block aligned to an 8-byte

boundary for 16-bit words. To free thismemory, use i pl Free() .

Return Value

The function returns a pointer to an aligned memory block. If no memory
isavailable in the system, then the NULL valueis returned.

iMalloc

Allocates memory aligned to
an 8-byte boundary for 32-bit
double words.

int* ipliMlloc(int size);

size Size in double words (32 bits) of memory block
to alocate.

Image Creation and Access

A

Discussion

The i pli Mal | oc() function alocates memory block aligned to an 8-byte
boundary for 32-bit double words. To free thismemory, use i pl Free() .
Return Value

The function returns a pointer to an aligned memory block. If no memory
isavailable in the system, then the NULL valueis returned.

sMalloc

Allocates memory aligned to
an 8-byte boundary for
floating-point elements.

float * iplsMalloc(int size);

si ze Sizein float elements (4 bytes) of memory block
to alocate.

Discussion

Thei pl shval | oc() function allocates memory block aligned to an 8-byte
boundary for floating-point elements. To free this memory, use
i pl Free() .

Return Value

The function returns a pointer to an aligned memory block. If no memory
isavailable in the system, then the NULL valueis returned.

4-25

A

Intel Image Processing Library Reference Manual

4-26

dMalloc

Allocates memory aligned to
an 8-byte boundary for double
floating-point elements.

doubl e* i pldMall oc(int size);

si ze Size in double elements (8 bytes) of memory
block to allocate.

Discussion

Thei pl dval | oc() function allocates memory block aligned to an 8-byte
boundary for double floating-point elements. To free this memory, use
i pl Free() .

Return Value

The function returns a pointer to an aligned memory block. If no memory
isavailable in the system, then the NULL valueis returned.

iplFree

Frees memory allocated by
one of thei pl ?Mal | oc
functions.

void iplMlloc(void * ptr);

ptr Pointer to memory block to free.

Image Creation and Access I

Discussion

Thei pl Free() function frees the aligned memory block allocated by one
of the functionsi pl Mal | oc(),i pl wival | oc(),i pliMalloc(),
i pl smal loc(),oripldMalloc().

% NOTE. Thefunctioni pl Free() cannot be used to free memory allocated
‘ by standard functionslike mal | oc() or cal | oc().

Image Data Exchange

The functions described in this section provide image manipulation
capabilities, such as setting the image pixel data, copying data from one
image to another, exchanging the data between the images, and converting
one image to another according to the attributes defined in the source and
resultant | pl | mage headers.

4-27

Intel Image Processing Library Reference Manual

4-28

Set, SetFP

Sets a value for an
image’s pixel data.

Example 4-4

void iplSet(lpllnmge* image, int fillValue);
void ipl Set FP(I pl I mage* inmage, float fill Val ue);

i mge An image header with alocated image data.
fillVval ue The value to set the pixel data.
Discussion

Thefunctionsi pl Set () andi pl Set FP() set the image pixel data. Before
calling the functions, you must properly construct the image header and
allocate memory for image data; see Example 4-4. For images with the bit
depth lower thanthe 7/ | val | ue, thefi I val ue is saturated when
assigned to pixel. If an ROI is specified, only that ROI isfilled.

Allocating an Image and Setting Its Pixel Values

int exanpl e44(void) { Ipllnmage *inyg;
_try {
img = iplCreatel nageHeader (1,0, | PL_DEPTH 8U, " GRAY",
"GRAY", | PL_DATA ORDER PI XEL, |PL_ORIG N _TL,
| PL_ALI GN_QAORD, 100, 150, NULL, NULL, NULL, NULL);

if(NULL == ing) return O;
i pl Al'l ocatel mage(ing, 0, 0);
if(NULL == ing->imageData) return O;
i pl Set(img, 255);
}
_finally {
i pl Deal | ocate(ing, |PL_I MVAGE_HEADER| | PL_I MAGE_DATA) ;
}
return PL_StsCk == ipl GetErrStatus();

Image Creation and Access I

Copy

Copies image data from one
image to ancther.

voi d ipl Copy(!pllInmage* srclmage, |pllnmage* dstlnmage);

srcl mage The source image.
dst | mage The resultant image.
Discussion

Thefunctioni pl Copy() copiesimage datafrom asourceimageto a
resultant image. Before calling this function, the source and resultant
headers must be properly constructed and image data for both images must
be allocated; see Example 4-5. The following constraints apply to the
copying:

» The bit depth per channel of the source image should be equal to that
of the resultant image.

e Thenumber of channels of interest in the source image should be
equal to the number of channels of interest in the resultant image; that
is, either the source coi =theresultant coi = 0 or both cois are
nonzero.

» Thedataordering (by pixel or by plane) of the source image should be
the same as that of the resultant image.

The al i gn, hei ght ,and wi dt h field values (see Table 4-2) may differ in
source and resultant images. Copying applies to the areas that intersect
between the source ROI and the destination ROI.

4-29

Intel Image Processing Library Reference Manual

Example 4-5 Copying Image Pixel Values

int exanpl e45(void) {
I pl Il mage *inga, *ingb;
_try{
imga = ipl Createl mageHeader (1, 0, |PL_DEPTH 8U,
"GRAY", "GRAY", | PL_DATA ORDER_PI XEL,
PL_ORIG N_TL, IPL_ALIGN_ QAORD, 100, 150,
NULL, NULL, NULL, NULL);
if(NULL == inga) return O;
i mgb = i pl Creat el mageHeader (
1, 0, IPL_DEPTH 8U, "GRAY", "GRAY",
| PL_DATA ORDER PI XEL, |PL_ORI G N_TL,
| PL_ALI GN_QACRD, 100, 150, NULL, NULL,
NULL, NULL);
if(NULL == ingb) return O;

i pl Al l ocatel mage(inga, 1, 255);
if(NULL == inga->i mageData) return O;

i pl Al'l ocatel mage(imgb, 0, 0);
if(NULL == ingb->i mageData) return O;
/1 Copy pixel values of inga to ingb
i pl Copy(inga, ingb);
/1 Check if an error occurred
if(iplGetErrStatus() !'= IPL_StsCk) return O;
}
_finally {
i pl Deal | ocat e(i nga, | PL_I MAGE_HEADER| | PL_| MAGE_DATA) ;
i pl Deal | ocat e(inmgb, | PL_I MAGE_HEADER| | PL_I| MAGE_DATA) ;

}
return IPL_StsOk == ipl GetErrStatus();

4-30

Image Creation and Access I

Exchange

Exchanges image data
between two images.

voi d i pl Exchange(l pl | mage* [mageA, |pllnnage* | nmageB);

I mageA Thefirst image.
I nageB The second image.
Discussion

Thefunctioni pl Exchange() exchangesimage data between two images,
the first and the second. The image headers must be properly constructed
before calling this function, and image data for both images must be
allocated. The following constraints apply to the data exchanging:

» The bit depths per channel of both images should be equal.
* Thenumbers of channels of interest in both images should be equal.

* Thedataordering of both images should be the same (either pixel- or
plane-oriented) .

Theal i gn, wi dt h, and hei ght field values (see Table 4-2) may differ in
the first and the second image. The data are exchanged at the areas of
intersection between the ROI of the first image and the ROI of the second
image.

4-31

Intel Image Processing Library Reference Manual

4-32

Convert

Converts source image data to
resultant image according to
the image headers.

voi d ipl Convert (I pl I mage* srclmage, |pllmage* dstlnmage);

srcl mage The source image.
dst | mage The resultant image.
Discussion

Thefunctioni pl Convert () convertsimage data from the source image
to the resultant image according to the attributes defined in the source and
resultant | pl | mage headers; see Example 4-6.

The main conversion rule is saturation. The images that can be converted
may have the following different characteristics:

» Bit depth per channel

« Dataordering

e Origins

(For more information about these characteristics, see Table 4-2.)
The following constraints apply to the conversion:

« |If the source image has a bit depth per channel equal to 1, the resultant
image should a so have the bit depth equal to 1.

e The number of channelsin the source image should be equal to the
number of channelsin the resultant image.

« The height and width of the source image should be equal to those of
the resultant image.

All ROIs areignored.

Image Creation and Access

Example 4-6 Converting Images

int exanpl e46(void) {
I pl l mage *inga, *ingb;
_try {
imga = ipl Creat el mageHeader (
1, 0, I PL_DEPTH 8U, "GRAY", "GRAY",
| PL_DATA ORDER PI XEL, |PL_ORI G N_TL,
| PL_ALI GN_QAORD, 100, 150, NULL, NULL,
NULL, NULL);
if(NULL == inga) return O;

imgb = ipl Creat el mageHeader (
1, 0, IPL_DEPTH 16S, "GRAY", "GRAY",
| PL_DATA ORDER PI XEL, |PL_ORI G N_TL,
| PL_ALI GN_QAORD, 100, 150, NULL, NULL,

NULL, NULL);
if(NULL == ingb) return O;
ipl Al'l ocatel mage(inga, 1, 128);
if(NULL == inga->i mageData) return O;
ipl Al'l ocatel mage(imgb, 0, 0);
if(NULL == ingb->i mageData) return O;

/1l Convert unsigned char to short
i pl Convert(inga, inmgb);
/1l Check if an error occurred
if(iplGetErrStatus() !'= IPL_StsCk) return O;
}
_finally {
i pl Deal | ocat e(i nga, | PL_I MAGE_HEADER| | PL_I| MAGE_DATA) ;
i pl Deal | ocat e(i ngb, | PL_I MAGE_HEADER| | PL_I| MAGE_DATA) ;
}
return I PL_StsOk == ipl GetErrStatus();

4-33

Intel Image Processing Library Reference Manual

PutPixel,
GetPixel

Setg/retrieves a value of
an image’s pixel.

voi d ipl PutPixel (Ipllmage* image, int x, int y,
voi d* pixel);

voi d ipl GetPixel (Ipllmage* image, int x, int y,
voi d* pixel);

i mge An image header with alocated image data.
X,y The pixel coordinates.
pi xel The pointer to a buffer storing the consecutive

channel values for the pixel.

Discussion

Thefunctioni pl Put Pi xel () setsthe channelsin i nage’s pixel (x,y) to
the values specified in the buffer xe/ .

The functioni pl Get Pi xel () retrieves the values of all channels in
i mage’s pixel (x,y) to the bufferpi xel .

All channels are processed, including the alpha channel (if applicable).
The channel values in the buffer are stored consecutively.

The functions work for all pixel depths supported in the library. The ROI
and mask are ignored.

Example 4-7 on the next page illustrates the usage of the function
i pl Get Pi xel ().

Image Creation and Access

Example 4-7 Using the Function iplGetPixel()

int exanple_1001(void) {

char pixel [4]; /1l buffer to get pixel

/1l roi to set different data in different

IplRO roi ={ 0, 0,0, 4,4 };
I pl Il mage *ing = ipl Createl mageHeader (
4, 4, |1 PL_DEPTH 8U, "RGBA", "BGRA",

| PL_DATA ORDER PI XEL, 1PL_ORI G N TL,

| PL_ALI GN_DWORD, 4, 4, &roi, NULL,

NULL, NULL);
/11 al pha-channel will be 4
i pl All ocatelmage(ing, 1, 4);
roi.coi = 1;
iplSet(img, 1);
roi.coi = 2;
iplSet(img, 2);
roi.coi = 3;

iplSet(img, 3);

i pl Get Pi xel (img, 0,0, pixel);

i pl Deal |l ocate(ing, IPL_IMAGE ALL & ~IPL_I MAGE_RO);

return I PL_StsOk == ipl GetErrStatus();

4-35

Intel Image Processing Library Reference Manual

4-36

Working in the Windows DIB Environment

The Image Processing Library provides functions to convert images to and
from the Windows* device-independent bitmap (DIB). Table 4-2 shows
that the | pl | mage format can represent more features than the DIB image
format. However, the DIB palette images and 8-bit- and 16-bit-per-pixel
absolute color DIB images have no equivaent in the Image Processing
Library.

The DIB palette images must be first converted to the Image Processing
Library’s absolute color images; 8-bit- and 16-bit-per-pixel DIB images
have to be unpacked into the library’s 8-bit-, 16-bit- or 32-bit-per-channel
images.

Any 24-bit absolute color DIB image can be directly converted to the
Image Processing Library format. You just need to createpannage
header corresponding to the DIB attributes. The DIB image data can be
pointed to by the header or it can be duplicated.

There are the following restrictions for the DIB conversion functions:
* You can use pl | mage structures with unsigned data only.

» The DIB and IPL images should be the same size.The following
functions can perform conversion to and from the DIB format, with
additional useful capabilities:

i pl Transl ateDl B() Performs a simple translation of a DIB image to
anl pl | mage as described above. Also converts
a DIB palette image to the Image Processing
Library’s absolute color image.

While this is the most efficient way of converting
a DIB image, it is not the most efficient format
for the library functions to manipulate because
the DIB image data is doubleword-aligned, not
guadword-aligned.

Image Creation and Access

i pl Convert FronDl B()

i pl Convert ToDI B()

Provides more control of the conversion and can
convert a DIB image to an image with a prepared
| pl I mage header. The header must be set to the
desired attributes. The bit depth of the channels
inthel pl | mage header must be equal to or
greater than that in the DIB header.

Convertsan | pl | mage to aDIB image. This
function performs dithering if the bit depth of the
DIB islessthan that of the | pl | mage. It can aso
be used to create a DIB palette image from an
absolute color | pl | mage. The function can
optionally create a new palette.

4-37

A

Intel Image Processing Library Reference Manual

4-38

TranslateDIB

Tranglates a DIB image
into the corresponding

i pl I mage* ipl Transl at eDl B(Bl TMAPI NFOHEADER* di b,
BOOL* cl oneDat a)

di b The DIB image.

cl oneDat a An output flag (Boolean): if false, indicates that
the image data pointer in the | pl | mage will
point to the DIB image datg; if true, indicates
that the data was copied.

Discussion

Thefunctioni pl Transl at eDl B() trandates a DIB image to the

| pl | mage format; see Example 4-8. The | pl | nage attributes
corresponding to the DIB image are automatically chosen (see Table 4-2),
so no explicit control of the conversion is provided. A DIB palette image
will be converted to an absolute color | pl | rage with abit depth of 8 bits
per channel, and the image data will be copied, returning

cl oneDat a = true.

A 24-bit-per-pixel RGB DIB image will be converted to an 8-bit-per-
channel RGB | pl | mage.

A 32-bit-per-pixel DIB RGBA image will be converted to an 8-bit-per-
channel RGBA | pl | rage with an apha channel.

An 8-bit-per-pixel or 16-hit-per-pixel DIB absolute color RGB image will
be converted (by unpacking) into an 8-bit-per-channel RGB | pl | nage.
The image data will be copied, returning c/ oneDat a = true.

A 1-bit-per-pixel or 8-bit-per-pixel DIB gray scaleimage with a standard
gray palette will be converted to a 1-bit-per-channel or 8-bit-per-channel
gray-scale | pl | nage, respectively.

Image Creation and Access

Example 4-8

Translating a DIB Image Into an Iplimage

int exanpled47(void) {
#define WDTH 8
#def i ne HElI GHT 8

Bl TMAPI NFO *di b; /1 pointer to bitnmap
RGBQUAD *r gb; /1 pointer to bitmap colors
unsi gned char *dat a; /1 pointer to bitmap data

Bl TMAPI NFCHEADER *di bh; // header begi nni ng

I pl I mage *ing = NULL;

BOCOL cl oneDat a; /1 variable to get result
int i;
_try {

int size = HEIGHT * ((WDTH+3) & ~3);

/] allocate menory for bitmap

dib = mal | oc(si zeof (Bl TMAPI NFOHEADER)

+ si zeof (RGBQUAD) *256 + size);
if(NULL == dib) return O;

/1 define the pointers

di bh = (Bl TMAPI NFOHEADER*) di b;

r gb=(RGBBQUAD*) ((char*)di b + si zeof (Bl TMAPI NFCHEADER)) ;
dat a=(unsi gned char*) ((char*)rgb+si zeof (RGBQUAD) * 256) ;

/] define bitmp
di bh->bi Si ze = si zeof (Bl TMAPI NFOHEADER) ;
di bh->bi Wdth = W DTH,;
di bh- >bi Hei ght = HEI GHT;
di bh->bi Pl anes = 1;
di bh->bi Bi t Count = 8;
di bh- >bi Conpressi on = Bl _RGB;
di bh->bi Si zel mage = si ze;
di bh->bi Cl rUsed = 256;
di bh->bi d rlnportant = O;
continued =

4-39

Intel Image Processing Library Reference Manual

4-40

Example 4-8 Translating a DIB Image Into an Iplimage (continued)

/1 fill in colors of the bitmap

for(i=0; i<256; i++)
rgb[i].rgbBlue = rgb[i].rgbGeen = rgb[i].rgbRed =
(unsigned char)i;

/1 set the bitnmap data

for(1=0; i<WDTHHEI GHT; i ++)
data[i] = (unsigned char) (100 + i);

/'l create ipl image using the bitmap

i f(NULL==(inmg = iplTransl ateDl B(di bh, &l oneData)))

return O;
}
__finally {
int flags = | PL_I MAGE_HEADER,
if(cloneData) flags |= | PL_I MAGE_DATA
if(dib) free(dib);
i pl Deal | ocate(ing, flags);
}
return I PL_StsOk == ipl GetErrStatus();

A 4-bit-per-pixel gray-scale DIB image with a standard gray palette will
be converted into an 8-hit-per-pixel gray-scale | pl | nage and the image
data will be copied, returning c/ oneDat a = true.

Note that if image datais not copied, the library functions inefficiently
access the data. Thisis because DIB image dataiis aligned on doubleword
(32-bit) boundaries. Alternatively, when ¢/ oneDat a istrue, the DIB
image datais replicated into newly allocated image data memory and
automatically aligned to quadword boundaries, which resultsin a better
Memory access.

Image Creation and Access

Return Value

The constructed | pl | mage. If no memory is available in the system to
allocate the | pl | mage header or image data, NULL valueis returned.

ConvertFromDIB

Convertsa DIB image
toan/ p/ I mage with
specified attributes.

voi d i pl Convert FronDl B(Bl TMAPI NFOHEADER* di b,
| pl | mage* i mage)

dib Theinput DIB image.

i mge Thel pl | mage header with specified attributes.
If the data pointer is NULL, image data memory
will be allocated and the pointer set to it.

Discussion

Thefunctioni pl Convert FronDl B() converts DIB imagesto Image
Processing Library images according to the attributes set in the | pl | mage
header; see Example 4-9. If the image data pointer is NULL and thereisno
memory to allocate the converted image data, the conversion will be
interrupted and the function will return a NULL pointer.

The following constraints apply to the conversion:

» Thebit depth per channel of the | pl | mage should be greater than or
equal to that of the DIB image.

* The number of channels (not including the alpha channel) in the
I pl I mage should be greater than or equal to the number of channels
in the DIB image (not including the alpha channel if present).

4-41

Intel Image Processing Library Reference Manual

* Thedimensions of the converted | pl | mage should be greater than or
equal to that of the DIB image. When the converted image is larger
than the DIB image, the origins of | pl | rege and the DIB image are
made coincident for the purposes of copying.

* When converting aDIB RGBA image, the destination | pl | mage
should also contain an alpha channel.

Example 4-9 Converting a DIB Image Into an Iplimage

int exanpl e48(void) {

Bl TMAPI NFO *di b; /1 pointer to bitmap
RGBQUAD *r gb; /'l pointer to bitmap colors
unsi gned char *dat a; /'l pointer to bitmap data
Bl TMAPI NFOHEADER * di bh; /'l header begi nni ng

I pl I mage *ing = NULL;

int i;

_try {

int size = HEIGHT * ((WDTH+3) & ~3);
/1 allocate menory for bitmap
di b = mal | oc(si zeof (Bl TMAPI NFOHEADER)
+ si zeof (RGBQUAD) *256 + size);
if(NULL == dib) return O;
/'l define corresponedt pointers
di bh = (Bl TMAPI NFOHEADER*) di b;
r gb=(RGBQUAD*) ((char*)di b +
si zeof (Bl TMAPI NFCHEADER)) ;
data = (unsigned char*)((char*)rgb +
si zeof (RGBQUAD) * 256) ;
/1 define bitmp
di bh->bi Si ze = si zeof (Bl TMAPI NFOHEADER) ;
di bh->bi Wdth = W DTH,
di bh- >bi Hei ght = HEI GHT;
di bh->bi Pl anes = 1;
di bh->bi Bi t Count = 8;
continued ==

4-42

Image Creation and Access

Example 4-9 Converting a DIB Image Into an Iplimage (continued)

di bh- >bi Conpressi on = Bl _RGB;

di bh->bi Si zel mage = si ze;

di bh->bi C rUsed = 256;

di bh->bi d rlnportant = O;

/1 fill in colors of the bitmap

for(i=0; i<256; i++)
rgb[i].rgbBlue = rgb[i].rgbhGeen = rgb[i].rgbRed=

(unsigned char)i;

/1 set the bitnmap data

for(1=0; i<WDTHHElIGHT; i++)
data[i] = (unsigned char) (100 + i);

/'l create header of the desired inage

img = iplCreatel nageHeader (1,0, |PL_DEPTH 16U,
"GRAY", "GRAY", | PL_DATA ORDER_PI XEL,
IPLORIG@ N BL, // bottomleft as in DI B
| PL_ALI GN_QAORD, W DTH, HEI GHT, NULL, NULL, NULL,
NULL) ;

if(NULL == ing) return O;

/1 create ipl image converting 8u to 16u
i pl ConvertFronDI B (dibh, ing);
if(!'inmg->i mageData) return O;

}
_finally {
if(dib) free(dib);
i pl Deal | ocat e(i ng, | PL_I MAGE_HEADER| | PL_I| MAGE_DATA) ;
}
return I PL_StsOk == ipl GetErrStatus();
}

As necessary, the conversion result is saturated.

Intel Image Processing Library Reference Manual

ConvertFromDIBSep
Convertsa DIB image to an

I pl I mage, using two arguments

for the DIB header and data.

| PLSt at us i pl Convert FronDl BSep (Bl TMAPI NFOHEADER*
di bHeader, const char* dibData, |pllmge* inage);

di bHeader The input DIB image header.
di bDat a Theinput DIB image data.
i mge Thel pl | mage header with specified attributes.

If the data pointer is NULL, image data memory
will be allocated and the pointer set to it.

Discussion

Similar toi pl Convert Fr onDI B, the function i pl Convert Fr onDl BSep
converts DIB images to Image Processing Library images according to
the attributes set in the | pl | nage header. The input and output images
must satisfy the same conditions asfor i pl Convert FronDI B.

Thefunctioni pl Convert Fr onDl BSep uses an additional argument for
the DIB data. This allows you to supply the DIB header and data stored

separately.

Return Value

The function returnsan | PLSt at us status code.

Image Creation and Access

ConvertToDIB

Convertsan I pl I nage
to a DIB image with
specified attributes.

voi d i pl Convert ToDl B(i pl | mage* i mage, Bl TMAPI NFOHEADER*
dib, int dither, int paletteConversion)

i mage
dib
di t her

Theinput | pl | mage.
The output DIB image.

The dithering algorithm to use if applicable.
Dithering will be done if the bit depth in the DIB
islessthan that of thel pl | mage. Thefollowing
algorithms are supported corresponding to these
di t her identifiers:

| PL_DI THER_STUCKEY The Stucki dithering algorithm is used.

| PL_DI THER_NONE No dithering is done. The most

pal et t eConver si on

significant bitsin the input image pixel
data are retained.

Applicable when the DIB is a palette image.
Specifies the palette algorithm to use when
converting an absolute color | pl | mage. The
following options are supported:

| PL_PALCONV_NONE The existing palette in the DIB
is used.

| PL_PALCONV_POPULATE
The popularity palette
conversion algorithmis used.

| PL_PALCONV_NMEDCUT The median cut algorithm for
pal ette conversion is used.

4-45

Intel Image Processing Library Reference Manual

4-46

Discussion

Thefunctioni pl Convert ToDl B() convertsan | pl | mage toaDIB
image. The conversion takes place according to the source and destination
image attributes. While | pl | rage format always uses absolute color, DIB
images can be in absolute or palette color. When the DIB is a paette
image, the absolute color | pl | rage is converted to a palette image
according to the pal ette conversion option specified. When the bit depth of
an absolute color DIB imageislessthan that of the | pl | mage, then
dithering according to the specified option is performed.

The following constraints apply when using this function:

* Thenumber of channelsinthe | pl | rage should be equal to the
number of channelsin the DIB image.

e Thealphachannel inan | pl | mage will be passed on only when the
DIB isan RGBA image.

Image Arithmetic and Logical
Operations

This chapter describes image processing functions that modify pixel
values using simple arithmetic or logical operations. It also includes the
library functions that perform image compositing based on opacity (alpha-
blending). All these operations can be broken into two categories. monadic
operations, which use single input images, and dyadic operations, which
use two input images. Table 5-1 lists the functions that perform arithmetic
and logical operations.

Table 5-1 Image Arithmetic and Logical Operations
Group Function Name Description
Arithmetic i pl AddS Adds a constant to the image pixel values.
operations i pl AJdSFP
i pl Subtract$S Subtracts a constant from the pixel values
i pl Subtract SFP or the values from a constant.
i pl Mul tiplyS Multiplies pixel values by a constant.

i pl MultiplySFP

i pl Mul tipl ySScal e Multiplies pixel values by a constant and
scales the product.

i pl Abs Computes absolute pixel values.

i pl Add Adds pixel values of two images.

i pl Subtract Subtracts pixel values of one image from
those of another image.

i pl Square Squares the pixel values of an image.

Continued &=

5-1

Intel Image Processing Library Reference Manual

5-2

Table 5-1

Image Arithmetic and Logical Operations (continued)

Group Function Name Description
Arithmetic i pl Mul ti pl Multiplies pixel values of two images.
operations pl Ml tipl yScal e Multiplies pixel values of two images
(continued) and scales the product.
...I._.ogical . | Ands. E’Ierformsmal"t.).itwise ANBH(.)perationB.r.{m
operations each pixel with a constant.
iplOrS Performs a bitwise OR operation on
each pixel with a constant.
i pl XorS Performs a bitwise XOR operation on
each pixel with a constant.
i pl Not Performs a bitwise NOT operation on
each pixel
iplLShiftsS Shifts bits in pixel values to the left.
i pl RShiftS Divides pixel values by a constant
power of 2 by shifting bits to the right.
i pl And Combines corresponding pixels of two
images by a bitwise AND operation.
ipl Or Combines corresponding pixels of two
images by a bitwise OR operation.
i pl Xor Combines corresponding pixels of two
images by a bitwise XOR operation.
Alpha- i pl PreMul tipl yAl pha Pre-multiplies pixel values of an image
blending by alpha values.
i pl Al phaConposite Composites two images using alpha

(opacity) values.

i pl Al phaConpositeCc Composites two images using
constant alpha (opacity) values.

Thefunctionsi pl Square() ,ipl Not (),ipl PreMul tiplyAl pha() ,and
i pl Abs() aswell asall functions with names containing an additional S
use single input images (perform monadic operations). All other functions
in the above table use two input images (perform dyadic operations).

Image Arithmetic and Logical Operations

Monadic Arithmetic Operations

The sections that follow describe the library functions that perform

monadic arithmetic operations (note that the i pl PreMul ti pl yAl pha
function is described in the “Image Compositing Based on Opatity
section of this chapter). All these functions use a single input image to
create an output image.

AddS, AddSFP

Adds a constant to pixel
values of the source
image.

voi d ipl AddS(I pl | mage* srclmage, |pllnage* dstlmage, int
val ue) ;

voi d i pl AddSFP(I pl | mage* srclnage, |pllnmage* dstl mage,
float value); [/* images with | PL_DEPTH 32F only */

srcl mage The source image.

dst | mage The resultant image.

val ue The value to be added to the pixel values.
Discussion

The functions change the image intensity by adding #hee to pixel
values. A positiveval ue brightens the image (increases the intensity); a
negativeval ue darkens the image (decreases the intensity).

Intel Image Processing Library Reference Manual

SubtractS, SubtractSFP

Subtracts a constant from
pixel values, or pixel
values from a constant.

voi d ipl Subtract S(Ipl |l nmage* srclmage, |pllnmage* dstl nmage,
int value, BOOL flip);

voi d ipl Subtract SFP(I pl | mage* srclnage, | pl | mage* dstl nage,
float value, BOOL flip); /* |PL_DEPTH 32F only */

srcl mage The source image.

dst | mage The resultant image.

val ue The value to be subtracted from the pixel values.
flip A Boolean used to change the order of subtraction.
Discussion

The functions change the image intensity as follows:

If 71ipisfase, the val ue is subtracted from the image pixel values.
If 71i pistrue, theimage pixel values are subtracted from the val ve.

MultiplyS, MultiplySFP

Multiplies pixel values
by a constant.

void iplMiltiplyS (Ipllmage* srclmage, |pllmage*

dst I mage, int val ue);

void iplMiltiplySFP(Ipllmage* srclnage,|pllmge* dstl nage,
float value); /* images with | PL_DEPTH 32F only */

Image Arithmetic and Logical Operations

srcl mage The source image.

dst | mage The resultant image.

val ue An integer value by which to multiply the pixel values.
Discussion

The functions change the image intensity by multiplying each pixel by a
constant val ue.

MultiplySScale

Multiplies pixel values
by a constant and scales
the products.

void iplMiltiplySScal e(lpllmge* srclmage, |pllmnmage*
dst I mage, int value);

srcl mage The source image.

dst | mage The resultant image.

val ue A positive value by which to multiply the pixel values.
Discussion

Thefunctioni pl Mul ti pl ySScal e() multipliesthe input image pixel

values by val ue and scales the products using the following formula:
dst_pi xel =src_pixel * val ue [max_val

where src_pi xel isapixel vaue of the source images, dst_pi xel isthe

resultant pixel value, and nmax_val isthe maximum presentable pixel

value. Thisfunction can be used to multiply the image by a number

between O and 1.

The source and resultant images must have the same pixel depth. The
function isimplemented only for 8-bit and 16-bit unsigned data types.

5-5

Intel Image Processing Library Reference Manual

Square

Squares the pixel values

of the image.
voi d ipl Square(lpllmge* srclnage, |pllnmge* dstl mage);
srcl mage The source image.
dst | mage The resultant image.
Discussion
Thefunctioni pl Squar e() increasesthe intensity of an image by
squaring each pixel value.

Abs

Computes absol ute pixel
values of the image.

voi d ipl Abs(Ipllmage* srclmage, |pllmge* dstl mage);

srcl mage The source image.
dst | mage The resultant image.
Discussion

Thefunctioni pl Abs() takesthe absolute value of each channel in each
pixel of the image.

Image Arithmetic and Logical Operations

Dyadic Arithmetic Operations

The sections that follow describe the functions that perform dyadic
arithmetic operations. These functions use two input images to create an
output image.

Add

Combines corresponding
pixels of two images by
addition.

voi d ipl Add(! pl I mage* srclmageA, |pllnmage* srclmageB,
I pl I mage* dst /I nage);

srcl mageA The first source image.
srcl mageB The second source image.
dst | mage The resultant image obtained as

dst_pi xel =srcA pixel +srcB_pixel .

Discussion

Thefunctioni pl Add() adds corresponding pixels of two input images to
produce the output image.

Intel Image Processing Library Reference Manual

Subtract

Combines corresponding
pixels of two images by

subtraction.
voi d ipl Subtract(Ipllmage* srclnageA, |pllmnmage*
srcl nmageB, |pllmage* dstl nage);
srcl mageA The first source image.
srcl mageB The second source image.
dst | mage The resultant image obtained as:
dst_pi xel =srcA _pi xel - srcB_pi xel .
Discussion
Thefunctioni pl Subt ract () subtracts corresponding pixels of two input
images to produce the output image.
Multiply

Combines corresponding
pixels of two images by
multiplication.

void iplMiltiply(lpllmage* srclnageA, |pllmage*
srcl nageB, |pllmage* dstl nage);

srcl mageA The first source image.
srcl mageB The second source image.
dst | mage The resultant image.

Image Arithmetic and Logical Operations

Discussion

Thefunctioni pl Mul tiply() multiplies corresponding pixels of two
input images to produce the output image.

MultiplyScale

Multiplies pixel values of two
images and scales the products.

void iplMiltiplyScal e(lpllmage* srclnageA, |pllmage*
srcl nageB, |pllmage* dstl nage);

srcl mageA The first source image.
srcl mageB The second source image.
dst | mage The resultant image.
Discussion

Thefunctioni pl Mul ti pl yScal e() multiplies corresponding pixels of
two input images and scales the products using the following formula:

dst_pi xel =srcA pixel * srcB_pixel [max_val

where srcA pi xel and srcB_pi xel are pixel values of the source
images, dst_pi xel istheresultant pixel value, and nax_val isthe
maximum presentable pixel value. Both source images and the resultant
image must have the same pixel depth. The function isimplemented only
for 8-bit and 16-bit unsigned data types.

5 Intel Image Processing Library Reference Manual

Monadic Logical Operations

The sections that follow describe the functions that perform monadic
logical operations. All these functions use a single input image to create an
output image.

LShiftS

Shifts pixel values’ bits
to the left.

voi d iplLShiftS(Ipllnmage* srclmage, |pllmage* dstlnmage,
unsigned int nShift);

srcl mage The source image.

dst | mage The resultant image.

nShi ft The number of bits by which to shift each pixel value to
the left.

Discussion

Thefunctioni pl Lshi ft S() changesthe intensity of the source image by
shifting the bitsin each pixel value by nshi f ¢ bitsto the left. The
positions vacated after shifting the bits are filled with zeros.

5-10

Image Arithmetic and Logical Operations

RShiftS

Divides pixel values by
a constant power of 2 by
shifting bitsto the right.

voi d ipl RshiftS(Ipllnmage* srclmage, |pllmage* dstlnmage,
unsigned int nShift);

srcl mage The source image.

dst | mage The resultant image.

nShi ft The number of bits by which to shift each pixel value to
the right.

Discussion

Thefunctioni pl Rshi f t S() decreases the intensity of the source image by
shifting the bitsin each pixel value by nshi f ¢ bits. The positions vacated
after shifting the bits are filled with zeros.

5-11

Intel Image Processing Library Reference Manual

5-12

Not

Performs a bitwise NOT
operation on each pixel.

void ipl Not(Ipllmge* srclmage, |pllmge* dstlmage);

srcl mage The source image.
dst | mage The resultant image.
Discussion
Thefunctioni pl Not () performsabitwise NOT operation on each pixel
value.
AndS
Performs a bitwise AND

operation of each pixel
with a constant.

voi d i pl AndS(I pl I mage* srclmage, |pllnmage* dstl mage,
unsi gned int val ue);

srcl mage The source image.
dst | mage The resultant image.
val ue The bit sequence used to perform the bitwise AND

operation on each pixel.

Discussion

Thefunctioni pl AndS() performs abitwise AND operation between each
pixel value and val ue. The least significant bit(s) of the val ue are used.

Image Arithmetic and Logical Operations

orS

Performs a bitwise OR
operation of each pixel
with a constant.

void ipl OS(lpllmge* srclmage, |pllmage* dstl nage,
unsi gned int val ue);

srcl mage The source image.
dst | mage The resultant image.
val ue The bit sequence used to perform the bitwise OR

operation on each pixel.

Discussion

Thefunctioni pl O S() performs a bitwise OR between each pixel value
and val ve. Theleast significant bit(s) of the val ue are used.

5-13

Intel Image Processing Library Reference Manual

5-14

XorS

Performs a bitwise XOR
operation of each pixel
with a constant.

voi d ipl Xor S(I pl | mage* srclmage, |pllmage* dstl mage,
unsi gned int val ue);

srcl mage The source image.
dst | mage The resultant image.
val ue The bit sequence used to perform the bitwise XOR

operation on each pixel.

Discussion

Thefunctioni pl Xor S() performs ahitwise XOR between each pixel
value and val ue. The least significant bit(s) of the val ue are used.

Dyadic Logical Operations

This section describes the library functions that perform dyadic logical
operations. These functions use two input images to create an output
image.

Image Arithmetic and Logical Operations

And

Combines corresponding pixels
of two images by a bitwise AND
operation.

voi d ipl And(! pl I mage* srclmageA, |pllnmage* srclmageB,
I pl I mage* dst /I nage);

srcl mageA The first source image.
srcl mageB The second source image.

dst | mage The image resulting from the bitwise operation between
input images sr ¢/ mageA and sr cl mageB.

Discussion

Thefunctioni pl And() performsabitwise AND operation between the
values of corresponding pixels of two input images.

Or

Combines corresponding
pixels of two images by a
bitwise OR operation.

void ipl O (Ipllmage* srclmageA, |pllmge* srclmgeB,
| pl | mage* dst ! mage);

srcl mageA The first source image.
srcl mageB The second source image.
dst | mage The image resulting from the bitwise operation between

input images sr ¢/ mageA and sr cl mageB.

5-15

5 Intel Image Processing Library Reference Manual

Discussion

Thefunctioni pl OR() performs a bitwise OR operation between the
values of corresponding pixels of two input images.

Xor

Combines corresponding
pixels of two images by a
bitwise XOR operation.

voi d ipl Xor (Ipllmage* srclmageA, |pllnmage* srclnmageB,
| pl | mage* dst ! mage);

srcl mageA The first source image.
srcl mageB The second source image.
dst | mage The image resulting from the bitwise operation between

input images sr ¢/ mageA and sr cl nageB.

Discussion

Thefunctioni pl Xor () performs abitwise XOR operation between the
values of corresponding pixels of two input images.

Image Compositing Based on Opacity

The Image Processing Library provides functions to composite two images
using either the opacity (alpha) channel in the images or a provided alpha
value. Alphavalues range from 0 (100% translucent, 0% coverage) to full
range (0% translucent, 100% coverage). Coverage is the percentage of the
pixel's own intensity that is visible.

5-16

Image Arithmetic and Logical Operations

Using the opacity channel for image compositing provides the capability

of overlaying the arbitrarily shaped and transparent imagesin arbitrary
positions. It aso reduces aliasing effects along the edges of the combined
regions by allowing some of the bottom image’s color to show through.

Let us consider the example of RGBA images. Here each pixel is a
guadruple (r, g, bq) wherer, g, b, and are the red, green, blue and
alpha channels, respectively. In the formulas that follow, the Greek letter
o with subscripts always denotes the normalized (scaled) alpha value in
the range 0 to 1. It is related to the integer alpha vatuwe val ve as

follows:

o = aphaVal ue | max_val
wheremax_val is 255 for 8-bit or 65535 for 16-bit unsigned pixel data.

There are many ways of combining images using alpha values. In all
compositing operations a resultant pixel ¢, b,, a.) inimage C is

created by overlaying a pixel,(rg,, b,, a,) from the foreground image A
over a pixel (t, g,, b,, o) from the background image B. The resulting
pixel values for an OVER operation (A OVER B) are computed as shown
below.

re=o,*r,+(1- a)*ag*ry
Oc=0,*gu+ (1- a) * 0 * g
be=0, * b, + (1- a,) * 05 * by
The above three expressions can be condensed into one as follows:
C=a, *A+(1-0,)*0a,*B

In this example, the color of the background image B influences the color
of the resultant image through the second term ¢1) * a, * B. The
resulting alpha value is computed as

Oc =0, +(1' GA)* Og

5-17

Intel Image Processing Library Reference Manual

5-18

Using Pre-multiplied Alpha Values

In many casesit is computationally more efficient to store the color
channels pre-multiplied by the alphavalues. In the RGBA example, the
pixel (r, g, b, a) would actually be stored as (r* a, g*a, b*a, a). This
storage format reduces the number of multiplications required in the
compositing operations. In interactive environments, when an image is
composited many times, this capability is especially efficient.

One known disadvantage of the pre-multiplication is that once a pixel is
marked as transparent, its color value is gone because the pixel’s color
channels are multiplied by 0.

The functioni pl PreMul ti pl yAl pha() implements various alpha
compositing operations between two images. One of them is converting
the pixel values to pre-multiplied form.

The color channels in images with the alpha channel can be optionally pre-
multiplied with the alpha value. This saves a significant amount of
computation for some of the alpha compositing operations. For example,

in an RGBA color model image, if (r, g, &) are the channel values for a
pixel, then upon pre-multiplication they are stored ag,(g*a, b*a, a).

AlphaComposite
AlphaCompositeC

Composite two images using
alpha (opacity) values.

voi d i pl Al phaComposite(lpllmge* srclmageA, |1pllmge*
srcl mageB, |pllmage* dstlmage, int conpositeType,

I pl | mage* al phal mageA, |pl |1 mage* al phal nageB, |pl | mage*
al phal mageDst, BOOL prenul Al pha, BOCL divi deMbde) ;

Image Arithmetic and Logical Operations

voi d i pl Al phaConpositeC(Ipl | nage* srclmageA, |pllnage*
srcl mageB, |pllmage* dstlmage, int conpositeType, int aA,
int aB, BOOL prenul Al pha, BOCL divi deMbde);

srcl mageA The foreground input image.
srcl mageB The background input image.
dst | mage The resultant output image.

conposi t eType The composition type to perform. See Table 5-2 for the
type value and description.

aA The constant alpha value to use for the source image
srcl mageA. Should be a positive number.

aB The constant alpha value to use for the source image
srcl mageB. Should be a positive number.

al phal mageA Theimage to use as the alpha channel for src/ mageA. If
theimage al phal mageA contains an apha channel, that
channel is used. Otherwise channel 1in al phal mageA
is used as the alpha channdl. If thisis not suitable for the
application, then the a pha channel number in the
I pl I mage header for the image should be set
appropriately before calling this function. If the
argument al phal mageA isNULL, then the internal alpha
channel of srcl mageAisused. If srcl mageA does not
contain an apha channel, an error message is issued.

al phal mageB Theimage to use as the alpha channel for src/ mageB. If
theimage al phal mageB aready contains an alpha
channel, that channel is used. Otherwise channel 1in
al phal mageB is used as the apha channel. If thisis not
suitable for the application, then the alpha channel
number in the image header for the image should be set
appropriately before calling this function. If the
argument al phal mageB isNULL, then the internal alpha
channel of src/ nageB isused.

5-19

Intel Image Processing Library Reference Manual

5-20

al phal mageDst

prenul Al pha

di vi deMbde

Discussion

If srcl mageB does not contain an apha channel, then
thevaue (1- a,) isused for the alpha, where a, isa
scaled alphavalue of src/ mageAintherangeOto 1.

The image to use as the apha channd for dst I mage. If
the image aready contains an apha channel, that
channel is used. Otherwise channel 1 in theimageis
used as the alpha channel. If thisis not suitable for the
application, then the alpha channel number in the image
header for the image should be set appropriately before
calling this function. This argument can be NULL, in
which case the resultant al pha values are not saved.

A Boolean flag indicating whether or not the input
images contain pre-multiplied alphavalues. If true, they
contain these values.

A Boolean flag related to pr enul Al pha. When true, the
resultant pixel color (see Table 5-2) is further divided by
the resultant alpha value to get the final resultant pixel
color.

Thefunctioni pl Al phaConposite() performsanimage compositing
operation by overlaying the foreground image sr c/ nageA with the
background image sr ¢/ nageB to produce the resultant image dst | nage.

Thefunctioni pl Al phaConposite() executes under one of the following
conditions for the alpha channels:

Image Arithmetic and Logical Operations 5

e If al phal mageA and al phal mageB are both NULL, then the internal
alpha channels of the two input images specified by their respective
| pl | mage headers are used. The application has to ensure that these
are set to the proper channel number prior to calling this function. If
srcl mageB does not have an alpha channel, then its alphavalue is set
to(1- a,) where a, isthe scaled aphavalue of image src/ nageAin
therange Oto 1.

» If both alphaimages al phal mageA and al phal mageB are not NULL,
then they are used as the alpha values for the two input images. If
al phal mageB iSNULL, thenitsalphavalueissetto(1- a,) wherea,
isthe scaled alphavalue of image al phal mageAintherange0to 1.

It isan error if none of the above conditions is satisfied.

If al phal mageDst isnot NULL, then the resultant alpha values are written
toit. If itisNULL and the output image i mageDst contains an apha
channel (specified by the | pl | mage header), then it is set to the resulting
alphavalues.

Thefunctioni pl Al phaConposi t eC() isused to specify constant alpha
values a, and a, to be used for the two input images (usually o, is set to
thevaluel - a,). The resultant alpha values (also constant) are not saved.

The type of compositing is specified by the argument conposi t eType
which can assume the values shown in Table 5-2.

The functions i pl Al phaConpositeC() and i pl Al phaConpositeC()
can be used for unsigned pixel data only. They support ROI, mask ROI
and tiling.

5-21

Intel Image Processing Library Reference Manual

5-22

Table 5-2

Types of Image Compositing Operations

Type Output Pixel Output Pixel Resultant
(see Note) (pre-mult. a) Alpha

Description

OVER o,*A+ A+(1-a,)*B O+

(1- a)*ag*B (1-a)*ag
IN O *A* g Aoy % 0g
OUT o *A*(1-ag) A*(1-ap) o, *(1- ap)
ATOP o, *A*og+ A* o+ % ogt

(1-ay*ag*B (1-0,)*B (1-ay)*ag
XOR a,*A*(1-a5)+ A*(1-ag)+ 0, (1- ag)+

(1-ay*ag*B (1-0,)*B (1-ay)*ag
PLUS a,*A+ag*B A+B .+ Oy

A within B. Aacts as a
matte for B. A shows only
where B is visible.

A outside B. NOT-B acts as
a matte for A. A shows only
where B is not visible.

Combination of (A IN B)
and (B OUT A). B is both
back-ground and matte for
A.

Combination of (A OUT B)
and (B OUT A). Aand B
mutually exclude each
other.

Blend without precedence

NOTE. In Table 5-2, the resultant pixel valueis divided by the resultant
alpha when di vi deMbde is set to true (see the argument descriptions for
thei pl Al phaConposite() function). The Greek letter a here and below
denotes normalized (scaled) alpha valuesin therange O to 1.

For example, for the OVER operation, the output C for each pixel in the

inputs A and B is determined as

C=a,*A +(1-0)*0,*B

Image Arithmetic and Logical Operations

The above operation is done for each color channel in A, B, and C. When the
images A and B contain pre-multiplied alpha values, C is determined as

C=A+(1- a)*B

The resultant apha value acC (alphain the resultant image C) is computed
as (both pre-multiplied and not pre-multiplied alpha cases) from aA (apha
in the source image A) and aB (alphain the source image B):

GC=GA+(1_ GA)*GB

Thus, to perform an OVER operation, use the | PL_COVPOSI TE_OVER
identifier for the argument conposi t eType. For al other types, use

| PL_COVPOSI TE_I N, | PL_COVPCSI TE_QUT, | PL_COVPCSI TE_ATOP,
| PL_COVPOSI TE_XOR, and | PL_COVPCSI TE_PLUS, respectively.

The argument di vi deMbde istypically set to false to give adequate results
as shown in the above example for an OVER operation and in Table 5-2.
When di vi deMbde is set to true, the resultant pixel color is divided by the
resultant alpha value. This gives an accurate result pixel vaue, but the
division operation is expensive. In terms of the OVER example without
pre-multiplication, the final value of the pixel C is computed as

C=(a,*A+(1- a,)*a,* B)lo,
Thereis no change in the value of o, and it is computed as shown above.
When both A and B are 100% transparent (that is, o, iszeroand o, is

zero), o isaso zero and the result cannot be determined. In many cases,
the value of o is 1, so the division has no effect.

5-23

5 Intel Image Processing Library Reference Manual

PreMultiplyAlpha

Pre-multiplies alpha
values of an image.

void iplPreMultiplyA pha (Ipllnmge* image,
i nt al phaval ue);

i mge The image for which the alpha pre-multiplication is
performed.

al phaVval ue The global alphavalue to use in the range 0 to 256. If
thisvalue is negative (for example, - 1), the interna
alpha channel of theimageisused. It isan error
condition if an alpha channel does not exist.

Discussion

Thefunctioni pl PreMul ti pl yAl pha() convertsanimageto the pre-
multiplied aphaform. If (R, G, B, A) are the red, green, blue, and apha
values of apixel, then the pixel is stored as (R* a, G*a, B*a, A) after
execution of thisfunction. Here a is the pixel’'s normalized alpha value in
the range O to 1.

Optionally, a global alpha valug phaval ue can be used for the entire
image. Then the pixels are stored asdR&*a, B*a, al phaVval ue) if the
image has an alpha channel or ¢R&*a, B*a) if the image does not
have an alpha channel. Hexgs the normalized/ phaVval ue in the range
0to 1.

The functioni pl PreMul ti pl yAl pha() can be used for unsigned pixel
data only. It supports ROI, mask ROI and tiling.

5-24

Image Filtering

Table 6-1

This chapter describes linear and non-linear filtering operations supported
by the Image Processing Library. Most linear filtering is performed
through convolution, either with user-defined convolution kernels or with
the provided fixed filter kernels. Table 6-1 lists the filtering functions.

Image Filtering Functions

Function Name

Description

Linear Filters

2-dimensional i

Convolution
Linear Filters

i pl Bl ur

pl Cr eat eConvKer nel
pl Cr eat eConvKer nel Char

pl Cr eat eConvKer nel FP

pl Get ConvKer nel
pl Get ConvKer nel Char
pl Get ConvKer nel FP

pl Del et eConvKer nel
pl Del et eConvKer nel FP

i pl Convol ve2D
i pl Convol ve2DFP

i pl Convol veSep2D

i pl Fi xedFilter

neighborhood averaging filter.
Creates a convolution kernel.

Reads the attributes of a
convolution kernel.

Deallocates a convolution
kernel.

Convolves an image with one
or more convolution kernels.

Convolves an image with a
separable convolution kernel.

Convolves an image with a
predefined kernel.

Non-linear
Filters

i pl Medi anFilter

i pl MaxFilter
iplMnFilter

Applies a maximum filter.

Applies a minimum filter.

6-1

6

Intel Image Processing Library Reference Manual

6-2

Linear Filters

Linear filtering includes a simple neighborhood averaging filter, 2D
convolution operations, and a number of filters with fixed effects.

Blur

Applies simple neighborhood
averaging filter to blur the
image.

void iplBlur(lpllmge* srclmage, |pllmage* dstl nmage,
int nCols, int nRows, int anchorX, int anchorY);

srcl mage The source image.

dst | mage The resultant image.

nCol s Number of columnsin the neighborhood to use.
nRows Number of rows in the neighborhood to use.

anchor X, anchorY The[x,y] coordinates of the anchor cell in the
neighborhood. In this coordinate system, the top
left corner would be [0, 0] and the bottom right
corner would be[nCol s- 1, nRous- 1]. For a3 by
3 neighborhood, the coordinates of the geometric
center would be[1, 1]. This specification allows
the neighborhood to be skewed with respect to its
geometric center.

Discussion

Thefunctioni pl Bl ur () setseach pixel in the output image as the
average of all the input image pixelsin the neighborhood of size nRous
by ncol s with the anchor cell at that pixel. This has the effect of

Image Filtering

smoothing or blurring the input image. The linear averaging filter of an
image is aso caled abox filter.

2D Convolution

The 2D convolution is a versatile image processing primitive which can be
used in avariety of image processing operations; for example, edge
detection, blurring, noise removal, and feature detection. It is also known
as mask convolution or spatial convolution.

i

NOTE. In some literature sources, the 2D convolution isreferred to as
box filtering, which is an incorrect use of the term. A box filter isa linear
averaging filter (seefunctioni pl Bl ur above). Technically, a box filter
can be effectively (although less efficiently) implemented by 2D
convolution using a kernel with unit or constant values.

For 2D convolution, arectangular kernel is used. The kernel is amatrix of
signed integers or single-precision real values. The kernel could be a

single row (arow filter) or asingle column (a column filter) or composed

of many rows and columns. Thereisacell in the kernel called the

“anchor,” which is usually a geometric center of the kernel, but can be
skewed with respect to the geometric center.

For each input pixel, the kernel is placed on the image such that the anchor
coincides with the input pixel. The output pixel value is computed as

ym,n = Zi Zk hi,k Xm-i,n-k

wherex .. is the input pixel value artg, denotes the kernel. Optionally,
the output pixel value may be scaled.

The convolution function can be used in two ways. The first way uses a
single kernel for convolution. The second way uses multiple kernels and
allows the specification of a method to combine the results of convolution
with each kernel. This enables efficient implementation of multiple

kernels which eliminates the need of storing the intermediate results when

Intel Image Processing Library Reference Manual

using each kernel. The functions i pl Convol ve2D() and
i pl Convol ve2DFP() can implement both ways.

In addition, i pl Convol veSep2D() , aconvolution function that uses
separable kernels, is also provided. It works with convolution kernels that
are separable into the x and y components.

Before performing a convolution, you should create the convolution kernel
and be able to access the kernel attributes. Y ou can do this using
thefunctionsi pl Cr eat eConvKer nel () ,i pl Get ConvKer nel (),

i pl Creat eConvKernel FP() andi pl Get ConvKer nel FP() .

Inrelease 2.0, the function i pl Fi xedFi | ter () function has been added
to thelibrary. It allows you to convolve images with a number of
commonly used kernels that correspond to Gaussian, Laplacian, highpass,
and gradient filtering.

Also, for compatibility with previous releases, the functions

i pl Creat eConvKer nel Char () andi pl Get ConvKer nel Char () have
been added. They use 1-byte char kernel values, as opposed to integer
kernel valuesini pl Creat eConvKer nel () andi pl Get ConvKernel () .

Image Filtering

CreateConvKernel, CreateConvKernelChar,
CreateConvKernelFP

Creates a convolution
kernel.

| pl ConvKernel * i pl Creat eConvKernel (int nCols, int nRows,
int anchorX, int anchorY, int* values, int nShiftR);

| pl ConvKernel * i pl Creat eConvKer nel Char (int nCols, int
nRows, int anchorX, int anchorY, char* values, int
nShiftR);

I pl ConvKer nel FP* i pl Creat eConvKer nel FP(i nt nCol s, int
nRows, int anchorX, int anchorY, float *values);

nCol s The number of columnsin the convolution kernel.
nRows The number of rows in the convolution kernel.

anchor X, anchorY The[x,y] coordinates of the anchor cell in the
kernel. In this coordinate system, the top left
corner would be [0, 0] and the bottom right
corner would be [nCol s- 1, nRows- 1]. For a3 by
3 kernel, the coordinates of the geometric center
would be [1, 1]. This specification allows the
kernel to be skewed with respect to its geometric
center.

val ues A pointer to an array of valuesto be used for the
kernel matrix. The values are read in row-major
form starting with the top left corner. There
should be exactly nRows*ncCol s entriesin this
array. For example, thearray [1, 2, 3,4, 5, 6, 7,
8, 9] would represent the following kernel
matrix:

Intel Image Processing Library Reference Manual

123
456
789

nShi ftR Scale the resulting output pixel by shifting it to
theright nShi ft Rtimes.

Discussion

Functionsi pl Creat eConvKer nel () andi pl Cr eat eConvKer nel FP()
are used to create convolution kernels of arbitrary size with arbitrary
anchor point. The function i pl Cr eat eConvKer nel Char () Serves
primarily for compatibility with previous releases of the library. It uses
char rather than integer input values to creates the same kernel as

i pl Creat eConvKernel () .

Return Value

A pointer to the convolution kernel structure | pl ConvKer nel .

GetConvKernel, GetConvKernelChar
GetConvKernelFP

Reads the attributes of a
convolution kernel.

voi d i pl Get ConvKer nel (I pl ConvKernel * kernel, int* nCols,
int* nRows, int* anchorX, int* anchorY, int** val ues,
int* nShiftR);

voi d i pl Get ConvKer nel Char (I pl ConvKernel * kernel, int*
nCols, int* nRows, int* anchorX, int* anchorY, char**
val ues, int* nShiftR);

Image Filtering

voi d i pl Get ConvKer nel FP(I pl ConvKer nel FP* kernel, int*
nCol s, int* nRows, int* anchorX, int* anchorY, float**
val ues) ;

ker nel The kernel to get the attributes for. The attributes
are returned in the remaining arguments.

nCol s, nRows Numbers of columns and rows in the convolution
kernel. Set by the function.

anchor X, anchorY Pointerstothe [x,y] coordinates of the anchor
cell in the kernel. (See ipl CreateConvKernel
above.) Set by the function.

val ues A pointer to an array of valuesto be used for the

kernel matrix. The values are read in row-major
form starting with the top left corner. There will
be exactly nRovs* nCol s entriesin this array.
For example, thearray [1, 2, 3,4, 5, 6, 7, 8, 9]
would represent the kernel matrix

123

456

789

nShi ft R A pointer to the number of bitsto shift (to the
right) the resulting output pixel of each
convolution. Set by the function.

Discussion

Functionsi pl Get ConvKer nel () andi pl Get ConvKer nel FP() are used
to read the convolution kernel attributes. The i pl Get ConvKer nel Char ()
function serves primarily for compatibility with previous releases. It gives
you 1-byte char rather than integer values of the convolution kernel;
you'll probably need this function only if you create kernels using

i pl Creat eConvKer nel Char () .

Intel Image Processing Library Reference Manual

DeleteConvKernel

DeleteConvKernelFP

Deletes a convolution
kernel.

voi d i pl Del et eConvKer nel (1 pl ConvKer nel * kernel);
voi d i pl Del et eConvKer nel FP(I pl ConvKer nel FP* kernel);

ker nel The kernel to delete.

Discussion

Functionsi pl Del et eConvKer nel () andi pl Del et eConvKer nel FP()
must be used to delete convolution kernels created, respectively, by
i pl Creat eConvKernel () andi pl Creat eConvKer nel FP() .

Convolve2D
Convolve2DFP

Convolves an image
with one or more
convolution kernels.

voi d i pl Convol ve2D(| pl | mage* srclmage, |1pllmge*
dst I mage, 1pl ConvKernel ** kernel, int nKernels, int
conbi nelet hod) ;

voi d i pl Convol ve2DFP(| pl | nage* srcl mage, |pllmage*
dst I mage, |pl ConvKernel FP** kernel, int nKernels, int
conbi nelet hod) ;

srcl mage The source image.

dst | mage The resultant image.

Image Filtering

ker nel

nKer nel s

conbi neMet hod

Discussion

A pointer to an array of pointersto convolution
kernels. The length of the array is nKer nel s.

The number of kernelsinthe array ker nel . The
value of nKer nel s can be 1 or more.

The way in which the results of applying each
kernel should be combined. This argument is
ignored when asingle kernel isused. The
following combinations are supported:

| PL_SUM Sums the results.
| PL_SUMBQ Sums the squares of the results.

| PL_SUMBSQROOT Sums the squares of the results
and then takes the square root.

| PL_MAX Takes the maximum of the results.
IPL_MN Takes the minimum of the resullts.

Functionsi pl Convol ve2D() andi pl Convol ve2D() are usedto
convolve an image with a set of convolution kernels. The results of using
each kernel are then combined using the conbi neMet hod argument; see

Example 6-1.

Example 6-1 Computing the 2-dimensional Convolution

int exanpl e6l(void) {

I pl I mage *inga,

int one[9] = {1,0,1,
| pl ConvKer nel * kernel ;

_try {
int i;

0,0,0, 1,0,1}; [// a kernel to check

/! REFLECT border npde

i mga= i pl Creat el nageHeader (1, 0, |PL_DEPTH 8U, "GRAY",
"GRAY", | PL_DATA ORDER PI XEL, |PL_ORI G N_TL,
| PL_ALI GN_DWORD, 4, 4, NULL, NULL, NULL, NULL);

continued =

Intel Image Processing Library Reference Manual

Example 6-1 Computing 2-dimensional Convolution (continued)

if(NULL == inga) return O;
i pl Set Bor der Mbde(inga, |PL_BORDER REFLECT, |PL_SIDE TOP|
| PL_SI DE_BOTTOM | PL_SI DE_LEFT| | PL_SI DE_RI GHT, 0);
i mgb = ipl Creat el mageHeader (
1, 0, IPL_DEPTH 8U, "GRAY", "GRAY",
| PL_DATA ORDER PI XEL, |PL_ORI G N_TL,
| PL_ALI GN_DWORD, 4, 4, NULL, NULL,
NULL, NULL);
if(NULL == ingb) return O;
ipl Al'l ocatel mage(inmga, 0, 0);
if(NULL == inga->imageData) return O;
/1 fill image by neaningl ess
for(i=0; i<16; i++)
((char*)inga->inageData)[i] = (char) (i+1);
i pl Al'l ocatel mage(imgb, 0, 0);

if(NULL == ingb->imageData) return O;
/'l create kernel 3x3 with (1,1) cross point
kernel = ipl CreateConvKernel (3, 3, 1, 1, one, 0);

/1l convol ve inga by kernel and place the result in ingb
i pl Convol ve2D(inga, inmgb, &kernel, 1, IPL_SUM);
/1 Check if an error occurred

if(iplGetErrStatus() !'= IPL_StsCk) return O;
}
_finally {
i pl Del et eConvKer nel (kernel);
i pl Deal | ocate(inga, |PL_I MAGE_ HEADER | | PL_I MAGE_DATA);
i pl Deal | ocate(ingb, |PL_I MAGE HEADER | | PL_I MAGE_DATA);
}
return PL_StsCk == ipl GetErrStatus();

6-10

Image Filtering

ConvolveSep2D

Convolves an image with a
separable convolution kernel.

voi d i pl Convol veSep2D(1 pl | mage* srclnage, |1pllnnage*
dst I mage, 1pl ConvKernel * xKernel, 1pl ConvKernel*

yKernel);

srcl mage The source image.

dst | mage The resultant image.

xKer nel The x or row kernel. Must contain only one row.

yKer nel They or column kernel. Must contain only one column.
Discussion

Thefunctioni pl Convol veSep2D() isused to convolve the input image
srcl mage with the separable kernel specified by the row kernel xker nel
and column kernel yker nel . The resulting output imageis dst | mage.

6-11

Intel Image Processing Library Reference Manual

6-12

FixedFilter

Convolves an image with a
predefined kernel.

int iplFixedFilter(lpllmage* srclnage,
I pl | mage* dstlnage, IplFilter filter);

srcl mage The source image.
dst | mage The resultant image.
filter One of predefined filter kernels (see Discussion for

supported filters).
Discussion

Thefunctioni pl Fi xedFi | t er () isused to convolve the input image
srcl mage with apredefined filter kernel specified by fi/ter. The
resulting output imageis dst I nage.

Thefilter kernel can be one of the following:

| PL_PREW TT_3x3_V A gradient filter (vertical Prewitt operator).
Thisfilter uses the kernel

-1 0 1

-1 0 1

-1 0 1

| PL_PREW TT_3x3_H A gradient filter (horizontal Prewitt operator).
Thisfilter uses the kernel

1 1 1
0 0 O
-1-1-1

| PL_SOBEL_3x3_V A gradient filter (vertical Sobel operator).
Thisfilter uses the kernel

-1 0 1

-2 0 2

-1 0 1

Image Filtering

| PL_SOBEL_3x3_H A gradient filter (horizontal Sobel operator).
Thisfilter uses the kernel
1 2 1
0 0 O
-1-2 -1
| PL_LAPLACI AN 3x3 A 3x3 Laplacian highpass filter.
Thisfilter uses the kernel
-1-1-1
-1 8 -1
-1-1-1
| PL_LAPLACI AN 5x5 A 5x5 Laplacian highpass filter.
Thisfilter uses the kernel
-1-3-4-3-1
-3 0 6 0-3
-4 620 6 -4
-3 0 6 0-3
-1-3-4-3-1
| PL_GAUSSI AN _3x3 A 3x3 Gaussian lowpass filter.
Thisfilter usesthe kernel 4/ 16, where
1 2 1
A= 2 4 2
1 2 1
These filter coefficients correspond to a 2-dimensiona Gaussian
distribution with standard deviation 0.85.

| PL_GAUSSI AN _5x5 A 5x5 Gaussian lowpass filter.
Thisfilter usesthe kernel A/ 571, where

2 7 12 7 2
731 5231 7
A= 12 52 127 52 12
731 5231 7
2 7 12 7 2

6-13

Intel Image Processing Library Reference Manual

These filter coefficients correspond to a 2-dimensiona Gaussian
distribution with standard deviation 1.0.

| PL_HI GHPASS 3x3 A 3x3 highpassfilter.
Thisfilter uses the kernel

-1-1-1
-1 8 -1
-1-1-1

| PL_HI GHPASS 5x5 A 5x5 highpassfilter.
Thisfilter uses the kernel
-1-1-1-1-1
-1-1-1-1-1
-1-124-1-1
-1-1-1-1-1
-1-1-1-1-1

| PL_SHARPEN 3x3 A 3x3 sharpening filter.
Thisfilter uses the kernel

-1 -1 -1
(1/8) * -1 16 -1
-1 -1 -1

Return Value

The function returns zero if the execution is completed successfully, and a
non-zero integer if an error occurred.

Non-linear Filters

Non-linear filtering involves performing non-linear operations on some
neighborhood of the image. Most common are the minimum, maximum
and median filters.

6-14

Image Filtering

MedianFilter
Apply a median filter to

the image.

voi d ipl MedianFilter(lpllnage* srclmage, |pllmage*
dstlmage, int nCols, int nRows, int anchorX,
int anchory);

srcl mage The source image.

dst | mage The resultant image.

nCol s Number of columnsin the neighborhood to use.
nRows Number of rows in the neighborhood to use.

anchor X, anchorY The[x,y] coordinates of the anchor cell in the
neighborhood. In this coordinate system, the top
left corner would be [0, 0] and the bottom right
corner would be[nCol s- 1, nRous- 1]. For a3 by
3 neighborhood, the coordinates of the geometric
center would be[1, 1]. This specification allows
the neighborhood to be skewed with respect to its
geometric center.

Discussion

Thefunctioni pl Medi anFi | ter () setseach pixel inthe output image as
the median value of al the input image pixel vauesin the neighborhood
of size nRows by nCol s with the anchor cell at that pixel. This hasthe
effect of removing the noise in the image.

6-15

Intel Image Processing Library Reference Manual

Example 6-2 Applying the Median Filter

int exanpl e62(void) {
I pl Il mage *inga, *ingb;
_try {
imga = ipl Creat el mageHeader (
1, 0, IPL_DEPTH 8U, "GRAY", "GRAY",
| PL_DATA ORDER PI XEL, |PL_ORI G N_TL,
| PL_ALI GN_DWORD, 4, 4, NULL, NULL,
NULL, NULL);
if(NULL == inga) return O;
i pl Set Bor der Mbde(inga, |PL_BORDER REFLECT, |PL_SIDE TOP|
| PL_SI DE_BOTTOM | PL_SI DE_LEFT| | PL_SI DE_RI GHT, 0);
i mgb = i pl Creat el mageHeader (
1, 0, IPL_DEPTH 8U, "GRAY", "GRAY",
| PL_DATA ORDER PI XEL, |PL_ORI G N_TL,
| PL_ALI GN_DWORD, 4, 4, NULL, NULL,
NULL, NULL);
if(NULL == ingb) return O;
ipl All ocatel mage(inga, 1, 10);
if(NULL == inga->i mageData) return O;
/'l make a spi ke
((char*)inga->i mageDat a) [2*4+2] = (char) 15;
i pl Al'l ocatel mage(inmgb, 0, 0);
if(NULL == ingb->imageData) return O;
/1 Filter inga and place the result in ingb
i pl MedianFilter(inga, ingb, 3,3, 1,1);

if(iplGetErrStatus() !'= IPL_StsCk) return O;
}
__finally {
i pl Deal | ocate(inga, |PL_I MAGE_ HEADER | | PL_I MAGE_DATA);
i pl Deal | ocate(inmgb, I|PL_I MAGE HEADER | | PL_I MAGE_DATA);
}
return I PL_StsOk == ipl GetErrStatus();

6-16

Image Filtering

MaxFilter

Apply a max filter to the

image.

void ipl MaxFilter(lpllnage* srclmage, |pllmage* dstlnmage,
int nCols, int nRows, int anchorX, int anchorY);

srcl mage The source image.

dst | mage The resultant image.

nCol s Number of columnsin the neighborhood to use.
nRows Number of rows in the neighborhood to use.

anchor X, anchorY The[x,y] coordinates of the anchor cell in the
neighborhood. In this coordinate system, the top
left corner would be [0, 0] and the bottom right
corner would be[nCol s- 1, nRous- 1]. For a3 by
3 neighborhood, the coordinates of the geometric
center would be[1, 1]. This specification allows
the neighborhood to be skewed with respect to its
geometric center.

Discussion

Thefunctioni pl MaxFi | ter () setseach pixel inthe output image as the
maximum value of all the input image pixel valuesin the neighborhood of
size nRows by nCol s with the anchor cell at that pixel. This has the effect
of increasing the contrast in the image.

6-17

Intel Image Processing Library Reference Manual

6-18

MinFilter
Apply a min filter to the

void iplMnFilter(lpllnage* srclmage, |pllmage* dstl nmage,
int nCols, int nRows, int anchorX, int anchorY);

srcl mage The source image.

dst | mage The resultant image.

nCol s Number of columns in the neighborhood to use.
nRows Number of rows in the neighborhood to use.

anchor X, anchorY The[x,y] coordinates of the anchor cell in the
neighborhood. (In this coordinate system, the top
left corner would be [0, 0] and the bottom right
corner would be[nCol s- 1, nRous- 1]. For a3 by
3 neighborhood the coordinates of the geometric
center would be [1, 1]). This specification
allows the neighborhood to be skewed with
respect to its geometric center.

Discussion

Thefunctioni pl M nFi | ter () setseach pixel inthe output image as the
minimum value of al the input image pixel values in the neighborhood of
size nRows by nCol s with the anchor cell at that pixel. This has the effect
of decreasing the contrast in the image.

Linear Image Transforms

This chapter describes the linear image transforms implemented in the
library: Fast Fourier Transform (FFT) and Discrete Cosine Transform
(DCT). Table 7-1 lists the functions performing linear image transform

operations.
Table 7-1 Linear Image Transform Functions
Group Function Name Description
FastFour;r ||_Rea||:_ft2Déomputes.{r.{é"forward P
Transform (FFT) FFT of an image.
i pl CcsFft 2D Computes the forward or inverse 2D
FFT of an image in a complex-
conjugate format.
D|Scretec_os|ne Il_DCTZD_éomputes.{r.{é"f "
Transform (DCT) DCT of an image.

Fast Fourier Transform

This section describes the functions that implement the forward and
inverse Fast Fourier Transform (FFT) on the 2-dimensional (2D) image
data.

Real-Complex Packed (RCPack2D) Format

The FFT of any real 2D signal, in particular, the FFT of animageis
conjugate-symmetric. Therefore, it can be fully specified by storing only
half the output data. A specia format called RCPack2D is provided for this
purpose.

7-1

Intel Image Processing Library Reference Manual

7-2

Thefunctioni pl Real Fft 2D() transformsa 2D image and produces the
Fourier coefficientsin the RCPack2D format. To complement this, function
i pl CecsFft2D() isprovided that usesitsinput in RCPack2D format,
performs the Fourier transform, and produces its output asarea 2D

image. Thefunctionsi pl Real Fft2D() andi pl CcsFft 2D() together can
be used to perform frequency domain filtering of images.

RCPack2D format is defined based on the following Fourier transform
equations:

A= Sy fe, eXp% ZLLJIQGXD@“ ZTEKSQ
iKLZKZ exp@p jlﬁe Epruks

where i =+/—1, f,, isthepixel vauein the k-th row and I-th column.

Note that the Fourier coefficients have the following relationship:

A, =conj(Ac) s=1,..,K-1;j=1,...,L- 1
A, = conj(A,) ji=1,...,L-L
A, =conj(A. o) s=1,...,K-1L

Hence, to reconstruct the L*K complex coefficients A_, it is enough to
store only L*K real values. The Fourier transform functions actually use
$=0,...,K-1;,j=0,..,L/2

Other Fourier coefficients can be found using complex-conjugate
relations. Fourier coefficients A can be stored in the RCPack2D format,
which is a convenient compact representation of a complex conjugate-
symmetric sequence. In the RCPack2D format, the output samples of the
FFT are arranged as shown in Tables 7-2 and 7-3, where Re corresponds
to Real and Im corresponds to Imaginary. Table 7-4 is an example of
output samples storage for K=4and L = 4.

Linear Image Transforms

Table 7-2 FFT Output in RCPack2D Format for Even K
[ReAy [ReAy mA, | Re’*ow ve MAwye [ReAu, |
[ReAy, [ReAy mA, [[ReAyy, IMA,, [ReAy, |
'..!F.“ Ao] f*.e P '”.‘...’f?;.l R A A, [MAL,
R R L
Re AK/Z 10 | Re AK 31 ImAK 31 | Re AK -3,(L- 1)/3____'_?] AK -3,(L- 1)/2...'.56 AK/Z 1L2 |
Im AK/Z 10 | Re AK 21 ImAK 21 | Re AK -2,(L- 1)/3____'_?] AK -2,(L- 1)/2___1_![“ AK/Z 1L/2 |
ReAK/ZO REAKll ImAKll | ReAKl(Ll)/Z ImAKl(Ll)/Z IReAKIZLIZ |
............. (the last colu.fﬁ.r.lmls used fo}.‘é}}en L only)
Table 7-3 FFT Output in RCPack2D Format for Odd K
R [ReAu MAw 1 [ReAuwae MAwas [ReAy, |
[ReAy, [ReAy mA, [[ReAyy, MAu,, [ReAy, |
[mA, [ReAy mA, [[ReAyy, MAg,, [MA, |
R R FE L
[ReAp, [ReA IMAL, [-or [ReAG ., MAL b2 | Re A, |
I__I_r_n AK/Z,O | Re AK-l,l ImAK 11 | Re AK -1,(L- 1)/3____'_?] AK -1,(L- 1)/2___!__!_r_n AK/Z L2 |
(the last column is used for even L only)
Table 7-4 RealFFT2D Output Sample for K=4,L =4

, Re Ay,

, Re A, ,

, ReA,

, ReA, ,

, ReA,,

, ReA,,

, ReA,, ,

Intel Image Processing Library Reference Manual

Real Fft2D

Computes the forward or
inverse 2D FFT of an image.

voi d ipl Real Fft 2D(1 pl | mage* srcl mage, |pllmage* dstl mage,

int flags);
srcl mage The source image.
dst I nage The resultant image in RCPack2D format

containing the Fourier coefficients. Thisimage
must be a multi-channel image containing the
same number of channels as src/ mage. The data
type for the image must be 8, 16 or 32 hits.

Thisimage cannot be the same as the input
image sr ¢/ mage (that is, an in-place operation is
not allowed).

flags Specifies how to perform the FFT. Thisisan
integer whose bits can be assigned the following
values using bitwise logical OR:

| PL_FFT_Forw Do forward transform
| PL_FFT_ I nv Do inverse transform

| PL_FFT NoScal e Do inverse transform without
scaling

| PL_FFT_Usel nt Use only integer core
| PL_FFT_UseFl oat Useonly float core

| PL_FFT_Free Only free al working arrays
and exit.

7-4

Linear Image Transforms

Example 7-1

Discussion

Thefunctioni pl Real Fft 2D() performsan FFT on each channel in the
specified rectangular ROI of the input image src/ mage and writes the
Fourier coefficientsin RCPack2D format into the corresponding channel of
the output image dst I mage. The output data will be clamped (saturated)
tothelimitsM n and Max, which are determined by the data type of the
output image. For best results, use 32-bit data or, at least, 16-bit data.

Computing the FFT of an Image

; Matl ab exampl e
» rand(‘'seed',12345); x=round(rand(4,4)*10), fft2(x)
89 10-7i -9 10 + 7i
-1+6i 8-21i 13+ 2i -8-3i
-3 10+1i 3 10 - 1i
-1-6i -8+3i 13-2i 8+21i
/I Result of iplRealFft2D function:
89 10 -7 -9
-1 8 -21 13
6 10 1 2
-3 -8 3 3
*/

int example71(void) {
Iplimage *imga, *imgb; int i;
const int src[16] = {
9 7, 4, 1, 7, 5 1, 7,
6, 6, 1, 9, 3, 10, 9, 4}
_try{
imga = iplCreatelmageHeader(
1,0, IPL_DEPTH_8U, "GRAY", "GRAY",
IPL_DATA_ORDER_PIXEL, IPL_ORIGIN_TL,
IPL_ALIGN_DWORD, 4, 4, NULL, NULL,
NULL, NULL);

continued =

Intel Image Processing Library Reference Manual

Example 7-1 Computing the FFT of an Image (continued)

if(NULL == inga) return O;

i mgb = i pl Creat el mageHeader (
1, 0, IPL_DEPTH 16S, "GRAY", "GRAY",
| PL_DATA ORDER PI XEL, |PL_ORI G N_TL,
| PL_ALI GN_DWORD, 4, 4, NULL, NULL,
NULL, NULL);

if(NULL == ingb) return O;

/1l Create without filling

i pl All ocatel mage(inga, 0,0);

if(NULL == inga->i mageData) return O;

/1 Fill by sanple data

for(i=0; i<16; i++)
((char*)inmga->inmageData)[i] = (char)src[i];

i pl Al'l ocatel mage(imgb, 0, 0);
if(NULL == ingb->imageData) return O;

i pl Real Fft2D(inmga, ingb, |PL_FFT_Forw);
/1 Conpare Matlab and ipl result here

i pl CcsFft2D(imgb, inmga, IPL_FFT_Inv);
/| Conpare source data and obtai ned data

// Check if an error was occured

if(iplGetErrStatus() !'= IPL_StsCk) return O;
}
__finally {
i pl Real Fft 2D(NULL, NULL, |PL_FFT_Free);
i pl Deal | ocat e(i nga, | PL_I MAGE_HEADER| | PL_I MAGE_DATA) ;
i pl Deal | ocat e(inmgb, | PL_I MAGE_HEADER| | PL_I| MAGE_DATA) ;
}
return PL_StsOk == ipl GetErrStatus();

Linear Image Transforms

CcsFft2D

Computes the forward
or inverse 2D FFT of an
image in complex-
conjugate format.

voi d ipl CcsFft2D(1 pl I mage* srclnmage, |pllnmage* dstl mage,

int flags);
srcl mage The source image in RCPack 2D format.
dst | mage The resultant image. Thisimage must be a multi-

channel image containing the same number of channels
assrcl mge.

This image cannot be the same as the input image

srcl mage (that is, an in-place operation is not allowed).

flags Specifies how to perform the FFT. Thisis an integer
whose bits can be assigned the following values using
bitwise logical OR:

| PL_FFT_Forw Do forward transform.

| PL_FFT_ I nv Do inverse transform.

| PL_FFT _NoScal e Do inverse transform without
scaling.

| PL_FFT_Usel nt Use only integer core.

| PL_FFT_UseFl oat Useonly float core.

| PL_FFT_Free Only free al working arrays and
exit.

Discussion

Thefunctioni pl CcsFft 2D() performsan FFT on each channel in the
specified rectangle ROI of the input image sr ¢/ nage and writes the
output in RCPack2D format to the image dst | nage. The output data will
be clamped (saturated) to the limits M n and Max that are determined by
the data type of the output image.

; Intel Image Processing Library Reference Manual

Discrete Cosine Transform

This section describes the functions that implement the forward and
inverse Discrete Cosine Transform (DCT) on the 2D image data. The
output of the DCT for real input dataisreal. Therefore, unlike FFT, no
special format for the transform output is needed.

DCT2D

Computes the forward
or inverse 2D DCT of
an image.

voi d ipl DCT2D(1 pl | mage* srclmage, |1pllmage* dstl nage,
int flags);

srcl mage The source image.

dst | mage The resultant image containing the DCT
coefficients. Thisimage must be a multi-channel
image containing the same number of channels
as srcl mage. The data type for the image must
be 8, 16 or 32 bits.

Thisimage cannot be the same as the input
image sr ¢/ mage (that is, an in-place operation is
not allowed).

flags Specifies how to perform the DCT. Thisisan
integer whose bits can be assigned the following
values using bitwise logical OR:

| PL_DCT _Forward Do forward transform.

| PL_DCT I nverse Do inversetransform.

7-8

Linear Image Transforms

| PL_DCT_Free Only free al working arrays and exit.

| PL_DCT_Usel npBuf
Use the input image array for the intermediate
calculations. The performance of DCT increases, but
the input image is destroyed. Y ou may use this value
only if both the source and destination image data types
are 16-bit signed.

Discussion

Thefunctioni pl DCT2D() performsaDCT on each channel in the
specified rectangular ROI of the input image src/ mage and writes the
DCT coefficientsinto the corresponding channel of the output image

dst I mage. The output data will be clamped (saturated) to the limits M n
and vax, where M n and Max are determined by the data type of the output
image. For best results, use 32-hit data or, at least, 16-bit data.

Example 7-2 Computing the DCT of an Image

int exanmpl e72(void) {
I pl Il mage *inga, *ingb;
const int width = 8, height = 8;
int i, x,v;
_try {
imga = ipl Creat el mageHeader (
1, 0, | PL_DEPTH 8U, "GRAY", "GRAY",
| PL_DATA ORDER PI XEL, |PL_ORI G N_TL,
| PL_ALI GN_ DWORD, wi dth, height, NULL, NULL,
NULL, NULL);
if(NULL == inga) return O;

continued =

Intel Image Processing Library Reference Manual

Example 7-2 Computing the DCT of an Image (continued)

i mgb = i pl Creat el mageHeader (
1, 0, IPL_DEPTH 16S, "GRAY", "GRAY",
| PL_DATA ORDER PI XEL, |PL_ORI G N_TL,
| PL_ALI GN_ DWORD, wi dth, height, NULL, NULL,
NULL, NULL);
if(NULL == ingb) return O;

/1l Create without filling

i pl All ocatel mage(inga, 0,0);

if(NULL == inga->i mageData) return O;

/1 Fill by sanple data

for(1=0; i<w dth*height; i++)
((char*)inga->inageData)[i] = (char) (i+1);

i pl Al'l ocatel mage(imgb, 0, 0);

if(NULL == ingb->imageData) return O;

i pl DCT2D(imnga, imgb, I PL_DCT_Forward);

/1 Now there are (w dth+hei ght-1) DCT coefficients
for(y=1; y<height; y++)
for(x=1; x<wi dth; x++)
((short*)ingb->i mageDat a) [y*w dt h+x] = (short)O0;
/'l Restore source inmage from sone DCT coefficients
i pl DCT2D(imgb, imga, | PL_DCT_lnverse);
/1 Check if an error occurred

if(iplGetErrStatus() !'= IPL_StsCk) return O;
}
__finally {
i pl DCT2D(NULL, NULL, |PL_DCT _Free);
i pl Deal | ocat e(i nga, | PL_I MAGE_HEADER| | PL_I MAGE_DATA) ;
i pl Deal | ocat e(i nmgb, | PL_I MAGE_HEADER| | PL_I| MAGE_DATA) ;
}
return PL_StsOk == ipl GetErrStatus();

7-10

Morphological Operations

The morphological operations of Intel Image Processing Library are
simple erosion and dilation of animage. A specified number of erosions
and dilations are performed as part of image opening or closing operations
in order to (respectively) eliminate or fill small and thin holesin objects,
break objects at thin points or connect nearby objects, and generally
smooth the boundaries of objects without significantly changing their area.

Table 8-1 lists the functions that perform these operations.

Table 8-1 Morphological Operation Functions
Group Function Name Description
Erode, Dilate i pl Er ode Erodes the image an indicated number
of times.
iplDilate Dilates the image an indicated number
of times.
Open, Close i bl Open Opens the image while smoothing the

boundaries of large objects.

i pl d ose Closes the image while smoothing the
boundaries of large objects.

81

Intel Image Processing Library Reference Manual

Erode

Erodes the image.

voi d ipl Erode(lpl I mage* srclmage, |pllmage* dstl nage,
int nlterations);

srcl mage The source image.

dst | mage The resultant image.

nlterations The number of times to erode the image.
Discussion

Thefunctioni pl Er ode() performs an erosion of the image

nl terations times. Theway theimageis eroded depends on whether it

isabinary image, a gray-scaleimage, or a color image.

« For abinary input image, the output pixd is set to zero if the
corresponding input pixel or any of its 8 neighboring pixelsisa zero.

» For agray scale or color image, the output pixel is set to the minimum
of the corresponding input pixel and its 8 neighboring pixels.

» For acolor image, each color channel in the output pixel is set to the
minimum of this channel’s values at the corresponding input pixel and
its 8 neighboring pixels.

The effect of erosion is to remove spurious pixels (such as noise) and to
thin boundaries of objects on a dark background (that is, objects whose
pixel values are greater than those of the background).

Morphological Operations

Figure 8-1

Figure 8-1 shows an example of 8-bit gray scale image before erosion
(Ieft) and the same image after erosion of arectangular ROI (right).

Erosion in a Rectangular ROI: the Source (left) and Result (right)

The following code (Example 8-1) performs erosion of the image inside
the selected rectangular ROI.

8-3

Intel Image Processing Library Reference Manual

Example 8-1 Code Used to Produce Erosion in a Rectangular ROI

int exanple8l(void) { Ipllnage *inga, *ingb;
_try{
imga = ipl Creat el mageHeader (
1, 0, IPL_DEPTH 8U, "GRAY", "GRAY",
| PL_DATA ORDER PI XEL, |PL_ORI G N_TL,
| PL_ALI GN_DWORD, 4, 4, NULL, NULL,
NULL, NULL);
if(NULL == inga) return O;
i mgb = i pl Creat el mageHeader (
1, 0, IPL_DEPTH 8U, "GRAY", "GRAY",
| PL_DATA ORDER PI XEL, |PL_ORI G N_TL,
| PL_ALI GN_DWORD, 4, 4, NULL, NULL,
NULL, NULL);
if(NULL == ingb) return O;
ipl All ocatel mage(inmga, 1, 7);
if(NULL == inga->i mageData) return O;
/'l Create a hole
((char*)inga->i mageDat a) [2*4+2] = O;
/1 Border is taken fromthe opposite side
i pl Set Bor der Mode(i nga, | PL_BORDER WRAP,
| PL_SIDE_ALL, 0);
i pl Al'l ocatel mage(inmgb, 0, 0);
if(NULL == ingb->imageData) return O;
/1 Erosion will increase the hole
i pl Erode(inmga, imgb, 1);
/1 Check if an error occurred
if(iplGetErrStatus() !'= IPL_StsCk) return O;
}
_finally {
i pl Deal | ocat e(i nga, | PL_I MAGE_HEADER| | PL_I| MAGE_DATA) ;
i pl Deal | ocat e(i mgh, | PL_I MAGE_HEADER| | PL_| MAGE_DATA) ;
}

return PL_StsOk == ipl GetErrStatus();
}

Morphological Operations

L)

NOTE. All sourceimage attributes are defined in the image header
pointed to by src/ mage.

Dilate

Dilates the image.

void iplDilate(lpllmge* srclnage, |pllnmage* dstlnmage,
int nlterations);

srcl mage The source image.

dst | mage The resultant image.

nlterations The number of times to dilate the image.
Discussion

Thefunctioni pl Di | at e() performsadilation of theimage

nl t er ati ons times. The way the image is dilated depends on whether the

image is binary, gray-scale, or a color image.

» For abinary input image, the output pixel is set to 1 if the corresponding
input pixel is 1 or any of 8 neighboring input pixelsis 1.

» For agray-scaeimage, the output pixel is set to the maximum of the
corresponding input pixel and its 8 neighboring pixels.

» For acolor image, each color channel in the output pixel is set to the
maximum of this channel’s values at the corresponding input pixel
and its 8 neighboring pixels.

The effect of dilation is to fill up holes and to thicken boundaries of
objects on a dark background (that is, objects whose pixel values are
greater than those of the background).

8-5

Intel Image Processing Library Reference Manual

8-6

Open

Opens the image by
performing erosions
followed by dilations.

voi d ipl Open(Ipl | mage* srclmage, |pllmage* dstl mage,
int nlterations);

srcl mage The source image.

dst | mage The resultant image.

nl terations The number of timesto erode and dilate the
image.

Discussion

Thefunctioni pl Open() performs n/ t er at i ons of erosion followed by
nl terat i ons of dilation performed by i pl Erode() andipl Di |l ate(),
respectively.

The process of opening has the effect of eliminating small and thin
objects, breaking objects at thin points, and generally smoothing the
boundaries of larger objects without significantly changing their area.

See Also

Erode
Dilate

Morphological Operations

Close

Closesthe image by
performing dilations
followed by erosions.

void ipldose(lpllmge* srclmage, |pllmage* dstlnage,
int nlterations);

srcl mage The source image.

dst | mage The resultant image.

nlterations The number of times to dilate and erode the image.
Discussion

Thefunctioni pl C ose() performs ni t er ati ons of dilation followed
by niterations of erosion performed by i pl Di | at e() and
i pl Er ode() , respectively.

The process of closing has the effect of filling small and thin holesin
objects, connecting nearby objects, and generally smoothing the
boundaries of objects without significantly changing their area.

See Also

Erode
Dilate

8-7

This pageisintentionally left blank. Needed for two-sided printing.

This pageisintentionally left blank. Needed for two-sided printing.

Color Soace Conversion

Table 9-1

This chapter describes Intel Image Processing Library functions that
perform color space conversion. The library supports the following color

space conversions:

* Reduction from high bit resolution color to low bit resolution color
» Conversion of absolute color images to and from pal ette color images

e Color model conversion

« Conversion from color to gray scale and vice versa

Table 9-1 lists color space conversion functions. For information on the
absol ute-to-pal ette and pal ette-to-absol ute color conversion, see “Working
in the Windows DIB Environmehin Chapter 4.

Color Space Conversion Functions

Conversion Type

Description

Reducing Bit
Resolution

Reduces the number of bits
per channel in an image.

Converts bitonal images to 8-
and 16-bit gray scale images.

Color to gray scale
and vice versa

Convert color images to and
from gray scale images.

Color Models i pl RGB2HSV,
Conversion i pl HSV2RGB

i pl RGB2HLS,
i pl HLS2RGB

Convert RGB images to and
from HSV color model.

Convert RGB images to and
from HLS color model.

continued =

9-1

Intel Image Processing Library Reference Manual

Table 9-1 Color Space Conversion Functions (continued)
Conversion Type Function Name Description
Color Models i pl RGB2LWV, Convert RGB images to and
Conversion i pl LUV2RGB from LUV color model.
(continued) i pl RGB2XYZ, Convert RGB images to and
i pl XYZ2RGB from XYZ color model.
i pl RGB2YCr Cb, Convert RGB images to and
i pl YCr Ch2RGB from YC C, color model.
i pl RGB2YWV, Convert RGB images to and
i pl YUV2RGB from YUV color model.
i pl YCC2RGB Convert PhotoYCC* images
to RGB color model.
Color Twist i pl Appl yCol or Twi st Applies a color-twist matrix
to an image.

i pl CreateCol or Twi st Allocates memory for color-
twist matrix data structure.

i pl Del et eCol or Twi st Deletes the color-twist matrix
data structure.

i pl Set Col or Twi st Sets a color-twist matrix data
structure.

Reducing the Image Bit Resolution

This section describes functions that reduce the bit resolution of absolute
color and gray scale images.

Color Space Conversion

ReduceBits

Reduces the bits per
channel in an image.

voi d i pl ReduceBits(Ipllmge* srclmage, |pllmge*
dstlmage, int jitterType, int ditherType, int [evels);

srcl mage The source image of a higher bit resolution.
Refer to the discussion below for alist of valid
source and resultant image combinations.

dst | mage The resultant image of alower bit resolution.
Refer to the discussion below for a list of valid
source and resultant image combinations.

jitterType The number specifying the noise added; should
beintherangeOto 8.

di t her Type The type of dithering to be used. The following
types are supported:

| PL_DI THER_NONE No dithering is done

| PL_DI THER _FS The Floid-Steinberg
dithering algorithm

| PL_DI THER JJH The Jarvice-Judice-Hinke
dithering algorithm

| PL_DI THER_STUCKEY The Stucki dithering
algorithm

| PL_DI THER _BAYER The Bayer dithering
algorithm.

level s Number of levelsfor dithering; should be a
power of 2.

9-3

Intel Image Processing Library Reference Manual

Table 9-2

Discussion

Thefunctioni pl ReduceBi t s() reduces ahigher bit resolution of the
absolute color or gray scale source image src/ nage to alower resolution
of the resultant absolute color or gray scaleimage dst | mage. All
combinations of jittering and dithering valuesarevalid. If j i t t er Type is
greater than 0, some random noise is added to all pixels before the
reduction, which eliminates the problem of visible color stepping; see
[Bragg]. The resultant image can be used as input to a color quantization
method for further reduction in the number of colors; see [Thomas] and
[Schumacher].

Table 9-2 lists the valid combinations of the source and resultant image bit
data types for reducing the bit resolution.

Source and Resultant Image Data Types for Reducing the Bit
Resolution

Source Image Resultant Image

32 bit peF.(.:.H.émneI 1 (for gray.i"rﬁ;ge), 8 or 16b|t per cha.r.l.ﬁ.e;lm
16 bit per channel 8 or 1 (for gray image) bit per channel
8 bit per channel 1 bit per channel (for gray image)

Bit reducing usesthe equation dst = src*(((1<<n) -1)/((1<<n) - 1)),
where mis the bit depth of the source and n is the bit depth of the
destination. To reduce agray scale image to a bitonal (1-bit) image, see
the discussion under the thresholding function i pl Thr eshol d in Chapter
10.

Conversion from Bitonal to Gray Scale Images

This section describes the function that performs the conversion of bitonal
images to gray scale.

Color Space Conversion 9

BitonalToGray

Converts a bitonal
image to gray scale.

voi d ipl Bitonal ToG ay(Ilpllmage* srclnage, |pllnage*
dstlmage, int ZeroScal e, int (neScal e);

srcl mage The bitonal source image.

dst | mage The resultant gray scale image. (See the
discussion below.)

Zer oScal e The value that zero pixels of the source image
should have in the resultant image.

neScal e The value given to aresultant pixel if the
corresponding input pixel is 1.

Discussion

Thefunctioni pl Bi t onal ToGray() convertstheinput 1-bit bitonal image
srcl mage to an 8s, 8u, 16s orl6u gray scaleimage dst | nage.

If an input pixel is 0, the corresponding output pixel isset to Zer oScal e.
If an input pixel is 1, the corresponding output pixel isset to meScal e.

Conversion of Absolute Colors to and from Palette Colors

Sincethel pl | rege format supports only absolute color images, this
functionality is provided only within the context of converting an absolute
color image | pl | mage to and from a palette color DIB image. See the
section “Working in the Windows DIB Environmehin Chapter 4.

Intel Image Processing Library Reference Manual

Conversion from Color to Gray Scale

This section describes the function that performs the conversion of
absolute color imagesto gray scale.

ColorToGray

Converts a color image
to gray scale.

voi d ipl Col or ToG ay(!| pl | mage* srclnmage, |pllnage*
dst | mage) ;

srcl mage The source image. See Table 9-3 for a list of valid
source and resultant image combinations.

dst | mage The resultant image. See Table 9-3 for a list of
valid source and resultant image combinations.

Discussion

Thefunctioni pl Col or ToG ay() convertsacolor source image

srcl mage to agray scale resultant image dst I mage.

Table 9-3 lists the valid combinations of source and resultant image bit
data types for conversion from color to gray scale.

Table 9-3 Source and Resultant Image Data Types for Conversion from
Color to Gray Scale

Source Image (data type) Resultant image (data type)

32 bit per channel Gray scale; 1, 8, or 16 bits per pixel

16 bit per channel Gray scale; 1, 8, or 16 bits per pixel
8 bit per channel Gray scale; 1, 8, or 16 bits per pixel

Color Space Conversion

The weights to compute true luminance from linear red, green and blue are
these:

Y =0.212671* R+ 0.715160 * G+ 0.072169 * B.

Conversion from Gray Scale to Color (Pseudo-color)

This section describes the conversion of gray scale image to pseudo color.

GrayToColor

Convertsagray scale to
color image.

void ipl GayToCol or (Ipllnage* srclmage, |pllmage*
dstlmage, float FractR float FractG float FractB);

srcl mage The source image. See Table 9-4 for alist of
valid source and resultant image combinations.

dst | mage The resultant image. See Table 9-4 for a list of
valid source and resultant image combinations.

FractR Fract G Fract B Thered, green and blue intensities for image
reconstruction. See Discussion for alist of valid
Fract R, Fract G, and Fr act Bvalues.

Discussion

Thefunctioni pl G ayToCol or () convertsagray scale source image
srcl mage to aresultant pseudo-color image dst I mage. Table 9-4 lists
the valid combinations of source and resultant image bit data types for
conversion from gray scaleto color.

9-7

Intel Image Processing Library Reference Manual

9-8

Table 9-4

Source and Resultant Image Data Types for Conversion from Gray
Scale to Color

Source Image (data type) Resultant image (data type)
"z .y e Py o S

Gray scale 8 bit 8 bit per channel

Gray scale 16 bit 16 bit per channel

Gray scale 32 bit 32 bit per channel

The equation for chrominance in RGB from luminance Y is:

R=FractR* Y; O<=FractrR<=1
G= Fract G* Y, O<=FractG<=1
B=FractB* Y; O<=FractB<=1.

If Fract R==0 & & Fract G==0&& Fract B==0, then the default values
are used in above equation so that:

R = 0212671 * Y, G = 0715160 * Y, B = 0.072169 * Y.

Conversion of Color Models

This section describes the conversion of red-green-blue (RGB) images to
and from other common color models: hue-saturation-value model (HSV),
hue-lightness-saturation (HLS) model, and a number of others.

Asan alternative way of color models conversion (that works only for
some color models) you can just multiply pixel values by a color twist
matrix; see “ Color Twist Matrice$ section in this chapter.

Note also that conversion of RGB images to and from the cyan-magenta-
yellow (CMY) model can be performed by a simple subtraction. You can
use the functionpl Subt r act S to accomplish this conversion. For
example, with maximum pixel value of 255 for 8-bit unsigned images,
thei pl Subt ract S() function is used as follows:

i pl Subtract S(rgbl mage, cnyl mage, 255, TRUE)

Color Space Conversion 9

This call convertsthe RGB image r gb/ mage to the CMY image
cnyl mage by setting each channel in the CMY image asfollows:

C=255 - R
M= 255 - G
Y =255 - B

The conversion from CMY to RGB is similar: just switch the RGB and
CMY images.

Data ranges in the HLS and HSV Color Models

The ranges of color components in the hue-lightness-saturation (HLS) and
hue-saturation-value (HSV) color models are defined as follows:

hue H isin the range 0 to 360
lightnessL isintherangeOto 1
saturation SisintherangeOto 1
valueVisintherange Oto 1.

In the Image Processing Library, these color components are represented
by the following integer values of hue H' , lightnessL’ , saturation S , and
vaueV :

H' = H/2 for 8-bit unsigned color channels, H' = H otherwise,
L™ = L* MAX_ VAL

S =S MAX_ VAL

V' =V*NAX VAL.

Here

MAX_VAL = 255 for 8-bit unsigned color channels,
MAX_VAL = 65,535 for 16-bit unsigned color channels,
MAX_VAL = 2,147,483,647 for 32-hit signed color channels.

9-9

Intel Image Processing Library Reference Manual

9-10

RGB2HSV

Converts RGB images
to the HSV color model.

voi d i pl RGB2HSV(I pl | mage* rgbl mage, |pl | mage* hsvl nage);

rgbl mage The source RGB image.
hsvi mage The resultant HSV image.
Discussion

The function converts the RGB image r gb/ nage tothe HSV image
hsvI mage. The function checks that the input image is an RGB image.
The channel sequence and color model of the output image are set to HSV.

HSV2RGB

Converts HSV images
to the RGB color model.

voi d i pl HSV2RGB(| pl | mage* hsvl mage, |pl | mage* rgbl nage);

hsvi mage The source HSV image.
rgbl mage The resultant RGB image.
Discussion

The function converts the HSV image hsvI nage to the RGB image
rgbl mage. The function checks that the input image is an HSV image and
that the output image is RGB.

Color Space Conversion

RGB2HLS

Converts RGB images
to the HLS color model.

voi d i pl RGB2HLS(| pl | mage* rgbl mage, |pl | mage* hl sl nmage);

rgbl mage The source RGB image.
hl sl mage Theresultant HLS image.
Discussion

The function converts the RGB image r gb/ mage tothe HLS image
hl sl mage. The function checks that the input image is an RGB image.
The function sets the channel sequence and color model of the output
imageto HLS.

HLS2RGB

Converts HLSimagesto
the RGB color model.

voi d i pl HLS2RGB(| pl | mage* hl sl mage, |pl | mage* rgbl nage);

hl sl mage The source HLS image.
rgbl mage The resultant RGB image.
Discussion

The function convertsthe HLS image h/ s nage to the RGB image
rgbl mage; see [Rogers85]. The function checks that the input imageis an
HL S image and that the output image is RGB.

9-11

Intel Image Processing Library Reference Manual

9-12

RGB2LUV

Converts RGB images
to the LUV color model.

voi d i pl RGB2LUV(I pl | mage* rgbl mage, |pl | mage* [uvl mage);

rgbl mage The source RGB image.
I uvl mage Theresultant LUV image.
Discussion

The function converts the RGB image r gb/ mage tothe LUV image
I uvl mage. The function checks that the input image is an RGB image; it
sets the channel sequence and color model of the output imageto LUV.

LUV2RGB

Converts LUV imagesto
the RGB color model.

voi d i pl LUV2RGB(I pl | mage* [uvl mage, |pllmage* rgbl nage);

I uvl mage The source LUV image.
rgbl mage The resultant RGB image.
Discussion

The function convertsthe LUV image / uvi nage to the RGB image
r gbl mage. The function checks that the input imageisan LUV image and
that the output image is RGB.

Color Space Conversion

RGB2XYZ

Converts RGB images
to the XYZ color model.

voi d i pl RGB2XYZ(I pl | mage* rgbl mage, |pllmage* xyzIl nmage);

rgbl mage The source RGB image.
xyzl mage Theresultant XY Z image.
Discussion

The function converts the RGB image r gb/ mage tothe XY Z image
xyzIl mage according to the following formulas:

X=0.4124-R + 0.3576-G + 0.1805-B

Y =0.2126-R+ 0.7151-G + 0.0721-B

Z=0.0193-R+ 0.1192-G + 0.9505-B.

The function checks that the input image is an RGB image; it sets the
channel sequence and color model of the output imageto XY Z.
Since 0.0193 + 0.1192 + 0.9505 > 1, theZ value might saturate.

XYZ2RGB

Converts XYZ images to
the RGB color model.

voi d i pl XYZ2RGB(| pl | mage* xyzl mage, |pl|mage* rgbl nage);

xyzl mage The source XY Z image.
rgbl mage The resultant RGB image.
Discussion

The function convertsthe XY Z image xyz/ mage tothe RGB image
rgbl mage. The function checks that the input imageisan XY Z image and
that the output image is RGB.

9-13

Intel Image Processing Library Reference Manual

9-14

RGB2YCrCb

Converts RGB images to
the YCrCb color model.

voi d i pl RGB2YCr Co(| pl | mage* rgbl mage, | pl | mage* yccl mage);

rgbl mage The source RGB image.
yccl mage Theresultant Y CrCb image.
Discussion

The function converts the RGB image r gb/ nage tothe Y CrCbimage
yccl mage (viathe YUV model) according to the following formulas:
Y=03-R+06-G+0.1B
U=B-Y Cb=05(U+ 1)
V=R-Y Cr=V/1.6+ 05.
The function checks that the input image is an RGB image; it sets the
channel sequence and color model of the output imageto “YCr”.

YCrCb2RGB

Converts YCrCb images
to the RGB color model.

voi d ipl YCr Ch2RGB(| pl | mage* yccl mage, | pl | mage* rgbl mage) ;

yccl mage The source YCrCb image.
rgbl mage The resultant RGB image.
Discussion

The function converts the YCrCb imagec/ nage to the RGB image
rgbl mage. The function checks that the input image is a YCrCb image
and that the output image is RGB.

Color Space Conversion

RGB2YUV

Converts RGB images
to the YUV color model.

voi d i pl RGB2YUV(I pl | mage* rgbl mage, |pl | mage* yuvl nage);

rgbl mage The source RGB image.
yuvl mage Theresultant YUV image.
Discussion

The function converts the RGB image r gb/ mage tothe YUV image
yuvl mage according to the following formulas:
Y=03-R+06-G+0.1B
U=B-Y
V=R-Y.
The function checks that the input image is an RGB image; it sets the
channel sequence and color model of the output imageto YUV.

YUV2RGB

Converts YUV imagesto
the RGB color model.

voi d ipl YUV2RGB(I pl | mage* yuvl mage, |pl | mage* rgbl nage);

yuvl mage The source YUV image.
rgbl mage The resultant RGB image.
Discussion

The function convertsthe YUV image yuvI nage tothe RGB image
yuvl mage. The function checks that the input imageisan YUV image and
that the output image is RGB.

9-15

Intel Image Processing Library Reference Manual

9-16

YCC2RGB

Converts HLSimagesto
the RGB color model.

voi d i pl YCC2RGB(| pl | mage* YCCI mage, |pl | mage* rgbl nage);

YCCI mage The source Y CC image.
rgbl mage The resultant RGB image.
Discussion

The function convertsthe YCC image YCCl nage to the RGB image

rgbl mage; see [Rogers85]. The function checks that the input imageis an
Y CC image and that the output image is RGB. Both images must be 8-bit
unsigned.

Using Color-Twist Matrices

One of the methods of color model conversion is using a color-twist
matrix. The color-twist matrix is a generalized 4 by 4 matrix [t;;] that
converts the three channels (a, b,) into (d, g, f) according to the
following matrix multiplication by a color-twist matrix (the superscript T
is used to indicate the transpose of the matrix).

[d, e, f, 1] =t11 t12 t13 t147 * [a, b, c, 1] '
t21 t22 t23 t24
t31 t32 t33 t34
0 0 0 t 44
To apply acolor-twist matrix to an image, use the function
i pl Appl yCol or Twi st () . But first call thei pl Cr eat eCol or Twi st ()
and i pl Set Col or Twi st () functionsto create the data structure
| pl Col or Twi st . This data structure contains the color-twist matrix and

allowsyou to store the datainternally in aform that is efficient for
computation.

Color Space Conversion

CreateColorTwist

Creates a color-twist
matrix data structure.

| pl Col or Twi st* i pl CreateCol or Twi st (i nt data[16],

int scalingVval ue);

dat a

scal i ngVval ue

Discussion

An array containing the sixteen values that
constitute the color-twist matrix. The values are
in row-wise order. Color-twist valuesthat arein
the range - 1 to 1 should be scaled up to bein the
range - 2° to 2°- 1. (Simply multiply the floating
point number in the - 1 to 1 range by 2*)

The scaling value: an exponent of a power of 2
that was used to convert to integer values; for
example, if 2* was used to multiply the values,
the scal i ngVval ue is31. Thisvalueis used for
normalization.

Thefunctioni pl Cr eat eCol or Twi st () alocates memory for the data
structure | pl Col or Twi st and creates the color-twist matrix that can
subsequently be used by the function i pl Appl yCol or Twi st () .

Return Value

A pointer tothe | pl Col or Twi st data structure containing the color-twist
matrix in the form suitable for efficient computation by the function
i pl Appl yCol or Twi st () .

9-17

Intel Image Processing Library Reference Manual

9-18

SetColorTwist

Sets a color-twist matrix
data structure.

voi d ipl Set Col or Twi st (I pl Col or Twi st* cTw st, int
data[16], int scalingval ue);

dat a An array containing the sixteen values that
consgtitute the color-twist matrix. The values are
in row-wise order. Color-twist valuesthat arein
the range - 1 to 1 should be scaled up to bein the
range - 2° to 2*. (Simply multiply the floating
point number in the - 1 to 1 range by 2*.)

scal i ngVal ue The scaling value: an exponent of a power of 2
that was used to convert to integer values; for
example, if 2* was used to multiply the values,
the scal i ngVval ue is31. Thisvalueis used for
normalization.

Discussion

Thefunctioni pl Set Col or Twi st () isused to set the vaules of the color-
twist matrix in the data structure | pl Col or Twi st that can subsequently be
used by the function i pl Appl yCol or Twi st () .

Return Value

A pointer tothe | pl Col or Twi st data structure containing the color-twist
matrix in the form suitable for efficient computation by the function
i pl Appl yCol or Twi st () .

Color Space Conversion

ApplyColorTwist

Applies a color-twist
matrix to an image.

voi d i pl Appl yCol or Twi st (I pl | rage* srcl mage,
I pl | mage* dst/lmage, |plColorTwi st* cTw st, int offset);

srcl mage The source image.
dst | mage The resultant image.
cTw st The color-twist matrix data structure that was

prepared by acall to the function
i pl Set Col or Twi st () .

of f set An offset value that will be added to each pixel
channel after multiplication by the color-twist
matrix.

Discussion

The functioni pl Appl yCol or Twi st () applies the color-twist matrix to
each of thefirst three color channelsin the input image to obtain the
resulting data for the three channels.

For example, the matrix below can be used to convert normalized
Phot oYCC to normalized Phot oRGB (both with an opacity channel) when
the channels are in the order Y CC and RGB, respectively:

231 O 231 O

2 X Y O
231 231 O O
o o o 2%

where X =- 416611827 (that is, - 0.194-2"") and
Y =- 1093069176 (that is, - 0.509-2*).

9-19

Intel Image Processing Library Reference Manual

Color-twist matrices may also be used to perform many other color
conversions as well as the following operations:

e Lightening an image

e Color saturation

e Color baance

e R, G, and B color adjustments

e Contrast Adjustment.

DeleteColorTwist

Frees memory used for
a color-twist matrix.

voi d ipl Del et eCol or Twi st (I pl Col or Twi st* cTwi st);

cTw st The color-twist matrix data structure that was
prepared by acall to the function
i pl CreateCol or Twi st () .

Discussion

Thefunctioni pl Del et eCol or Twi st () frees memory used for the color-
twist matrix structure referred to by cTwi st .

9-20

Histogram and Thresholding | |
Functions |

This chapter describes functions that operate on an image on a pixel-by-
pixel basis, in particular, the operations that alter the histogram of the
image. Table 10-1 lists histogram and thresholding functions.

Table 10-1 Histogram and Thresholding Functions

Group Function Name Description
Thresholding i pl Threshol d Performs a simple thresholding of
an image.
Lookup Table ipl ContrastStretch Stretches the contrast of an image
and Histogram using intensity transformation.
i pl Conput eHi sto Computes the intensity histogram
of an image.
i pl H st oEqual i ze Enhances an image by flattening

its intensity histogram.

Thresholding

The threshold operation changes pixel values depending on whether they
areless or greater than the specified ¢ hr eshol d. If an input pixel valueis
lessthan the t hr eshol d, the corresponding output pixel is set to the
minimum presentable value. Otherwise, it is set to the maximum
presentable value.

10-1

Intel Image Processing Library Reference Manual

10-2

Threshold

Performs a simple
thresholding of an
image.

voi d ipl Threshol d(I pl | mage* srclmage, |pllmage* dstl nmage,
int threshold);

srcl mage The source image.
dst | mage The resultant image.
t hreshol d The threshold value to use for each pixel. The

pixel value in the output is set to the maximum
presentable value if it is greater than or equal to
the threshold value (for each channel). Otherwise
the pixel value in the output is set to the
minimum presentable value.

Discussion

Thefunctioni pl Threshol d() thresholds the sourceimage src/ nage
using the value t hr eshol d to create the resultant image dst | mage. The
pixel value in the output is set to the maximum presentable value (for
example, 255 for an 8-bit-per-channel image) if it is greater than or equal
to the threshold value. Otherwise it is set to the minimum presentable
value (for example, O for an 8-bit-per-channel image). Thisis done for
each channel in the input image.

To convert an image to bitonal, you can usei pl Threshol d() function as
shown in Example 10-1.

Histogram and Thresholding Functions

Example 10-1 Conversion to a Bitonal Image

int exanpl el01(void) {
I pl Il mage *inga, *ingb;
const int width = 4, height = 4;

_try {
imga = ipl Creat el mageHeader (
1, 0, I PL_DEPTH 8U, "GRAY", "GRAY",
| PL_DATA ORDER PI XEL, |PL_ORI G N_TL,
| PL_ALI GN_DWORD, wi dth, height, NULL, NULL,
NULL, NULL);
if(NULL == inga) return O;

i mgb = ipl Creat el mageHeader (
1, 0, IPL_DEPTH 1U, "GRAY", "GRAY",
| PL_DATA ORDER _PI XEL, |PL_ORI G N_TL,
| PL_ALI GN_DWORD, wi dth, height, NULL, NULL,
NULL, NULL);
if(NULL == ingb) return O;

/1 Create with filling

i pl All ocatelnage(inmga, 1, 3);

if(NULL == inga->i mageData) return O;
/'l Make a spike

((char*)inga->i nmageData)[7] = (char)7,;

i pl All ocatelnage(imgb, 0, 0);

i f(NULL == ingb->i mageData) return O;

/1 This is inmportant. 4 bits occupy 4 bytes
/1 in the ingb i mage because of |PL_ALI GN DWORD
i pl Threshol d(inga, imgb, 7);

/1 Check if an error occurred

if(iplGetErrStatus() !'= IPL_StsCk) return O;
}
_finally {
i pl Deal | ocate(inga, |PL_I MVAGE HEADER | | PL_I MAGE_DATA);
i pl Deal | ocat e(i ngb, | PL_I MAGE HEADER | | PL_I MAGE_DATA);
}
return PL_StsCk == ipl GetErrStatus();

10-3

Intel Image Processing Library Reference Manual

10-4

Lookup Table (LUT) and Histogram Operations

A LUT can be used to specify an intensity transformation. Given an input
intensity, LUT can be used to look up an output intensity. Usually aLUT
is provided for each channel in the image, although sometimes the same
LUT can be shared by many channels.

The IpILUT Structure

Y ou can set alookup table using the | pl LUT structure. The C language
definition of the | pl LUT structure is as follows:

IpILUT Structure Definition

typedef struct _Ipl LUT {

i nt
int*
int*
int*
i nt

} I pl LUT;

num /* nunmber of keys or val ues */
key;

val ue;

factor;

i nt erpol at eType,;

The key array hasthe length num the val ue and f act or are arrays of the
same length num 1. The i nt er pol at eType can be either

| PL_LUT_LOOKUP or | PL_LUT_I NTER.

Consider the following example of num = 4:

key

k1l
k2
k3
k4

val ue factor
vl f1
v2 f2
v3 f3

Histogram and Thresholding Functions

If interpol at eType isLOOKUP, then any input intensity D in the range
k1 < D < k2 will resultinthevaluev1, intherangek2 < D < k3 will
resultinthevaluev2 and so on. If i nt er pol at eType is| NTER, then an
intensity Dintherangekl < D < k2 will result in the linearly
interpolated value

vl + [(v2 - v1)/(k2 - k1)] * (D - k1)

The val ue (v2-v1)/ (k2-k1) ispre-computed and stored in the array
factor inthel pl LUT data structure.

The data structure described above can be used to specify a piece-wise
linear transformation that isideal for the purpose of contrast stretching.

The histogram is a data structure that shows how the intensities in the
image are distributed. The same data structure | pl LUT isused for a
histogram except that i nt er pol at eType isaways| PL_LUT_LOOKUP and
fact or isaNULL pointer for a histogram. However, unlike the LUT, the
val ue array represents counts of pixelsfalling in the specified rangesin
the key array.

The sections that follow describe the functions that use the above data
structure.

10-5

Intel Image Processing Library Reference Manual

10-6

ConstrastStretch
Sretches the contrast of

an image using an

intensity transformation.

void ipl ContrastStretch(lpllnage* srclnmage,
| pl | mage* dst/lmage, |plLUT** [ut);

srcl mage The source image.
dst | mage The resultant image.
| ut An array of pointersto LUTSs, one pointer for

each channel. Each lookup table should have the
key, val ue and f act or arraysfully initialized
(see“Thel pl LUT Structuré). One or more
channels may share the same LUT. Specifies an
intensity transformation.

Discussion

The functioni pl Cont rast Stretch() stretches the contrast in a color
source imager c/ mage by applying intensity transformations specified
by LUTs in/ ut to produce an output imaget / mage. Fully specified
LUTSs should be provided to this function.

Histogram and Thresholding Functions

ComputeHisto

Computes the intensity
histogram of an image.

voi d i pl Conput eHi sto(I pl | nage* srclmage, |plLUT** [ut);

srcl mage The source image for which the histogram will
be computed.
| ut An array of pointersto LUTSs, one pointer for

each channel. Each lookup table should have the
key array fully initialized. The val ue array will
befilled by this function. (For the key and

val ue arrays, see “Thel pl LUT Structuré

above.) The same LUT can be shared by one or
more channels.

Discussion

The functioni pl Conput eHi st o() computes the intensity histogram of an
image. The histograms (one per channel in the image) are stored in the
array/ ut containing all the LUTs. Theey array in each LUT should be
initialized before calling this function. Thea/ ue array containing the
histogram information will be filled in by this function. (For they and

val ue arrays, seeThel pl LUT Structuré above.)

10-7

Intel Image Processing Library Reference Manual

10-8

HistoEqualize

Enhances an image by
flattening its intensity
histogram.

voi d ipl H stoEqualize(lpllmage* srclnage,

| PLI mage* dst I nage,

srcl mage

dst | mage

| ut

Discussion

I pl LUT** [ut);

The source image for which the histogram will
be computed.

The resultant image after equalizing.

The histogram of the image is represented as an
array of pointersto LUTSs, one pointer for each
channel. Each lookup table should have the key
and val ve arraysfully initidized. (For the key
and val ue arrays, see “Thel pl LUT Structuré
above.) These LUTs will contain flattened
histograms after this function is executed. In
other words, the call ofpl Hi st oEqual i ze() is
destructive with respect to the LUTs.

The functioni pl Hi st oEqual i ze() enhances the source image

srcl mage by flattening its histogram represented/y and places the
enhanced image in the output image / nage. After execution/ ut

points to the flattened histogram of the output image; see Example 10-2.

Histogram and Thresholding Functions

Example 10-2 Computing and Equalizing the Image Histogram

int exanpl el02(void) {
I pl I mage *inyga;
const int width = 4, height = 4, range = 256;
I pl LUT lut = { range+1, NULL, NULL, NULL, IPL_LUT_LOOKUP };
I pl LUT* plut = & ut;

_try {
int i;
lut.key = malloc(sizeof(int)*(range+l));
lut.value = malloc(sizeof(int)*range);
imga = ipl Creat el mageHeader (
1, 0, I PL_DEPTH 8U, "GRAY", "GRAY",
| PL_DATA_ORDER_PI XEL, |PL_ORI G N_TL,
| PL_ALI GN_DWORD, wi dth, height, NULL, NULL,
NULL, NULL);
if(NULL == inga) return O;

/'l Create with filling

ipl All ocatel mage(inmga, 1, 3);

if(NULL == inga->i mageData) return O;

/'l Make the two | evel data

for(i=0; i<8; i++) ((char*)inga->imageData)[i] = (char)7,;
/1 Initialize the histogramlevels

for(i=0; i<=range; i++) lut.key[i] =1i;

/'l Conpute histogram

i pl Comput eHi sto(inga, &plut);

/'l Equalize histogram = rescal e range of inmge data
i pl H stoEqual i ze(inga, inga, &plut);

/1l Check if an error occurred

if(iplGetErrStatus() !'= IPL_StsCk) return O;
}
_finally {
i pl Deal | ocate(inga, |PL_I MAGE HEADER | | PL_I MAGE_DATA);
if(lut.key) free(lut.key);
if(lut.value) free(lut.value);
}
return PL_StsCk == ipl GetErrStatus();

10-9

This pageisintentionally left blank. Needed for two-sided printing.

This pageisintentionally left blank. Needed for two-sided printing.

Geometric Transforms _

This chapter describes the functions that perform geometric transforms
to resize the image, change the image orientation, or warp the image.
Table 11-1 lists image geometric transform functions.

Table 11-1 Image Geometric Transform Functions

Group Function Name Description
"Eesizing | zOon}. S~ é.;r.).énds - |mage
i pl Deci mat e Decimates or shrinks an image.
i pl Resi ze Resizes an image.
....(;hanging e ror T—— |mage
Orientation i | Rot at e Rotates an image.

i pl Get Rot at eShi ft Computes the shift for ipIRotate() ,
given the rotation center and angle.

Warping i pl Shear Shears an image.
i pl War pAf fi ne Performs affine transforms with the

specified coefficients.

i pl Wr pBi | i near Performs a bilinear transform with
the specified coefficients.

i pl War pBi | i nearQ Performs a bilinear transform with
the specified reference quadrangle.

i pl War pPer spective Performs a perspective transform
with the specified coefficients.

i pl War pPer spectiveQ Performs a perspective transform
with the specified reference
quadrangle.

Continued &=

11-1

Intel Image Processing Library Reference Manual

Table 11-1 Image Geometric Transform Functions (continued)

Group Function Name Description
Warping i pl Get Affi neBound Compute the bounding
support i pl GetBilinear Bound rectangle for the rectangular
i pl Get Per specti veBound ROI transformed by the
warping functions.
i pl Get Af fi neQuad Compute coordinates of the
i pl Get Bi |l i near Quad quadrangle to which the ROI
i pl Get Per spectiveQuad is mapped by the warping
functions.
i pl Get AffineTransform Compute the coefficients of
i pl Get Bi | i near Transf orm transforms performed by the

pl Get Per spectiveTransform warping functions.

Internally, all geometric transformation functions handle ROIs with the

following sequence of operations:

» transform the rectangular ROI of the source image to a quadranglein
the destination image

« find the intersection of this quadrangle and the rectangular ROI of the
destination image

« update the destination image in the intersection area, taking into
account mask images (if any).

The source and destination images must be different; that is, in-place

operations are not supported. The coordinates in the source and destination

images must have the same origin.

Changing the Image Size

This section describes the functions that expand or shrink an image. They
perform image resampling by using various kinds of interpolation: nearest
neighbor, linear, or cubic convolution.

11-2

Geometric Transforms

Zoom

Zooms or expands an
image.

voi d ipl Zoon(I pl | mage* srclmage, |pllmage* dstl mage,
int xDst, int xSrc, int yDst, int ySrc, int interpolate);

srcl mage The source image.
dst | mage The resultant image.

xDst, xSrc, yDst, ySrc Positive integers specifying the fractions
xDst/xSrczland yDst/ySrc 21- thefactors
by which the x and y dimensions of the image’s
ROI are changed. For example, setting
xDst =2,xSrc =1,yDst =2,ySrc=1
doubles the image size in each dimension to
increase the image area by a factor of four.

i nterpol ate The type of interpolation to perform for
resampling. Can be one of the following:
I PL_I NTER_NN Nearest neighbor.
| PL_I NTER_LI NEAR Linear interpolation.
| PL_I NTER_CUBI C Cubic convolution.

Discussion

The functioni pl Zoon() zooms or expands the source image/ nage
by xDst / xSr ¢ in thex direction and/Dst/ ySrc in they direction. The
interpolation specified bynt er pol at e is used for resampling the input
image.

11-3

Intel Image Processing Library Reference Manual

11-4

Decimate
Decimates or shrinks an

image.

voi d ipl Deci mate(l pl |l mage* srclnage, |pllnmge* dstl nmage,
int xDst, int xSrc, int yDst, int ySrc, int interpolate);

srcl mage The source image.
dst | mage The resultant image.

xDst, xSrc, yDst, ySrc Positive integers specifying the fractions
xDst/xSrc<landyDst/ySrc <1- thefactors
by which the x and y dimensions of the image’s
ROI are changed. For example, setting
xDst =1,xSrc=2,yDst =1,ySrc =2
decreases the image size in each dimension by
half.

i nterpol ate The type of interpolation to perform for
resampling. Can be one of the following:

I PL_I NTER_NN Nearest neighbor.

| PL_I NTER_LI NEAR Linear interpolation.
| PL_I NTER_CUBI C Cubic convolution.

| PL_I NTER_SUPER Super-sampling.

Discussion

The functioni pl Deci mat e() decimates or shrinks the source image
srcl mage by xDst/xSrc in thex direction and/Dst/ySrc in they
direction. The interpolation specified byt er pol at e is used for
resampling the input image.

Geometric Transforms

Resize
Resizes an image.

voi d ipl Resize(lpllnmge* srclnage, |pllnmge* dstl nmage,
int xDst, int xSrc, int yDst, int ySrc, int interpolate);

srcl mage The source image.
dst | mage The resultant image.

xDst, xSrc, yDst, ySrc Positive integers specifying the fractions
xDst/xSrc and yDst/ySrc - thefactors by
which the x and y dimensions of the image’s ROI
are changed. For example, setting
xDst =1,xSrc=2,yDst =2,ySrc =1
halves thex and doubles thg dimension.

i nterpol ate The type of interpolation to perform for
resampling. Can be one of the following:

I PL_I NTER_NN Nearest neighbor.
| PL_I NTER_LI NEAR Linear interpolation.
| PL_I NTER_CUBI C Cubic convolution.

| PL_I NTER_SUPER Super-sampling (can be
used only foxDst < xSrc, yDst < ySrc).

Discussion

The functioni pl Resi ze() resizes the source imagec/ mage by

xDst/ xSrc in thex direction and/Dst/ySrc in they direction.

The function differs from pl Zoomandi pl Deci mat e in that it can

increase one dimension of an image while decreasing the other dimension.

The interpolation specified bynt er pol at e is used for resampling the
input image.

11-5

Intel Image Processing Library Reference Manual

Changing the Image Orientation

The functions described in this section change the image orientation by
rotating or mirroring the source image. Rotation involves image sampling
by using various kinds of interpolation: nearest neighbor, linear, or cubic
convolution. Mirroring is performed by flipping the image axisin
horizontal or vertical direction.

Rotate
Rotates an image.

voi d ipl Rotate(lpllnmge* srclnage, |pllnmage* dstlnmage,

doubl e angl e,
i nterpol ate);

srcl mage
dst | mage

angl e

xShift, yShift

i nterpol ate

11-6

doubl e xShift, double yShift, int

The source image.
The resultant image.

The angle (in degrees) to rotate the image.
The image is rotated around the corner with
coordinates (0,0).

The shifts along the x- and y-axesto be
performed after the rotation.

The type of interpolation to perform for
resampling. The following are currently
supported:

| PL_I NTER_NN Nearest neighbor.
| PL_I NTER_LI NEAR Linear interpolation.

| PL_I NTER _CUBI C Cubic convolution.

Geometric Transforms

Discussion

Thefunctioni pl Rot at e() rotatesthe sourceimage src/ mage by angl e
degrees around the origin (0,0) and shiftsit by xShi ft and yShi ft aong
the x- and y-axis, respectively. The interpolation specified by

i nt er pol at e is used for resampling the input image.

If you need to rotate the image around an arbitrary center (xCent er,
yCent er) rather than the origin (0,0), you can compute xShi ft and
yShi ft using the functioni pl Get Rot at eshi ft and then call

i pl Rotate() .

GetRotateShift

Computes shifts for ipl Rotate, given
the rotation center and angle.

voi d i pl Get Rot at eShi ft (doubl e xCenter, double yCenter,
doubl e angl e, double* xShift, double* yShift);

xCenter, yCenter Coordinates of the rotation center for which you
wish to compute the shifts.

angl e The angle (in degrees) to rotate the image around
the point with coordinates (xCent er, yCent er).

xShift, yShift Output parameters:. the shifts along the x- and y-
axesto be passed toi pl Rot at e() inorder to
achieve rotation around the specified center
(xCent er, yCent er) by the specified angl! e.

Discussion

Usethefunctioni pl Get Rot at eShi ft () if you wish to rotate an image
around an arbitrary center (xCent er, yCent er) rather than the origin
(0,0). Just pass the rotation center (xCent er, yCent er) and the angle of

11-7

Intel Image Processing Library Reference Manual

rotationtoi pl Get Rot at eShi f t () , and the function will recompute the

shiftsxShi ft, yShift.

Cdlingi pl Rot at e() withthese xshi ft and yShi ft isequivalent to
rotating the image around the center (xCent er, yCent er).

Example 11-1 Rotating an Image

int exanpl elll(void) {
I pl l mage *inga, *ingb;
const int width = 5, height = 5;
_try {
int i;
doubl e xshi ft=0, yshift=0;
imga = ipl Creat el mageHeader (
1, 0, |PL_DEPTH 8U, "GRAY", "GRAY",
| PL_DATA ORDER PI XEL, |PL_ORI G N_TL,
| PL_ALI GN_ DWORD, wi dth, height, NULL, NULL,
NULL, NULL);
if(NULL == inga) return O;
i mgb = i pl Creat el mageHeader (
1, 0, I|PL_DEPTH 8U, "GRAY", "GRAY",
| PL_DATA ORDER PI XEL, |PL_ORI G N_TL,
| PL_ALI GN_ DWORD, wi dth, height, NULL, NULL,

NULL, NULL);
if(NULL == ingb) return O;
/1 Create with filling
ipl Al'l ocatel mage(inmga, 1, 0);
if(NULL == inga->i mageData) return O;
/'l Make horizontal |ine

for(i=0; i<width; i++)
(i nmga->i mageData + 2*inga->w dthStep)[i] =

(uchar) 7;
i pl Al'l ocatel mage(imgb, 0, 0);
if(NULL == ingb->i mageData) return O;

continued

11-8

Geometric Transforms

Example 11-1 Rotating an Image (continued)

}

/1l Rotate by 45 degrees around point (2, 2)
i pl Get RotateShift(2.0,2.0,45.0, &shift, &yshift);
i pl Rotate(inga, ingb, 45.0, xshift, yshift,
I PL_I NTER_LI NEAR) ;
/1 Check if an error occurred
if(iplGetErrStatus() !'= IPL_StsCk) return O;

__finally {

}

i pl Deal | ocat e(i nga, | PL_I MAGE_HEADER| | PL_I MAGE_DATA) ;
i pl Deal | ocat e(i ngb, | PL_I MAGE_HEADER| | PL_I| MAGE_DATA) ;

return | PL_StsOk == ipl GetErrStatus();

11-9

Intel Image Processing Library Reference Manual

11-10

Mirror

Mirrors an image about
a horizontal or vertical
axis.

void iplMrror(lpllmge* srclnage, |pllnmge* dstlnmage,

int flipAxis);
srcl mage The source image.
dst | mage The resultant image.
flipAxis Specifies the axis to mirror the image.
Use the following values to specify the axes:
0 for the horizontal axis,
1 for the vertical axis,
- 1 for both horizontal and vertical axes.
Discussion

Thefunctioni pl M rror () mirrorsor flips the source image src/ mage
about a horizontal or vertical axis or both.

Geometric Transforms 1 1

Warping

This section describes shearing and warping functions of the Image
Processing Library. These functions have been added in release 2.0.

They perform the following operations:

» affinewarping (the functions i pl War pAf fi ne andi pl Shear)
 bilinear warping (i p! War pBi | i near , i pl \ar pBi | i near Q)

» perspective warping (i pl War pPer specti ve, i pl War pPer spect i veQ).

Affine warping operations are more complex and more general than
resizing or rotation. A single call toi pl War pAf fine() can performa
rotation, resizing, and mirroring. (This can require some matrix math on
the part of the user to calculate the transform coefficients.)

Bilinear and per spective warping operations can be viewed as further
generalizations of affine warping. They give you even more degrees of
freedom in transforming the image. For example, an affine transformation
always maps parallel linesto parallel lines, while bilinear and perspective
transformations might not preserve parallelism; a bilinear transformation
might even map straight lines to curves.

Unlike rotation or zooming, the warping functions do not necessarily map
the rectangular ROI of the source image to arectangle in the destination
image. Affine warping functions map the rectangular ROI to a
parallelogram; bilinear and perspective warping functions map the ROI to
agenera quadrangle.

To help you cope with the complex behavior of warping transformations,
the library includes a number of auxiliary functions that compute the
following warping parameters:

« coordinates of the four points to which the ROI’s vertices are mapped

« the bounding rectangle for the transformed ROI

» the transformation coefficients.

These auxiliary functions are described immediately after the function that
performs the respective warping operation.

11-11

Intel Image Processing Library Reference Manual

11-12

Performs a shear of
the source image.

voi d ipl Shear (I pl I mage* srclmage, |pllmage* dstl nage,
doubl e xShear, double yShear, double xShift, double
yShift, int interpolate);

srcl mage The source image.

dst | mage The resultant image.

xShear, yShear The shear coefficients.

xShift, yShift Additional shift values for the x and y directions.
i nterpol ate The type of interpolation to perform for

resampling. Can be one of the following:
| PL_I NTER_NN Nearest neighbor.
| PL_I NTER_LI NEAR Linear interpolation.

| PL_I NTER_CUBI C Cubic convolution.

Discussion

Thefunctioni pl shear () performs ashear of the source image according
to the following formulas:

X =X+ xShear-y + xShi ft
Yy =Y+ yShear X+ yShift

where x and y denote the original pixel coordinates; X' andy denotethe
pixel coordinates in the sheared image. This shear transform is a special
case of affine transform performed by i pl War pAf f i ne (see below).

The interpolation specified by i nt er pol at e is used for resampling the
input image.

Geometric Transforms

WarpAffine

Warps an image by an
affine transform.

voi d i pl War pAffine(lpllmge* srclmage, |pllmge*

dst I mage, const double coeffs[2][3], int interpolate);
srcl mage The source image.

dst | mage The resultant image.

coeffs The affine transform coefficients.

i nterpol ate The type of interpolation to perform for

resampling. Can be one of the following:
I PL_I NTER_NN Nearest neighbor.
| PL_I NTER LI NEAR Linear interpolation.

| PL_I NTER_CUBI C Cubic convolution.

Discussion

Thefunction i pl Var pAf fi ne() warps the source image by an affine
transformation according to the following formulas:

X =coeffs[0][0] X+ coeffs[0][1] -y + coeffs[0][2]
Y =coeffs[1][0] X+ coeffs[1][1] -y + coeffs[1][2]

where x and y denote the original pixel coordinates; X' andy denotethe
pixel coordinatesin the transformed image.

The interpolation specified by i nt er pol at e is used for resampling the
input image.

To compute the affine transform parameters, use the functions

i pl Get Af fineBound() ,i pl Get AffineQuad() and

i pl Get Af fineTransforn() . Thesefunctions are described in the
sections that follow.

11-13

1 1 Intel Image Processing Library Reference Manual

11-14

GetAffineBound

Computes the bounding
rectangle for ROI transformed
by iplWar pAffine.

voi d ipl Get AffineBound(!pllmage* image, const double
coeffs[2][3], double rect[2][2]);

i mge Theimageto be passed to i pl Var pAf fine() .
coeffs Thei pl Var pAf fine() transform coefficients.
rect Output array: the coordinates of vertices of the

rectangle bounding the figure to which
i pl Var pAf fine() mapsinage's ROI.

Discussion

The functioni pl Get Af fi neBound() computes the coordinates of vertices
of the smallest possible rectangle with horizontal and vertical sides that
bounds the figure to whichpl War pAf fi ne() mapsi nage’'s ROI.

GetAffineQuad

Computes the quadrangle to
which the image ROI would be
mapped by iplWar pAffine.

voi d ipl Get AffineQuad(l pllmage* inage, const double
coeffs[2][3], double quad 4][2]);

i mge The image to be passeditol Var pAf fine() .

coeffs The affine transform coefficients.

Geometric Transforms

11

quad Output array: coordinates of the quadrangle to
which the i mage’s ROI would be mapped by
i pl Var pAf fine() .

Discussion

The functioni pl Get Af fi neQuad() computes coordinates of the
guadrangle to which themage’s ROl would be mapped by
i pl Var pAf fine() with the transform coefficientsoef f s.

GetAffineTransform

Computes the ipl War pAffine
coefficients, given the ROI-
guadrangle pair.

voi d ipl Get AffineTransforn(lpllnmge* inmage, double
coeffs[2][3], const double quad[4][2]);

i mge The image to be passeditol Var pAf fine() .
coeffs Output array: the affine transform coefficients.
quad Coordinates of the 4 points to which theage’s

ROI vertices would be mapped by
i pl Var pAf fine() .

Discussion

The functioni pl Get Af fi neTransforn() computes the coefficients of
i pl Var pAffine() transform, given the vertices of the quadrangle to
which thei mage’s ROl would be mapped bypl War pAf fi ne() with
these coefficients.

11-15

Intel Image Processing Library Reference Manual

WarpBilinear
WarpBilinearQ

Warps an image by a
bilinear transform.

voi d ipl WarpBilinear(lpllnage* srclmage, |pllmge*
dst I mage, const double coeffs[2][4], int warpFlag, int
i nterpol ate);

voi d iplWarpBilinearQ | pllmage* srclnage, |pllnage*
dst I mage, const double quad[4][2], int warpFlag, int
i nterpol ate);

srcl mage The source image.

dst | mage The resultant image.

coeffs Array with bilinear transform coefficients.

war pFl ag A flag: either | PL_R TO Q (ROI to quadrangle)

or | PL_Q TO R (quadrangle to ROI).
See Discussion.

i nterpol ate The type of interpolation to perform for
resampling. Can be one of the following:

I PL_I NTER_NN Nearest neighbor.
| PL_I NTER LI NEAR Linear interpolation.
| PL_I NTER_CUBI C Cubic convolution.

quad Array of coordinates of the reference quadrangle
vertices. If war pFl agisl PL_R TO Q, the
rectangular ROI of the source image is mapped
to the reference quadrangle.
If war pFl agis| PL_Q TO R, the source
guadrangle is mapped to the rectangular ROI of
the destination image.

11-16

Geometric Transforms

Discussion

Thefunctionsi pl War pBi | i near () andi pl War pBi | i near () warp the
source image by a bilinear transformation according to the following
formulas:

X' = CoXy + Cy' X+ Cppry + Cg

y = CioXy +C; X+ Cp,y +Cp
where x and y denote the original pixel coordinates; X' andy denotethe
pixel coordinatesin the transformed image.

Thetwo functions differ in their third argument: i pl Var pBi | i near ()
uses a 2-by-4 input array of transform coefficients ¢ = coef f[m[[N[,
whereas i pl War pBi | i near () computes the coefficients internally from
theinput array quad containing coordinates of the reference quadrangle.

If war pFl ag is| PL_R_TO_Q, the functions transform the rectangular ROI
of the source image into the reference quadrangle of the resultant image.
If war pFl ag is| PL_Q TO R, the functions transform the source
guadrangle into the rectangular ROI of the resultant image.

The interpolation specified by i nt er pol at e is used for resampling the
input image.

To compute the bilinear transform parameters, use the auxiliary functions:
i pl Get Bi | i near Bound() , i pl Get Bi | i near Quad() and

i pl Get Bi |'i near Transf or n() . These functions are described in the
sections that follow.

11-17

1 1 Intel Image Processing Library Reference Manual

11-18

GetBilinearBound

Computes the bounding
rectangle for ROI transformed
by iplWarpBilinear.

voi d ipl GetBilinearBound(Ilpllmage* inage, const double
coeffs[2][4], double rect[2][2]);

i mge Theimageto be passed to i pl Var pBi | i near () .
coeffs The bilinear transform coefficients.
rect Output array: the coordinates of vertices of the

rectangle bounding the figure to which
i pl Var pBi | i near () mapsi nage’'s ROI.

Discussion

The functioni pl Get Bi | i near Bound() computes the coordinates of
vertices of the smallest possible rectangle with horizontal and vertical sides
that bounds the figure to whic¢kpl War pBi | i near () mapsi nage’'s ROI.

GetBilinearQuad

Computes the quadrangle to
which the image ROI would be
mapped by iplWarpBilinear.

voi d ipl GetBilinearQad(lpllnage* /nmage, const double
coeffs[2][4], double quad 4][2]);

i mge The image to be passeditol War pBi | i near () .

coeffs The bilinear transform coefficients.

Geometric Transforms 1 1

quad Output array: coordinates of the quadrangle to
which the i mage’s ROI would be mapped by
i pl Var pBi | i near () .

Discussion

The functioni pl Get Bi | i near Quad() computes coordinates of the
guadrangle to which thenage’s ROl would be mapped by
i pl Var pBi | i near () with the transform coefficientsoef f s.

GetBilinearTransform

Computes the iplWarpBilinear
coefficients, given the ROI-
guadrangle pair.

voi d ipl GetBilinearTransforn(lpllnage* /inmage, double
coeffs[2][4], const double quad[4][2]);

i mge The image to be passeditol Var pBi | i near () .
coeffs Output array: the bilinear transform coefficients.
quad Coordinates of the 4 points to which theage’s

ROI vertices would be mapped by
i pl Var pBi | i near () .

Discussion

The functioni pl Get Bi | i near Transforn() computes the

i pl War pBi | i near () transform coefficients, given the vertices of the
guadrangle to which thenage’s ROl would be mapped by

i pl War pBi | i near () with these coefficients.

11-19

Intel Image Processing Library Reference Manual

WarpPerspective
WarpPerspectiveQ

Warps an image by a
per spective transform.

voi d i pl War pPer spective(lpl | mage* srclmage, |pllmge*
dst I mage, const double coeffs[3][3], int warpFlag, int
i nterpol ate);

voi d i pl War pPerspectiveQ | pl |l mage* srclnmage, |pllnage*
dst I mage, const double quad[4][2], int warpFlag, int
i nterpol ate);

srcl mage The source image.

dst | mage The resultant image.

coeffs Array with perspective transform coefficients.
war pFl ag A flag: either | PL_R TO Q (ROI to quadrangle)

or | PL_Q TO R (quadrangle to ROI).
See Discussion.

i nterpol ate The type of interpolation to perform for
resampling. Can be one of the following:

I PL_I NTER_NN Nearest neighbor.
| PL_I NTER LI NEAR Linear interpolation.
| PL_I NTER_CUBI C Cubic convolution.

quad Array of coordinates of the reference quadrangle
vertices. If war pFl agisl PL_R TO Q, the
rectangular ROI of the source image is mapped
to the reference quadrangle.
If war pFl agis| PL_Q TO R, the source
guadrangle is mapped to the rectangular ROI of
the destination image.

11-20

Geometric Transforms

Discussion

The functionsi pl War pPer spective() andi pl War pPer specti veQ()
warp the source image by a perspective transformation according to the
following formulas:

X = (Coo'X TCuYt Coz)/(czo'x tCyyt sz)
Y = (Clo'X tCyyt Clz)/(czo'x tCyyt sz)

where x and y denote the original pixel coordinates; X' andy denotethe
pixel coordinatesin the transformed image.

Thetwo functions differ in their third argument: i pl Var pPer specti ve()
uses a 3-by-3 input array of transform coefficients ¢ = coef f[m[[N[,
whereas i pl War pPer spect i veQ) computes the coefficientsinternally
from the input array quad containing coordinates of the reference
quadrangle.

If war pFl ag is| PL_R_TO_Q, the functions transform the rectangular ROI
of the source image into the reference quadrangle of the resultant image.
If war pFl ag is| PL_Q TO R, the functions transform the source
guadrangle into the rectangular ROI of the resultant image.

The interpolation specified by i nt er pol at e is used for resampling the
input image.

To compute the perspective transform parameters, use these auxiliary
functions: i pl Get Per spect i veBound() , i pl Get Per spect i veQuad()
andi pl Get PerspectiveTransforn() . They are described in the
sections that follow.

11-21

1 1 Intel Image Processing Library Reference Manual

11-22

GetPerspectiveBound

Computes the bounding
rectangle for ROI transformed
by iplWar pPer spective.

voi d i pl Get PerspectiveBound(I pl | mage* inmage, const double
coeffs[3][3], double rect[2][2]);

i mge The image to be passed to
i pl ar pPer spective() .
coeffs The perspective transform coefficients.
rect Output array: the coordinates of vertices of the

rectangle bounding the figure to which
i pl War pPer spective() mapsi mage’s ROI.

Discussion

The functioni pl Get Per spect i veBound() computes the coordinates of
vertices of the smallest possible rectangle with horizontal and vertical
sides that bounds the figure to whiali War pPer specti ve() maps

i mage's ROI.

GetPerspectiveQuad

Computes the quadrangle to
which the ROI is mapped by
i pl War pPer spective.

voi d i pl Get PerspectiveQuad(Ipllmage* inage, const double
coeffs[3][3], double quad[4][2]);

i mge The image to be passed to
i pl ar pPer spective() .

Geometric Transforms

coeffs The perspective transform coefficients.

quad Output array: coordinates of the quadrangle to
which the i mage’s ROI would be mapped by
i pl ar pPer spective() .

Discussion

The functioni pl Get Per spect i veQuad() computes coordinates of the
guadrangle to which themage’s ROl would be mapped by
i pl War pPer spect i ve() with the transform coefficientsoef f s.

GetPerspectiveTransform
Computes the coefficients of

i pl War pPer spective, given the
ROI-quadrangle pair.

voi d ipl Get PerspectiveTransforn(lpllnage* inmage, double
coeffs[3][3], const double quad[4][2]);

i mge The image to be passed to

i pl ar pPer spective() .
coeffs Output array: perspective transform coefficients.
quad Coordinates of the 4 points to which theage’s

ROI vertices would be mapped by
i pl ar pPer spective() .

Discussion

The functioni pl Get Per specti veTransfornm() computes the

i pl ar pPer spective() transform coefficients, given the vertices of the
guadrangle to which thenage’s ROl would be mapped by

i pl War pBi | i near () with these coefficients.

11-23

This pageisintentionally left blank. Needed for two-sided printing.

This pageisintentionally left blank. Needed for two-sided printing.

|mage Satistics Functions

Table 12-1

This chapter describes Intel Image Processing Library functions that alow
you to compute the following statistics parameters of an image:

+ theC, L, and L, norms of theimage pixel vaues

» gpatial moments of order 0to 3
» central moments of order O to 3.

Table 12-1 listsimage statistics functions.

Image Statistics Functions

Group Function Name
Norms iplNorm
Moments i pl Monent s

pl Get Cent r al Monent
pl Get Spat i al Monent

pl Get Nor mal i zedCent r al Monent

pl Get Nor nal i zedSpat i al Monent

pl Cent r al Monment
pl Spat i al Monent

pl Nor mal i zedCent r al Monent
pl Nor mal i zedSpat i al Monent

Description

Computes the C, L,, or
L, norm of pixel values.

Computes all image
moments of order O to 3.

Return image moments
previously computed by
i pl Monment s() .

Return normalized image
moments previously
computed by

i pl Monment s() .

Compute an image
moment of the specified
order.

Compute a normalized
image moment of the
specified order.

12-1

12

Intel Image Processing Library Reference Manual

Image Norms

Thei pl Nor n() function described in this section allows you to compute
the following norms of the image pixel values:

L, norm (the sum of absolute pixel values)

* L, norm (the square root of the sum of squared pixel values)

e Cnorm (the largest absolute pixel value).

This function also helps you compute the norm of differencesin pixel

values of two input images as well as the relative error for two input
images.

Computes the norm of pixel
values or of differencesin pixel
values of two images.

12-2

doubl e i pl Norn(I pl I mage* srclmageA, |pllnmge* srclmageB,
i nt nornilype) ;

srcl mageA The first source image.
srcl mageB The second source image.
nor nType Specifiesthe norm type. Canbe 1 PL_C, I PL_L1, or

| PL_L2; if the srcl mageB pointer isnot NULL, the
nor nilype argument can also be | PL_RELATI VEC,
| PL_RELATI VEL1, or | PL_RELATI VEL2.

Discussion

You can usethei pl Nor m() function to compute the following norms of
pixel values:

Image Statistics Functions

(1) the norm of src/ mageA pixel values, ||a]|
(2) the norm of differences of the source images’ pixel valljgs, b||
(3) the relative errofa- bj| /||b|| (see formulas below).

Leta={a}andb = {b} be vectors containing pixel values of c/ nageA
andsr cl mageB, respectively (all channels are used except alpha channel).

(2) If the srcl mageB pointer isNULL, the function returns the norm of
srcl mageA pixel values:

llall., = 2. |al for nor nirype =1 PL_L1
llall., = (Zk |5'k|2)ﬂ2 for nor nifype =1 PL_L2
lla]lc = max |ay| for nor nirype =1 PL_C.

(2) If the srcl mageB pointer is notNULL, the function returns the norm of
differences ofsr c/ nageA andsr ¢/ mageB pixel values:

lla- bl = 2, la.- b for nor mrype =1 PL_L1
lla- b, = (Zk la - bk|2)ﬂ2 for nor nirype =1 PL_L2
|la- bj|. = max |ak - bkl for nor nifype =1 PL_C.

(3) If nor nirype is| PL_RELATI VEC, | PL_RELATI VEL1, Or

| PL_RELATI VEL2, thesr ¢/ mageB pointer must not bsULL.

The function first computes the norm of differences, as defined in (2).
Then this norm is divided by the normlpfand the function returns the
relative errorjja- b| /||o]|.

Return Value

The computed norm or relative error in double floating-point format.

12-3

Intel Image Processing Library Reference Manual

Example 12-1 Computing the Norm of Pixel Values

int exanpl e51(void) {
I pl l mage *inga, *ingb;
const int width = 4;
const int height = 4;
doubl e norm
_try {
i mga = ipl Creat el mageHeader (
1, 0, IPL_DEPTH 8U, "GRAY", "GRAY",
| PL_DATA ORDER PI XEL, |PL_ORIG N_TL,
| PL_ALI GN_QAORD, hei ght, width, NULL, NULL,
NULL, NULL);
if(NULL == inga) return O;
i mgb = i pl Creat el mageHeader (
1, 0, I PL_DEPTH 8U, "GRAY", "GRAY",
| PL_DATA ORDER PI XEL, |PL_ORIG N_TL,
| PL_ALI GN_QAORD, hei ght, width, NULL, NULL,

NULL, NULL);
if(NULL == ingb) return O;
i pl All ocatel mage(inga, 1, 127);
i f(NULL == inga->inageData) return O;
i pl All ocatelmage(ingb, 1, 1);
i f(NULL == ingb->inageData) return O;

norm = ipl Norn(inga, imgb, |PL_RELATIVEC);
/1 Check if an error occurred
if(iplCGetErrStatus() !'= IPL_StsCk) return O;

finally {
i pl Deal | ocat e(i nga, | PL_I MAGE_HEADER| | PL_I| MAGE_DATA) ;
i pl Deal | ocat e(i ngb, | PL_I MAGE_HEADER| | PL_I| MAGE_DATA) ;

}
return I PL_StsOk == ipl GetErrStatus();

12-4

Image Statistics Functions

Image Moments

Spatial and central moments are important statistical characteristics of an
image. The spatial moment M,(m,n) and central moment U (m,n) are
defined as follows:

nRows-1nCols-1

Mo(m)="> S xyR,
1=0 =0

nRows-1nCols-1

Uu(m n) = JZO ;) (Xk _XO)m(yj - yO)nPj,k

where the summation is performed for al rows and columns in the image;
P, are pixel values; x, and y, are pixel coordinates; mand n are integer
power exponents; X, and y, are the gravity center’s coordinates:

X, = M,(1,0)M(0,0)
yO = MU(O,]-)/MU(O,O)

The sum of exponents + n is called the moment order. The library
functions support moments of order 0 to 3 (that s+ n< 3).

In the Image Processing Library image moments are stored in structures of
thel pl Monent St at e type. The type declaration is given below.

IpIMomentState Structure Definition

typedef struct ({
doubl e scal e /* scaling factor for the nonent */
doubl e val ue /* the nmoment */

} ownMonent ;

t ypedef ownhMoment | pl Monent St ate[4][4];

12-5

Intel Image Processing Library Reference Manual

12-6

Moments

Computes all image
moments of order 0 to 3.

voi d ipl Morents(Ipllmage* image, |plMnentState nttate);

i mge The image for which the moments will be
computed.

nst at e The structure for storing the image moments.

Discussion

Thefunctioni pl Monent s() computesall spatial and central moments of
order 0 to 3 for the i mage. The moments and the corresponding scaling
factors are stored in the nst at e structure. To retrieve a particular moment
value, use the functions described in the sections that follow.

GetSpatialMoment

Returns a spatial moment
computed by iplMoments.

doubl e i pl Get Spati al Morent (I pl Monent State nttate, int
mxd, int nOd);

nst at e The structure storing the image moments.

mord, nod The integer exponents m and n (see the moment
definition in the beginning of this section).
These arguments must satisfy the condition
O<nord+n0od<3.

Image Statistics Functions

Discussion

Thefunctioni pl Get Spati al Monent () returns the spatial moment
M, (m,n) previously computed by thei pl Morrent s() function.

GetCentralMoment

Returns a central moment
computed by iplMoments.

doubl e i pl Get Central Moment (| pl Monent State nttate, int
mxd, int nOd);

nst at e The structure storing the image moments.

mord, nod The integer exponents m and n (see the moment
definition in the beginning of this section).
These arguments must satisfy the condition
O<nord+n0od<3.

Discussion

Thefunctioni pl Get Cent ral Monent () returns the central moment
U, (m,n) previously computed by thei pl Morrent s() function.

GetNormalizedSpatialMoment

Returns the normalized
spatial moment computed
by iplMoments.

doubl e i pl Get Nor mal i zedSpat i al Monent (| pl Monent St at e
nState, int mrd, int nOd);

12-7

Intel Image Processing Library Reference Manual

12-8

nst at e The structure storing the image moments.

mord, nod The integer exponents m and n (see the moment
definition in the beginning of this section).
These arguments must satisfy the condition
O<nord+n0od<3.

Discussion

Thefunctioni pl Get Nor mal i zedSpat i al Monent () returnsthe
normalized spatial moment M, (m,n)/(nCol s™-nrous"), where M (m,n) is
the spatial moment previously computed by the i pl Monent s() function,
nCol s and nRows are the numbers of columns and rows, respectively.

GetNormalizedCentralMoment

Returns the normalized
central moment computed
by iplMoments.

doubl e i pl Get Nor mal i zedCent r al Monent (| pl Monent St at e
nState, int mrd, int nOd);

nst at e The structure storing the image moments.

mord, nod The integer exponents m and n (see the moment
definition in the beginning of this section).
These arguments must satisfy the condition
O<nord+n0od<3.

Discussion

Thefunctioni pl Get Nor mal i zedCent r al Monent () returnsthe
normalized central moment U, (m,n)/(nCol s™-nrous"), where U (m,n) is
the central moment previously computed by thei pl Monent s() function,
nCol s and nRows are the numbers of columns and rows, respectively.

Image Statistics Functions

SpatialMoment

Computes a spatial
moment.

doubl e i pl Spati al Monent (I pl | mage* inage, int mord, int

nard);

i mge The image for which the moment will be
computed.

mord, nod The integer exponents m and n (see the moment
definition in the beginning of this section).
These arguments must satisfy the condition
O<nord+n0od<3.

Discussion

Thefunctioni pl Spati al Monent () computes the spatial moment
M, (m,n) for the i mage.

CentralMoment

Computes a central
moment.

doubl e ipl Central Monent (I pl | mage* inage, int mord, int

nard);

i mge The image for which the moment will be
computed.

mord, nod The integer exponents m and n (see the moment

definition in the beginning of this section).

12-9

Intel Image Processing Library Reference Manual

12-10

These arguments must satisfy the condition
O<nmxd+nad<3.
Discussion

Thefunctioni pl Cent r al Monent () computes the central moment
U,(mn) for the i nage.

NormalizedSpatialMoment

Computes a normalized
spatial moment.

doubl e i pl Normal i zedSpati al Monent (I pl | rage* i nmage, int
mxd, int nOd);

i mge The image for which the moment will be
computed.
mord, nod The integer exponents m and n (see the moment

definition in the beginning of this section).
These arguments must satisfy the condition
O<nord+n0od<3.

Discussion

Thefunctioni pl Nor mal i zedSpat i al Monent () computes the
normalized spatial moment M, (m,n)/(nCol s™-nrous") for the i mage.
Here M,,(m,n) is the spatial moment, nCo/ s and nRows are the numbers of
pixel columns and rows, respectively.

Image Statistics Functions

NormalizedCentralMoment

Computes a normalized
central moment.

doubl e i pl Normal i zedCent r al Monent (I pl | rage* i nmage, int
mxd, int nOd);

i mge The image for which the moment will be
computed.
mord, nod The integer exponents m and n (see the moment

definition in the beginning of this section).
These arguments must satisfy the condition
O<nord+n0od<3.

Discussion

Thefunctioni pl Nor mal i zedCent r al Monent () computes the
normalized central moment U, (m,n)/(nCol s™-nrous") for the i mage.
Here U (m,n) is the central moment, nCol s and nRows are the numbers of
pixel columns and rows, respectively.

12-11

This pageisintentionally left blank. Needed for two-sided printing.

This pageisintentionally left blank. Needed for two-sided printing.

Supported Image Attributes
and Operation Modes

This appendix contains tables that list the supported image attributes and
operation modes for functions that have input and/or output images.

Thei pl prefixesin the function names are omitted.

Table A-1 Image Attributes and Modes of Data Exchange Functions
: | Input and output images | Rect. In-place Tiling
Function | Depths | must have the same | ROI
| | depth order origin COlI | supported (x)
Set. uors’ operates on a single image X X X
Set FP 3211 operates on a single image X X X
Put Pi xel all operates on a single image X
Get Pi xel all operates on a single image X
Copy all X X X X X X X
Cl onel mage all X X X X X X X
Exchange uors X X X X X X X
Convert uors X

Tuors= 1u, 8s, 8u, 16s, 16u, 32s bits per channel; u = unsigned; s = signed; f = float.

A-1

Intel Image Processing Library Reference Manual

A-2

Table A-2 Windows DIB Conversion Functions
Function | Depths i Input and output images have the same
input output | order origin number of channels
m(":onvert Fr.aﬁﬁl - ;”-’F IL]:gu,leu et e ettt e—er e
Convert FronDl BSep alf 1u,8u,16u
Convert ToDl B 1u,8u,16u all¥ X
Transl at eDl B 1bpp lu clone¥ X X
24bppfF 8u clone X X

tall= 1, 4,8, 16, 24, 32 bpp DIB images; =4bpp =4, 8, 16, 24, 32 bpp DIB images;
clone = in case if the data is not cloned.

Fori pl Convert FronDI B and i pl Convert FronDl BSep, the number of channels, bit
depth per channel and the dimensions of the | pl | nage should be greater than or equal to
those of the DIB image. When converting a DIB RGBA image, the | pl | mage should also
contain an alpha channel.

Supported Image Attributes and Operation Modes

Table A-3 Image Attributes and Modes of Arithmetic and Logical Functions
| . Input and output images | Rect. In-place Tiling Mask
Function | Depths | must have the same | ROI
| | depth order origin COI | supported (x

ADS uorst X X X X X X X X
AddS uors X X X X X X X X
Subtract S uors X X X X X X X X
Ml tiplyS uors X X X X X X X X
AddSFP 32f X X X X X X X X
Subt r act SFP 32f X X X X X X X X
Ml ti pl ySFP 32f X X X X X X X X
Mul tiplySScale 8u,16u x X X X X X X X
Squar e ant X X X X X X X X
Add all X X X X X X X X
Subt r act all X X X X X X X X
Ml tiply all X X X X X X X X
Mil tiplyScale 8u,l6u x X X X X X X X
LShiftS uors X X X X X X X X
RShift S uors X X X X X X X X
Not uors X X X X X X X X
AndS uors X X X X X X X X
S uors X X X X X X X X
Xor S uors X X X X X X X X
And uors X X X X X X X X
O uors X X X X X X X X
Xor. uors X X X X X X X X

Tuors=1u, 8s, 8u, 16s, 16u, 32s bits per channel (that is, all except 32f)
all =1u, 8s, 8u, 16s, 16u, 32s, or 32f bits per channel

Intel Image Processing Library Reference Manual

Table A-4 Image Attributes and Modes of Alpha-Blending Functions

| Input and output images ERect. In-place Tiling Mask

Function i Depths | Must have the same i ROI
| | |

Edepth order origin COIE supported (x)

PreMul tiplyAl pha 8u,16u X X X X X X X X
Al phaConposite 8u,16u X X X X X X X X
Al phaConpositeC 8u,16u X X X X X X X X
Table A-5 Image Attributes and Modes of Filtering Functions
| . Input and output images | Rect. Border In- Tiling Mask
Function | Depths | must have the same | ROl Mode place
i idepth order origin COlI i supported (x)
Bl ur uorst X X X X X X X X
Convol ve2D uors X X X X X X X X X
Convol ve2DFP 32f X X X X X X X X X
Convol veSep2D uors X X X X X X X X X
MaxFilter uors X X X X X X X X
MnFilter uors X X X X X X X X
Medi anFilter wuors X X X X X X X X
Fi xedFi | ter uors X X X X X X X X X
Tuors=1u,8s, 8u, 16s, 16u, or 32s bits per channel
Table A-6 Image Attributes and Modes of Fourier and DCT Functions
| | Input & output images ERect. In- Tiling Mask
Function | Depths | have the same | ROl place
i input output iorder origin COI fsupporte d (x)

DCT2D >8u/st >8u/st X X X

Real Fft 2D >8u/s, 32f =8uls, 32f X X X X

CcsFft2D >8ufs, 32f =8uls, 32f X X X X

+ >8u/s = 8u, 8s, 16U, 16s, 32s bits per channel

A-4

Supported Image Attributes and Operation Modes

Table A-7 Image Attributes and Modes of Morphological Operations

| i Input and output images | Rect. Border In-place Tiling
Function | Depths | must have the same i ROl Mode

| |

Er ode 1u,8u,16u X

X X X X X X X
Dilate 1u,8u,16u X X X X X X X X
Qoen 1u,8u,16u X X X X X X X X
C ose 1u,8u,16u X X X X X X X X

Table A-8 Image Attributes and Modes of Color Space Conversion Functions

| Input & output images | Rect. In- Tiling
Function Depths have the same i ROl place

ReduceBi ts 32s 1u, 8u, 16u X X X X
16u 1u, 8u X X X X

GrayToCol or 32s, color! X X X X
gray’

Col or ToGr ay colorT grayt X X X X

Bi t onal ToGray 1u >8u/st X

RGB to/from other 8u,16u,32s; X X X X X

color model for LUV, also 32f

Appl yCol or Twi st 8u,16u X X X X X X X

T gray = 1u, 8u, 16u bits per pixel
color = 8u, 16u, 32s bits per channel
+ >8u/s = 8u, 8s, 16u, 16s, 32s bits per channel

A-5

Intel Image Processing Library Reference Manual

Table A-9 Image Attributes and Modes of Histogram and Thresholding Functions

i Input and output images | Rect. In-place Tiling
Function | Depths must have the same | ROI

| Edepth order origin COI | supported (x)
Threshol d 8u,8s,16uU, X X X X X X

16s, 32sT

Conput eHi st o 1u,8u,16u no output image X X
Hi st oEqual i ze 8u,16u X X X X X X X
ContrastStretch 8u,16u X X X X X X X

T output image can also be 1u bit per channel

Table A-10 Image Attributes and Modes of Geometric Transform Functions

| Input and output images | Rect. In- Tiling Mask
Function | Depths must have the same | ROl place

| Edepth order origin COI | supported (x)
Mrror 1u,8u,16u X X X X X X X X
Rotat e 1u,8u,16u x X X X X X
Zoom 1u,8u,16u x X X X X X X
Deci mat e 1u,8u,16u x X X X X X
Resi ze 1u,8u,16u X X X X X X
Var pAf fine 1u,8u,16u X X X X X X
War pBi | i near 1u,8u,16u X X X X X X
War pBi | i near Q 1u,8u,16u X X X X X X
War p 1u,8u,16u X X X X X X
Per spective
War p 1u,8u,16u X X X X X X

Per specti veQ

Shear 1u,8u,16u x X X X X X

Supported Image Attributes and Operation Modes

Table A-11 Image Attributes and Modes of Norm and Moment Functions

i i Both input images | Rect. Tiling Mask
Function Depths must have the same i ROI

1] 1

| Edepth order origin COI | supported (x)
Nor m uors’ X X X X X X X
Moment s all operates on a single image X X X
[Normal i zed] all operates on a single image X X X
Spat i al Monent
[Nor mal i zed] all operates on a single image X X X

Cent r al Monent

Tuors=1u, 8s, 8u, 16s, 16u, 32s bits per channel (that is, all except 32f)
all =1u, 8s, 8u, 16s, 16u, 32s, or 32f bits per channel

A-7

This pageisintentionally left blank. Needed for two-sided printing.

This pageisintentionally left blank. Needed for two-sided printing.

Bibliography

This bibliography provides alist of publications that might be useful to the
Image Processing Library users. Thislist is not complete; it servesonly as
a starting point. The books [Rogers85], [Rogers90], and [Foley90] are
good resources of information on image processing and computer
graphics, with mathematical formulas and code examples.

The Image Processing Library is part of Intel Performance Libraries Suite.
The manuals [RPL] and [SPL] describe Intel Recognition Primitives
Library and Intel Signal Processing Library, which are other parts of the
Performance Libraries Suite.

[Bragg]

[Foley90]

[Rec709]

[Rogers35]

[Rogers90]

[RPL]

[SPL]

Dennis Bragg. A simple color reduction filter, Graphic
Gemslll: 20-22.

James D. Foley, Andries van Dam, Steven K. Feiner,
and John F. Hughe€omputer Graphics — Principles
and Practice Second Edition. Addison Wesley, 1990.

ITU-R Recommendation BT.709, Basic Parameter
Values for the HDTV Standard for the Studio and
International Programme Exchandiormerly CCIR
Rec.709] ITU, Geneva, Switzerland, 1990.

David Rogers. Procedural Elements for Computer
Graphics McGraw-Hill, 1985.

David Rogers and J. Alan Adams. Mathematical
Elements for Computer Graphidd cGraw-Hill, 1990.

Intel Recognition Primitives Library Reference Manual.
Intel Corp. Order number 637785.

Intel Signal Processing Library Reference Manualel
Corp. Order number 630508.

Biblio-1

Intel Image Processing Library Reference Manual

Biblio-2

[Schumacher] Dale A. Schumacher. A comparison of digital halftoning
techniques, Graphic Gems|11: 57-71.

[Thomas] Spencer W. Thomas and Rod G. Bogart. Color
dithering,Graphic Gems|11: 72—77.

Glossary

absolute colors

alpha channel

arithmetic operation

channel of interest

CMY

CMYK

COl
color-twist matrix

conjugate

DCT

Colors specified by each pixel’s coordinates in
a color space. Intel Image Processing Library
functions use images with absolute col@=
palette colors.

A color channel, also known as the opacity
channel, that can be used in color models; for
example, the RGBA model.

An operation that adds, subtracts, multiplies,
shifts, or squares the image pixel values.

The color channel on which an operation acts
(or processing occurs). Channel of interest
(COI) can be considered as a separate case of
region of interest (ROI).

Cyan-magenta-yellow. A three-channel color
model that uses cyan, magenta, and yellow
color channels.

Cyan-magenta-yellow-black. A four-channel
color model that uses cyan, magenta, yellow,
and black color channels.

See channel of interest.

A matrix used to multiply the pixel coordinates
in one color space for determining the
coordinates in another color space.

The conjugate of a complex numieri is
a- bi.

Acronym for the discrete cosine transforgee
“Discrete Cosine Transforhin Chapter 7.

Glossary-1

Intel Image Processing Library Reference Manual

decimation
DIB

dilation

dyadic operation

erosion

FFT
four-channel model

geometric transform
functions

gray scale image

HLS

HSV

A geometric transform operation that shrinks
the source image.

Device-independent bitmap, an image format
used by the library in Windows environment.

A morphological operation that sets each output
pixel to the minimum of the corresponding
input pixel and its 8 neighbors.

An operation that has two input images. It can
have other input parameters as well.

A morphological operation that sets each output
pixel to the maximum of the corresponding
input pixel and its 8 neighbors.

Acronym for the fast Fourier transform. See
“Fast Fourier Transforfrin Chapter 7.

A color model that uses four color channels; for
example, the RGBA color model.

Functions that perform geometric
transformations of images: resizing, rotation,
mirror, shear, and warping functions.

An image characterized by a single intensity
channel so that each intensity value corresponds
to a certain shade of gray.

Hue-lightness-saturation. A three-channel color
model that uses hue, lightness, and saturation
channels. The HLS and HSV models differ in
the way of scaling the image luminan&ee

HSV.

Hue-saturation-value. A three-channel color
model that uses hue, saturation, and value
channels. HSV is often used as a synonym for
the HSB (hue-saturation-brightness) and HSI
(hue-saturation-intensity) modeBee HLS.

Glossary

hue A color channel in several color models that
measures the “angular” distance (in degrees)
from red to the particular color: 60 corresponds
to yellow, 120 to green, 180 to cyan, 240 to
blue, and 300 to magenta. Hue is undefined for
shades of gray.

in-place operation An operation whose output image is one of the
input imagesSee out-of-place operation.
linear filtering In this library, either neighborhood averaging

(blur) or 2D convolution operations.

linear image transforms In this library, the fast Fourier transform (FFT)
or the discrete cosine transform (DCT).

luminance A measure of image intensity, as perceived by a
“standard observer”. Since human eyes are
more sensitive to green and less to red or blue,
different colors of equal physical intensity make
different contribution to luminancé&ee
Col or ToG ay in Chapter 9.

LUT Acronym for lookup table (palette).

LUV A three-channel color model designed to acieve
perceptual uniformity, that is, to make the
perceived distance between two colors
proportional to the numerical distance.

MMX ™ technology A major enhancement to the Intel Architecture
aimed at better performance in multimedia and
communications applications. The technology
uses four new data types, eight 64-bit MMX
registers, and 57 new instructions implementing
the SIMD (single instruction, multiple data)
technique.

monadic operation An operation that has a single input image. It
can have other input parameters as well.

morphological operation An erosion, dilation, or their combinations.

Glossary-3

Intel Image Processing Library Reference Manual

Glossary-4

MSI
non-linear filtering

opacity channel
out-of -place operation

palette colors

PhotoY CC*
pixel depth

pixel-oriented ordering

plane-oriented ordering

region of interest
RGB

RGBA

ROI

Acronym for multi-spectral image. An MS| can
use any number of channels and colors.

In the Image Processing Library, minimum,
maximum, or median filtering operation.

See alpha channel.

An operation whose output is an image other
than the input image(s). See in-place operation.
Colors specified by a palette, or lookup table.
The Image Processing Library uses palette
colors only in operations of image conversion to
and from absolute colors. See absolute colors.

A Kodak* proprietary color encoding and
image compression scheme. See Y CC.

The number of bits determining asingle pixel in
the image.

Storing the image information in such an order
that the values of dl color channels for each
pixel are clustered; for example, RGBRGB... .
See “Channel Sequentin Chapter 2.

Storing the image information so that all data of
one color channel follow all data of another
channel, thus forming a separate “plane” for
each channel; for example, RRRRRGGGGG...

An image region on which an operation acts
(or processing occurs).
Red-green-blue. A three-channel color model
that uses red, green, and blue color channels.

Red-green-blue-alpha. A four-channel color
model that uses red, green, blue, and alpha (or
opacity) channels.

See region of interest.

Glossary

saturation

scanline
standard gray palette

three-channel model

XYZ

YCC

YUV

Zoom

A gquantity used for measuring the purity of

colors. The maximum saturation corresponds to
the highest degree of color purity; the minimum
(zero) saturation corresponds to shades of gray.

All image data for one row of pixels.

A complete paette of a DIB image whose red,
green, and blue values are equal for each entry
and monotonically increasing from entry to
entry.

A color model that uses three color channels;
for example, the CMY color model.

A three-channel color model designed to
represent awider range of colors than the RGB
model: some XY Z-representable colors would
have a negative value of R. For conversion
formulas, see RGB2XY Z.

A three-channel color model that uses one
luminance channd (Y) and two chroma
channels (usually denoted by C, and C;). The
term is sometimes used as a synonym for the
entire PhotoY CC encoding scheme. See
PhotoY CC.

A three-channel color model frequently used in
television. For conversion formulas, see
RGB2YUV.

A geometric transform function that magnifies
the source image.

Glossary-5

This pageisintentionally left blank. Needed for two-sided printing.

This pageisintentionally left blank. Needed for two-sided printing.

| ndex

afunction that helps you

add a constant to pixel values, 5-3

add pixel values of two images,

dlocate a quadword-aligned memory
block,

allocate image data,

alocate memory for 16-bit words,

alocate memory for 32-bit double words,
424

allocate memory for double floating-point
elements,

allocate memory for floating-point
elements,

apply acolor-twist matrix, (9-19

assign a new error-handling function,

average neighboring pixels, -2

change the image orientation, |11-6

change the image size,

compute absolute pixel values,

compute bitwise AND of pixel values and
aconstant,

compute bitwise AND of pixel values of
two images,

compute bitwise NOT of pixel values,

compute bitwise OR of pixel values and
aconstant,

compute bitwise OR of pixel values of two
images,

compute bitwise XOR of pixel values and
aconstant,

compute bitwise XOR of pixel values of
two images,

compute CCS fast Fourier transform,

compute discrete cosine transform, @

compute image moments,

compute moments of order O to 3,

compute real fast Fourier transform, [7-4

compute the image histogram,

compute the norm of pixel val u&s.

convert abitonal image to gray scale,

convert a color image to gray scale, @

convert agray scaleimage to color, @

convert images from DIB (changing
atributes), b-44

convert images from DIB (preserving
attributes),

convert images to DIB,

convert RGB images to and from other
color models, [0-§

convolve an image with 2D kernel,
convolve an image with a predefined

kernel,

Index-1

Intel Image Processing Library Reference Manual

Index-2

convolve an image with a separable kernel,

copy entire images,

copy image data,

create 2D convolution kernel, @

create a color twist matrix, |9-1

create aregion of interest (ROI),

create image header, [4-§

create the Ipl Tilelnfo structure, [4-2

decimate the image,

delete 2D convolution kernel,

delete acolor twist matrix,

delete aregion of interest (ROI) structure,

delete the IpITilelnfo structure, [4-2

dilate an image, B-3

divide pixel values by 2",

equalize the image histogram,

erode an image, B-2

exchange data of two images,

fill image’s pixels with a valu¢, 4-28

filter the image[6J1

free memory allocated by Malloc
functions| 4-26

free the image data memoky, 4-14

free the image header mem-15

get error-handling mod8-4

get the error status code, |3-3

get the value of pixel (x.y), 4-B4

handle an errof, 32

magnify the imagé¢, 11}-3

mirror the imagO

multiply pixel values by a color-twist
matrix,

multiply pixel values by a constaft, b-5

multiply pixel values by a constant and
scale the products, $-5

multiply pixel values of two imagefs, §-8

multiply pixel values of two images and
scale the product@-g

perform several erosions and dilati 8-6,

pre-multiply pixel values by alpha values,

produce error messages for us@ 3-5

read convolution kernel's attributds, |6-7

reduce the image bit resolutidn, p-3

report an errof, 3}2

resize the imag-5

rotate the imagé¢, 11-6

set a color twist matrif, 9-18

set a region of interest (ROJ), 4}18

set error-handling modg, 3-4

set one pixel to a new valiie, 434

set pixels to the maximum value of the
neighbor?

set pixels to the median value of the
neighbors, 6-15

set pixels to the minimum value of the
neighbors], 6-18

set the error status cofie, [3-3

set the image border modie, 4-19

set the IplITilelnfo structure fieIdE-Q,

shear imagep, 11-[12

shift pixel bits to the leff, 5-10

shift pixel bits to the righf, 5-11

shrink the imagd, 1114

smooth the imagé, §-6, -7

Index

square pixel values, 5-6

stretch the image contrast,

subtract pixel values from a constant, 5-4
subtract pixel values of two images, -8
threshold the source image,

warp images by affine transforms,
warp images by bilinear transforms,

warp images by perspective transforms,
11-20

zoom the image,
about this manual,
about this software,
Abs function, @
absolute color images,
absolute pixel values,
Add function, 574
adding a constant to pixel values, E
adding pixels of two images,
Adds function, [5-3
AddSFP function,
alignment
image data, -7
rectangular ROIs, P-5
scanline, -7
Allocatel mage function,
Allocatel mageFP function,
allocating memory
for 16-bit words,
for 32-bit double words,
for double floating-point elements,
for floating-point elements,|4-2
quadword-aligned blocks,
apha channel, -7

alpha pre-multiplication,
alpha-blending
alpha pre-multiplication,
AlphaComposite function,
AlphaCompositeC function,
ATOP operation,
IN operation, |5-22|
OUT operation,[5-22]
OVER operation,
PLUS operation,
PreMultiplyAlpha function,
XOR operation,
AlphaComposite function,
AlphaCompositeC function, |5-18;
And function,
AndS function,
ApplyColorTwist function,
argument order conventions,
arithmetic operations, -1
Abs, -6
Add,B-7
Adds, 5-3
AddSFP,
AlphaComposite,
AlphaCompositeC,
Multiply,
Multiplys,
MultiplyScale, 5-9
MultiplySFP,
MultiplySScale, E
PreMultiplyAlpha,
Square, 5-6
Subtract, -9

Index-3

Intel Image Processing Library Reference Manual

arithmetic operations (continued)
SubtractS,
SubtractSFP, 5-4
ATOP compositing operation, [5-22
attributes of an image, @
audience for this manual,
averaging the neighboring pixels,

B

bit depths supported,
Bitonal ToGray function,
bitwise AND
with a constant,
with another image,
bitwise NOT,
bitwise OR
with a constant,
with another image,
bitwise XOR
with a constant,
with another image,
Blur function,
brightening the image, E

C

call-backs, p-9

CcsHt2D function, E
CentraMoment function,
changing the image orientation,
changing the image size, |11-2|
channel of interest, 2-4

channel sequence, E

Index-4

Clonelmage function,
Close function,
COl. See channel of interest
color data order, p-3
color models,
gray scale, @
multi-spectral image,
three or four channels,

color space conversion functions

ApplyColorTwist,|9-19
Bitona ToGray,
ColorToGray,
CreateColorTwist,|9-17]
DeleteColorTwist,
GrayToColor,
HLS2RGB,
HSV2RGB,
LUV2RGB,
ReduceBits,
RGB2HLS,
RGB2HSV,
RGB2LUV,
RGB2XY?Z,
RGB2Y CrCh,
RGB2YUV,
SetColorTwist, [9-18]
XYZ2RGB,
YCC2RGB,
Y CrCh2RGB,
YUV2RGB,
ColorToGray function, @
color-twist matrices,
ComputeHisto function,

Index

computing the norm of pixel values,
ContrastStretch function,
conventions
font, -5
names of constants and variables,
names of functions,
order of arguments,
Convert function,
ConvertFromDI B function,
ConvertFromDIBSep function, 4-44)

converting bitonal images to gray scale, E

converting color images to gray scale,

converting gray-scale images to color, @

converting HL S images to RGB,

converting HSV images to RGB,[9-10

converting images from DIB (changing
attributes), [4-41] [4-44

converting images from DIB (preserving

attributes),
converting imagesto DIB,
converting LUV images to RGB,
converting RGB images to HLS,
converting RGB images to HSV,[9-10]
converting RGB imagesto LUV,
converting RGB imagesto XYZ,
converting RGB imagesto Y CrCb,
converting RGB imagesto YUV,
converting XY Z images to RGB,
converting Y CC images to RGB,
converting Y CrCb images to RGB,
converting YUV images to RGB,
ConvertToDIB function,

convolution,

Convolve2D function,
Convolve2DFP function,
ConvolveSep2D function,
coordinate systems,

Copy function,

copying entire images,
copying the image data,
CreateColorTwist function,
CreateConvKernel function, 6-5
CreateConvK ernel Char function, b-5
CreateConvKernel FP function,
Createl mageHeader function,
CreateROI function,
CreateTilelnfo function,

creating images, -1, -9

D

darkening the image,
data architecture,
data exchange, [4-2
data exchange functions,
Convert,
Copy,
Exchange,
GetPixel,[4-34
PutPixel, [4-34
Set,
SetFP,
data ordering,
datarangesin HLS and HSV models, -9

datatypes, P-2
DCT. See discrete cosine transform

Index-5

Intel Image Processing Library Reference Manual

Index-6

DCT2D function, [7-§

Deallocate function,
Desllocatel mage function,
Decimate function,
decimating the image,
DeleteColorTwist function,
DeleteConvKernel function, 6-§
DeleteConvK ernel FP function, 6-§
DeleteROI function,
DeleteTilelnfo function,
device-independent bitmap, -2
DIB. See device-independent bitmap
DIB paletteimages,

Dilate function, B-§

dilation of animage, B-3

discrete cosine transform,
dividing pixel values by 2",
dMalloc function,

dyadic operations,

E

equalizing the image histogram, [10-§
Erode function, @
erosion of animage, [B-2
ErrModel eaf error mode, B-4
ErrModeParent error mode,
ErrModeSilent error mode,
error checks, @
Error function,
error handling, 3-1

example,

status codes, B-§

user-defined error handler,
error handling macros,
error processing modes
IPL_ErrModeL eaf,
IPL_ErrModeParent, B-5
IPL_ErrModeSilent, 3-§
error-handling functions, B-2
Error,
ErrorStr, @
GetErrMode,
GetErrStatus,
RedirectError,
SetErrMode, @
SetErrStatus, B-3
ErrorStr function,
Exchange function, |4-31i
execution architecture, E
in-place and out-of-place operations, [2-8
overflow and underflow,
saturation,

F

fast Fourier and discrete cosine transforms
CcsFft2D, -7
DCT2D, [7-§
Real Fft2D, [7-4

fast Fourier transform, @

FFT. Seefast Fourier transform

filling image’s pixels with a valu4

filtering functions[6-1
Blur,[6-3
Convolve2D[6B

Index

filtering functions (continued)
Convolve2DFP, B-§
ConvolveSep2D,
CreateConvKernel,
CreateConvKernelChar,
CreateConvKernelFP,
DeleteConvKernel,
DeleteConvKernel FP,
FixedFilter,
GetConvKernel, -6
GetConvKernelChar,
GetConvKernelFP, @
MaxFilter,|6-17]
MedianFilter,
MinFilter,

FixedFilter function,

font conventions, E

Free function, [4-26

free memory allocated by Malloc functions,
-4-26

function descriptions,
function name conventions,

G

geometric transform functions
Decimate,
GetAffineBound,
GetAffineQuad,
GetAffineTransform,
GetBilinearBound,
GetBilinearQuad,
GetBilinearTransform,
GetPerspectiveBound,

GetPerspectiveQuad,

GetPerspectiveTransform,

GetRotateShift,

Mirror,

Resize,

Rotate,

Snear,

WarpAffine,

WarpBilinear,[11-16]

WarpBilinearQ,

WarpPerspective,

WarpPerspectiveQ,

Zoom,
GetAffineBound function,
GetAffineQuad function,
GetAffineTransform function,
GetBilinearBound function,
GetBilinearQuad function,|11-18
GetBilinear Transform function,
GetCentralMoment function, [12-7]
GetConvKernel function,
GetConvK ernel Char function, [6-6
GetConvK ernel FP function,
GetErrMode function, B-4
GetErrStatus function, B-3

GetNormalizedCentral M oment function, |12-8
GetNormalizedSpatial Moment function,

GetPerspectiveBound function,
GetPerspectiveQuad function,
GetPerspectiveTransform function,
GetPixel function,

GetRotateShift function,

GetSpatial Moment function,

Intel Image Processing Library Reference Manual

gray-scale images, Allocatel mageFP,
GrayToColor function, Clonelmage,
Createl mageHeader, [4-§
H CreateROI,[4-17]
handling overflow and underflow, P-8 g:jlti;j
hardware and software requirements, Dedlloc ate; mage,
HistoEqualize function, [10-§ DeleteROl
histogram and thresholding functions, Del eteTiIeI'nfo,
CompuiteHisto, SetBorderMode,
ContrastStretch, SEROI,
HistoEqualize, SetTilelnfo,
Thresnold, image dimensions, -7
histogram of animage, image filtering functions, [6-1
histogram operations, [10-4 image formt, B3
HL S2RGB function, image header, 3
HSV2RGB function, image histogram,

image moments,
I image norms,

image attributes, @ @ Image Processing Library functionality
image compositing 2D convolution,
alpha pre-multiplication, apha-blending, 5-1
AlphaComposite function, [5-18 arithmetic operations,
AlphaCompositeC function, [5-18 color space conversion, 91
ATOP operation, [5-22 data exchange, @
IN operation, DIB environment functions, [4-36]
OUT operation, discrete cosine transform, [7-§
OVER operation, [5-17} error handling,
PLUS operation, fast Fourier transform,
PreMultiplyAlpha function, filtering functions, 6-1
XOR operation, geometric transform functions,
image creation functions, histogram and threshol ding functions,
Allocatel mage, image creation, [4-1]

Index-8

Index

Image Processing Library functionality (cont.) iplAdd,
image statistics, iplAdds,[5-3
image tiling, -8, B-7 iplAddSFP,
logical operations, [5-1 iplAllocatel mage,
memory allocation, [4-23 iplAllocatelmageFP,
moments and norms, ipl AlphaComposite,
morphological operations, ipl AlphaCompositeC,
supported image attributes and modes, [A-1] iplAnd,
image row data, P-7 iplAnds,
image size, ipl ApplyColorTwist,
image structure iplBitonal ToGray, @
borders, iplBlur, @
channel sequence, -3 iplCesFft2D, [7-7
color models, iplCentralMoment,
coordinate systems, P-4 iplClonel mage,
data architecture, iplClose,
data ordering, iplColorToGray, @
data types, -3 ipl ComputeHisto,
header attributes, ipl ContrastStretch,
image size, P-7 iplConvert,
regions of interest, P-4 ipl ConvertFromDIB,
tilesize, -9 ipl ConvertFromDIBSep, [4-44
tiling, [2-8 [6-7 iplConvertToDIB, [4-45
image tiling, 2-8, [4-7 iplConvolve2D,
call-backs, @ iplConvolve2DFP,
Ipl Tilelnfo structure, ipl ConvolveSep2D,[6-11|
iMalloc function, iplCopy, [4-29
IN compositing operation, iplCreateColorTwist,
in-place operations, iplCreateConvKernel, [6-5
IPL_ErrModelL eaf, B-4 iplCreateConvK ernelChar, b-5
IPL_ErrModeParent, @ iplCreateConvKernelFP,
IPL_ErrModeSilent, 3-5 ipl Createl mageHeader,
iplAbs, 5-6 iplCreateROlI,

Index-9

Intel Image Processing Library Reference Manual

iplCreateTilelnfo,
ipiDCT2D, [7-§

iplDeallocate,

ipl Deallocatel mage,
iplDecimate,
iplDeleteColorTwist,
iplDeleteConvKernel, B-§
iplDeleteConvK ernel FP, 6-§
iplDeleteROI,[4-17]
iplDeleteTilelnfo,
ipIDilate,

ipldvalloc,

iplErode, @

iplError,

iplErrorStr,

iplExchange,

ipl FixedFilter,

iplFree, m
iplGetAffineBound,

ipl GetAffineQuad,[11-14]

ipl GetAffineTransform,[11-15]
ipl GetBilinearBound,

ipl GetBilinearQuad,
iplGetBilinearTransform,
ipl GetCentral Moment,
iplGetConvKernel, [6-6
iplGetConvK ernel Char, -6
iplGetConvKernel FP, @
iplGetErrMode,
iplGetErrStatus,

ipl GetNormalizedCentral M oment,
ipl GetNormalizedSpatial Moment,
ipl GetPerspectiveBound, [11-22]

Index-10

ipl GetPerspectiveQuad, [11-22

ipl GetPerspectiveTransform,
iplGetPixel, [4-34]

ipl GetRotateShift,

ipl GetSpatial Moment,
iplGrayToColor, E
iplHistoEqualize,
iplHLS2RGB,
iplHSV2RGB,

Iplimage structure,
ipliMalloc,

IplLastStatus variablg-S
iplLShiftS, [5-10
iplLUV2RGB,[9-13

ipIMalloc,
ipIMaxFilter,[6-17
ipIMedianFiIter
ipIMinFilter,

ipIMirror,
ipIMoments[12
IpIMomentState structurg, 12-5
ipIMultiply,

ipIMultiplys,
ipIMuItipIyScaIe,
ipIMultiplySFP,[5-4
ipIMultiplySScale[5-b
ipINorm,[12-2
ipINormalizedCentralMomerit, 12-111
ipINormalizedSpatialMomerft, 12-.0
ipINot,

ipIOpen,

iplOr,

iplors,[5-18

Index

iplPreMultiplyAlpha,[5-24]

iplPutPixel, [4-34
iplReal Fft2D, [7-4
iplRedirectError,
ipl ReduceBits,
iplResize,
iplRGB2HLS,[9-11]
iplRGB2HSV,
iplRGB2LUV,
iplRGB2XY?Z,
iplRGB2Y CrCb,
iplRGB2YUV,
iplRotate,
iplRShiftS,

ipl Set,

ipl SetBorderMode,
iplSetColorTwist,
ipl SetErrMode, B-4

ipl SetErrStatus, @

ipl SetFP,
iplSetROI,
iplSetTilelnfo,

ipl Shear,[11-12
iplsMalloc,

ipl Spatial Moment,
iplSquare, B-§
iplSubtract, -9
iplSubtractS, 5-4
iplSubtractSFP, 5-4

ipl Threshold,
IpITilelnfo structure, @
ipl TranslateDIB,
iplWarpAffine,

iplWarpBilinear,

iplWarpBilinearQ,|11-16
iplWarpPerspective, |11-20]
iplWarpPerspectiveQ,

iplwMalloc,
ipIXor,
ipIXorsS,[5-14
ipIXYZ2RGB, [9-13
iplY CC2RGB, [9-16]
iplY CrCh2RGB,
iplY UV2RGB, [9-15)
iplZoom,

L

linear filters, [6-2
logical operations, @
And,
Ands,
L Shifts,
Not,
Or,
ors,
RShiftS,
Xor,
Xors,

lookup table. See palette color images
lookup table operations,

L ShiftS function,

LUV2RGB function,[9-12)

Index-11

Intel Image Processing Library Reference Manual

M
magnifying the image, [11-3) morphological operations
Malloc function, [4-23 Close, B-7
manual organization, Dilate,
mask, P-4 Erode,
MaxFilter function,|6-1 Open, @
maximum permissible value, P-§ MSI. See multi-spectral image
MedianFilter function, multi-image operations, 2-5
memory allocation functions, [4-2, Multiply function,
dMalloc, [4-26] multiplying and scaling pixel values
Free, by a constant,
iMalloc, [4-24 intwoinputimag%,
Malloc, multiplying pixel values
sMalloc, by a color-twist matrix, [9-19
wMalloc, by & constant,
MinFilter function, by anegative power of 2,511
minimum permissible value, in two input images,
Mirror function, squares of pixel values, 5-6
mirroring the image, MultiplyS function,
moments, MultiplyScale function,
moments and norms MultiplySFP function, 5-4
CentralMoment, MultiplySScale function,
GetCentralMoment, multi-spectral image,
GetNormalizedCentral Moment,
GetNormalizedSpatial M oment, N
GetSpatialMoment, naming conventions, fl-5
Moments, [L2-6 Norm function,
Norm, NormalizedCentralMoment function,
NormalizedCentralMoment, NormalizedSpatial M oment function,
NormalizedSpatial M oment, Not function,
SpatiadMoment, notational conventions, [l-5

Moments function,
monadic operations,

numerical exceptions,

Index-12

Index

@]

online version of this manual,
opacity channel. See alpha channel

Open function,

opening and smoothing the image,
operation modes of library functions, [A-1]
Or function,

OrS function,

OUT compositing operation,
out-of-place operations,

OVER compositing operation,

P

palette color images, -2

parallelism,

pixel depth,[2-2

pixel values, setting and retrieving,
PLUS compositing operation,
PreMultiplyAlphafuncti on,
producing error messages for users,
PutPixel function, [4-34

R

RCPack2D format,

real-complex packed format,
Real Fft2D function, [-4

rectangular region of interest,
RedirectError function,
ReduceBits function,

reducing the image bit resolution,

region of interest, 2-4,

channel, p-4

mask image,

rectangular,
reporting an error,
Resize function,
return values,
RGB2HL S function,
RGB2HSV function,
RGB2LUV function,|9-1
RGB2X Y Z function,
RGB2Y CrCb function,
RGB2Y UV function,|9-1
ROI. Seeregion of interest
Rotate function,
rotating the image

around an arbitrary center,

around the origin,

RShiftS function, [5-11

S

saturation, E

scanline. See image row data
scanline alignment,

Set function,
SetBorderMode function,
SetColorTwist function,[9-18
SetErrMode function, @
SetErrStatus function, 3-3
SetFP function,

SetROI function,

Index-13

Intel Image Processing Library Reference Manual

SetTilelnfo function,
Shear function, [11-1
shearing the image,
shifting pixel bits

to the left,

to theright,
shrinking the image, [L1-4,
signed data, P-2
SIMD instructions,
sMalloc function,[4-25
smoothing the image,
Spatial Moment function,

Square function, E
squares of pixel values, 5-§
status codes,
stretching the image contrast,
Subtract function, 5-§
subtracting pixel values

from a constant, @

two input images, 5-§
SubtractS function, 5-4
SubtractSFP function, 5-4
supported image attributes and modes, @

T-V
Threshold function,
thresholding the source image,
tiling, -8, B-7
call-backs, -9
CreateTilelnfo function, [4-21
DeleteTilelnfo function,
IpI Tilelnfo structure,

SetTilelnfo function,

Index-14

TrandlateDIB function,
two-dimensional convolution, -3
user-defined error handler,[3-13

w

WarpAffine function,|11-13
WarpBilinear function,
WarpBilinearQ function,[11-16
warping the image,
WarpPerspective functi on,
WarpPerspectiveQ function,
Windows DIB functions, [4-2,
ConvertFromDI B,
ConvertFromDIBSep,
ConvertToDIB,
TrandlateDIB,
wMalloc function,

X-Z
XOR compositing operation,
Xor function,[5-16]

XorS function,

XY Z2RGB function, |9-1

Y CC2RGB function,

Y CrCb2RGB function,
YUV 2RGB function, [9-1
Zoom function,

zooming the image,

	Intel Image Processing Library Reference Manual
	How to Use This Manual
	Revision History
	Legal Information
	Contents
	Chapter 1 Overview
	About This Software
	Hardware and Software Requirements

	About This Manual
	Manual Organization
	Function Descriptions
	Audience for This Manual
	Online Version
	Sources of Related Information

	Notational Conventions
	Font Conventions
	Naming Conventions
	X-Y Argument Order Convention

	Chapter 2 Image Architecture
	Data Architecture
	Color Models
	Data Types and Palettes
	The Sequence and Order of Color Channels
	Coordinate Systems
	Image Regions of Interest
	Alpha (Opacity) Channel
	Scanline Alignment
	Image Dimensions

	Execution Architecture
	Handling Overflow and Underflow
	In-Place and Out-of-Place Operations

	Image Tiling
	Tile Size
	Call-backs
	ROI and Tiling
	In-Place Operations and Tiling

	Chapter 3 Error Handling
	Error-handling Functions
	Error
	GetErrStatus SetErrStatus
	GetErrMode SetErrMode
	ErrorStr
	RedirectError

	Error Macros
	Status Codes
	Error Handling Example
	Adding Your Own Error Handler

	Chapter 4 Image Creation and Access
	Image Header and Attributes
	Creating Images
	CreateImageHeader
	AllocateImage, AllocateImageFP
	DeallocateImage
	CloneImage
	Deallocate

	Setting Regions of Interest
	CreateROI
	DeleteROI
	SetROI

	Image Borders and Image Tiling
	SetBorderMode
	CreateTileInfo
	SetTileInfo
	DeleteTileInfo

	Memory Allocation Functions
	wMalloc
	iMalloc
	sMalloc
	dMalloc
	iplFree

	Image Data Exchange
	Set, SetFP
	Copy
	Exchange
	Convert
	PutPixel, GetPixel

	Working in the Windows DIB Environment
	TranslateDIB
	ConvertFromDIB
	ConvertFromDIBSep
	ConvertToDIB

	Chapter 5 Arithmetic and Logical Operations
	Monadic Arithmetic Operations
	AddS, AddSFP
	SubtractS, SubtractSFP
	MultiplyS, MultiplySFP
	MultiplySScale
	Square
	Abs

	Dyadic Arithmetic Operations
	Add
	Subtract
	Multiply
	MultiplyScale

	Monadic Logical Operations
	LShiftS
	RShiftS
	Not
	AndS
	OrS
	XorS

	Dyadic Logical Operations
	And
	Or
	Xor

	Image Compositing Based on Opacity
	AlphaComposite, AlphaCompositeC
	PreMultiplyAlpha

	Chapter 6 Image Filtering
	Linear Filters
	Blur
	CreateConvKernel, CreateConvKernelChar, CreateConvKernelFP
	GetConvKernel, GetConvKernelChar, GetConvKernelFP
	DeleteConvKernel, DeleteConvKernelFP
	Convolve2D, Convolve2DFP
	ConvolveSep2D
	FixedFilter

	Non-linear Filters
	MedianFilter
	MaxFilter
	MinFilter

	Chapter 7 Linear Image Transforms
	Fast Fourier Transform
	RealFft2D
	CcsFft2D

	Discrete Cosine Transform
	DCT2D

	Chapter 8 Morphological Operations
	Erode
	Dilate
	Open
	Close

	Chapter 9 Color Space Conversion
	Reducing the Image Bit Resolution
	ReduceBits

	Conversion from Bitonal to Gray Scale Images
	BitonalToGray

	Conversion of Absolute Colors to and from Palette Colors
	Conversion from Color to Gray Scale
	ColorToGray

	Conversion from Gray Scale to Color (Pseudo-color)
	GrayToColor

	Conversion of Color Models
	RGB2HSV
	HSV2RGB
	RGB2HLS
	HLS2RGB
	RGB2LUV
	LUV2RGB
	RGB2XYZ
	XYZ2RGB
	RGB2YCrCb
	YCrCb2RGB
	RGB2YUV
	YUV2RGB
	YCC2RGB

	Using Color-Twist Matrices
	CreateColorTwist
	SetColorTwist
	ApplyColorTwist
	DeleteColorTwist

	Chapter 10 Histogram and Thresholding Functions
	Thresholding
	Threshold

	Lookup Table (LUT) and Histogram Operations
	ConstrastStretch
	ComputeHisto
	HistoEqualize

	Chapter 11 Geometric Transforms
	Changing the Image Size
	Zoom
	Decimate
	Resize

	Changing the Image Orientation
	Rotate
	GetRotateShift
	Mirror

	Warping
	Shear
	WarpAffine
	GetAffineBound
	GetAffineQuad
	GetAffineTransform
	WarpBilinear, WarpBilinearQ
	GetBilinearBound
	GetBilinearQuad
	GetBilinearTransform
	WarpPerspective, WarpPerspectiveQ
	GetPerspectiveBound
	GetPerspectiveQuad
	GetPerspectiveTransform

	Chapter 12 Image Statistics Functions
	Image Norms
	Norm

	Image Moments
	Moments
	GetSpatialMoment
	GetCentralMoment
	GetNormalizedSpatialMoment
	GetNormalizedCentralMoment
	SpatialMoment
	CentralMoment
	NormalizedSpatialMoment
	NormalizedCentralMoment

	Appendix A Supported Image Attributes and Operation Modes
	Bibliography
	Glossary
	Index

