
Intel
Image Processing
Library
Reference Manual

Copyright © 1997, 1998, Intel Corporation
All Rights Reserved
Issued in U.S.A.
Order Number 663791-002

How to Use This Online Manual

Printing an Online File. Select Print from the File menu to print an online file. The dialog that opens
allows you to print full text, range of pages, or selection.
Viewing Multiple Online Manuals. Select Open from the File menu, and open a .PDF file you need.
Select Cascade from the Window menu to view multiple files.
Resizing the Bookmark Area. Drag the double-headed arrow that appears on the area’s border as
you pass over it.
Jumping to Topics. Throughout the text of this manual, you can jump to different topics by clicking on
keywords printed in green color, underlined style or on page numbers in a box.

To return to the page from which you jumped, use the icon in the tool bar. Try this example:

This software is briefly described in the Overview; see page 1-1.

If you click on the phrase printed in green color, underlined style, or on the page number, the Overview

opens.

Click to hide or show subtopics when the
bookmarks are shown.

Click to go to the previous page.

Double-click to jump to a topic when the
bookmarks are shown.

Click to go to the next page.

Click to display bookmarks. Click to go to the last page.

Click to display thumbnails. Click to return back to the previous view.
Use this button when you need to go back
after using the jump button (see below).

Click to close bookmark or thumbnail
view.

Click to go forward from the previous
view.

Click and use on the page to drag the
page in vertical direction.

Click to set 100% of the page view.

Click and drag to the page to magnify the
view.

Click to display the entire page within the
window.

Click and drag to the page to reduce the
view.

Click to fill the width of the window.

Click and drag the selection cursor to the
page.

Click to open a dialog to search for a word
or multiple words.

Click to go to the first page of the manual. Click jump button on manual pages to
jump to the related subjects. Use the
return back icon above to go back.

Intel Image Processing Library
Reference Manual
Order Number: 663791-002

World Wide Web: http://developer.intel.com

Revision Revision History Date

-001 First release. 07/97

-002 Documents Intel Image Processing Library release 2.0 06/98

http://developer.intel.com/design/perftool/perflibst/ipl/index.htm

Information in this document is provided in connection with Intel products. No license, express or implied, by
estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in
Intel’s Terms and Conditions of Sale or License Agreement for such products, Intel assumes no liability
whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products
including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any
patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life
saving, or life sustaining applications. Intel may make changes to specifications and product descriptions at
any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or
"undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or
incompatibilities arising from future changes to them.

Intel Architecture processors may contain design defects or errors known as errata which may cause the
product to deviate from published specifications. Current characterized errata are available on request.

Intel, the Intel logo, and Pentium are registered trademarks, and MMX is a trademark of Intel Corporation.

*Third-party brands and names are the property of their respective owners.

Copyright  1997, 1998, Intel Corporation. All Rights Reserved.

Contents

iii

Chapter 1 Overview 1-1
About This Software .. 1-1

Hardware and Software Requirements 1-1
About This Manual... 1-2

Manual Organization ... 1-2
Function Descriptions ... 1-4
Audience for This Manual ... 1-4
Online Version .. 1-4
Sources of Related Information 1-5

Notational Conventions ... 1-5
Font Conventions .. 1-5
Naming Conventions... 1-5
Function Name Conventions ... 1-6
X-Y Argument Order Convention 1-7

Chapter 2 Image Architecture 2-1
Data Architecture ... 2-1

Color Models... 2-1
Data Types and Palettes ... 2-2
The Sequence and Order of Color Channels 2-3
Coordinate Systems.. 2-4
Image Regions of Interest ... 2-4
Alpha (Opacity) Channel ... 2-7
Scanline Alignment ... 2-7
Image Dimensions .. 2-7

Execution Architecture... 2-8
Handling Overflow and Underflow 2-8
In-Place and Out-of-Place Operations 2-8

Intel Image Processing Library Reference Manual

iv

Image Tiling ... 2-8
Tile Size .. 2-9
Call-backs ... 2-9
ROI and Tiling ... 2-10
In-Place Operations and Tiling 2-10

Chapter 3 Error Handling 3-1
Error-handling Functions ... 3-2

Error .. 3-2
GetErrStatus ... 3-3
GetErrMode .. 3-4
ErrorStr ... 3-5
RedirectError... 3-6

Error Macros .. 3-7
Status Codes ... 3-8

Application Notes .. 3-9
Error Handling Example... 3-10
Adding Your Own Error Handler .. 3-13

Chapter 4 Image Creation and Access 4-1
Image Header and Attributes ... 4-3

Tiling Fields in the IplImage Structure 4-7
IplTileInfo Structure ... 4-7

Creating Images .. 4-8
CreateImageHeader.. 4-8
AllocateImage ... 4-12
AllocateImageFP... 4-12
DeallocateImage ... 4-14
CloneImage... 4-14
Deallocate ... 4-15

Contents

v

Setting Regions of Interest .. 4-16
CreateROI... 4-17
DeleteROI ... 4-17
SetROI .. 4-18

Image Borders and Image Tiling .. 4-19
SetBorderMode... 4-19
CreateTileInfo ... 4-21
SetTileInfo... 4-22
DeleteTileInfo.. 4-22

Memory Allocation Functions... 4-23
Malloc ... 4-23
wMalloc... 4-24
iMalloc... 4-24
sMalloc.. 4-25
dMalloc ... 4-26
Free .. 4-26

Image Data Exchange ... 4-27
Set .. 4-28
SetFP.. 4-28
Copy ... 4-29
Exchange.. 4-31
Convert ... 4-32
PutPixel... 4-34
GetPixel .. 4-34

Working in the Windows DIB Environment 4-36
TranslateDIB ... 4-38
ConvertFromDIB ... 4-41
ConvertFromDIBSep... 4-44
ConvertToDIB ... 4-45

Intel Image Processing Library Reference Manual

vi

Chapter 5 Arithmetic and Logical Operations 5-1
Monadic Arithmetic Operations .. 5-3

AddS ... 5-3
AddSFP... 5-3
SubtractS .. 5-4
SubtractSFP.. 5-4
MultiplyS ... 5-4
MultiplySFP... 5-4
MultiplySScale... 5-5
Square .. 5-6
Abs.. 5-6

Dyadic Arithmetic Operations .. 5-7
Add ... 5-7
Subtract... 5-8
Multiply.. 5-8
MultiplyScale ... 5-9

Monadic Logical Operations .. 5-10
LShiftS .. 5-10
RShiftS.. 5-11
Not .. 5-12
AndS ... 5-12
OrS.. 5-13
XorS.. 5-14

Dyadic Logical Operations ... 5-14
And ... 5-15
Or.. 5-15
Xor .. 5-16

Image Compositing Based on Opacity 5-16
Using Pre-multiplied Alpha Values 5-18
AlphaComposite.. 5-18
AlphaCompositeC ... 5-18
PreMultiplyAlpha ... 5-24

Contents

vii

Chapter 6 Image Filtering 6-1
Linear Filters.. 6-2

Blur ... 6-2
2D Convolution ... 6-3
CreateConvKernel .. 6-5
CreateConvKernelChar ... 6-5
CreateConvKernelFP .. 6-5
GetConvKernel ... 6-6
GetConvKernelChar.. 6-6
GetConvKernelFP... 6-6
DeleteConvKernel ... 6-8
DeleteConvKernelFP .. 6-8
Convolve2D .. 6-8
Convolve2DFP.. 6-8
ConvolveSep2D .. 6-11
FixedFilter ... 6-12

Non-linear Filters ... 6-14
MedianFilter .. 6-15
MaxFilter ... 6-17
MinFilter .. 6-18

Chapter 7 Linear Image Transforms 7-1
Fast Fourier Transform .. 7-1

Real-Complex Packed (RCPack2D) Format 7-1
RealFft2D.. 7-4
CcsFft2D... 7-7

Discrete Cosine Transform .. 7-8
DCT2D.. 7-8

Intel Image Processing Library Reference Manual

viii

Chapter 8 Morphological Operations 8-1
Erode .. 8-2
Dilate... 8-5
Open ... 8-6
Close... 8-7

Chapter 9 Color Space Conversion 9-1
Reducing the Image Bit Resolution 9-2

ReduceBits.. 9-3
Conversion from Bitonal to Gray Scale Images 9-4

BitonalToGray ... 9-5
Conversion of Absolute Colors to and from Palette Colors 9-5
Conversion from Color to Gray Scale 9-6

ColorToGray.. 9-6
Conversion from Gray Scale to Color (Pseudo-color) 9-7

GrayToColor.. 9-7
Conversion of Color Models... 9-8

Data ranges in the HLS and HSV Color Models 9-9
RGB2HSV... 9-10
HSV2RGB... 9-10
RGB2HLS ... 9-11
HLS2RGB ... 9-11
RGB2LUV ... 9-12
LUV2RGB ... 9-12
RGB2XYZ ... 9-13
XYZ2RGB ... 9-13
RGB2YCrCb.. 9-14
YCrCb2RGB.. 9-14
RGB2YUV... 9-15
YUV2RGB... 9-15
YCC2RGB... 9-16

Contents

ix

Using Color-Twist Matrices .. 9-16
CreateColorTwist .. 9-17
SetColorTwist.. 9-18
ApplyColorTwist .. 9-19
DeleteColorTwist... 9-20

Chapter 10 Histogram and Thresholding Functions 10-1
Thresholding.. 10-1

Threshold .. 10-2
Lookup Table (LUT) and Histogram Operations 10-4

The IplLUT Structure... 10-4
ContrastStretch ... 10-6
ComputeHisto ... 10-7
HistoEqualize .. 10-8

Chapter 11 Geometric Transforms 11-1
Changing the Image Size .. 11-2

Zoom... 11-3
Decimate... 11-4
Resize... 11-5

Changing the Image Orientation .. 11-6
Rotate ... 11-6
GetRotateShift .. 11-7
Mirror... 11-10

Warping ... 11-11
Shear .. 11-12
WarpAffine .. 11-13
GetAffineBound .. 11-14
GetAffineQuad .. 11-14
GetAffineTransform... 11-15
WarpBilinear ... 11-16
GetBilinearBound.. 11-18

Intel Image Processing Library Reference Manual

x

GetBilinearQuad ... 11-18
GetBilinearTransform .. 11-19
WarpPerspective... 11-20
GetPerspectiveBound ... 11-22
GetPerspectiveQuad ... 11-22
GetPerspectiveTransform ... 11-23

Chapter 12 Image Statistics Functions 12-1
Image Norms ... 12-2

Norm ... 12-2
Image Moments ... 12-5

Moments ... 12-6
GetSpatialMoment .. 12-6
GetCentralMoment .. 12-7
GetNormalizedSpatialMoment 12-7
GetNormalizedCentralMoment 12-8
SpatialMoment .. 12-9
CentralMoment.. 12-9
NormalizedSpatialMoment .. 12-10
NormalizedCentralMoment.. 12-11

Appendix A Supported Image Attributes and Operation Modes

Bibliography

Glossary

Index

Contents

xi

Tables
Table 2-1 Data Ordering .. 2-3
Table 3-1 iplError() Status Codes 3-8
Table 4-1 Image Creation, Data Exchange and

Windows DIB Environment Functions 4-1
Table 4-2 Image Header Attributes 4-3
Table 5-1 Image Arithmetic and Logical Operations 5-1
Table 5-2 Types of Image Compositing Operations 5-22
Table 6-1 Image Filtering Functions 6-1
Table 7-1 Linear Image Transform Functions 7-1
Table 7-2 FFT Output in RCPack2D Format for Even K.... 7-3
Table 7-3 FFT Output in RCPack2D Format for Odd K 7-3
Table 7-4 RealFFT2D Output Sample for K = 4, L = 4 7-3
Table 8-1 Morphological Operation Functions 8-1
Table 9-1 Color Space Conversion Functions 9-1
Table 9-2 Source and Resultant Image Data Types

for Reducing the Bit Resolution 9-4
Table 9-3 Source and Resultant Image Data Types

for Conversion from Color to Gray Scale 9-6
Table 9-4 Source and Resultant Image Data Types

for Conversion from Gray Scale to Color 9-8
Table 10-1 Histogram and Thresholding Functions 10-1
Table 11-1 Image Geometric Transform Functions 11-1
Table 12-1 Image Statistics Functions 12-1

Figures
Figure 2-1 Setting an ROI for Multi-Image Operations 2-6
Figure 4-1 RGB Image with a Rectangular ROI and a COI 4-5
Figure 8-1 Erosion in a Rectangular ROI 8-3

Intel Image Processing Library Reference Manual

xii

Examples
Example 3-1 Error Functions ... 3-10
Example 3-2 Output for the Error Function Program

(IPL_ErrModeParent) .. 3-12
Example 3-3 Output for the Error Function Program

(IPL_ErrModeParent) .. 3-12
Example 3-4 A Simple Error Handler 3-14
Example 4-1 Creating and Deleting an Image Header 4-10
Example 4-2 Allocating and Deallocating the Image Data 4-13
Example 4-3 Setting the Border Mode for an Image 4-21
Example 4-4 Allocating an Image and Setting Its

Pixel Values .. 4-28
Example 4-5 Copying Image Pixel Values 4-30
Example 4-6 Converting Images....................................... 4-33
Example 4-7 Using the Function iplGetPixel 4-35
Example 4-8 Translating a DIB Image Into an IplImage ... 4-39
Example 4-9 Converting a DIB Image Into an IplImage 4-42
Example 6-1 Computing the 2-dimensional Convolution .. 6-9
Example 6-2 Applying the Median Filter 6-16
Example 7-1 Computing the FFT of an Image 7-5
Example 7-2 Computing the DCT of an Image 7-9
Example 8-1 Code Used to Produce Erosion

in a Rectangular ROI .. 8-4
Example 10-1 Conversion to a Bitonal Image 10-3
Example 10-2 Computing and Equalizing the Image

Histogram.. 10-9
Example 11-1 Rotating an Image 11-8
Example 12-1 Computing the Norm of Pixel Values 12-4

Overview

1-1

1
This manual describes the structure, operation and functions of the Intel
Image Processing Library. This library supports many functions whose
performance can be significantly enhanced on the Intel Architecture (IA),
particularly the MMXTM technology.

The manual describes the library’s data and execution architecture and
provides detailed descriptions of the library functions.

This chapter introduces the Intel Image Processing Library and explains
the organization of this manual.

About This Software

The Intel Image Processing Library focuses on taking advantage of the
parallelism of the SIMD (single-instruction, multiple-data) instructions
that comprise the MMX technology. This technology improves the
performance of computationally intensive image processing functions.
Thus this library includes a set of functions whose performance
significantly improves when used with the Intel Architecture MMX
technology. The library does not support the reading and writing of a wide
variety of image file formats or the display of images.

Hardware and Software Requirements

The Intel Image Processing Library runs on personal computers that are
based on Intel Architecture processors and running Microsoft Windows*,
Windows 95, or Windows NT*. The library integrates into the customer’s
application or library written in C or C++.

Intel Image Processing Library Reference Manual

1-2

1
About This Manual

This manual provides a background of the image and execution
architecture of the Intel Image Processing Library as well as detailed
descriptions of the library functions. The functions are combined in
groups by their functionality. Each group of functions is described in a
separate chapter (chapters 3 through 11).

Manual Organization

This manual contains twelve chapters:

Chapter 1 “Overview.” Introduces Intel Image Processing
Library, explains the manual organization and
notational conventions.

Chapter 2 “Image Architecture.” Describes the supported
image architecture (color models, data types,
data order, and so on) as well as the execution
architecture and image tiling.

Chapter 3 “Error Handling.” Provides information on the
error-handling functions included with the
library. User-defined error handler is also
described.

Chapter 4 “Image Creation and Access.” Describes the
functions used to: create, set, and access image
attributes; set image border and tiling; and
allocate the memory for different data types. The
chapter also describes the functions that facilitate
operations in the window environment.

Chapter 5 “Image Arithmetic and Logical Operations.”
Describes image processing operations that
modify pixel values using simple arithmetic or
logical operations, as well as alpha-blending.

Overview

1-3

1
Chapter 6 “ Image Filtering.” Describes linear and non-

linear filtering operations that can be applied to
images.

Chapter 7 “Linear Image Transforms.” Describes the fast
Fourier transform (FFT) and Discrete Cosine
Transform (DCT) implemented in the library.

Chapter 8 “Morphological Operations.” Describes the
morphological operations supported in the
library: simple erosion, dilation, opening and
closing.

Chapter 9 “Color Space Conversion.” Describes the color
space conversions supported in the library; for
example, color reduction from high resolution
color to low resolution color; conversion from
Palette to Absolute color and vice versa;
conversion to different color models.

Chapter 10 “Histogram and Thresholding Functions.”
Describes functions that treat an image on a
pixel-by-pixel basis: operations that alter the
histogram of the image; contrast stretching,
histogram computation, histogram equalization
and thresholding.

Chapter 11 “Image Geometric Transforms.” Describes
geometric transforms: Zoom, Decimate, Rotate,
Mirror, Shear and several warping functions.

Chapter 12 “Image Statistics Functions.” Describes the
image statistics functions of the library.
Currently, image norm and moment functions are
supported.

The manual also includes an Appendix that lists supported image attributes
and operation modes, Glossary of terms, Bibliography, and Index.

Intel Image Processing Library Reference Manual

1-4

1
Function Descriptions

In Chapters 3 through 12, each function is introduced by name (without
the ipl prefix) and a brief description of its purpose. This is followed by
the function call sequence, more detailed description of the function’s
purpose, and definitions of its arguments. The following sections are
included in each function description:

Arguments Describes all the function arguments.

Discussion Defines the function and describes the operation
performed by the function. Often, code examples
and the equations the function implements are
included.

Return Value If present, describes a value indicating the result
of the function execution.

Application Notes If present, describe any special information
which application programmers or other users of
the function need to know.

See Also If present, lists the names of functions which
perform related tasks.

Audience for This Manual

The manual is intended for the developers of image processing
applications and image processing libraries. Both parts of the audience are
expected to be experienced in using C and to have a working knowledge
of the vocabulary and principles of image processing. The developers of
image processing software can use the Intel Image Processing Library
capabilities to improve performance on IA with MMX technology.

Online Version

This manual is available in an online hypertext format. To obtain a hard
copy of the manual, print the online file using the printing capability of
Adobe* Acrobat, the tool used for the online presentation of the document.

Overview

1-5

1
Sources of Related Information

For more information about computer graphics concepts and objects, refer
to the books and materials listed in the Bibliography. For the latest
information about the Intel Image Processing Library, such as new
releases, product announcements, updates, and online technical support,
check out our Web site at http://developer.intel.com.

Notational Conventions

In this manual, notational conventions include:

• Fonts used for distinction between the text and the code
• Naming conventions
• Function name conventions

Font Conventions

The following font conventions are used:

UPPERCASE COURIER Used in the text for constant identifiers;
for example, IPL_DEPTH_1U.

lowercase courier Mixed with the uppercase in function names
as in SetExecutionMode; also used for key
words in code examples; for example, in the
function call statement void iplSquare() .

lowercase mixed with
UpperCase Courier italic

Variables in arguments and parameters
discussion; for example, mode, dstImage.

Naming Conventions

The following data type conventions are used by the library:

• Constant identifiers are in uppercase; for example, IPL_SIDE_LEFT.
• All constant identifiers have the IPL prefix.
• All function names have the ipl prefix. In code examples, you can

distinguish the library interface functions from the application
functions by this prefix.

http://developer.intel.com/design/perftool/perflibst/ipl/

Intel Image Processing Library Reference Manual

1-6

1
NOTE. In this manual, the ipl prefix in function names is always used in
the code examples. In the text, this prefix is sometimes omitted.

• All image header structures have the Ipl prefix; for example,
IplImage, IplROI.

• Each new part of a function name starts with an uppercase character,
without underscore; for example, iplAlphaComposite .

Function Name Conventions

The function names in the library typically begin with the ipl prefix and
have the following general format:

ipl < action > < target > < mod >()

where

action indicates the core functionality; for example,
-Set-, -Create-, or -Convert-.

target indicates the area where image processing is
being enacted; for example, -ConvKernel or
-FromDIB.

In a number of cases, the target consists of two
or more words; for example, -ConvKernel in
the function CreateConvKernel. Some function
names consist of an action or target only; for
example, the functions Multiply or RealFft2D,
respectively.

mod The mod field is optional and indicates a
modification to the core functionality of a
function. For example, in the name
iplAlphaCompositeC() , C indicates that this
function is using constant alpha values.

Overview

1-7

1
X-Y Argument Order Convention

Where applicable, the Intel Image Processing Library functions use the
following order of arguments:

x, y (x first, then y)
nCols, nRows (columns first, then rows)
width, height (width first, then height).

This page is intentionally left blank. Needed for two-sided printing.

This page is intentionally left blank. Needed for two-sided printing.

Image Architecture

2-1

2
This chapter describes the data and execution architecture of the Intel
Image Processing Library. It introduces the library’s color models, data
types, coordinate systems, regions of interest, data alignment, in-place
and not-in-place execution, and image tiling.

Data Architecture

Any image in the Intel Image Processing Library has a header that
describes the image as a list of attributes and pointers to the data
associated with the image. Library functions use the image header to get
the format and characteristics of the image(s) passed to the functions.
Based on the information obtained from the header, the functions make
appropriate calls to set the data structures. Images can have different
organization of data. The library supports numerous data formats that use
different color models, data types, data order, and coordinate systems.

Color Models

The library image format supports the following color models:

• Monochrome or gray scale image (one color channel)
• Color image (3 or 4 color channels)
• Multi-spectral image (any number of channels).

Color models are defined by the number of channels and the colors they
contain. Examples of three-channel models are RGB, HSV, CMY, and
YCC. Examples of four-channel color models are CMYK and RGBA.

Image processing operations can be performed on one or all channels in
the image. The operations are performed without specific identification of
the colors, unless it is a certain color conversion operation where color
identification is required.

Intel Image Processing Library Reference Manual

2-2

2
The multi-spectral image (MSI) model is used for general purpose images.
It is used for any kind of multi-spectral data and any kind of image. For
example, the Fourier transform operation writes transform coefficients of
color or monochrome images to this modelone channel for each channel
in the input. The result can be viewed as an MSI image. An MSI image
can contain any number of color channels; they may even correspond to
invisible parts of the spectrum. The library functions do not need to
identify any specific MSI image channels.

Data Types and Palettes

The parameter that determines the image data type is the pixel depth in
bits. The data could be signed integer, unsigned integer, or floating-point.
The following data types are supported for various color models
(s = signed, u = unsigned, f = float):

Gray scale 1, 8s, 8u, 16s, 16u, and 32f bits per pixel

Color (three-channel) 8u and 16u bits per channel

Four-channel and MSI 8s, 8u, 16s, 16u, 32s, and 32f bits per channel.

The library supports only absolute color images in which each pixel is
represented by the channel intensities. For example, in an absolute color
24-bit RGB image, three bytes (24 bits) per pixel represent the three
channel intensities. LUT (lookup table) images, that is, palette color
images are not supported. You must convert palette images to absolute
color images for further processing by the library functions. There are
special functions for converting DIB palette images to absolute color
images.

Color images with 8, 16, or 32 bits per channel simply pack each channel,
respectively, into a byte, word, or doubleword. All channels within a given
image have the same data type.

Signed data (8s, 16s, or 32s) are used for storing the output of some image
processing operations; for example, this is the case for transforms such as
FFT. Unless specified otherwise, signed data cannot be used as input to
image processing operations.

Image Architecture

2-3

2
The Sequence and Order of Color Channels

Channel sequence corresponds to the order of the color channels in
absolute color images. For example, in an RGB image the channels could
be stored in the sequence RGB or in the sequence BGR.

NOTE. For functions that perform color space conversions or image
format conversions, the channel sequence information is required and
therefore must be provided. All other functions ignore channel sequence.

For images with pixel-oriented data, the channel sequence corresponds to
the color data order for each pixel. Data ordering corresponds to the way
the color data is arranged: by planes or by pixels. Table 2-1 lists the
orderings that are supported for planes and for pixels.

Table 2-1 Data Ordering

Data Ordering Description
RGB Example
(channel ordering = RGB)

Pixel-oriented All channels for each pixel
are clustered.

RGBRGBRGB (line 1)
RGBRGBRGB (line 2)
RGBRGBRGB (line 3)

Plane-oriented All image data for each
channel is contiguous
followed by the next
channel.

RRRRRRRRR (line 1)
RRRRRRRRR (line 2) R plane
RRRRRRRRR (line 3)

GGGGGGGGG (line 1)
GGGGGGGGG (line 2) G plane
GGGGGGGGG (line 3)
...

Intel Image Processing Library Reference Manual

2-4

2
Coordinate Systems

Two coordinate systems are supported by the library’s image format.

• The origin of the image is in the top left corner, the x values increase
from left to right, and y values increase from top to bottom.

• The origin of the image is in the bottom left corner, the x values
increase from left to right, and y values increase from the bottom to
the top.

Image Regions of Interest

A very important concept in the Intel Image Processing Library
architecture is an image’s region of interest (ROI). All image processing
functions can operate not only on entire images but also on image regions.

Depending on the processing needs, the following image regions can be
specified:

• Channel of interest (COI). A COI can be one or all channels of the
image. By default, unless the COI is changed by the SetROI()

function, processing will be carried out on all channels in the image.
• Rectangular region of interest (rectangular ROI). A rectangular

ROI is a portion of the image or, possibly, the entire image. By
default, unless changed by the SetROI() function, the entire image is
the rectangular region of interest.

• Mask region of interest (mask ROI). It is specified by another
(bitonal) image pointed to by the maskROI pointer of the IplImage
structure.
A mask ROI allows an application to determine on a pixel-by-pixel
basis whether to perform an operation. Pixels corresponding to zeros
in the mask are not read (if in a source image) or written (if in the
destination image). Pixels corresponding to 1’s in the mask are
processed normally.
The origin of the mask ROI is aligned to the origin of the rectangular
ROI if there is one, or the origin of the image.

An image can simultaneously have any combination of a rectangular ROI,
a mask ROI, and a COI. Operations are performed on the intersection of

Image Architecture

2-5

2
all applicable ROIs. For example, if an image has both types of ROI and a
COI, operations are performed only on the values of this COI, and only for
those pixels that belong to the intersection of mask ROI and rectangular
ROI.

Both the source and destination image can have a region of interest. In
such cases, operations will be performed on the intersection of the ROIs.
Thus, an image region of interest specifies some part of an image or the
entire image. Once set, the region information of the image remains the
same until changed by the function SetROI().

NOTE. Not all functions support mask ROI. For example, FFT functions
use only rectangular ROI and COI even if you specify a mask ROI.

Setting an ROI for Multi-Image Operations

Figure 2-1 illustrates image processing operations that take one or more
input images and store the results onto an output image. (Mask ROIs are
not set for the images in this figure.)

All images (input and output) in Figure 2-1 have rectangular ROIs that
specify either the entire image or specific regions set by the SetROI()
function. The first step is to align the rectangular ROIs of all the images so
that their top left corners coincide. The operation is, then, performed in the
rectangular region where all the images overlap. This scheme gives much
flexibility, effectively enabling translation of image data (even for equal-
size images) from one region of an input image to another region of an
output image.

To successfully perform an image processing operation, one of the
following conditions must be met for the channel of interest (COI):

• Each image (input and output) has one COI,
• Each image (input and output) has all channels included in the ROI

(COI = 0) and all images (input and output) have the same number of
channels (one or more).

Intel Image Processing Library Reference Manual

2-6

2
If one image (input or output) has one channel in its COI and another
image (input or output) has more than one channel included in its COI, an
error will occur.

Figure 2-1 Setting an ROI for Multi-Image Operations

Input image Output image

 ROI

 ROI

The processing
is performed in
the shaded area

Image Architecture

2-7

2
Alpha (Opacity) Channel

In addition to the color channels, an image can have one alpha channel,
also known as an opacity channel, which is mainly used for image
compositing operations (see “ Image Compositing Based on Opacity” in
Chapter 5). The alpha channel must be the last channel in the image.

The interpretation of operations on the alpha channel is usually different
from that for color channels. For example, adding a constant to the RGB
channels in an RGBA image would brighten the image, while adding a
constant to the A (alpha) channel would make the image more opaque.

For this reason, by default most functions ignore the alpha channel if one
is specified. The exceptions are the compositing functions, which use this
channel as the image’s opacity value, and geometric transform functions,
which treat it as any other channel.

To apply any other function to the alpha channel, in the IplImage structure
temporarily set the alphaChannel field to 0 before calling the function.

Scanline Alignment

Image row data (scanline) can be aligned on doubleword (32-bit) or
quadword (64-bit) boundaries. Each row is padded with zeros if required.
For maximum performance with MMX technology, it is important to have
the image data aligned on quadword boundaries.

Image Dimensions

There is no practical limit of the image size. A long integer is used for the
height and width of the image. This allows you to create images of such
sizes that are much beyond the hardware and OS constraints of today’s
PCs or workstations. For large image support, see also “Image Tiling.”

Intel Image Processing Library Reference Manual

2-8

2
Execution Architecture

Handling Overflow and Underflow

Overflow and underflow are handled in each image processing function.
The Image Processing Library uses saturation to prevent the pixel values
from potential overflow or underflow. Thus, when an overflow of a pixel
value is about to happen, this value is clamped to the maximum
permissible value (for example, 255 for an unsigned byte). Similarly,
when underflow of a value is about to happen, it is clamped to the
minimum permissible value, which is always zero for the case of unsigned
bytes.

In-Place and Out-of-Place Operations

Image processing operations in the library can be in-place or out-of-place
operations. With an in-place operation, the output image is one of the input
images modified (that is, the pointer to the output image is the same as the
pointer to the input one). With an out-of-place operation, the output image
is a new image, not the same as any of the input images. Not all functions
can perform in-place operations. See Appendix A to check if a partucular
function supports in-place operation.

Image Tiling

Tiling is a method of image representation in which the image is broken
up into smaller images, or tiles, to allow for complicated memory
management schemes. Conceptually, the whole image would be
reconstructed by arranging the individual tiles in a grid. But the intent of
the tiling mechanism is to allow only a few of these tiles within an image
to reside in memory at one time. The application provides an actual
memory location for a tile only when requested to do so.

Most functions can use tiled images in the same way as non-tiled, and
procuce the same results. However, there are some differences,

Image Architecture

2-9

2
particularly in the call-back requirement (see “Call-backs“ for more
information).

This section gives a short overview of image tiling in the Image
Processing Library. In Chapter 4 you will find more information about
tiling, namely, the descriptions of the TileInfo structure, the imageID
parameter, and the functions CreateTileInfo, SetTileInfo, and
DeleteTileInfo.

Tile Size

In the Image Processing Library, all tiles must be of the same size,
including those on the edge of an image. The tiles on the edge of an image
must contain valid data up to the border of the image; beyond that, the
pixels are ignored, and the border mode is used instead.

The size of the image tiles is contained within the IplTileInfo structure.
It is restricted to being an even multiple of 8 in each dimension. Typical
tile sizes are 32x32 and 64x64.

For functions that take more than one source image, either all source
images must be tiled with equally-sized tiles or they must all be non-tiled.
The source and destination images tiling and tile sizes need not be the
same.

Call-backs

For tiled images, the IplImage structure does not contain a pointer to
image data; therefore, functions operating on tiled images must acquire
data tile-by-tile. To do this, the library uses a system of call-backs, in
which the functions request pointers to individual tiles based on need.

The call-back system is implemented (by the library user) as a single
function, the prototype and behavior of which are specified below. When
called by the library, this function must provide or release one tile’s
worth of data. The function is specified to the library in the callBack

field of the IplTileInfo structure. The prototype is as follows:

Intel Image Processing Library Reference Manual

2-10

2
void (*IplCallBack) (const IplImage* img, int xIndex,

int yIndex, int mode);

where img is the header of the parent image;
xIndex and yIndex are the indices of the requested tile; they refer to the
tile number, not pixel number, and count from the origin at (0,0);
mode is one of the following:

 IPL_GET_TILE_TO_READ get a tile for reading;
the tile data must be returned in
img->tileInfo->tileData

and must not be changed;

 IPL_GET_TILE_TO_WRITE get a tile for writing;
the tile data must be returned in
img->tileInfo->tileData

and may be changed;
changes will be reflected in the image;

 IPL_RELEASE_TILE release tile; commit writes.

Memory pointers provided by a get function will not be used after the
corresponding release function has been called.

ROI and Tiling

The meaning and behavior of ROI for a tiled image are identical to those
for a non-tiled image. As with all coordinates in tiled images, the origin of
the ROI is offset from the origin of the image, not of any one tile.

In-Place Operations and Tiling

Many functions can perform in-place operations even with tiling; see
Appendix A to check whether this feature is supported for a particular
function. If the source and destination image pointers are not equal, no
support for source and destination overlap is provided.

Note that the presence of the IplROI structure does not affect this
restriction.

Error Handling

3-1

3
This chapter describes the error handling facility of the Image Processing
Library. The library functions report a variety of errors including bad
arguments and out-of-memory conditions. When a function detects an
error, instead of returning a status code, the function signals an error by
calling iplSetErrStatus() . This allows the error handling mechanism
to work separately from the normal flow of the image processing code.
Thus, the image processing code is cleaner and more compact as shown in
this example:

ColorTwist = iplSetColorTwist(data, scalingValue);

if(iplGetErrStatus()<0) // check for errors

The error handling system is hidden within the function
iplSetColorTwist() . As a result, this statement is uncluttered by error
handling code and closely resembles a mathematical formula.

Your application should assume that every library function call may result
in some error condition. The Image Processing Library performs extensive
error checks (for example, NULL pointers, out-of-range parameters,
corrupted states) for every library function.

Error macros are provided to simplify the coding for error checking and
reporting. You can modify the way your application handles errors by
calling iplRedirectError() with a pointer to your own error handling
function. For more information, see “Adding Your Own Error Handler”
later in this chapter. For even more flexibility, you can replace the whole
error handling facility with your own code. The source code of the default
error handling facility is provided.

The Image Processing Library does not process numerical exceptions (for
example, overflow, underflow, and division by zero). The underlying
floating point library or processor has the responsibility for catching and

Intel Image Processing Library Reference Manual

3-2

3
reporting these exceptions. A floating-point library is needed if a
processor that handles floating-point is not present. You can attach an
exception handler using an underlying floating-point library for your
application, if your system supports such a library.

Error-handling Functions

The following sections describe the error functions in the Image
Processing Library.

Error
Performs basic error
handling.

void iplError(IPLStatus status, const char *func,
 const char *context);

status Code that indicates the type of error (see
Table 3-1, “ iplError() Status Codes”.)

func Name of the function where the error occurred.

context Additional information about the context in
which the error occurred. If the value of
context is NULL or empty, this string will not
appear in the error message.

Discussion

The iplError() function must be called whenever any of the library
functions encounters an error. The actual error reporting is handled
differently, depending on whether the program is running in Windows
mode or in console mode. Within each invocation mode, you can set the

Error Handling

3-3

3
error mode flag to alter the behavior of the iplError() function. For
more information on the defined error modes, see “SetErrMode” section.

To simplify the coding for error checking and reporting, the error handling
system of the Image Processing Library supports a set of error macros. See
“Error Macros” for a detailed description of the error handling macros.

The iplError() function calls the default error reporting function. You
can change the default error reporting function by calling
iplRedirectError(). For more information, see the description of
iplRedirectError.

GetErrStatus
SetErrStatus
Gets and sets the error codes
that describe the type of
error being reported.

typedef int IPLStatus;

IPLStatus iplGetErrStatus();

void iplSetErrStatus(IPLStatus status);

status Code that indicates the type of error
(see Table 3-1, “iplError() Status Codes”).

Discussion

The iplGetErrStatus() and iplSetErrStatus() functions get and set
the error status codes that describe the type of error being reported. See
“Status Codes” for descriptions of each of the error status codes.

Intel Image Processing Library Reference Manual

3-4

3
GetErrMode
SetErrMode
Gets and sets the error
modes that describe how an
error is processed.

#define IPL_ErrModeLeaf 0
#define IPL_ErrModeParent 1
#define IPL_ErrModeSilent 2
int iplGetErrMode();
void iplSetErrMode(int errMode);

errMode Indicates how errors will be processed. The
possible values for errMode are
IPL_ErrModeLeaf, IPL_ErrModeParent , or
IPL_ErrModeSilent .

Discussion

NOTE. This section describes how the default error handler handles
errors for applications which run in console mode. If your application has
a custom error handler, errors will be processed differently than
described below

The iplSetErrMode() function sets the error modes that describe how
errors are processed. The defined error modes are IPL_ErrModeLeaf,
IPL_ErrModeParent , and IPL_ErrModeSilent .

If you specify IPL_ErrModeLeaf, errors are processed in the “leaves” of
the function call tree. The iplError() function (in console mode) prints
an error message describing status, func, and context. It then
terminates the program.

Error Handling

3-5

3
If you specify IPL_ErrModeParent , errors are processed in the “parents”
of the function call tree. When iplError() is called as the result of
detecting an error, an error message will print, but the program will not
terminate. Each time a function calls another function, it must check to see
if an error has occurred. When an error occurs, the function should call
iplError() specifying IPL_StsBackTrace, and then return. The macro
IPL_ERRCHK() may be used to perform both the error check and back-
trace call. This passes the error “up” the function call tree until eventually
some parent function (possibly main()) detects the error and terminates
the program.

IPL_ErrModeSilent is similar to IPL_ErrModeParent, except that error
messages are not printed.

IPL_ErrModeLeaf is the default, and is the simplest method of processing
errors. IPL_ErrModeParent requires more programming effort, but
provides more detailed information about where and why an error
occurred. All of the functions in the library support both options (that is,
they use IPL_ERRCHK() after function calls). If an application uses the
IPL_ErrModeParent option, it is essential that it check for errors after all
library functions that it calls.

The status code of the last detected error is stored into the global variable
IplLastStatus and can be returned by calling iplGetErrStatus().
The value of this variable may be used by the application during the back-
trace process to determine what type of error initiated the back trace.

ErrorStr
Translates an error or status code
into a textual description.

const char* iplErrorStr(IPLStatus status);

status Code that indicates the type of error
(see Table 3-1, “iplError() Status Codes”).

Intel Image Processing Library Reference Manual

3-6

3
Discussion

The function iplErrorStr() returns a short string describing status.
Use this function to produce error messages for users. The returned
pointer is a pointer to an internal static buffer that may be overwritten on
the next call to iplErrorStr().

RedirectError
Assigns a new error handler
to call when an error occurs.

IPLErrCallBack iplRedirectError(IPLErrCallBack func);

func Pointer to the function that will be called when
an error occurs.

Discussion

The iplRedirectError() function assigns a new function to be called
when an error occurs in the Image Processing Library. If func is NULL,
iplRedirectError() installs the library’s default error handler.

The return value of iplRedirectError() is a pointer to the previously
assigned error handling function.

For the definition of the function typedef IPLErrCallBack, see the
include file iplerror.h. See “Adding Your Own Error Handler” for
more information on the iplRedirectError() function.

Error Handling

3-7

3
Error Macros

The error macros associated with the iplError() function are described
below.

#define IPL_ERROR(status, func, context) \
 iplError((status),(func),(context);

#define IPL_ERRCHK(func, context)\
 ((iplGetErrStatus()>=0) ? IPL_StsOk \

: IPL_ERROR(IPL_StsBackTrace,(func),(context)))

#define IPL_ASSERT(expr, func, context)\
 ((expr) ? IPL_StsOk\

: IPL_ERROR(IPL_StsInternal,(func),(context)))

#define IPL_RSTERR() (iplSetErrStatus(IPL_StsOk))

context Provides additional information about the context in
which the error has occurred. If the value of
context is NULL or empty, this string does not
appear in the error message.

expr An expression that checks for an error condition
and returns FALSE if an error has occurred.

func Name of the function where the error occurred.

status Code that indicates the type of error (see Table 3-1,
“iplError() Status Codes.”)

Discussion

The IPL_ASSERT() macro checks for the error condition expr and sets
the error status IPL_StsInternal if the error occurred.

The IPL_ERRCHK() macro checks to see if an error has occurred by
checking the error status. If an error has occurred, IPL_ERRCHK() creates
an error back trace message and returns a non-zero value. This macro
should normally be used after any call to a function that might have
signaled an error.

Intel Image Processing Library Reference Manual

3-8

3
The IPL_ERROR() macro simply calls the iplError() function by
default. This macro is used by other error macros. By changing
IPL_ERROR() you can modify the error reporting behavior without
changing a single line of source code.

The IPL_RSTERR() macro resets the error status to IPL_StsOk, thus
clearing any error condition. This macro should be used by an application
when it decides to ignore an error condition.

Status Codes

Some of the status codes used by the library are listed in Table 3-1. Status
codes are integers, not an enumerated type. This allows an application to
extend the set of status codes beyond those used by the library itself.
Negative codes indicate errors, while non-negative codes indicate success.

Table 3-1 iplError() Status Codes

Status Code Value Description

IPL_StsOk 0 No error. The iplError() function does
nothing if called with this status code.

IPL_StsBackTrace -1 Implements a back-trace of the function
calls that lead to an error. If IPL_ERRCHK()
detects that a function call resulted in an
error, it calls IPL_ERROR() with this status
code to provide further context information
for the user.

IPL_StsError -2 An error of unknown origin, or of an origin
not correctly described by the other error
codes.

IPL_StsInternal -3 An internal “consistency” error, often the
result of a corrupted state structure. These
errors are typically the result of a failed
assertion.

 continued +

Error Handling

3-9

3
Table 3-1 iplError() Status Codes (continued)

Status Code Value Description

IPL_StsNoMem -4 A function attempted to allocate memory
using malloc() or a related function and
was unsuccessful. The message context
indicates the intended use of the memory.

IPL_StsBadArg -5 One of the arguments passed to the
function is invalid. The message context
indicates which argument and why.

IPL_StsBadFunc -6 The function is not supported by the
implementation, or the particular operation
implied by the given arguments is not
supported.

IPL_StsNoConv -7 An iterative convergence algorithm failed to
converge within a reasonable number of
iterations.

Application Notes

The variable IplLastStatus records the status of the last error reported.
Its value is initially IPL_StsOk. The value of IplLastStatus is not
explicitly set by the library function detecting an error. Instead, it is set by
iplSetErrStatus() .

If the application decides to ignore an error, it should reset
IplLastStatus back to IPL_StsOk (see IPL_RSTERR() under “Error
Macros”). An application-supplied error-handling function must update
IplLastStatus correctly; otherwise the Image Processing Library might
fail. This is because the macro IPL_ERRCHK(), which is used internally to
the library, refers to the value of this variable.

Intel Image Processing Library Reference Manual

3-10

3
Error Handling Example

The following example describes the default error handling for a console
application. In the example program, test.c, assume that the function
libFuncB() represents a library function such as ipl?AddS(), and the
function libFuncD() represents a function that is called internally to the
library. In this scenario, main() and appFuncA() represent application
code.

The value of the error mode is set to IPL_ErrModeParent . The
IPL_ErrModeParent option produces a more detailed account of the
error conditions.

Example 3-1 Error Functions

/* application main function */

main() {

 iplSetErrMode(IPL_ErrModeParent);

 appFuncA(5, 45, 1.0);

 if (IPL_ERRCHK("main","compute something")) exit(1);

 return 0;
}

/* application subroutine */

void appFuncA(int order1, int order2, double a) {

 libFuncB(a, order1);
 if (IPL_ERRCHK("appFuncA","compute using order1")) return;

 libFuncB(a, order2);
 if (IPL_ERRCHK("appFuncA","compute using order2")) return;

}
 /* do some more work */

continued +

Error Handling

3-11

3
Example 3-1 Error Functions (continued)

/* library function */

void libFuncB(double a, int order) {

 float *vec;

 if (order > 31) {

 IPL_ERROR(IPL_StsBadArg, "libFuncB",
 "order must be less than or equal to 31");

 return;

 }

 if ((vec = libFuncD(a, order)) == NULL) {

 IPL_ERRCHK("libFuncB", "compute using a");

 return;

 }

/* code to do some real work goes here */

 free(vec);

} // next: library function called internally

double *libFuncD(double a, int order) {

 double *vec;

 if ((vec=(double*)malloc(order*sizeof(double))) == NULL) {

 IPL_ERROR(IPL_StsNoMem, "libFuncD",
 "allocating a vector of doubles");
 return NULL;

 }

 /* do something with vec */

return vec;

}

Intel Image Processing Library Reference Manual

3-12

3
When the program is run, it produces the output illustrated in Example 3-2.

Example 3-2 Output for the Error Function Program (IPL_ErrModeParent)

IPL Library Error: Invalid argument in function libFuncB: order must
be less than or equal to 31

called from function appFuncA: compute using order2

called from function main: compute something

If the program runs with the IPL_ErrModeLeaf option instead of
IPL_ErrModeParent , only the first line of the above output is produced
before the program terminated.

If the program in Example 3-1 runs out of heap memory while using the
IPL_ErrModeParent option, then the output illustrated in Example 3-3 is
produced.

Example 3-3 Output for the Error Function Program (IPL_ErrModeParent)

IPL Library Error: Out of memory in function libFuncD: allocating a
vector of doubles

called from function libFuncB: compute using a

called from function appFuncA: compute using order1

called from function main[]: compute something

Again, if the program is run with the IPL_ErrModeLeaf option instead of
IPL_ErrModeParent , only the first line of the output is produced.

Error Handling

3-13

3
Adding Your Own Error Handler

The Image Processing Library allows you to define your own error
handler. User-defined error handlers are useful if you want your
application to send error messages to a destination other than the standard
error output stream. For example, you can choose to send error messages
to a dialog box if your application is running under a Windows system or
you can choose to send error messages to a special log file.

There are two methods of adding your own error handler. In the first
method, you can replace the iplError() function or the complete error
handling library with your own code. Note that this method can only be
used at link time.

In the second method, you can use the iplRedirectError() function to
replace the error handler at run time. The steps below describe how to
create your own error handler and how to use the iplRedirectError()
function to redirect error reporting.

1. Define a function with the function prototype, IPLErrCallBack, as
defined by the Image Processing Library.

2. Your application should then call the iplRedirectError() function
to redirect error reporting for your own function. All subsequent calls
to iplError() will call your own error handler.

3. To redirect the error handling back to the default handler, simply call
iplRedirectError() with a NULL pointer.

Example 3-4 illustrates a user-defined error handler function,
ownError(), which simply prints an error message constructed from its
arguments and exits.

Intel Image Processing Library Reference Manual

3-14

3
Example 3-4 A Simple Error Handler

IPLStatus ownError(IPLStatus status, const char *func,

 const char *context, const char *file, int line);

{

 fprintf(stderr, "IPL Library error: %s, ", iplErrorStr(status));

 fprintf(stderr, "function %s, ", func ? func : "<unknown>");

 if (line > 0) fprintf(stderr, "line %d, ", line);

 if (file != NULL) fprintf(stderr, "file %s, ", file);

 if (context) fprintf(stderr, "context %s\n", context);

 IplSetErrStatus(status);

 exit(1);

}

main () {

 extern IPLErrCallBack ownError;

/* Redirect errors to your own error handler */

 iplRedirectError(ownError);

/* Redirect errors back to the default error handler */

 iplRedirectError(NULL);

}

Image Creation and Access

4-1

4
This chapter describes the functions that provide the following
functionalities:

• Creating and accessing attributes of images (both tiled and non-tiled)
• Allocating memory for data of required type (see also the functions

CreateConvKernel in Chapter 6 and CreateColorTwist in Chapter 9)
• Manipulating the image
• Working in the Windows DIB (device-independent bitmap)

environment.

Table 4-1 Image Creation, Data Exchange and Windows DIB Functions

Group Function Name Description

Creating
Images

iplCreateImageHeader Creates an image header according to
the specified attributes.

iplCloneImage Creates a copy of an image.

iplAllocateImage
iplAllocateImageFP

Allocates memory for image data.

iplDeallocateImage Frees memory for image data pointed
to in the image header.

iplCreateROI Creates a region of interest (ROI)
header with specified attributes.

iplDeallocate Deallocates header attributes or
image data or ROI or all of the above.

iplSetROI Sets a region of interest for an image.

iplSetBorderMode Sets the mode for handling the border
pixels.

iplCreateTileInfo Creates the IplTileInfo structure.

iplSetTileInfo Sets the tiling information.

iplDeleteTileInfo Deletes the IplTileInfo structure.

 continued +

Intel Image Processing Library Reference Manual

4-2

4
Table 4-1 Image Creation, Data Exchange and Windows DIB Environment

Functions (continued)

Group Function Name Description

Memory
Allocation

iplMalloc Allocates memory aligned to 8 bytes
boundary.

iplwMalloc Allocates memory aligned to 8 bytes
boundary for 16-bit words.

ipliMalloc Allocates memory aligned to 8 bytes
boundary 32-bit double words.

iplsMalloc Allocates memory aligned to 8 bytes
boundary for single float elements.

ipldMalloc Allocates memory aligned to 8 bytes
boundary for double float elements.

iplFree Frees memory allocated by the
ipl?Malloc functions.

Data
Exchange

iplSet
iplSetFP

Sets a constant value for all pixels in
the image.

iplPutPixel
iplGetPixel

Sets/retrieves the value of the pixel
with coordinates (x, y).

iplCopy Copies image data from one image to
another.

iplExchange Exchanges image data between two
images.

iplConvert Converts images based on the input
and output image requirements.

Windows
DIB

iplTranslateDIB Translates a DIB image into an
IplImage structure.

iplConvertFromDIB Converts a DIB image to an
IplImage with specified attributes.

iplConvertFromDIBSep Same as above, but uses separate
parameters for DIB header and data.

iplConvertToDIB Converts an IplImage to a DIB
image with specified attributes.

Image Creation and Access

4-3

4
Image Header and Attributes

The Image Processing Library functions operate on a single format for
images in memory. This format consists of a header of type IPLImage
containing the information for all image attributes. The header also
contains a pointer to the image data. (See the attributes description in
Chapter 2, section “Data Architecture.”) The values that these attributes
can assume are listed in Table 4-2.

Table 4-2 Image Header Attributes

Description Value
Corresponding
DIB Attribute

Size of the IplImage
header (for internal use)

nSize in bytes

Image Header Revision
ID (internal use)

ID number

Number of Channels 1 to N
(including alpha channel, if any)

1 (Gray)
3 (RGB)
4 (RGBA)

Alpha channel number 0 (if not present)
N

4 (RGBA)

Bits per channel

Gray only
All images: color, gray,
and multi-spectral

(The signed data is used
only as output for some
image output operations.)

IPL_DEPTH_1U (1-bit)
IPL_DEPTH_8U (8-bit unsigned)

IPL_DEPTH_8S (8-bit signed)
IPL_DEPTH_16U (16-bit unsign.)
IPL_DEPTH_16S (16-bit signed)
IPL_DEPTH_32S (32-bit signed)
IPL_DEPTH_32F (32-bit float)

Supported
Supported
 (RGB, RGBA)
Not supported
Not supported
Not supported
Not supported
Not supported

Color model 4 character string: “Gray”, “RGB,”
“RGBA”, “CMYK,” etc.

Not supported.
Implicitly, RGB
color model.

 continued +

Intel Image Processing Library Reference Manual

4-4

4
Table 4-2 Image Header Attributes (continued)

Description Value
Corresponding
DIB Attribute

Channel sequence 4-character string. Can be “G”,
“GRAY”, “BGR”, “BGRA”, “RGB”,
“RGBA”, “HSV”, “HLS”, “XYZ”,
“YUV”, “YCr”, “YCC”, or “LUV”.

Not supported
(implicitly BGR
for RGB images.)

Data Ordering IPL_DATA_ORDER_PIXEL
IPL_DATA_ORDER_PLANE

Supported
Not supported

Origin IPL_ORIGIN_TL (top left corner)
IPL_ORIGIN_BL (bottom left)

Supported
Supported

Scanline alignment IPL_ALIGN_DWORD
IPL_ALIGN_QWORD

Supported
Not Supported

Image size: height
 width

Integer
Integer

m
n

Region of interest (ROI) Pointer to structure Not supported

Mask Pointer to another IplImage Not supported

Image size (bytes) Integer

Image data pointer Pointer to data

Aligned width Width (row length in bytes) of
image padded for alignment

Border mode of the top,
bottom, left, and right
sides of the image.

BorderMode [4]

Border constant on the
top, bottom, left, and
right side of the image.

BorderConst [4]

Original Image Pointer to original image data

Image ID For application use only; ignored by the library.

Tiling information Pointer to IplTileInfo structure

Image Creation and Access

4-5

4
Figure 4-1 presents a graphical depiction of an RGB image with a
rectangular ROI and a COI.

Figure 4-1 RGB Image with a Rectangular ROI and a COI

 IplImage

IplROI* IplROI
 imageData* Int COI

 plane pixel Rectangular ROI: xOffset
yOffset

 RGBRGB… height
 width

 select
 plane(s)

 R
 G
 B

 R/G/B

OSD05559

Intel Image Processing Library Reference Manual

4-6

4
The C language definition for the IPLImage structure is given below.

IplImage Structure Definition

typedef struct _IplImage {

IPL.H

 int nSize /* size of iplImage struct */

 int ID /* image header version */

 int nChannels;

 int alphaChannel;

 int depth; /* pixel depth in bits */

 char colorModel[4];

 char channelSeq[4];

 int dataOrder;

 int origin;

 int align; /* 4- or 8-byte align */

 int width;

 int height;

 struct _IplROI *roi; /* pointer to ROI if any */

 struct _IplImage *maskROI; /*pointer to mask ROI if any */

 void *imageId; /* use of the application */

 struct _IplTileInfo *tileInfo; /* contains information
 on tiling */

 int imageSize; /* useful size in bytes */

 char *imageData; /* pointer to aligned image */

 int widthStep; /* size of aligned line in bytes */

 int BorderMode[4]; /* the top, bottom, left,
 and right border mode */

 int BorderConst[4]; /* constants for the top, bottom,
 left, and right border */

 char *imageDataOrigin; /* ptr to full, nonaligned image */

} IplImage;

Image Creation and Access

4-7

4
Tiling Fields in the IplImage Structure

Image tiling in the Image Processing Library was described in Chapter 2.
The following fields from the IplImage structure are used in tiled images:

struct IplImage {

 ...

 void* imageId;

 IplTileInfo *tileInfo;

 ...

}

The imageId field can be used by the application, and is ignored by the
library. The tileInfo field contains information on tiling. It is described
in the next section.

The library expects either the tileInfo pointer or the imageData pointer
to be NULL. If the former is NULL, the image is not tiled; if the latter is
NULL, the image is tiled. It is an error condition if both or neither of the
two are NULL.

IplTileInfo Structure

This structure provides information for image tiling:

typedef struct _IplTileInfo

{

 IplCallBack callBack;

 void *id;

 char* tileData

 int width, height;

} IplTileInfo;

Here callBack is the call-back function (see “Call-backs” in Chapter 2);
id is an additional identification field; width and height are the tile sizes
for the image; and tileData is the field which the call-back function
should point to the requested tile.

Intel Image Processing Library Reference Manual

4-8

4
Creating Images

There are several ways of creating a new image:

• Construct an IplImage header by setting the attributes to appropriate
values, then call the function iplAllocateImage() to allocate
memory for the image or set the image data pointer to image data
(in a compatible format) that already exists.

• Call iplCreateImageHeader() to create an IplImage header, then
call the function iplAllocateImage() to allocate memory for the
image or set the image data pointer to existing image data.

• Convert a DIB image to an IplImage using the functions
iplTranslateDIB() or iplConvertFromDIB() . See the section
“Working in the Windows DIB Environment.”

• Create a copy of existing image by calling iplCloneImage().

CreateImageHeader
Creates an IplImage
header according to the
specified attributes.

IplImage* iplCreateImageHeader(int nChannels,
int alphaChannel, int depth, char* colorModel,
char* channelSeq, int dataOrder, int origin, int align,
int width, int height, IplROI* roi, IplImage* maskROI,
void* imageID, IplTileInfo* tileInfo);

nChannels Number of channels in the image.

alphaChannel Alpha channel number (0 if there is no alpha
channel in the image).

depth Bit depth of pixels. Can be one of
IPL_DEPTH_1U, IPL_DEPTH_8U,
IPL_DEPTH_8S, IPL_DEPTH_16U,
IPL_DEPTH_16S, IPL_DEPTH_32S, or
IPL_DEPTH_32F. See Table 4-2.

Image Creation and Access

4-9

4
colorModel A four-character string describing the color

model: “RGB”, “GRAY”, “HLS” etc.

channelSeq The sequence of color channels; can be one of
the following: “G”, “GRAY”, “BGR”, “BGRA”,
“RGB”, “RGBA”, “HSV”, “HLS”, “XYZ”,
“YUV”, “YCr”, “YCC”, “LUV”. The library
uses this information only for image type
conversions of known image channel formats.

dataOrder IPL_DATA_ORDER_PIXEL or
IPL_DATA_ORDER_PLANE .

origin The origin of the image. Can be IPL_ORIGIN_TL

or IPL_ORIGIN_BL.

align Alignment of image data. Can be
IPL_ALIGN_DWORD or
IPL_ALIGN_QWORD.

height Height of the image in pixels.

width Width of the image in pixels.

roi Pointer to an ROI (region of interest) structure.
This argument can be NULL, which implies that a
region of interest comprises all channels and the
entire image area.

maskROI Pointer to the header of another image that
specifies the mask ROI. This argument can be
NULL, which indicates that no mask ROI is used.
A pixel is processed if the corresponding mask
pixel is 1, and is not processed if the mask pixel
is 0. The maskROI field of the mask image’s
header is ignored.

imageID The image ID (field reserved for the use of the
application to identify the image).

tileInfo The pointer to the IplTileInfo structure
containing information used for image tiling.

Intel Image Processing Library Reference Manual

4-10

4
Discussion

The function iplCreateImageHeader() creates an IplImage header
according to the specified attributes; see Example 4.1. The image data
pointer is set to NULL; no memory for image data is allocated.

Example 4-1 Creating and Deleting an Image Header

int example41(void) {

 IplImage *imgh = iplCreateImageHeader(

 3, // number of channels

 0, // no alpha channel

 IPL_DEPTH_8U, // data of byte type

 "RGB", // color model

 "BGR", // color order

 IPL_DATA_ORDER_PIXEL, // channel arrangement

 IPL_ORIGIN_TL, // top left orientation

 IPL_ALIGN_QWORD, // 8 bytes align

 150, // image width

 100, // image height

 NULL, // no ROI

 NULL, // no mask ROI

 NULL, // no image ID

 NULL); // not tiled

 if(NULL == imgh) return 0;

 iplDeallocate(imgh, IPL_IMAGE_HEADER);

 return IPL_StsOk == iplGetErrStatus();

}

The function iplCreateImageHeader() sets the image size attribute in
the header to zero. To allocate memory for image data, call the function
iplAllocateImage() .

Image Creation and Access

4-11

4
The mask region of interest specified by the maskROI pointer is discussed
in the section Image Regions of Interest (Chapter 2). The intersection of
aligned rectangular ROI(s) and maskROI(s) for all source images and the
destination image forms the actual region to be processed.

For geometric transformation functions, such as Zoom() or Mirror(), the
shape and orientation of rectangular ROIs and mask ROIs of the source
image changes according to the function. In these cases, the functions
write the results of image processing to the intersection of the destination
ROI and the transformed source ROI.

For more information about geometric transformation, see Chapter 11.

Return Value

The newly constructed IplImage header.

Intel Image Processing Library Reference Manual

4-12

4
AllocateImage, AllocateImageFP
Allocates memory for image
data according to the
specified header.

void iplAllocateImage(IplImage* image, int doFill,
int fillValue);

void iplAllocateImageFP(IplImage* image, int doFill,
float fillValue);

image An image header with a NULL image data
pointer. The pointer will be set to newly
allocated image data memory after calling this
function.

doFill A flag: if zero, indicates that the pixel data
should not be initialized by fillValue.

fillValue The initial value for pixel data.

Discussion

These functions are used to allocate image data on the basis of a specified
image header. The header must be properly constructed before calling this
function. Note that IPL_DEPTH_32F is the only admissible depth for
IplImage passed into iplAllocateImageFP() ; this depth must not be
used for iplAllocateImage() .

Memory is allocated for the image data according to the attributes
specified in the image header; see Example 4-2. The image data pointer
will then point to the allocated memory. It is highly preferable, for
efficiency considerations, that the scanline alignment attribute (argument
align) in the image header be set to IPL_ALIGN_QWORD. This will force
the image data to be aligned on a quadword (64-bit) memory boundary.

The functions set the image size attribute in the header to the number of
bytes allocated for the image.

Image Creation and Access

4-13

4
Example 4-2 Allocating and Deallocating the Image Data

int example42(void) {

 IplImage img;

 char colorModel[4] = "RGB";

 char channelSeq[4] = "BGR";

 img.nSize = sizeof(IplImage);

 img.nChannels = 3; // number of channels

 img.alphaChannel = 0; // no alpha channel

 img.depth = IPL_DEPTH_16U; // data of ushort type

 img.dataOrder = IPL_DATA_ORDER_PIXEL;

 img.origin = IPL_ORIGIN_TL; // top left

 img.align = IPL_ALIGN_QWORD; // align

 img.width = 100;

 img.height = 100;

 img.roi = NULL; // no ROI

 img.maskROI = NULL; // no mask ROI

 img.tileInfo = NULL; // not tiled

 // The following fields will be set by the function

 img.widthStep = 0;

 img.imageSize = 0;

 img.imageData = NULL;

 img.imageDataOrigin = NULL;

 ((int)img.colorModel) =* *((int*)colorModel);

 ((int)img.channelSeq) =* *((int*)channelSeq);

 iplAllocateImage(&img, 0, 0); // allocate image data

 if(NULL == img.imageData) return 0; // check result

 iplDeallocate(&img, IPL_IMAGE_DATA);

 // deallocate image data only

 return Ipl_StsOk == iplGetErrStatus();

}

Intel Image Processing Library Reference Manual

4-14

4
DeallocateImage
Deallocates (frees) memory
for image data pointed to in
the image header.

void iplDeallocateImage(IplImage* image)

image An image header with a pointer to the allocated
image data memory. The image data pointer will
be set to NULL after this function executes.

Discussion

The function iplDeallocateImage() is used to free image data memory
pointed to by the imageData member of the image header. The respective
pointer to image data or ROI data is set to NULL after the memory is freed
up.

CloneImage
Creates a copy of an image.

IplImage* iplCloneImage (const IplImage* image);

image Header of the image to be cloned.

Discussion

The function creates a copy of image, including its data and ROI. The
imageID, maskROI, and tileInfo fields of the copy are set to NULL.

Return Value

A pointer to the created copy of image. If the source image is tiled, the
function creates a non-tiled image and does not copy the image data.

Image Creation and Access

4-15

4
Deallocate
Deallocates or frees memory
for image header or data or
mask ROI or rectangular
ROI or all four.

void iplDeallocate (IplImage* image, int flag)

image An image header with a pointer to allocated
image data memory. The image data pointer will
be set to NULL after this function executes.

flag Flag indicating what memory area to free:

 IPL_IMAGE_HEADER Free header structure.

 IPL_IMAGE_IMAGE Free image data, set pointer to NULL.

 IPL_IMAGE_ROI Free image ROI, set pointer to NULL.

 IPL_IMAGE_MASK Free mask image data, set pointer to NULL.

 IPL_IMAGE_ALL Free header, image data, mask ROI and
rectangular ROI.

 IPL_IMAGE_ALL_WITHOUT_MASK

Free header, image data, and rectangular ROI.

Discussion

The function iplDeallocate() is used to free memory allocated for
header structure, image data, ROI data, mask image data, or all four. The
respective pointer is set to NULL after the memory is freed up.

Intel Image Processing Library Reference Manual

4-16

4
Setting Regions of Interest

To set a region of interest, the function iplSetROI() uses a ROI structure
IplROI presented below. The IplROI member of the image header must
point to this IplROI structure to be effective. This can be done by a simple
assignment. The application may choose to construct the ROI structure
explicitly without the use of the function.

IplROI Structure Definition

typedef struct _IplROI {

 unsigned int coi;

 int xOffset;

 int yOffset;

 int width;

 int height;

} IplROI;

The members in the IplROI structure define:

coi The channel of interest number. This parameter
indicates which channel in the original image
will be affected by processing taking place in the
region of interest; coi equal to 0 indicates that
all channels will be affected.

xOffset and yOffset The offset from the origin of the rectangular
ROI. (See section “ Image Regions” in Chapter 2
for the description of image regions.)

width and height The size of the rectangular ROI.

Image Creation and Access

4-17

4
CreateROI
Allocates and sets the
region of interest (ROI)
structure.

IplROI* iplCreateROI(int coi, int xOffset, int yOffset,
int width, int height);

coi The channel of interest. It can be set to 0 (for all
channels) or to a specific channel number.

xOffset, yOffset The offsets from the origin of the rectangular
region.

width, height The size of the rectangular region.

Discussion

The function iplCreateROI() allocates a new ROI structure with the
specified attributes and returns a pointer to this structure. You can delete
this structure by calling iplDeleteROI().

Return Value

A pointer to the newly constructed ROI structure or NULL.

DeleteROI
Allocates and sets the
region of interest (ROI)
structure.

void iplDeleteROI(IplROI* roi);

roi The ROI structure to be deleted.

Intel Image Processing Library Reference Manual

4-18

4
Discussion

The function iplDeleteROI() deallocates a ROI structure previously
created by iplCreateROI().

SetROI
Sets the region of
interest (ROI) structure.

void iplSetROI(IplROI* roi, int coi, int xOffset, int
yOffset, int width, int height);

roi The pointer to the ROI structure to modify in the
original image.

coi The channel of interest in the original image. It
can be set to 0 (for all channels) or to a specific
channel number.

xOffset, yOffset The offset from the origin of the rectangular
region.

width, height The size of the rectangular region.

Discussion

The function iplSetROI() sets the channel of interest and the rectangular
region of interest in the structure roi.

The argument coi defines the number of the channel of interest. The
arguments xOffset and yOffset define the offset from the origin of the
rectangular ROI. The members height and width define the size of the
rectangular ROI.

Image Creation and Access

4-19

4
Image Borders and Image Tiling

Many neighborhood operators need intensity values for pixels that lie
outside the image, that is, outside the borders of the image. For example, a
3 by 3 filter, when operating on the first row of an image, needs to assume
pixel values of the preceding (non-existent) row. A larger filter will
require more rows from the border. These border issues therefore exist at
the top and bottom, left and right sides, and the four corners of the image.
The library provides a function iplSetBorderMode that the application
can use to set the border mode within the image. This function specifies
the behavior for handling border pixels.

For tiled images, the border mode is handled in the same way as for non-
tiled images. (Outer tiles might contain extra data if the image size is not
an integer multiple of the tile size, but these values are ignored and the
border mode is used instead.)

SetBorderMode
Sets the mode for handling
the border pixels.

void iplSetBorderMode(IplImage *src, int mode,
int border, int constVal)

src The image for which the border mode is to be set.

mode The following modes are supported:

 IPL_BORDER_CONSTANT The value constVal is used for all
pixels.

 IPL_BORDER_REPLICATE The last row or column is replicated for
the border.

 IPL_BORDER_REFLECT The last rows or columns are reflected in
reverse order, as necessary to create the
border.

Intel Image Processing Library Reference Manual

4-20

4
 IPL_BORDER_WRAP The required border rows or columns are

taken from the opposite side of the
image.

border The side that this function is called for. Can be
an OR of one or more of the following four sides
of an image:

IPL_SIDE_TOP Top side.

IPL_SIDE_BOTTTOM Bottom side.

IPL_SIDE_LEFT Left side.

IPL_SIDE_RIGHT Right side.

IPL_SIDE_ALL All sides.

The top side is also used to define all border
pixels in the top left and right corners. Similarly,
the bottom side is used to define the border
pixels in the bottom left and right corners.

constVal The value to use for the border when the mode is
set to IPL_BORDER_CONSTANT .

Discussion

The function iplSetBorderMode() is used to set the border handling
mode of one or more of the four sides of an image (see Example 4-3).
Intensity values for the border pixels are assumed or created based on the
mode.

Image Creation and Access

4-21

4
Example 4-3 Setting the Border Mode for an Image

int example43(void) {

 IplImage *imgh = iplCreateImageHeader(3,0,IPL_DEPTH_8U,

 "RGB", "BGR", IPL_DATA_ORDER_PIXEL, IPL_ORIGIN_TL,

 IPL_ALIGN_QWORD, 100, 150, NULL, NULL, NULL, NULL);

 if(NULL == imgh) return 0;

 iplSetBorderMode(imgh, IPL_BORDER_REPLICATE, IPL_SIDE_TOP|

 IPL_SIDE_BOTTOM | IPL_SIDE_LEFT | IPL_SIDE_RIGHT, 0);

 iplDeallocate(imgh, IPL_IMAGE_HEADER);

 return Ipl_StsOk == iplGetErrStatus();

}

CreateTileInfo
Creates the IplTileInfo
structure.

IplTileInfo* iplCreateTileInfo(IplCallBack callBack,
void* id, int width, int height);

callBack The call-back function.

id The image ID (for application use).

width, height The tile sizes.

Discussion
The function iplCreateTileInfo() allocates a new IplTileInfo
structure with the specified attributes and returns a pointer to this
structure. To delete this structure, call iplDeleteTileInfo() .

Return Value
The pointer to the created IplTileInfo structure or NULL.

Intel Image Processing Library Reference Manual

4-22

4
SetTileInfo
Sets the IplTileInfo
structure fields.

void iplSetTileInfo(IplTileInfo* tileInfo, IplCallBack
callBack, void* id, int width, int height);

tileInfo The pointer to the IplTileInfo structure.

callBack The call-back function.

id The image ID (for application use).

width, height The tile sizes.

Discussion

This function sets attributes for an existing IplTileInfo structure.

DeleteTileInfo
Deletes the IplTileInfo
structure.

void iplDeleteTileInfo(IplTileInfo* tileInfo);

tileInfo The pointer to the IplTileInfo structure.

Discussion

This function deletes the IplTileInfo structure previously created by the
CreateTileInfo function.

Image Creation and Access

4-23

4
Memory Allocation Functions

Functions of the ipl?Malloc() group allocate aligned memory blocks for
the image data. The size of allocated memory is specified by the size
parameter. The “?” in ipl?Malloc() stands for w, i, s, or d; these letters
indicate the data type in the function names as follows:

iplMalloc() byte
iplwMalloc() 16-bit word
ipliMalloc() 32-bit double word
iplsMalloc() 4-byte single floating-point element
ipldMalloc() 8-byte double floating-point element

NOTE. The only function to free the memory allocated by any of these
functions is iplFree().

Malloc
Allocates memory aligned to
an 8-byte boundary.

void* iplMalloc(int size);

size Size (in bytes) of memory block to allocate.

Discussion

The iplMalloc() function allocates memory block aligned to an 8-byte
boundary. To free this memory, use iplFree().

Return Value

The function returns a pointer to an aligned memory block. If no memory
is available in the system, then the NULL value is returned.

Intel Image Processing Library Reference Manual

4-24

4
wMalloc
Allocates memory aligned to
an 8-byte boundary for 16-
bit words.

short* iplwMalloc(int size);

size Size in words (16 bits) of memory block to
allocate.

Discussion

The iplwMalloc() function allocates memory block aligned to an 8-byte
boundary for 16-bit words. To free this memory, use iplFree().

Return Value

The function returns a pointer to an aligned memory block. If no memory
is available in the system, then the NULL value is returned.

iMalloc
Allocates memory aligned to
an 8-byte boundary for 32-bit
double words.

int* ipliMalloc(int size);

size Size in double words (32 bits) of memory block
to allocate.

Image Creation and Access

4-25

4
Discussion

The ipliMalloc() function allocates memory block aligned to an 8-byte
boundary for 32-bit double words. To free this memory, use iplFree().

Return Value

The function returns a pointer to an aligned memory block. If no memory
is available in the system, then the NULL value is returned.

sMalloc
Allocates memory aligned to
an 8-byte boundary for
floating-point elements.

float * iplsMalloc(int size);

size Size in float elements (4 bytes) of memory block
to allocate.

Discussion

The iplsMalloc() function allocates memory block aligned to an 8-byte
boundary for floating-point elements. To free this memory, use
iplFree().

Return Value

The function returns a pointer to an aligned memory block. If no memory
is available in the system, then the NULL value is returned.

Intel Image Processing Library Reference Manual

4-26

4
dMalloc
Allocates memory aligned to
an 8-byte boundary for double
floating-point elements.

double* ipldMalloc(int size);

size Size in double elements (8 bytes) of memory
block to allocate.

Discussion

The ipldMalloc() function allocates memory block aligned to an 8-byte
boundary for double floating-point elements. To free this memory, use
iplFree().

Return Value

The function returns a pointer to an aligned memory block. If no memory
is available in the system, then the NULL value is returned.

iplFree
Frees memory allocated by
one of the ipl?Malloc
functions.

void iplMalloc(void * ptr);

ptr Pointer to memory block to free.

Image Creation and Access

4-27

4
Discussion

The iplFree() function frees the aligned memory block allocated by one
of the functions iplMalloc(), iplwMalloc(), ipliMalloc(),
iplsMalloc(), or ipldMalloc().

NOTE. The function iplFree() cannot be used to free memory allocated
by standard functions like malloc() or calloc().

Image Data Exchange

The functions described in this section provide image manipulation
capabilities, such as setting the image pixel data, copying data from one
image to another, exchanging the data between the images, and converting
one image to another according to the attributes defined in the source and
resultant IplImage headers.

Intel Image Processing Library Reference Manual

4-28

4
Set, SetFP
Sets a value for an
image’s pixel data.

void iplSet(IplImage* image, int fillValue);
void iplSetFP(IplImage* image, float fillValue);

image An image header with allocated image data.

fillValue The value to set the pixel data.

Discussion

The functions iplSet() and iplSetFP() set the image pixel data. Before
calling the functions, you must properly construct the image header and
allocate memory for image data; see Example 4-4. For images with the bit
depth lower than the fillVallue, the fillValue is saturated when
assigned to pixel. If an ROI is specified, only that ROI is filled.

Example 4-4 Allocating an Image and Setting Its Pixel Values

int example44(void) { IplImage *img;

 __try {

 img = iplCreateImageHeader(1,0,IPL_DEPTH_8U,"GRAY",

 "GRAY", IPL_DATA_ORDER_PIXEL, IPL_ORIGIN_TL,

 IPL_ALIGN_QWORD, 100,150, NULL, NULL, NULL, NULL);

 if(NULL == img) return 0;

 iplAllocateImage(img, 0, 0);

 if(NULL == img->imageData) return 0;

 iplSet(img, 255);

 }

 __finally {

 iplDeallocate(img, IPL_IMAGE_HEADER|IPL_IMAGE_DATA);

 }

 return IPL_StsOk == iplGetErrStatus();

}

Image Creation and Access

4-29

4
Copy
Copies image data from one
image to another.

void iplCopy(IplImage* srcImage, IplImage* dstImage);

srcImage The source image.

dstImage The resultant image.

Discussion

The function iplCopy() copies image data from a source image to a
resultant image. Before calling this function, the source and resultant
headers must be properly constructed and image data for both images must
be allocated; see Example 4-5. The following constraints apply to the
copying:

• The bit depth per channel of the source image should be equal to that
of the resultant image.

• The number of channels of interest in the source image should be
equal to the number of channels of interest in the resultant image; that
is, either the source coi = the resultant coi = 0 or both cois are
nonzero.

• The data ordering (by pixel or by plane) of the source image should be
the same as that of the resultant image.

The align, height, and width field values (see Table 4-2) may differ in
source and resultant images. Copying applies to the areas that intersect
between the source ROI and the destination ROI.

Intel Image Processing Library Reference Manual

4-30

4
Example 4-5 Copying Image Pixel Values

int example45(void) {

 IplImage *imga, *imgb;

 __try {

 imga = iplCreateImageHeader(1, 0, IPL_DEPTH_8U,

 "GRAY", "GRAY", IPL_DATA_ORDER_PIXEL,

 IPL_ORIGIN_TL, IPL_ALIGN_QWORD, 100, 150,

 NULL, NULL, NULL, NULL);

 if(NULL == imga) return 0;

 imgb = iplCreateImageHeader(

 1, 0, IPL_DEPTH_8U, "GRAY", "GRAY",

 IPL_DATA_ORDER_PIXEL, IPL_ORIGIN_TL,

 IPL_ALIGN_QWORD, 100, 150, NULL, NULL,

 NULL, NULL);

 if(NULL == imgb) return 0;

 iplAllocateImage(imga, 1, 255);

 if(NULL == imga->imageData) return 0;

 iplAllocateImage(imgb, 0, 0);

 if(NULL == imgb->imageData) return 0;

 // Copy pixel values of imga to imgb

 iplCopy(imga, imgb);

 // Check if an error occurred

 if(iplGetErrStatus() != IPL_StsOk) return 0;

 }

 __finally {

 iplDeallocate(imga,IPL_IMAGE_HEADER|IPL_IMAGE_DATA);

 iplDeallocate(imgb,IPL_IMAGE_HEADER|IPL_IMAGE_DATA);

 }

 return IPL_StsOk == iplGetErrStatus();

}

Image Creation and Access

4-31

4
Exchange
Exchanges image data
between two images.

void iplExchange(IplImage* ImageA, IplImage* ImageB);

ImageA The first image.

ImageB The second image.

Discussion

The function iplExchange() exchanges image data between two images,
the first and the second. The image headers must be properly constructed
before calling this function, and image data for both images must be
allocated. The following constraints apply to the data exchanging:

• The bit depths per channel of both images should be equal.

• The numbers of channels of interest in both images should be equal.

• The data ordering of both images should be the same (either pixel- or
plane-oriented) .

The align, width, and height field values (see Table 4-2) may differ in
the first and the second image. The data are exchanged at the areas of
intersection between the ROI of the first image and the ROI of the second
image.

Intel Image Processing Library Reference Manual

4-32

4
Convert
Converts source image data to
resultant image according to
the image headers.

void iplConvert(IplImage* srcImage, IplImage* dstImage);

srcImage The source image.

dstImage The resultant image.

Discussion

The function iplConvert() converts image data from the source image
to the resultant image according to the attributes defined in the source and
resultant IplImage headers; see Example 4-6.

The main conversion rule is saturation. The images that can be converted
may have the following different characteristics:

• Bit depth per channel
• Data ordering
• Origins

(For more information about these characteristics, see Table 4-2.)

The following constraints apply to the conversion:

• If the source image has a bit depth per channel equal to 1, the resultant
image should also have the bit depth equal to 1.

• The number of channels in the source image should be equal to the
number of channels in the resultant image.

• The height and width of the source image should be equal to those of
the resultant image.

All ROIs are ignored.

Image Creation and Access

4-33

4
Example 4-6 Converting Images

int example46(void) {

 IplImage *imga, *imgb;

 __try {

 imga = iplCreateImageHeader(

 1, 0, IPL_DEPTH_8U, "GRAY", "GRAY",

 IPL_DATA_ORDER_PIXEL, IPL_ORIGIN_TL,

 IPL_ALIGN_QWORD, 100, 150, NULL, NULL,

 NULL, NULL);

 if(NULL == imga) return 0;

 imgb = iplCreateImageHeader(

 1, 0, IPL_DEPTH_16S, "GRAY", "GRAY",

 IPL_DATA_ORDER_PIXEL, IPL_ORIGIN_TL,

 IPL_ALIGN_QWORD, 100, 150, NULL, NULL,

 NULL, NULL);

 if(NULL == imgb) return 0;

 iplAllocateImage(imga, 1, 128);

 if(NULL == imga->imageData) return 0;

 iplAllocateImage(imgb, 0, 0);

 if(NULL == imgb->imageData) return 0;

 // Convert unsigned char to short

 iplConvert(imga, imgb);

 // Check if an error occurred

 if(iplGetErrStatus() != IPL_StsOk) return 0;

 }

 __finally {

 iplDeallocate(imga,IPL_IMAGE_HEADER|IPL_IMAGE_DATA);

 iplDeallocate(imgb,IPL_IMAGE_HEADER|IPL_IMAGE_DATA);

 }

 return IPL_StsOk == iplGetErrStatus();

}

Intel Image Processing Library Reference Manual

4-34

4
PutPixel,
GetPixel
Sets/retrieves a value of
an image’s pixel.

void iplPutPixel(IplImage* image, int x, int y,
void* pixel);

void iplGetPixel(IplImage* image, int x, int y,
void* pixel);

image An image header with allocated image data.

x, y The pixel coordinates.

pixel The pointer to a buffer storing the consecutive
channel values for the pixel.

Discussion

The function iplPutPixel() sets the channels in image’s pixel (x,y) to
the values specified in the buffer pixel.

The function iplGetPixel() retrieves the values of all channels in
image’s pixel (x,y) to the buffer pixel.

All channels are processed, including the alpha channel (if applicable).
The channel values in the buffer are stored consecutively.

The functions work for all pixel depths supported in the library. The ROI
and mask are ignored.

Example 4-7 on the next page illustrates the usage of the function
iplGetPixel().

Image Creation and Access

4-35

4
Example 4-7 Using the Function iplGetPixel()

int example_1001(void) {

 char pixel[4]; /// buffer to get pixel data

 /// roi to set different data in different channels

 IplROI roi = { 0, 0,0, 4,4 };

 IplImage *img = iplCreateImageHeader(

 4, 4, IPL_DEPTH_8U, "RGBA", "BGRA",

 IPL_DATA_ORDER_PIXEL, IPL_ORIGIN_TL,

 IPL_ALIGN_DWORD, 4, 4, &roi, NULL,

 NULL, NULL);

 /// alpha-channel will be 4

 iplAllocateImage(img, 1, 4);

 roi.coi = 1;

 iplSet(img, 1);

 roi.coi = 2;

 iplSet(img, 2);

 roi.coi = 3;

 iplSet(img, 3);

 iplGetPixel(img, 0,0, pixel);

 iplDeallocate(img, IPL_IMAGE_ALL & ~IPL_IMAGE_ROI);

 return IPL_StsOk == iplGetErrStatus();

}

Intel Image Processing Library Reference Manual

4-36

4
Working in the Windows DIB Environment

The Image Processing Library provides functions to convert images to and
from the Windows* device-independent bitmap (DIB). Table 4-2 shows
that the IplImage format can represent more features than the DIB image
format. However, the DIB palette images and 8-bit- and 16-bit-per-pixel
absolute color DIB images have no equivalent in the Image Processing
Library.

The DIB palette images must be first converted to the Image Processing
Library’s absolute color images; 8-bit- and 16-bit-per-pixel DIB images
have to be unpacked into the library’s 8-bit-, 16-bit- or 32-bit-per-channel
images.

Any 24-bit absolute color DIB image can be directly converted to the
Image Processing Library format. You just need to create an IplImage

header corresponding to the DIB attributes. The DIB image data can be
pointed to by the header or it can be duplicated.

There are the following restrictions for the DIB conversion functions:

• You can use IplImage structures with unsigned data only.

• The DIB and IPL images should be the same size.The following
functions can perform conversion to and from the DIB format, with
additional useful capabilities:

iplTranslateDIB() Performs a simple translation of a DIB image to
an IplImage as described above. Also converts
a DIB palette image to the Image Processing
Library’s absolute color image.

While this is the most efficient way of converting
a DIB image, it is not the most efficient format
for the library functions to manipulate because
the DIB image data is doubleword-aligned, not
quadword-aligned.

Image Creation and Access

4-37

4
iplConvertFromDIB() Provides more control of the conversion and can

convert a DIB image to an image with a prepared
IplImage header. The header must be set to the
desired attributes. The bit depth of the channels
in the IplImage header must be equal to or
greater than that in the DIB header.

iplConvertToDIB() Converts an IplImage to a DIB image. This
function performs dithering if the bit depth of the
DIB is less than that of the IplImage. It can also
be used to create a DIB palette image from an
absolute color IplImage. The function can
optionally create a new palette.

Intel Image Processing Library Reference Manual

4-38

4
TranslateDIB
Translates a DIB image
into the corresponding
IplImage.

iplImage* iplTranslateDIB(BITMAPINFOHEADER* dib,
BOOL* cloneData)

dib The DIB image.

cloneData An output flag (Boolean): if false, indicates that
the image data pointer in the IplImage will
point to the DIB image data; if true, indicates
that the data was copied.

Discussion

The function iplTranslateDIB() translates a DIB image to the
IplImage format; see Example 4-8. The IplImage attributes
corresponding to the DIB image are automatically chosen (see Table 4-2),
so no explicit control of the conversion is provided. A DIB palette image
will be converted to an absolute color IplImage with a bit depth of 8 bits
per channel, and the image data will be copied, returning
cloneData = true.

A 24-bit-per-pixel RGB DIB image will be converted to an 8-bit-per-
channel RGB IplImage.

A 32-bit-per-pixel DIB RGBA image will be converted to an 8-bit-per-
channel RGBA IplImage with an alpha channel.

An 8-bit-per-pixel or 16-bit-per-pixel DIB absolute color RGB image will
be converted (by unpacking) into an 8-bit-per-channel RGB IplImage.
The image data will be copied, returning cloneData = true.

A 1-bit-per-pixel or 8-bit-per-pixel DIB gray scale image with a standard
gray palette will be converted to a 1-bit-per-channel or 8-bit-per-channel
gray-scale IplImage, respectively.

Image Creation and Access

4-39

4
Example 4-8 Translating a DIB Image Into an IplImage

int example47(void) {

#define WIDTH 8

#define HEIGHT 8

 BITMAPINFO *dib; // pointer to bitmap

 RGBQUAD *rgb; // pointer to bitmap colors

 unsigned char *data; // pointer to bitmap data

 BITMAPINFOHEADER *dibh; // header beginning

 IplImage *img = NULL;

 BOOL cloneData; // variable to get result

 int i;

 __try {

 int size = HEIGHT * ((WIDTH+3) & ~3);

 // allocate memory for bitmap

 dib = malloc(sizeof(BITMAPINFOHEADER)

 + sizeof(RGBQUAD)*256 + size);

 if(NULL == dib) return 0;

 // define the pointers

 dibh = (BITMAPINFOHEADER*)dib;

 rgb=(RGBQUAD*)((char*)dib + sizeof(BITMAPINFOHEADER));

 data=(unsigned char*)((char*)rgb+sizeof(RGBQUAD)*256);

 // define bitmap

 dibh->biSize = sizeof(BITMAPINFOHEADER);

 dibh->biWidth = WIDTH;

 dibh->biHeight = HEIGHT;

 dibh->biPlanes = 1;

 dibh->biBitCount = 8;

 dibh->biCompression = BI_RGB;

 dibh->biSizeImage = size;

 dibh->biClrUsed = 256;

 dibh->biClrImportant = 0;

continued +

Intel Image Processing Library Reference Manual

4-40

4
Example 4-8 Translating a DIB Image Into an IplImage (continued)

 // fill in colors of the bitmap

 for(i=0; i<256; i++)

 rgb[i].rgbBlue = rgb[i].rgbGreen = rgb[i].rgbRed =

 (unsigned char)i;

 // set the bitmap data

 for(i=0; i<WIDTH*HEIGHT; i++)

 data[i] = (unsigned char)(100 + i);

 // create ipl image using the bitmap

 if(NULL==(img = iplTranslateDIB(dibh,&cloneData)))

 return 0;

 }

 __finally {

 int flags = IPL_IMAGE_HEADER;

 if(cloneData) flags |= IPL_IMAGE_DATA;

 if(dib) free(dib);

 iplDeallocate(img, flags);

 }

 return IPL_StsOk == iplGetErrStatus();

}

A 4-bit-per-pixel gray-scale DIB image with a standard gray palette will
be converted into an 8-bit-per-pixel gray-scale IplImage and the image
data will be copied, returning cloneData = true.

Note that if image data is not copied, the library functions inefficiently
access the data. This is because DIB image data is aligned on doubleword
(32-bit) boundaries. Alternatively, when cloneData is true, the DIB
image data is replicated into newly allocated image data memory and
automatically aligned to quadword boundaries, which results in a better
memory access.

Image Creation and Access

4-41

4
Return Value

The constructed IplImage. If no memory is available in the system to
allocate the IplImage header or image data, NULL value is returned.

ConvertFromDIB
Converts a DIB image
to an IplImage with
specified attributes.

void iplConvertFromDIB(BITMAPINFOHEADER* dib,
 IplImage* image)

dib The input DIB image.

image The IplImage header with specified attributes.
If the data pointer is NULL, image data memory
will be allocated and the pointer set to it.

Discussion

The function iplConvertFromDIB() converts DIB images to Image
Processing Library images according to the attributes set in the IplImage
header; see Example 4-9. If the image data pointer is NULL and there is no
memory to allocate the converted image data, the conversion will be
interrupted and the function will return a NULL pointer.

The following constraints apply to the conversion:

• The bit depth per channel of the IplImage should be greater than or
equal to that of the DIB image.

• The number of channels (not including the alpha channel) in the
IplImage should be greater than or equal to the number of channels
in the DIB image (not including the alpha channel if present).

Intel Image Processing Library Reference Manual

4-42

4
• The dimensions of the converted IplImage should be greater than or

equal to that of the DIB image. When the converted image is larger
than the DIB image, the origins of IplImage and the DIB image are
made coincident for the purposes of copying.

• When converting a DIB RGBA image, the destination IplImage
should also contain an alpha channel.

Example 4-9 Converting a DIB Image Into an IplImage

int example48(void) {

 BITMAPINFO *dib; // pointer to bitmap

 RGBQUAD *rgb; // pointer to bitmap colors

 unsigned char *data; // pointer to bitmap data

 BITMAPINFOHEADER *dibh; // header beginning

 IplImage *img = NULL;

 int i;

 __try {

 int size = HEIGHT * ((WIDTH+3) & ~3);

 // allocate memory for bitmap

 dib = malloc(sizeof(BITMAPINFOHEADER)

 + sizeof(RGBQUAD)*256 + size);

 if(NULL == dib) return 0;

 // define corresponedt pointers

 dibh = (BITMAPINFOHEADER*)dib;

 rgb=(RGBQUAD*)((char*)dib +

sizeof(BITMAPINFOHEADER));

 data = (unsigned char*)((char*)rgb +

 sizeof(RGBQUAD)*256);

 // define bitmap

 dibh->biSize = sizeof(BITMAPINFOHEADER);

 dibh->biWidth = WIDTH;

 dibh->biHeight = HEIGHT;

 dibh->biPlanes = 1;

 dibh->biBitCount = 8;

continued +

Image Creation and Access

4-43

4
Example 4-9 Converting a DIB Image Into an IplImage (continued)

 dibh->biCompression = BI_RGB;

 dibh->biSizeImage = size;

 dibh->biClrUsed = 256;

 dibh->biClrImportant = 0;

 // fill in colors of the bitmap

 for(i=0; i<256; i++)

 rgb[i].rgbBlue = rgb[i].rgbGreen = rgb[i].rgbRed=

 (unsigned char)i;

 // set the bitmap data

 for(i=0; i<WIDTH*HEIGHT; i++)

 data[i] = (unsigned char)(100 + i);

 // create header of the desired image

 img = iplCreateImageHeader(1,0, IPL_DEPTH_16U,

 "GRAY", "GRAY", IPL_DATA_ORDER_PIXEL,

 IPL_ORIGIN_BL, // bottom left as in DIB

 IPL_ALIGN_QWORD, WIDTH, HEIGHT, NULL, NULL, NULL,

 NULL);

 if(NULL == img) return 0;

 // create ipl image converting 8u to 16u

 iplConvertFromDIB (dibh, img);

 if(!img->imageData) return 0;

 }

 __finally {

 if(dib) free(dib);

 iplDeallocate(img,IPL_IMAGE_HEADER|IPL_IMAGE_DATA);

 }

 return IPL_StsOk == iplGetErrStatus();

}

As necessary, the conversion result is saturated.

Intel Image Processing Library Reference Manual

4-44

4
ConvertFromDIBSep
Converts a DIB image to an
IplImage, using two arguments
for the DIB header and data.

IPLStatus iplConvertFromDIBSep (BITMAPINFOHEADER*
dibHeader, const char* dibData, IplImage* image);

dibHeader The input DIB image header.

dibData The input DIB image data.

image The IplImage header with specified attributes.
If the data pointer is NULL, image data memory
will be allocated and the pointer set to it.

Discussion

Similar to iplConvertFromDIB , the function iplConvertFromDIBSep
converts DIB images to Image Processing Library images according to
the attributes set in the IplImage header. The input and output images
must satisfy the same conditions as for iplConvertFromDIB .

The function iplConvertFromDIBSep uses an additional argument for
the DIB data. This allows you to supply the DIB header and data stored
separately.

Return Value

The function returns an IPLStatus status code.

Image Creation and Access

4-45

4
ConvertToDIB
Converts an IplImage
to a DIB image with
specified attributes.

void iplConvertToDIB(iplImage* image, BITMAPINFOHEADER*
 dib, int dither, int paletteConversion)

image The input IplImage.

dib The output DIB image.

dither The dithering algorithm to use if applicable.
Dithering will be done if the bit depth in the DIB
is less than that of the IplImage. The following
algorithms are supported corresponding to these
dither identifiers:

 IPL_DITHER_STUCKEY The Stucki dithering algorithm is used.

 IPL_DITHER_NONE No dithering is done. The most
significant bits in the input image pixel
data are retained.

paletteConversion Applicable when the DIB is a palette image.
Specifies the palette algorithm to use when
converting an absolute color IplImage. The
following options are supported:

IPL_PALCONV_NONE The existing palette in the DIB
is used.

IPL_PALCONV_POPULATE

The popularity palette
conversion algorithm is used.

IPL_PALCONV_MEDCUT The median cut algorithm for
palette conversion is used.

Intel Image Processing Library Reference Manual

4-46

4
Discussion

The function iplConvertToDIB() converts an IplImage to a DIB
image. The conversion takes place according to the source and destination
image attributes. While IplImage format always uses absolute color, DIB
images can be in absolute or palette color. When the DIB is a palette
image, the absolute color IplImage is converted to a palette image
according to the palette conversion option specified. When the bit depth of
an absolute color DIB image is less than that of the IplImage, then
dithering according to the specified option is performed.

The following constraints apply when using this function:

• The number of channels in the IplImage should be equal to the
number of channels in the DIB image.

• The alpha channel in an IplImage will be passed on only when the
DIB is an RGBA image.

Image Arithmetic and Logical
Operations

5-1

5
This chapter describes image processing functions that modify pixel
values using simple arithmetic or logical operations. It also includes the
library functions that perform image compositing based on opacity (alpha-
blending). All these operations can be broken into two categories: monadic
operations, which use single input images, and dyadic operations, which
use two input images. Table 5-1 lists the functions that perform arithmetic
and logical operations.

Table 5-1 Image Arithmetic and Logical Operations

Group Function Name Description

Arithmetic
operations

iplAddS
iplAddSFP

Adds a constant to the image pixel values.

iplSubtractS
iplSubtractSFP

Subtracts a constant from the pixel values
or the values from a constant.

iplMultiplyS
iplMultiplySFP

Multiplies pixel values by a constant.

iplMultiplySScale Multiplies pixel values by a constant and
scales the product.

iplAbs Computes absolute pixel values.

iplAdd Adds pixel values of two images.

iplSubtract Subtracts pixel values of one image from
those of another image.

iplSquare Squares the pixel values of an image.

 Continued +

Intel Image Processing Library Reference Manual

5-2

5
Table 5-1 Image Arithmetic and Logical Operations (continued)

Group Function Name Description

Arithmetic iplMultiply Multiplies pixel values of two images.

operations

(continued)
iplMultiplyScale Multiplies pixel values of two images

and scales the product.

Logical
operations

iplAndS Performs a bitwise AND operation on
each pixel with a constant.

iplOrS Performs a bitwise OR operation on
each pixel with a constant.

iplXorS Performs a bitwise XOR operation on
each pixel with a constant.

iplNot Performs a bitwise NOT operation on
each pixel

iplLShiftS Shifts bits in pixel values to the left.

iplRShiftS Divides pixel values by a constant
power of 2 by shifting bits to the right.

iplAnd Combines corresponding pixels of two
images by a bitwise AND operation.

iplOr Combines corresponding pixels of two
images by a bitwise OR operation.

iplXor Combines corresponding pixels of two
images by a bitwise XOR operation.

Alpha-
blending

iplPreMultiplyAlpha Pre-multiplies pixel values of an image
by alpha values.

iplAlphaComposite Composites two images using alpha
(opacity) values.

iplAlphaCompositeC Composites two images using
constant alpha (opacity) values.

The functions iplSquare(), iplNot(), iplPreMultiplyAlpha() , and
iplAbs() as well as all functions with names containing an additional S
use single input images (perform monadic operations). All other functions
in the above table use two input images (perform dyadic operations).

Image Arithmetic and Logical Operations

5-3

5
Monadic Arithmetic Operations

The sections that follow describe the library functions that perform
monadic arithmetic operations (note that the iplPreMultiplyAlpha
function is described in the “ Image Compositing Based on Opacity”
section of this chapter). All these functions use a single input image to
create an output image.

AddS, AddSFP
Adds a constant to pixel
values of the source
image.

void iplAddS(IplImage* srcImage, IplImage* dstImage, int

value);

void iplAddSFP(IplImage* srcImage, IplImage* dstImage,

float value); /* images with IPL_DEPTH_32F only */

srcImage The source image.

dstImage The resultant image.

value The value to be added to the pixel values.

Discussion

The functions change the image intensity by adding the value to pixel
values. A positive value brightens the image (increases the intensity); a
negative value darkens the image (decreases the intensity).

Intel Image Processing Library Reference Manual

5-4

5
SubtractS, SubtractSFP
Subtracts a constant from
pixel values, or pixel
values from a constant.

void iplSubtractS(IplImage* srcImage, IplImage* dstImage,

int value, BOOL flip);

void iplSubtractSFP(IplImage* srcImage,IplImage* dstImage,

float value, BOOL flip); /* IPL_DEPTH_32F only */

srcImage The source image.

dstImage The resultant image.

value The value to be subtracted from the pixel values.

flip A Boolean used to change the order of subtraction.

Discussion

The functions change the image intensity as follows:

If flip is false, the value is subtracted from the image pixel values.
If flip is true, the image pixel values are subtracted from the value.

MultiplyS, MultiplySFP
Multiplies pixel values
by a constant.

void iplMultiplyS (IplImage* srcImage, IplImage*

dstImage, int value);

void iplMultiplySFP(IplImage* srcImage,IplImage* dstImage,

float value); /* images with IPL_DEPTH_32F only */

Image Arithmetic and Logical Operations

5-5

5
srcImage The source image.

dstImage The resultant image.

value An integer value by which to multiply the pixel values.

Discussion

The functions change the image intensity by multiplying each pixel by a
constant value.

MultiplySScale
Multiplies pixel values
by a constant and scales
the products.

void iplMultiplySScale(IplImage* srcImage, IplImage*

dstImage, int value);

srcImage The source image.

dstImage The resultant image.

value A positive value by which to multiply the pixel values.

Discussion

The function iplMultiplySScale() multiplies the input image pixel
values by value and scales the products using the following formula:
 dst_pixel = src_pixel * value / max_val
where src_pixel is a pixel value of the source images, dst_pixel is the
resultant pixel value, and max_val is the maximum presentable pixel
value. This function can be used to multiply the image by a number
between 0 and 1.

The source and resultant images must have the same pixel depth. The
function is implemented only for 8-bit and 16-bit unsigned data types.

Intel Image Processing Library Reference Manual

5-6

5
Square
Squares the pixel values
of the image.

void iplSquare(IplImage* srcImage, IplImage* dstImage);

srcImage The source image.

dstImage The resultant image.

Discussion

The function iplSquare() increases the intensity of an image by
squaring each pixel value.

Abs
Computes absolute pixel
values of the image.

void iplAbs(IplImage* srcImage, IplImage* dstImage);

srcImage The source image.

dstImage The resultant image.

Discussion

The function iplAbs() takes the absolute value of each channel in each
pixel of the image.

Image Arithmetic and Logical Operations

5-7

5
Dyadic Arithmetic Operations

The sections that follow describe the functions that perform dyadic
arithmetic operations. These functions use two input images to create an
output image.

Add
Combines corresponding
pixels of two images by
addition.

void iplAdd(IplImage* srcImageA, IplImage* srcImageB,

IplImage* dstImage);

srcImageA The first source image.

srcImageB The second source image.

dstImage The resultant image obtained as
dst_pixel = srcA_pixel + srcB_pixel.

Discussion

The function iplAdd() adds corresponding pixels of two input images to
produce the output image.

Intel Image Processing Library Reference Manual

5-8

5
Subtract
Combines corresponding
pixels of two images by
subtraction.

void iplSubtract(IplImage* srcImageA, IplImage*

srcImageB, IplImage* dstImage);

srcImageA The first source image.

srcImageB The second source image.

dstImage The resultant image obtained as:
dst_pixel = srcA_pixel - srcB_pixel.

Discussion

The function iplSubtract() subtracts corresponding pixels of two input
images to produce the output image.

Multiply
Combines corresponding
pixels of two images by
multiplication.

void iplMultiply(IplImage* srcImageA, IplImage*

srcImageB, IplImage* dstImage);

srcImageA The first source image.

srcImageB The second source image.

dstImage The resultant image.

Image Arithmetic and Logical Operations

5-9

5
Discussion

The function iplMultiply() multiplies corresponding pixels of two
input images to produce the output image.

MultiplyScale
Multiplies pixel values of two
images and scales the products.

void iplMultiplyScale(IplImage* srcImageA, IplImage*

srcImageB, IplImage* dstImage);

srcImageA The first source image.

srcImageB The second source image.

dstImage The resultant image.

Discussion

The function iplMultiplyScale() multiplies corresponding pixels of
two input images and scales the products using the following formula:

 dst_pixel = srcA_pixel * srcB_pixel / max_val

where srcA_pixel and srcB_pixel are pixel values of the source
images, dst_pixel is the resultant pixel value, and max_val is the
maximum presentable pixel value. Both source images and the resultant
image must have the same pixel depth. The function is implemented only
for 8-bit and 16-bit unsigned data types.

Intel Image Processing Library Reference Manual

5-10

5
Monadic Logical Operations

The sections that follow describe the functions that perform monadic
logical operations. All these functions use a single input image to create an
output image.

LShiftS
Shifts pixel values’ bits
to the left.

void iplLShiftS(IplImage* srcImage, IplImage* dstImage,

unsigned int nShift);

srcImage The source image.

dstImage The resultant image.

nShift The number of bits by which to shift each pixel value to
the left.

Discussion

The function iplLShiftS() changes the intensity of the source image by
shifting the bits in each pixel value by nShift bits to the left. The
positions vacated after shifting the bits are filled with zeros.

Image Arithmetic and Logical Operations

5-11

5
RShiftS
Divides pixel values by
a constant power of 2 by
shifting bits to the right.

void iplRShiftS(IplImage* srcImage, IplImage* dstImage,

unsigned int nShift);

srcImage The source image.

dstImage The resultant image.

nShift The number of bits by which to shift each pixel value to
the right.

Discussion

The function iplRShiftS()decreases the intensity of the source image by
shifting the bits in each pixel value by nShift bits. The positions vacated
after shifting the bits are filled with zeros.

Intel Image Processing Library Reference Manual

5-12

5
Not
Performs a bitwise NOT
operation on each pixel.

void iplNot(IplImage* srcImage, IplImage* dstImage);

srcImage The source image.

dstImage The resultant image.

Discussion

The function iplNot() performs a bitwise NOT operation on each pixel
value.

AndS
Performs a bitwise AND
operation of each pixel
with a constant.

void iplAndS(IplImage* srcImage, IplImage* dstImage,

unsigned int value);

srcImage The source image.

dstImage The resultant image.

value The bit sequence used to perform the bitwise AND
operation on each pixel.

Discussion

The function iplAndS() performs a bitwise AND operation between each
pixel value and value. The least significant bit(s) of the value are used.

Image Arithmetic and Logical Operations

5-13

5
OrS
Performs a bitwise OR
operation of each pixel
with a constant.

void iplOrS(IplImage* srcImage, IplImage* dstImage,

unsigned int value);

srcImage The source image.

dstImage The resultant image.

value The bit sequence used to perform the bitwise OR
operation on each pixel.

Discussion

The function iplOrS() performs a bitwise OR between each pixel value
and value. The least significant bit(s) of the value are used.

Intel Image Processing Library Reference Manual

5-14

5
XorS
Performs a bitwise XOR
operation of each pixel
with a constant.

void iplXorS(IplImage* srcImage, IplImage* dstImage,

unsigned int value);

srcImage The source image.

dstImage The resultant image.

value The bit sequence used to perform the bitwise XOR
operation on each pixel.

Discussion

The function iplXorS() performs a bitwise XOR between each pixel
value and value. The least significant bit(s) of the value are used.

Dyadic Logical Operations

This section describes the library functions that perform dyadic logical
operations. These functions use two input images to create an output
image.

Image Arithmetic and Logical Operations

5-15

5
And
Combines corresponding pixels
of two images by a bitwise AND
operation.

void iplAnd(IplImage* srcImageA, IplImage* srcImageB,

IplImage* dstImage);

srcImageA The first source image.

srcImageB The second source image.

dstImage The image resulting from the bitwise operation between
input images srcImageA and srcImageB.

Discussion

The function iplAnd() performs a bitwise AND operation between the
values of corresponding pixels of two input images.

Or
Combines corresponding
pixels of two images by a
bitwise OR operation.

void iplOr(IplImage* srcImageA, IplImage* srcImageB,

IplImage* dstImage);

srcImageA The first source image.

srcImageB The second source image.

dstImage The image resulting from the bitwise operation between
input images srcImageA and srcImageB.

Intel Image Processing Library Reference Manual

5-16

5
Discussion

The function iplOR() performs a bitwise OR operation between the
values of corresponding pixels of two input images.

Xor
Combines corresponding
pixels of two images by a
bitwise XOR operation.

void iplXor(IplImage* srcImageA, IplImage* srcImageB,

IplImage* dstImage);

srcImageA The first source image.

srcImageB The second source image.

dstImage The image resulting from the bitwise operation between
input images srcImageA and srcImageB.

Discussion

The function iplXor() performs a bitwise XOR operation between the
values of corresponding pixels of two input images.

Image Compositing Based on Opacity

The Image Processing Library provides functions to composite two images
using either the opacity (alpha) channel in the images or a provided alpha
value. Alpha values range from 0 (100% translucent, 0% coverage) to full
range (0% translucent, 100% coverage). Coverage is the percentage of the
pixel’s own intensity that is visible.

Image Arithmetic and Logical Operations

5-17

5
Using the opacity channel for image compositing provides the capability
of overlaying the arbitrarily shaped and transparent images in arbitrary
positions. It also reduces aliasing effects along the edges of the combined
regions by allowing some of the bottom image’s color to show through.

Let us consider the example of RGBA images. Here each pixel is a
quadruple (r, g, b, α) where r, g, b, and α are the red, green, blue and
alpha channels, respectively. In the formulas that follow, the Greek letter
α with subscripts always denotes the normalized (scaled) alpha value in
the range 0 to 1. It is related to the integer alpha value aphaValue as
follows:

 α = aphaValue / max_val

where max_val is 255 for 8-bit or 65535 for 16-bit unsigned pixel data.

There are many ways of combining images using alpha values. In all
compositing operations a resultant pixel (rC, gC, bC, αC) in image C is
created by overlaying a pixel (rA, gA, bA, αA) from the foreground image A
over a pixel (rB, gB, bB, αB) from the background image B. The resulting
pixel values for an OVER operation (A OVER B) are computed as shown
below.

rC = αA * rA + (1 - αA) * αB * rB

gC = αA * gA + (1 - αA) * αB * gB

bC = αA * bA + (1 - αA) * αB * bB

The above three expressions can be condensed into one as follows:

C = αA * A + (1 - αA) * αB * B

In this example, the color of the background image B influences the color
of the resultant image through the second term (1 - αA) * αB * B. The
resulting alpha value is computed as

αC = αA + (1 - αA) * αB

Intel Image Processing Library Reference Manual

5-18

5
Using Pre-multiplied Alpha Values

In many cases it is computationally more efficient to store the color
channels pre-multiplied by the alpha values. In the RGBA example, the
pixel (r, g, b, α) would actually be stored as (r*α, g*α, b*α, α). This
storage format reduces the number of multiplications required in the
compositing operations. In interactive environments, when an image is
composited many times, this capability is especially efficient.

One known disadvantage of the pre-multiplication is that once a pixel is
marked as transparent, its color value is gone because the pixel’s color
channels are multiplied by 0.

The function iplPreMultiplyAlpha() implements various alpha
compositing operations between two images. One of them is converting
the pixel values to pre-multiplied form.

The color channels in images with the alpha channel can be optionally pre-
multiplied with the alpha value. This saves a significant amount of
computation for some of the alpha compositing operations. For example,
in an RGBA color model image, if (r, g, b, α) are the channel values for a
pixel, then upon pre-multiplication they are stored as (r*α, g*α, b*α, α).

AlphaComposite
AlphaCompositeC
Composite two images using
alpha (opacity) values.

void iplAlphaComposite(IplImage* srcImageA, IplImage*

srcImageB, IplImage* dstImage, int compositeType,

IplImage* alphaImageA, IplImage* alphaImageB, IplImage*

alphaImageDst, BOOL premulAlpha, BOOL divideMode);

Image Arithmetic and Logical Operations

5-19

5
void iplAlphaCompositeC(IplImage* srcImageA, IplImage*

srcImageB, IplImage* dstImage, int compositeType, int aA,

int aB, BOOL premulAlpha, BOOL divideMode);

srcImageA The foreground input image.

srcImageB The background input image.

dstImage The resultant output image.

compositeType The composition type to perform. See Table 5-2 for the
type value and description.

aA The constant alpha value to use for the source image
srcImageA. Should be a positive number.

aB The constant alpha value to use for the source image
srcImageB. Should be a positive number.

alphaImageA The image to use as the alpha channel for srcImageA. If
the image alphaImageA contains an alpha channel, that
channel is used. Otherwise channel 1 in alphaImageA
is used as the alpha channel. If this is not suitable for the
application, then the alpha channel number in the
IplImage header for the image should be set
appropriately before calling this function. If the
argument alphaImageA is NULL, then the internal alpha
channel of srcImageA is used. If srcImageA does not
contain an alpha channel, an error message is issued.

alphaImageB The image to use as the alpha channel for srcImageB. If
the image alphaImageB already contains an alpha
channel, that channel is used. Otherwise channel 1 in
alphaImageB is used as the alpha channel. If this is not
suitable for the application, then the alpha channel
number in the image header for the image should be set
appropriately before calling this function. If the
argument alphaImageB is NULL, then the internal alpha
channel of srcImageB is used.

Intel Image Processing Library Reference Manual

5-20

5
If srcImageB does not contain an alpha channel, then
the value (1- αA) is used for the alpha, where αA is a
scaled alpha value of srcImageA in the range 0 to 1.

alphaImageDst The image to use as the alpha channel for dstImage. If
the image already contains an alpha channel, that
channel is used. Otherwise channel 1 in the image is
used as the alpha channel. If this is not suitable for the
application, then the alpha channel number in the image
header for the image should be set appropriately before
calling this function. This argument can be NULL, in
which case the resultant alpha values are not saved.

premulAlpha A Boolean flag indicating whether or not the input
images contain pre-multiplied alpha values. If true, they
contain these values.

divideMode A Boolean flag related to premulAlpha. When true, the
resultant pixel color (see Table 5-2) is further divided by
the resultant alpha value to get the final resultant pixel
color.

Discussion

The function iplAlphaComposite() performs an image compositing
operation by overlaying the foreground image srcImageA with the
background image srcImageB to produce the resultant image dstImage.

The function iplAlphaComposite() executes under one of the following
conditions for the alpha channels:

Image Arithmetic and Logical Operations

5-21

5
• If alphaImageA and alphaImageB are both NULL, then the internal

alpha channels of the two input images specified by their respective
IplImage headers are used. The application has to ensure that these
are set to the proper channel number prior to calling this function. If
srcImageB does not have an alpha channel, then its alpha value is set
to (1 - αA) where αA is the scaled alpha value of image srcImageA in
the range 0 to 1.

• If both alpha images alphaImageA and alphaImageB are not NULL,
then they are used as the alpha values for the two input images. If
alphaImageB is NULL, then its alpha value is set to (1 - αA) where αA

is the scaled alpha value of image alphaImageA in the range 0 to 1.

It is an error if none of the above conditions is satisfied.

If alphaImageDst is not NULL, then the resultant alpha values are written
to it. If it is NULL and the output image imageDst contains an alpha
channel (specified by the IplImage header), then it is set to the resulting
alpha values.

The function iplAlphaCompositeC() is used to specify constant alpha
values αA and αB to be used for the two input images (usually αB is set to
the value 1 - αA). The resultant alpha values (also constant) are not saved.

The type of compositing is specified by the argument compositeType
which can assume the values shown in Table 5-2.

The functions iplAlphaCompositeC() and iplAlphaCompositeC()
can be used for unsigned pixel data only. They support ROI, mask ROI
and tiling.

Intel Image Processing Library Reference Manual

5-22

5
Table 5-2 Types of Image Compositing Operations

Type Output Pixel
(see Note)

Output Pixel
(pre-mult. α)

Resultant
Alpha Description

OVER αA*A+

(1- αA)*αB*B

A+(1-αA)*B αA+

(1- αA)* αB

A occludes B

IN αA*A* αB A*αB αA* αB A within B. A acts as a
matte for B. A shows only
where B is visible.

OUT αA*A*(1- αB) A*(1- αB) αA *(1- αB) A outside B. NOT-B acts as
a matte for A. A shows only
where B is not visible.

ATOP αA*A* αB+

(1- αA)*αB*B

A* αB+

(1- αA)*B

αA* αB+

(1- αA)* αB

Combination of (A IN B)
and (B OUT A). B is both
back-ground and matte for
A.

XOR αA*A*(1-αB)+

(1- αA)* αB*B

A*(1- αB)+

(1- αA)*B

αA*(1- αB)+

(1- αA)* αB

Combination of (A OUT B)
and (B OUT A). A and B
mutually exclude each
other.

PLUS αA *A + αB*B A + B αA + αB Blend without precedence

NOTE. In Table 5-2, the resultant pixel value is divided by the resultant
alpha when divideMode is set to true (see the argument descriptions for
the iplAlphaComposite() function). The Greek letter α here and below
denotes normalized (scaled) alpha values in the range 0 to 1.

For example, for the OVER operation, the output C for each pixel in the
inputs A and B is determined as

C = αA * A + (1 - αA) * αB * B

Image Arithmetic and Logical Operations

5-23

5
The above operation is done for each color channel in A, B, and C. When the
images A and B contain pre-multiplied alpha values, C is determined as

C = A + (1 - αA) * B

The resultant alpha value aC (alpha in the resultant image C) is computed
as (both pre-multiplied and not pre-multiplied alpha cases) from aA (alpha
in the source image A) and aB (alpha in the source image B):

αC = αA + (1 - αA) * αB

Thus, to perform an OVER operation, use the IPL_COMPOSITE_OVER
identifier for the argument compositeType. For all other types, use
IPL_COMPOSITE_IN, IPL_COMPOSITE_OUT , IPL_COMPOSITE_ATOP ,
IPL_COMPOSITE_XOR , and IPL_COMPOSITE_PLUS , respectively.

The argument divideMode is typically set to false to give adequate results
as shown in the above example for an OVER operation and in Table 5-2.
When divideMode is set to true, the resultant pixel color is divided by the
resultant alpha value. This gives an accurate result pixel value, but the
division operation is expensive. In terms of the OVER example without
pre-multiplication, the final value of the pixel C is computed as

C = (αA * A + (1 - αA) * αB * B)/αC

There is no change in the value of αC, and it is computed as shown above.
When both A and B are 100% transparent (that is, αA is zero and αB is
zero), αC is also zero and the result cannot be determined. In many cases,
the value of αC is 1, so the division has no effect.

Intel Image Processing Library Reference Manual

5-24

5
PreMultiplyAlpha
Pre-multiplies alpha
values of an image.

void iplPreMultiplyAlpha (IplImage* image,

int alphaValue);

image The image for which the alpha pre-multiplication is
performed.

alphaValue The global alpha value to use in the range 0 to 256. If
this value is negative (for example, -1), the internal
alpha channel of the image is used. It is an error
condition if an alpha channel does not exist.

Discussion

The function iplPreMultiplyAlpha() converts an image to the pre-
multiplied alpha form. If (R, G, B, A) are the red, green, blue, and alpha
values of a pixel, then the pixel is stored as (R*α, G*α, B*α, A) after
execution of this function. Here α is the pixel’s normalized alpha value in
the range 0 to 1.

Optionally, a global alpha value alphaValue can be used for the entire
image. Then the pixels are stored as (R*α, G*α, B*α, alphaValue) if the
image has an alpha channel or (R*α, G*α, B*α) if the image does not
have an alpha channel. Here α is the normalized alphaValue in the range
0 to 1.

The function iplPreMultiplyAlpha() can be used for unsigned pixel
data only. It supports ROI, mask ROI and tiling.

Image Filtering

6-1

6
This chapter describes linear and non-linear filtering operations supported
by the Image Processing Library. Most linear filtering is performed
through convolution, either with user-defined convolution kernels or with
the provided fixed filter kernels. Table 6-1 lists the filtering functions.

Table 6-1 Image Filtering Functions

Group Function Name Description

Linear Filters iplBlur Applies a simple
neighborhood averaging filter.

2-dimensional
Convolution
Linear Filters

iplCreateConvKernel
iplCreateConvKernelChar
iplCreateConvKernelFP

Creates a convolution kernel.

iplGetConvKernel
iplGetConvKernelChar
iplGetConvKernelFP

Reads the attributes of a
convolution kernel.

iplDeleteConvKernel
iplDeleteConvKernelFP

Deallocates a convolution
kernel.

iplConvolve2D
iplConvolve2DFP

Convolves an image with one
or more convolution kernels.

iplConvolveSep2D Convolves an image with a
separable convolution kernel.

iplFixedFilter Convolves an image with a
predefined kernel.

Non-linear iplMedianFilter Applies a median filter.

Filters iplMaxFilter Applies a maximum filter.

iplMinFilter Applies a minimum filter.

Intel Image Processing Library Reference Manual

6-2

6
Linear Filters

Linear filtering includes a simple neighborhood averaging filter, 2D
convolution operations, and a number of filters with fixed effects.

Blur
Applies simple neighborhood
averaging filter to blur the
image.

void iplBlur(IplImage* srcImage, IplImage* dstImage,

int nCols, int nRows, int anchorX, int anchorY);

srcImage The source image.

dstImage The resultant image.

nCols Number of columns in the neighborhood to use.

nRows Number of rows in the neighborhood to use.

anchorX, anchorY The [x, y] coordinates of the anchor cell in the
neighborhood. In this coordinate system, the top
left corner would be [0, 0] and the bottom right
corner would be [nCols-1, nRows-1]. For a 3 by
3 neighborhood, the coordinates of the geometric
center would be [1, 1]. This specification allows
the neighborhood to be skewed with respect to its
geometric center.

Discussion

The function iplBlur() sets each pixel in the output image as the
average of all the input image pixels in the neighborhood of size nRows
by nCols with the anchor cell at that pixel. This has the effect of

Image Filtering

6-3

6
smoothing or blurring the input image. The linear averaging filter of an
image is also called a box filter.

2D Convolution

The 2D convolution is a versatile image processing primitive which can be
used in a variety of image processing operations; for example, edge
detection, blurring, noise removal, and feature detection. It is also known
as mask convolution or spatial convolution.

NOTE. In some literature sources, the 2D convolution is referred to as
box filtering, which is an incorrect use of the term. A box filter is a linear
averaging filter (see function iplBlur above). Technically, a box filter
can be effectively (although less efficiently) implemented by 2D
convolution using a kernel with unit or constant values.

For 2D convolution, a rectangular kernel is used. The kernel is a matrix of
signed integers or single-precision real values. The kernel could be a
single row (a row filter) or a single column (a column filter) or composed
of many rows and columns. There is a cell in the kernel called the
“anchor,” which is usually a geometric center of the kernel, but can be
skewed with respect to the geometric center.

For each input pixel, the kernel is placed on the image such that the anchor
coincides with the input pixel. The output pixel value is computed as

 ym,n = Σi
 Σk

 hi,k xm-i,n-k

where xm-i,n-k is the input pixel value and hi,k denotes the kernel. Optionally,
the output pixel value may be scaled.

The convolution function can be used in two ways. The first way uses a
single kernel for convolution. The second way uses multiple kernels and
allows the specification of a method to combine the results of convolution
with each kernel. This enables efficient implementation of multiple
kernels which eliminates the need of storing the intermediate results when

Intel Image Processing Library Reference Manual

6-4

6
using each kernel. The functions iplConvolve2D() and
iplConvolve2DFP() can implement both ways.

In addition, iplConvolveSep2D() , a convolution function that uses
separable kernels, is also provided. It works with convolution kernels that
are separable into the x and y components.

Before performing a convolution, you should create the convolution kernel
and be able to access the kernel attributes. You can do this using
the functions iplCreateConvKernel() , iplGetConvKernel() ,
iplCreateConvKernelFP() and iplGetConvKernelFP() .

In release 2.0, the function iplFixedFilter() function has been added
to the library. It allows you to convolve images with a number of
commonly used kernels that correspond to Gaussian, Laplacian, highpass,
and gradient filtering.

Also, for compatibility with previous releases, the functions
iplCreateConvKernelChar() and iplGetConvKernelChar() have
been added. They use 1-byte char kernel values, as opposed to integer
kernel values in iplCreateConvKernel() and iplGetConvKernel() .

Image Filtering

6-5

6
CreateConvKernel, CreateConvKernelChar,
CreateConvKernelFP
Creates a convolution
kernel.

IplConvKernel* iplCreateConvKernel(int nCols, int nRows,

int anchorX, int anchorY, int* values, int nShiftR);

IplConvKernel* iplCreateConvKernelChar(int nCols, int

nRows, int anchorX, int anchorY, char* values, int

nShiftR);

IplConvKernelFP* iplCreateConvKernelFP(int nCols, int

nRows, int anchorX, int anchorY, float *values);

nCols The number of columns in the convolution kernel.

nRows The number of rows in the convolution kernel.

anchorX, anchorY The [x, y] coordinates of the anchor cell in the
kernel. In this coordinate system, the top left
corner would be [0, 0] and the bottom right
corner would be [nCols-1, nRows-1]. For a 3 by
3 kernel, the coordinates of the geometric center
would be [1, 1]. This specification allows the
kernel to be skewed with respect to its geometric
center.

values A pointer to an array of values to be used for the
kernel matrix. The values are read in row-major
form starting with the top left corner. There
should be exactly nRows*nCols entries in this
array. For example, the array [1, 2, 3, 4, 5, 6, 7,
8, 9] would represent the following kernel
matrix:

Intel Image Processing Library Reference Manual

6-6

6
1 2 3
4 5 6
7 8 9

nShiftR Scale the resulting output pixel by shifting it to
the right nShiftR times.

Discussion

Functions iplCreateConvKernel() and iplCreateConvKernelFP()
are used to create convolution kernels of arbitrary size with arbitrary
anchor point. The function iplCreateConvKernelChar() serves
primarily for compatibility with previous releases of the library. It uses
char rather than integer input values to creates the same kernel as
iplCreateConvKernel() .

Return Value

A pointer to the convolution kernel structure IplConvKernel.

GetConvKernel, GetConvKernelChar
GetConvKernelFP
Reads the attributes of a
convolution kernel.

void iplGetConvKernel(IplConvKernel* kernel, int* nCols,

int* nRows, int* anchorX, int* anchorY, int** values,
int* nShiftR);

void iplGetConvKernelChar(IplConvKernel* kernel, int*

nCols, int* nRows, int* anchorX, int* anchorY, char**

values, int* nShiftR);

Image Filtering

6-7

6
void iplGetConvKernelFP(IplConvKernelFP* kernel, int*

nCols, int* nRows, int* anchorX, int* anchorY, float**

values);

kernel The kernel to get the attributes for. The attributes
are returned in the remaining arguments.

nCols, nRows Numbers of columns and rows in the convolution
kernel. Set by the function.

anchorX, anchorY Pointers to the [x, y] coordinates of the anchor
cell in the kernel. (See iplCreateConvKernel
above.) Set by the function.

values A pointer to an array of values to be used for the
kernel matrix. The values are read in row-major
form starting with the top left corner. There will
be exactly nRows*nCols entries in this array.
For example, the array [1, 2, 3, 4, 5, 6, 7, 8, 9]
would represent the kernel matrix

1 2 3
4 5 6
7 8 9

nShiftR A pointer to the number of bits to shift (to the
right) the resulting output pixel of each
convolution. Set by the function.

Discussion

Functions iplGetConvKernel() and iplGetConvKernelFP() are used
to read the convolution kernel attributes. The iplGetConvKernelChar()
function serves primarily for compatibility with previous releases. It gives
you 1-byte char rather than integer values of the convolution kernel;
you’ll probably need this function only if you create kernels using
iplCreateConvKernelChar() .

Intel Image Processing Library Reference Manual

6-8

6
DeleteConvKernel
DeleteConvKernelFP
Deletes a convolution
kernel.

void iplDeleteConvKernel(IplConvKernel* kernel);

void iplDeleteConvKernelFP(IplConvKernelFP* kernel);

kernel The kernel to delete.

Discussion

Functions iplDeleteConvKernel() and iplDeleteConvKernelFP()
must be used to delete convolution kernels created, respectively, by
iplCreateConvKernel() and iplCreateConvKernelFP() .

Convolve2D
Convolve2DFP
Convolves an image
with one or more
convolution kernels.

void iplConvolve2D(IplImage* srcImage, IplImage*

dstImage, IplConvKernel** kernel, int nKernels, int

combineMethod);

void iplConvolve2DFP(IplImage* srcImage, IplImage*

dstImage, IplConvKernelFP** kernel, int nKernels, int

combineMethod);

srcImage The source image.

dstImage The resultant image.

Image Filtering

6-9

6
kernel A pointer to an array of pointers to convolution

kernels. The length of the array is nKernels.

nKernels The number of kernels in the array kernel. The
value of nKernels can be 1 or more.

combineMethod The way in which the results of applying each
kernel should be combined. This argument is
ignored when a single kernel is used. The
following combinations are supported:

IPL_SUM Sums the results.

IPL_SUMSQ Sums the squares of the results.

IPL_SUMSQROOT Sums the squares of the results
and then takes the square root.

IPL_MAX Takes the maximum of the results.

IPL_MIN Takes the minimum of the results.

Discussion

Functions iplConvolve2D() and iplConvolve2D() are used to
convolve an image with a set of convolution kernels. The results of using
each kernel are then combined using the combineMethod argument; see
Example 6-1.

Example 6-1 Computing the 2-dimensional Convolution

int example61(void) {

 IplImage *imga, *imgb;

 int one[9] = {1,0,1, 0,0,0, 1,0,1}; // a kernel to check

 IplConvKernel* kernel; // REFLECT border mode

 __try {

 int i;

 imga= iplCreateImageHeader(1, 0, IPL_DEPTH_8U, "GRAY",

 "GRAY", IPL_DATA_ORDER_PIXEL, IPL_ORIGIN_TL,

 IPL_ALIGN_DWORD, 4, 4, NULL, NULL, NULL, NULL);

 continued +

Intel Image Processing Library Reference Manual

6-10

6
Example 6-1 Computing 2-dimensional Convolution (continued)

 if(NULL == imga) return 0;

 iplSetBorderMode(imga, IPL_BORDER_REFLECT, IPL_SIDE_TOP|

 IPL_SIDE_BOTTOM|IPL_SIDE_LEFT|IPL_SIDE_RIGHT, 0);

 imgb = iplCreateImageHeader(

 1, 0, IPL_DEPTH_8U, "GRAY", "GRAY",

 IPL_DATA_ORDER_PIXEL, IPL_ORIGIN_TL,

 IPL_ALIGN_DWORD, 4, 4, NULL, NULL,

 NULL, NULL);

 if(NULL == imgb) return 0;

 iplAllocateImage(imga, 0, 0);

 if(NULL == imga->imageData) return 0;

 // fill image by meaningless

 for(i=0; i<16; i++)

 ((char*)imga->imageData)[i] = (char)(i+1);

 iplAllocateImage(imgb, 0, 0);

 if(NULL == imgb->imageData) return 0;

 // create kernel 3x3 with (1,1) cross point

 kernel = iplCreateConvKernel(3, 3, 1, 1, one, 0);

 // convolve imga by kernel and place the result in imgb

 iplConvolve2D(imga, imgb, &kernel, 1, IPL_SUM);

 // Check if an error occurred

 if(iplGetErrStatus() != IPL_StsOk) return 0;

 }

 __finally {

 iplDeleteConvKernel(kernel);

 iplDeallocate(imga, IPL_IMAGE_HEADER | IPL_IMAGE_DATA);

 iplDeallocate(imgb, IPL_IMAGE_HEADER | IPL_IMAGE_DATA);

 }

 return IPL_StsOk == iplGetErrStatus();

}

Image Filtering

6-11

6
ConvolveSep2D
Convolves an image with a
separable convolution kernel.

void iplConvolveSep2D(IplImage* srcImage, IplImage*

dstImage, IplConvKernel* xKernel, IplConvKernel*

yKernel);

srcImage The source image.

dstImage The resultant image.

xKernel The x or row kernel. Must contain only one row.

yKernel The y or column kernel. Must contain only one column.

Discussion

The function iplConvolveSep2D() is used to convolve the input image
srcImage with the separable kernel specified by the row kernel xkernel
and column kernel ykernel. The resulting output image is dstImage.

Intel Image Processing Library Reference Manual

6-12

6
FixedFilter
Convolves an image with a
predefined kernel.

int iplFixedFilter(IplImage* srcImage,

 IplImage* dstImage, IplFilter filter);

srcImage The source image.

dstImage The resultant image.

filter One of predefined filter kernels (see Discussion for
supported filters).

Discussion

The function iplFixedFilter() is used to convolve the input image
srcImage with a predefined filter kernel specified by filter. The
resulting output image is dstImage.

The filter kernel can be one of the following:

IPL_PREWITT_3x3_V A gradient filter (vertical Prewitt operator).
This filter uses the kernel
 -1 0 1

 -1 0 1

 -1 0 1

IPL_PREWITT_3x3_H A gradient filter (horizontal Prewitt operator).
This filter uses the kernel
 1 1 1

 0 0 0

 -1 -1 -1

IPL_SOBEL_3x3_V A gradient filter (vertical Sobel operator).
This filter uses the kernel
 -1 0 1

 -2 0 2

 -1 0 1

Image Filtering

6-13

6
IPL_SOBEL_3x3_H A gradient filter (horizontal Sobel operator).
This filter uses the kernel

 1 2 1

 0 0 0

 -1 -2 -1

IPL_LAPLACIAN_3x3 A 3x3 Laplacian highpass filter.
This filter uses the kernel

 -1 -1 -1

 -1 8 -1

 -1 -1 -1

IPL_LAPLACIAN_5x5 A 5x5 Laplacian highpass filter.
This filter uses the kernel

 -1 -3 -4 -3 -1

 -3 0 6 0 -3

 -4 6 20 6 -4

 -3 0 6 0 -3

 -1 -3 -4 -3 -1

IPL_GAUSSIAN_3x3 A 3x3 Gaussian lowpass filter.
This filter uses the kernel A/16, where

 1 2 1

 A = 2 4 2

 1 2 1

These filter coefficients correspond to a 2-dimensional Gaussian
distribution with standard deviation 0.85.

IPL_GAUSSIAN_5x5 A 5x5 Gaussian lowpass filter.
This filter uses the kernel A/571, where

 2 7 12 7 2

 7 31 52 31 7

 A = 12 52 127 52 12

 7 31 52 31 7

 2 7 12 7 2

Intel Image Processing Library Reference Manual

6-14

6
These filter coefficients correspond to a 2-dimensional Gaussian
distribution with standard deviation 1.0.

IPL_HIGHPASS_3x3 A 3x3 highpass filter.
This filter uses the kernel

 -1 -1 -1

 -1 8 -1

 -1 -1 -1

IPL_HIGHPASS_5x5 A 5x5 highpass filter.
This filter uses the kernel

 -1 -1 -1 -1 -1

 -1 -1 -1 -1 -1

 -1 -1 24 -1 -1

 -1 -1 -1 -1 -1

 -1 -1 -1 -1 -1

IPL_SHARPEN_3x3 A 3x3 sharpening filter.
This filter uses the kernel

 -1 -1 -1

(1/8) * -1 16 -1

 -1 -1 -1

Return Value

The function returns zero if the execution is completed successfully, and a
non-zero integer if an error occurred.

Non-linear Filters

Non-linear filtering involves performing non-linear operations on some
neighborhood of the image. Most common are the minimum, maximum
and median filters.

Image Filtering

6-15

6
MedianFilter
Apply a median filter to
the image.

void iplMedianFilter(IplImage* srcImage, IplImage*

dstImage, int nCols, int nRows, int anchorX,

int anchorY);

srcImage The source image.

dstImage The resultant image.

nCols Number of columns in the neighborhood to use.

nRows Number of rows in the neighborhood to use.

anchorX, anchorY The [x, y] coordinates of the anchor cell in the
neighborhood. In this coordinate system, the top
left corner would be [0, 0] and the bottom right
corner would be [nCols-1, nRows-1]. For a 3 by
3 neighborhood, the coordinates of the geometric
center would be [1, 1]. This specification allows
the neighborhood to be skewed with respect to its
geometric center.

Discussion

The function iplMedianFilter() sets each pixel in the output image as
the median value of all the input image pixel values in the neighborhood
of size nRows by nCols with the anchor cell at that pixel. This has the
effect of removing the noise in the image.

Intel Image Processing Library Reference Manual

6-16

6
Example 6-2 Applying the Median Filter

int example62(void) {

 IplImage *imga, *imgb;

 __try {

 imga = iplCreateImageHeader(

 1, 0, IPL_DEPTH_8U, "GRAY", "GRAY",

 IPL_DATA_ORDER_PIXEL, IPL_ORIGIN_TL,

 IPL_ALIGN_DWORD, 4, 4, NULL, NULL,

 NULL, NULL);

 if(NULL == imga) return 0;

 iplSetBorderMode(imga, IPL_BORDER_REFLECT, IPL_SIDE_TOP|

 IPL_SIDE_BOTTOM|IPL_SIDE_LEFT|IPL_SIDE_RIGHT, 0);

 imgb = iplCreateImageHeader(

 1, 0, IPL_DEPTH_8U, "GRAY", "GRAY",

 IPL_DATA_ORDER_PIXEL, IPL_ORIGIN_TL,

 IPL_ALIGN_DWORD, 4, 4, NULL, NULL,

 NULL, NULL);

 if(NULL == imgb) return 0;

 iplAllocateImage(imga, 1, 10);

 if(NULL == imga->imageData) return 0;

 // make a spike

 ((char*)imga->imageData)[2*4+2] = (char)15;

 iplAllocateImage(imgb, 0, 0);

 if(NULL == imgb->imageData) return 0;

 // Filter imga and place the result in imgb

 iplMedianFilter(imga, imgb, 3,3, 1,1);

 if(iplGetErrStatus() != IPL_StsOk) return 0;

 }

 __finally {

 iplDeallocate(imga, IPL_IMAGE_HEADER | IPL_IMAGE_DATA);

 iplDeallocate(imgb, IPL_IMAGE_HEADER | IPL_IMAGE_DATA);

 }

 return IPL_StsOk == iplGetErrStatus();

}

Image Filtering

6-17

6
MaxFilter
Apply a max filter to the
image.

void iplMaxFilter(IplImage* srcImage, IplImage* dstImage,

int nCols, int nRows, int anchorX, int anchorY);

srcImage The source image.

dstImage The resultant image.

nCols Number of columns in the neighborhood to use.

nRows Number of rows in the neighborhood to use.

anchorX, anchorY The [x, y] coordinates of the anchor cell in the
neighborhood. In this coordinate system, the top
left corner would be [0, 0] and the bottom right
corner would be [nCols-1, nRows-1]. For a 3 by
3 neighborhood, the coordinates of the geometric
center would be [1, 1]. This specification allows
the neighborhood to be skewed with respect to its
geometric center.

Discussion

The function iplMaxFilter() sets each pixel in the output image as the
maximum value of all the input image pixel values in the neighborhood of
size nRows by nCols with the anchor cell at that pixel. This has the effect
of increasing the contrast in the image.

Intel Image Processing Library Reference Manual

6-18

6
MinFilter
Apply a min filter to the
image.

void iplMinFilter(IplImage* srcImage, IplImage* dstImage,

int nCols, int nRows, int anchorX, int anchorY);

srcImage The source image.

dstImage The resultant image.

nCols Number of columns in the neighborhood to use.

nRows Number of rows in the neighborhood to use.

anchorX, anchorY The [x, y] coordinates of the anchor cell in the
neighborhood. (In this coordinate system, the top
left corner would be [0, 0] and the bottom right
corner would be [nCols-1, nRows-1]. For a 3 by
3 neighborhood the coordinates of the geometric
center would be [1, 1]). This specification
allows the neighborhood to be skewed with
respect to its geometric center.

Discussion

The function iplMinFilter() sets each pixel in the output image as the
minimum value of all the input image pixel values in the neighborhood of
size nRows by nCols with the anchor cell at that pixel. This has the effect
of decreasing the contrast in the image.

Linear Image Transforms

7-1

7
This chapter describes the linear image transforms implemented in the
library: Fast Fourier Transform (FFT) and Discrete Cosine Transform
(DCT). Table 7-1 lists the functions performing linear image transform
operations.

Table 7-1 Linear Image Transform Functions

Group Function Name Description

Fast Fourier
Transform (FFT)

iplRealFft2D Computes the forward or inverse 2D
FFT of an image.

iplCcsFft2D Computes the forward or inverse 2D
FFT of an image in a complex-
conjugate format.

Discrete Cosine
Transform (DCT)

iplDCT2D Computes the forward or inverse 2D
DCT of an image.

Fast Fourier Transform

This section describes the functions that implement the forward and
inverse Fast Fourier Transform (FFT) on the 2-dimensional (2D) image
data.

Real-Complex Packed (RCPack2D) Format

The FFT of any real 2D signal, in particular, the FFT of an image is
conjugate-symmetric. Therefore, it can be fully specified by storing only
half the output data. A special format called RCPack2D is provided for this
purpose.

Intel Image Processing Library Reference Manual

7-2

7
The function iplRealFft2D() transforms a 2D image and produces the
Fourier coefficients in the RCPack2D format. To complement this, function
iplCcsFft2D() is provided that uses its input in RCPack2D format,
performs the Fourier transform, and produces its output as a real 2D
image. The functions iplRealFft2D() and iplCcsFft2D() together can
be used to perform frequency domain filtering of images.

RCPack2D format is defined based on the following Fourier transform
equations:

A f
ijl

L

iks

Ks j
l

L

k l
k

K

, , exp exp= −



 −



=

−

=

−

∑ ∑
0

1

0

1 2 2π π

f
LK

A
ijl

L

iks

Kk l s j
s

K

j

L

, , exp exp= 









=

−

=

−

∑∑1 2 2

0

1

0

1 π π

where i = −1 , fk,l is the pixel value in the k-th row and l-th column.

Note that the Fourier coefficients have the following relationship:

As,j = conj(AK-s, L-j) s = 1,..., K-1; j = 1,..., L-1;

A0,j = conj(A0, L-j) j = 1,..., L-1;

As,0 = conj(AK-s, 0) s = 1,..., K-1.

Hence, to reconstruct the L*K complex coefficients As,j, it is enough to
store only L*K real values. The Fourier transform functions actually use
s = 0,..., K-1; j = 0,..., L/2.

Other Fourier coefficients can be found using complex-conjugate
relations. Fourier coefficients As,j can be stored in the RCPack2D format,
which is a convenient compact representation of a complex conjugate-
symmetric sequence. In the RCPack2D format, the output samples of the
FFT are arranged as shown in Tables 7-2 and 7-3, where Re corresponds
to Real and Im corresponds to Imaginary. Table 7-4 is an example of
output samples storage for K = 4 and L = 4.

Linear Image Transforms

7-3

7
Table 7-2 FFT Output in RCPack2D Format for Even K

Re A0,0 Re A0,1 Im A0,1
... Re A0,(L-1)/2 Im A0,(L-1)/2 Re A0,L/2

Re A1,0 Re A1,1 Im A1,1
... Re A1,(L-1)/2 Im A1,(L-1)/2 Re A1,L/2

Im A1,0 Re A2,1 Im A2,1
... Re A2,(L-1)/2 Im A2,(L-1)/2 Im A1,L/2

...

Re AK/2-1,0 Re AK-3,1 Im AK-3,1
... Re AK-3,(L-1)/2 Im AK-3,(L-1)/2 Re AK/2-1,L/2

Im AK/2-1,0 Re AK-2,1 Im AK-2,1
... Re AK-2,(L-1)/2 Im AK-2,(L-1)/2 Im AK/2-1,L/2

Re AK/2,0 Re AK-1,1 Im AK-1,1
... Re AK-1,(L-1)/2 Im AK-1,(L-1)/2 Re AK/2,L/2

(the last column is used for even L only)

Table 7-3 FFT Output in RCPack2D Format for Odd K

Re A0,0 Re A0,1 Im A0,1
... Re A0,(L-1)/2 Im A0,(L-1)/2 Re A0,L/2

Re A1,0 Re A1,1 Im A1,1
... Re A1,(L-1)/2 Im A1,(L-1)/2 Re A1,L/2

Im A1,0 Re A2,1 Im A2,1
... Re A2,(L-1)/2 Im A2,(L-1)/2 Im A1,L/2

...

Re AK/2,0 Re AK-2,1 Im AK-2,1
... Re AK-2,(L-1)/2 Im AK-2,(L-1)/2 Re AK/2,L/2

Im AK/2,0 Re AK-1,1 Im AK-1,1
... Re AK-1,(L-1)/2 Im AK-1,(L-1)/2 Im AK/2,L/2

(the last column is used for even L only)

Table 7-4 RealFFT2D Output Sample for K = 4, L = 4

Re A0,0 Re A0,1 Im A0,1 Re A0,2

Re A1,0 Re A1,1 Im A1,1 Re A1,2

Im A1,0 Re A2,1 Im A2,1 Im A1,2

Re A2,0 Re A3,1 Im A3,1 Re A2,2

Intel Image Processing Library Reference Manual

7-4

7
RealFft2D
Computes the forward or
inverse 2D FFT of an image.

void iplRealFft2D(IplImage* srcImage, IplImage* dstImage,

 int flags);

srcImage The source image.

dstImage The resultant image in RCPack2D format
containing the Fourier coefficients. This image
must be a multi-channel image containing the
same number of channels as srcImage. The data
type for the image must be 8, 16 or 32 bits.

This image cannot be the same as the input
image srcImage (that is, an in-place operation is
not allowed).

flags Specifies how to perform the FFT. This is an
integer whose bits can be assigned the following
values using bitwise logical OR:

IPL_FFT_Forw Do forward transform

IPL_FFT_Inv Do inverse transform

IPL_FFT_NoScale Do inverse transform without
scaling

IPL_FFT_UseInt Use only integer core

IPL_FFT_UseFloat Use only float core

IPL_FFT_Free Only free all working arrays
and exit.

Linear Image Transforms

7-5

7
Discussion

The function iplRealFft2D() performs an FFT on each channel in the
specified rectangular ROI of the input image srcImage and writes the
Fourier coefficients in RCPack2D format into the corresponding channel of
the output image dstImage. The output data will be clamped (saturated)
to the limits Min and Max, which are determined by the data type of the
output image. For best results, use 32-bit data or, at least, 16-bit data.

Example 7-1 Computing the FFT of an Image

/*---

; Matlab example

» rand('seed',12345); x=round(rand(4,4)*10), fft2(x)

 89 10 - 7i -9 10 + 7i

 -1 + 6i 8 -21i 13 + 2i -8 - 3i

 -3 10 + 1i 3 10 - 1i

 -1 - 6i -8 + 3i 13 - 2i 8 +21i

// Result of iplRealFft2D function:

 89 10 -7 -9

 -1 8 -21 13

 6 10 1 2

 -3 -8 3 3

--*/

int example71(void) {

 IplImage *imga, *imgb; int i;

 const int src[16] = {

 9, 7, 4, 1, 7, 5, 1, 7,

 6, 6, 1, 9, 3, 10, 9, 4};

 __try {

 imga = iplCreateImageHeader(

 1, 0, IPL_DEPTH_8U, "GRAY", "GRAY",

 IPL_DATA_ORDER_PIXEL, IPL_ORIGIN_TL,

 IPL_ALIGN_DWORD, 4, 4, NULL, NULL,

 NULL, NULL);

continued +

Intel Image Processing Library Reference Manual

7-6

7
Example 7-1 Computing the FFT of an Image (continued)

 if(NULL == imga) return 0;

 imgb = iplCreateImageHeader(

 1, 0, IPL_DEPTH_16S, "GRAY", "GRAY",

 IPL_DATA_ORDER_PIXEL, IPL_ORIGIN_TL,

 IPL_ALIGN_DWORD, 4, 4, NULL, NULL,

 NULL, NULL);

 if(NULL == imgb) return 0;

 // Create without filling

 iplAllocateImage(imga, 0,0);

 if(NULL == imga->imageData) return 0;

 // Fill by sample data

 for(i=0; i<16; i++)

 ((char*)imga->imageData)[i] = (char)src[i];

 iplAllocateImage(imgb, 0, 0);

 if(NULL == imgb->imageData) return 0;

 iplRealFft2D(imga, imgb, IPL_FFT_Forw);

 // Compare Matlab and ipl result here

 iplCcsFft2D(imgb, imga, IPL_FFT_Inv);

 // Compare source data and obtained data

 // Check if an error was occured

 if(iplGetErrStatus() != IPL_StsOk) return 0;

 }

 __finally {

 iplRealFft2D(NULL, NULL, IPL_FFT_Free);

 iplDeallocate(imga,IPL_IMAGE_HEADER|IPL_IMAGE_DATA);

 iplDeallocate(imgb,IPL_IMAGE_HEADER|IPL_IMAGE_DATA);

 }

 return IPL_StsOk == iplGetErrStatus();

}

Linear Image Transforms

7-7

7
CcsFft2D
Computes the forward
or inverse 2D FFT of an
image in complex-
conjugate format.

void iplCcsFft2D(IplImage* srcImage, IplImage* dstImage,

 int flags);

srcImage The source image in RCPack2D format.

dstImage The resultant image. This image must be a multi-
channel image containing the same number of channels
as srcImage.
This image cannot be the same as the input image
srcImage (that is, an in-place operation is not allowed).

flags Specifies how to perform the FFT. This is an integer
whose bits can be assigned the following values using
bitwise logical OR:

IPL_FFT_Forw Do forward transform.
IPL_FFT_Inv Do inverse transform.
IPL_FFT_NoScale Do inverse transform without

scaling.
IPL_FFT_UseInt Use only integer core.
IPL_FFT_UseFloat Use only float core.
IPL_FFT_Free Only free all working arrays and

exit.

Discussion

The function iplCcsFft2D() performs an FFT on each channel in the
specified rectangle ROI of the input image srcImage and writes the
output in RCPack2D format to the image dstImage. The output data will
be clamped (saturated) to the limits Min and Max that are determined by
the data type of the output image.

Intel Image Processing Library Reference Manual

7-8

7
Discrete Cosine Transform

This section describes the functions that implement the forward and
inverse Discrete Cosine Transform (DCT) on the 2D image data. The
output of the DCT for real input data is real. Therefore, unlike FFT, no
special format for the transform output is needed.

DCT2D
Computes the forward
or inverse 2D DCT of
an image.

void iplDCT2D(IplImage* srcImage, IplImage* dstImage,

int flags);

srcImage The source image.

dstImage The resultant image containing the DCT
coefficients. This image must be a multi-channel
image containing the same number of channels
as srcImage. The data type for the image must
be 8, 16 or 32 bits.

This image cannot be the same as the input
image srcImage (that is, an in-place operation is
not allowed).

flags Specifies how to perform the DCT. This is an
integer whose bits can be assigned the following
values using bitwise logical OR:

 IPL_DCT_Forward Do forward transform.

 IPL_DCT_Inverse Do inverse transform.

Linear Image Transforms

7-9

7
 IPL_DCT_Free Only free all working arrays and exit.

 IPL_DCT_UseInpBuf

Use the input image array for the intermediate
calculations. The performance of DCT increases, but
the input image is destroyed. You may use this value
only if both the source and destination image data types
are 16-bit signed.

Discussion

The function iplDCT2D() performs a DCT on each channel in the
specified rectangular ROI of the input image srcImage and writes the
DCT coefficients into the corresponding channel of the output image
dstImage. The output data will be clamped (saturated) to the limits Min
and Max, where Min and Max are determined by the data type of the output
image. For best results, use 32-bit data or, at least, 16-bit data.

Example 7-2 Computing the DCT of an Image

int example72(void) {

 IplImage *imga, *imgb;

 const int width = 8, height = 8;

 int i, x, y;

 __try {

 imga = iplCreateImageHeader(

 1, 0, IPL_DEPTH_8U, "GRAY", "GRAY",

 IPL_DATA_ORDER_PIXEL, IPL_ORIGIN_TL,

 IPL_ALIGN_DWORD, width, height, NULL, NULL,

 NULL, NULL);

 if(NULL == imga) return 0;

continued +

Intel Image Processing Library Reference Manual

7-10

7
Example 7-2 Computing the DCT of an Image (continued)

 imgb = iplCreateImageHeader(

 1, 0, IPL_DEPTH_16S, "GRAY", "GRAY",

 IPL_DATA_ORDER_PIXEL, IPL_ORIGIN_TL,

 IPL_ALIGN_DWORD, width, height, NULL, NULL,

 NULL, NULL);

 if(NULL == imgb) return 0;

 // Create without filling

 iplAllocateImage(imga, 0,0);

 if(NULL == imga->imageData) return 0;

 // Fill by sample data

 for(i=0; i<width*height; i++)

 ((char*)imga->imageData)[i] = (char)(i+1);

 iplAllocateImage(imgb, 0, 0);

 if(NULL == imgb->imageData) return 0;

 iplDCT2D(imga, imgb, IPL_DCT_Forward);

 // Now there are (width+height-1) DCT coefficients

 for(y=1; y<height; y++)

 for(x=1; x<width; x++)

 ((short*)imgb->imageData)[y*width+x]= (short)0;

 // Restore source image from some DCT coefficients

 iplDCT2D(imgb, imga, IPL_DCT_Inverse);

 // Check if an error occurred

 if(iplGetErrStatus() != IPL_StsOk) return 0;

 }

 __finally {

 iplDCT2D(NULL, NULL, IPL_DCT_Free);

 iplDeallocate(imga,IPL_IMAGE_HEADER|IPL_IMAGE_DATA);

 iplDeallocate(imgb,IPL_IMAGE_HEADER|IPL_IMAGE_DATA);

 }

 return IPL_StsOk == iplGetErrStatus();
}

Morphological Operations

8-1

8
The morphological operations of Intel Image Processing Library are
simple erosion and dilation of an image. A specified number of erosions
and dilations are performed as part of image opening or closing operations
in order to (respectively) eliminate or fill small and thin holes in objects,
break objects at thin points or connect nearby objects, and generally
smooth the boundaries of objects without significantly changing their area.

Table 8-1 lists the functions that perform these operations.

Table 8-1 Morphological Operation Functions

Group Function Name Description

Erode, Dilate iplErode Erodes the image an indicated number
of times.

iplDilate Dilates the image an indicated number
of times.

Open, Close iplOpen Opens the image while smoothing the
boundaries of large objects.

iplClose Closes the image while smoothing the
boundaries of large objects.

Intel Image Processing Library Reference Manual

8-2

8
Erode
Erodes the image.

void iplErode(IplImage* srcImage, IplImage* dstImage,

int nIterations);

srcImage The source image.

dstImage The resultant image.

nIterations The number of times to erode the image.

Discussion

The function iplErode() performs an erosion of the image
nIterations times. The way the image is eroded depends on whether it
is a binary image, a gray-scale image, or a color image.

• For a binary input image, the output pixel is set to zero if the
corresponding input pixel or any of its 8 neighboring pixels is a zero.

• For a gray scale or color image, the output pixel is set to the minimum
of the corresponding input pixel and its 8 neighboring pixels.

• For a color image, each color channel in the output pixel is set to the
minimum of this channel’s values at the corresponding input pixel and
its 8 neighboring pixels.

The effect of erosion is to remove spurious pixels (such as noise) and to
thin boundaries of objects on a dark background (that is, objects whose
pixel values are greater than those of the background).

Morphological Operations

8-3

8
Figure 8-1 shows an example of 8-bit gray scale image before erosion
(left) and the same image after erosion of a rectangular ROI (right).

Figure 8-1 Erosion in a Rectangular ROI: the Source (left) and Result (right)

__

The following code (Example 8-1) performs erosion of the image inside
the selected rectangular ROI.

Intel Image Processing Library Reference Manual

8-4

8
Example 8-1 Code Used to Produce Erosion in a Rectangular ROI

int example81(void) { IplImage *imga, *imgb;

 __try {

 imga = iplCreateImageHeader(

 1, 0, IPL_DEPTH_8U, "GRAY", "GRAY",

 IPL_DATA_ORDER_PIXEL, IPL_ORIGIN_TL,

 IPL_ALIGN_DWORD, 4, 4, NULL, NULL,

 NULL, NULL);

 if(NULL == imga) return 0;

 imgb = iplCreateImageHeader(

 1, 0, IPL_DEPTH_8U, "GRAY", "GRAY",

 IPL_DATA_ORDER_PIXEL, IPL_ORIGIN_TL,

 IPL_ALIGN_DWORD, 4, 4, NULL, NULL,

 NULL, NULL);

 if(NULL == imgb) return 0;

 iplAllocateImage(imga, 1, 7);

 if(NULL == imga->imageData) return 0;

 // Create a hole

 ((char*)imga->imageData)[2*4+2] = 0;

 // Border is taken from the opposite side

 iplSetBorderMode(imga, IPL_BORDER_WRAP,

 IPL_SIDE_ALL, 0);

 iplAllocateImage(imgb, 0, 0);

 if(NULL == imgb->imageData) return 0;

 // Erosion will increase the hole

 iplErode(imga, imgb, 1);

 // Check if an error occurred

 if(iplGetErrStatus() != IPL_StsOk) return 0;

 }

 __finally {

 iplDeallocate(imga,IPL_IMAGE_HEADER|IPL_IMAGE_DATA);

 iplDeallocate(imgb,IPL_IMAGE_HEADER|IPL_IMAGE_DATA);

 }

 return IPL_StsOk == iplGetErrStatus();
}

Morphological Operations

8-5

8
NOTE. All source image attributes are defined in the image header
pointed to by srcImage.

Dilate
Dilates the image.

void iplDilate(IplImage* srcImage, IplImage* dstImage,

int nIterations);

srcImage The source image.

dstImage The resultant image.

nIterations The number of times to dilate the image.

Discussion

The function iplDilate() performs a dilation of the image
nIterations times. The way the image is dilated depends on whether the
image is binary, gray-scale, or a color image.

• For a binary input image, the output pixel is set to 1 if the corresponding
input pixel is 1 or any of 8 neighboring input pixels is 1.

• For a gray-scale image, the output pixel is set to the maximum of the
corresponding input pixel and its 8 neighboring pixels.

• For a color image, each color channel in the output pixel is set to the
maximum of this channel’s values at the corresponding input pixel
and its 8 neighboring pixels.

The effect of dilation is to fill up holes and to thicken boundaries of
objects on a dark background (that is, objects whose pixel values are
greater than those of the background).

Intel Image Processing Library Reference Manual

8-6

8
Open
Opens the image by
performing erosions
followed by dilations.

void iplOpen(IplImage* srcImage, IplImage* dstImage,

int nIterations);

srcImage The source image.

dstImage The resultant image.

nIterations The number of times to erode and dilate the
image.

Discussion

The function iplOpen() performs nIterations of erosion followed by
nIterations of dilation performed by iplErode() and iplDilate(),
respectively.

The process of opening has the effect of eliminating small and thin
objects, breaking objects at thin points, and generally smoothing the
boundaries of larger objects without significantly changing their area.

See Also

Erode

Dilate

Morphological Operations

8-7

8
Close
Closes the image by
performing dilations
followed by erosions.

void iplClose(IplImage* srcImage, IplImage* dstImage,

int nIterations);

srcImage The source image.

dstImage The resultant image.

nIterations The number of times to dilate and erode the image.

Discussion

The function iplClose() performs nIterations of dilation followed
by nIterations of erosion performed by iplDilate() and
iplErode(), respectively.

The process of closing has the effect of filling small and thin holes in
objects, connecting nearby objects, and generally smoothing the
boundaries of objects without significantly changing their area.

See Also

Erode

Dilate

This page is intentionally left blank. Needed for two-sided printing.

This page is intentionally left blank. Needed for two-sided printing.

Color Space Conversion

9-1

9
This chapter describes Intel Image Processing Library functions that
perform color space conversion. The library supports the following color
space conversions:

• Reduction from high bit resolution color to low bit resolution color
• Conversion of absolute color images to and from palette color images
• Color model conversion
• Conversion from color to gray scale and vice versa

Table 9-1 lists color space conversion functions. For information on the
absolute-to-palette and palette-to-absolute color conversion, see “Working
in the Windows DIB Environment” in Chapter 4.

Table 9-1 Color Space Conversion Functions

Conversion Type Function Name Description

Reducing Bit
Resolution

iplReduceBits Reduces the number of bits
per channel in an image.

Bitonal to gray scale iplBitonalToGray Converts bitonal images to 8-
and 16-bit gray scale images.

Color to gray scale
and vice versa

iplColorToGray

iplGrayToColor

Convert color images to and
from gray scale images.

Color Models
Conversion

iplRGB2HSV,
iplHSV2RGB

Convert RGB images to and
from HSV color model.

iplRGB2HLS,
iplHLS2RGB

Convert RGB images to and
from HLS color model.

 continued +

Intel Image Processing Library Reference Manual

9-2

9
Table 9-1 Color Space Conversion Functions (continued)

Conversion Type Function Name Description

Color Models
Conversion

iplRGB2LUV,
iplLUV2RGB

Convert RGB images to and
from LUV color model.

(continued) iplRGB2XYZ,
iplXYZ2RGB

Convert RGB images to and
from XYZ color model.

iplRGB2YCrCb,
iplYCrCb2RGB

Convert RGB images to and
from YCrCb color model.

iplRGB2YUV,
iplYUV2RGB

Convert RGB images to and
from YUV color model.

iplYCC2RGB Convert PhotoYCC* images
to RGB color model.

Color Twist iplApplyColorTwist Applies a color-twist matrix
to an image.

iplCreateColorTwist Allocates memory for color-
twist matrix data structure.

iplDeleteColorTwist Deletes the color-twist matrix
data structure.

iplSetColorTwist Sets a color-twist matrix data
structure.

Reducing the Image Bit Resolution

This section describes functions that reduce the bit resolution of absolute
color and gray scale images.

Color Space Conversion

9-3

9
ReduceBits
Reduces the bits per
channel in an image.

void iplReduceBits(IplImage* srcImage, IplImage*

dstImage, int jitterType, int ditherType, int levels);

srcImage The source image of a higher bit resolution.
Refer to the discussion below for a list of valid
source and resultant image combinations.

dstImage The resultant image of a lower bit resolution.
Refer to the discussion below for a list of valid
source and resultant image combinations.

jitterType The number specifying the noise added; should
be in the range 0 to 8.

ditherType The type of dithering to be used. The following
types are supported:

IPL_DITHER_NONE No dithering is done

IPL_DITHER_FS The Floid-Steinberg
dithering algorithm

IPL_DITHER_JJH The Jarvice-Judice-Hinke
dithering algorithm

IPL_DITHER_STUCKEY The Stucki dithering
algorithm

IPL_DITHER_BAYER The Bayer dithering
algorithm.

levels Number of levels for dithering; should be a
power of 2.

Intel Image Processing Library Reference Manual

9-4

9
Discussion

The function iplReduceBits() reduces a higher bit resolution of the
absolute color or gray scale source image srcImage to a lower resolution
of the resultant absolute color or gray scale image dstImage. All
combinations of jittering and dithering values are valid. If jitterType is
greater than 0, some random noise is added to all pixels before the
reduction, which eliminates the problem of visible color stepping; see
[Bragg]. The resultant image can be used as input to a color quantization
method for further reduction in the number of colors; see [Thomas] and
[Schumacher].

Table 9-2 lists the valid combinations of the source and resultant image bit
data types for reducing the bit resolution.

Table 9-2 Source and Resultant Image Data Types for Reducing the Bit
Resolution

Source Image Resultant Image

32 bit per channel 1 (for gray image), 8 or 16 bit per channel

16 bit per channel 8 or 1 (for gray image) bit per channel

8 bit per channel 1 bit per channel (for gray image)

Bit reducing uses the equation dst = src*(((1<<n) -1)/((1<<m) - 1)),
where m is the bit depth of the source and n is the bit depth of the
destination. To reduce a gray scale image to a bitonal (1-bit) image, see
the discussion under the thresholding function iplThreshold in Chapter
10.

Conversion from Bitonal to Gray Scale Images

This section describes the function that performs the conversion of bitonal
images to gray scale.

Color Space Conversion

9-5

9
BitonalToGray
Converts a bitonal
image to gray scale.

void iplBitonalToGray(IplImage* srcImage, IplImage*

dstImage, int ZeroScale, int OneScale);

srcImage The bitonal source image.

dstImage The resultant gray scale image. (See the
discussion below.)

ZeroScale The value that zero pixels of the source image
should have in the resultant image.

OneScale The value given to a resultant pixel if the
corresponding input pixel is 1.

Discussion

The function iplBitonalToGray() converts the input 1-bit bitonal image
srcImage to an 8s, 8u, 16s or16u gray scale image dstImage.

If an input pixel is 0, the corresponding output pixel is set to ZeroScale.
If an input pixel is 1, the corresponding output pixel is set to OneScale.

Conversion of Absolute Colors to and from Palette Colors

Since the IplImage format supports only absolute color images, this
functionality is provided only within the context of converting an absolute
color image IplImage to and from a palette color DIB image. See the
section “Working in the Windows DIB Environment” in Chapter 4.

Intel Image Processing Library Reference Manual

9-6

9
Conversion from Color to Gray Scale

This section describes the function that performs the conversion of
absolute color images to gray scale.

ColorToGray
Converts a color image
to gray scale.

void iplColorToGray(IplImage* srcImage, IplImage*

dstImage);

srcImage The source image. See Table 9-3 for a list of valid
source and resultant image combinations.

dstImage The resultant image. See Table 9-3 for a list of
valid source and resultant image combinations.

Discussion

The function iplColorToGray() converts a color source image
srcImage to a gray scale resultant image dstImage.
Table 9-3 lists the valid combinations of source and resultant image bit
data types for conversion from color to gray scale.

Table 9-3 Source and Resultant Image Data Types for Conversion from
Color to Gray Scale

Source Image (data type) Resultant image (data type)

32 bit per channel Gray scale; 1, 8, or 16 bits per pixel

16 bit per channel Gray scale; 1, 8, or 16 bits per pixel

8 bit per channel Gray scale; 1, 8, or 16 bits per pixel

Color Space Conversion

9-7

9
The weights to compute true luminance from linear red, green and blue are
these:

Y = 0.212671 * R + 0.715160 * G + 0.072169 * B.

Conversion from Gray Scale to Color (Pseudo-color)

This section describes the conversion of gray scale image to pseudo color.

GrayToColor
Converts a gray scale to
color image.

void iplGrayToColor (IplImage* srcImage, IplImage*

dstImage, float FractR, float FractG, float FractB);

srcImage The source image. See Table 9-4 for a list of
valid source and resultant image combinations.

dstImage The resultant image. See Table 9-4 for a list of
valid source and resultant image combinations.

FractR,FractG,FractB The red, green and blue intensities for image
reconstruction. See Discussion for a list of valid
FractR, FractG, and FractB values.

Discussion

The function iplGrayToColor() converts a gray scale source image
srcImage to a resultant pseudo-color image dstImage. Table 9-4 lists
the valid combinations of source and resultant image bit data types for
conversion from gray scale to color.

Intel Image Processing Library Reference Manual

9-8

9
Table 9-4 Source and Resultant Image Data Types for Conversion from Gray

Scale to Color

Source Image (data type) Resultant image (data type)

Gray scale 1 bit 8 bit per channel

Gray scale 8 bit 8 bit per channel

Gray scale 16 bit 16 bit per channel

Gray scale 32 bit 32 bit per channel

The equation for chrominance in RGB from luminance Y is:

R = FractR * Y; 0 <= FractR <= 1
G = FractG * Y; 0 <= FractG <= 1
B = FractB * Y; 0 <= FractB <= 1.

If FractR==0 && FractG==0 && FractB == 0, then the default values
are used in above equation so that:

R = 0.212671 * Y, G = 0.715160 * Y, B = 0.072169 * Y.

Conversion of Color Models

This section describes the conversion of red-green-blue (RGB) images to
and from other common color models: hue-saturation-value model (HSV),
hue-lightness-saturation (HLS) model, and a number of others.

As an alternative way of color models conversion (that works only for
some color models) you can just multiply pixel values by a color twist
matrix; see “Color Twist Matrices” section in this chapter.

Note also that conversion of RGB images to and from the cyan-magenta-
yellow (CMY) model can be performed by a simple subtraction. You can
use the function iplSubtractS to accomplish this conversion. For
example, with maximum pixel value of 255 for 8-bit unsigned images,
the iplSubtractS() function is used as follows:

iplSubtractS(rgbImage, cmyImage, 255, TRUE)

Color Space Conversion

9-9

9
This call converts the RGB image rgbImage to the CMY image
cmyImage by setting each channel in the CMY image as follows:

C = 255 - R
M = 255 - G
Y = 255 - B

The conversion from CMY to RGB is similar: just switch the RGB and
CMY images.

Data ranges in the HLS and HSV Color Models

The ranges of color components in the hue-lightness-saturation (HLS) and
hue-saturation-value (HSV) color models are defined as follows:

hue H is in the range 0 to 360
lightness L is in the range 0 to 1
saturation S is in the range 0 to 1
value V is in the range 0 to 1.

In the Image Processing Library, these color components are represented
by the following integer values of hue H’ , lightness L’ , saturation S’ , and
value V’ :

H’ = H/2 for 8-bit unsigned color channels, H’ = H otherwise,
L’ = L*MAX_VAL
S’ = S*MAX_VAL
V’ = V*MAX_VAL.

Here
MAX_VAL = 255 for 8-bit unsigned color channels,
MAX_VAL = 65,535 for 16-bit unsigned color channels,
MAX_VAL = 2,147,483,647 for 32-bit signed color channels.

Intel Image Processing Library Reference Manual

9-10

9
RGB2HSV
Converts RGB images
to the HSV color model.

void iplRGB2HSV(IplImage* rgbImage, IplImage* hsvImage);

rgbImage The source RGB image.

hsvImage The resultant HSV image.

Discussion

The function converts the RGB image rgbImage to the HSV image
hsvImage. The function checks that the input image is an RGB image.
The channel sequence and color model of the output image are set to HSV.

HSV2RGB
Converts HSV images
to the RGB color model.

void iplHSV2RGB(IplImage* hsvImage, IplImage* rgbImage);

hsvImage The source HSV image.

rgbImage The resultant RGB image.

Discussion

The function converts the HSV image hsvImage to the RGB image
rgbImage. The function checks that the input image is an HSV image and
that the output image is RGB.

Color Space Conversion

9-11

9
RGB2HLS
Converts RGB images
to the HLS color model.

void iplRGB2HLS(IplImage* rgbImage, IplImage* hlsImage);

rgbImage The source RGB image.

hlsImage The resultant HLS image.

Discussion

The function converts the RGB image rgbImage to the HLS image
hlsImage. The function checks that the input image is an RGB image.
The function sets the channel sequence and color model of the output
image to HLS.

HLS2RGB
Converts HLS images to
the RGB color model.

void iplHLS2RGB(IplImage* hlsImage, IplImage* rgbImage);

hlsImage The source HLS image.

rgbImage The resultant RGB image.

Discussion

The function converts the HLS image hlsImage to the RGB image
rgbImage; see [Rogers85]. The function checks that the input image is an
HLS image and that the output image is RGB.

Intel Image Processing Library Reference Manual

9-12

9
RGB2LUV
Converts RGB images
to the LUV color model.

void iplRGB2LUV(IplImage* rgbImage, IplImage* luvImage);

rgbImage The source RGB image.

luvImage The resultant LUV image.

Discussion

The function converts the RGB image rgbImage to the LUV image
luvImage. The function checks that the input image is an RGB image; it
sets the channel sequence and color model of the output image to LUV.

LUV2RGB
Converts LUV images to
the RGB color model.

void iplLUV2RGB(IplImage* luvImage, IplImage* rgbImage);

luvImage The source LUV image.

rgbImage The resultant RGB image.

Discussion

The function converts the LUV image luvImage to the RGB image
rgbImage. The function checks that the input image is an LUV image and
that the output image is RGB.

Color Space Conversion

9-13

9
RGB2XYZ
Converts RGB images
to the XYZ color model.

void iplRGB2XYZ(IplImage* rgbImage, IplImage* xyzImage);

rgbImage The source RGB image.
xyzImage The resultant XYZ image.

Discussion

The function converts the RGB image rgbImage to the XYZ image
xyzImage according to the following formulas:

X = 0.4124·R + 0.3576·G + 0.1805·B
Y = 0.2126·R + 0.7151·G + 0.0721·B
Z = 0.0193·R + 0.1192·G + 0.9505·B.

The function checks that the input image is an RGB image; it sets the
channel sequence and color model of the output image to XYZ.
Since 0.0193 + 0.1192 + 0.9505 > 1, the Z value might saturate.

XYZ2RGB
Converts XYZ images to
the RGB color model.

void iplXYZ2RGB(IplImage* xyzImage, IplImage* rgbImage);

xyzImage The source XYZ image.
rgbImage The resultant RGB image.

Discussion

The function converts the XYZ image xyzImage to the RGB image
rgbImage. The function checks that the input image is an XYZ image and
that the output image is RGB.

Intel Image Processing Library Reference Manual

9-14

9
RGB2YCrCb
Converts RGB images to
the YCrCb color model.

void iplRGB2YCrCb(IplImage* rgbImage,IplImage* yccImage);

rgbImage The source RGB image.
yccImage The resultant YCrCb image.

Discussion

The function converts the RGB image rgbImage to the YCrCb image
yccImage (via the YUV model) according to the following formulas:

Y = 0.3·R + 0.6·G + 0.1·B
U = B - Y Cb = 0.5·(U + 1)
V = R - Y Cr = V/1.6 + 0.5.

The function checks that the input image is an RGB image; it sets the
channel sequence and color model of the output image to “YCr”.

YCrCb2RGB
Converts YCrCb images
to the RGB color model.

void iplYCrCb2RGB(IplImage* yccImage,IplImage* rgbImage);

yccImage The source YCrCb image.
rgbImage The resultant RGB image.

Discussion

The function converts the YCrCb image yccImage to the RGB image
rgbImage. The function checks that the input image is a YCrCb image
and that the output image is RGB.

Color Space Conversion

9-15

9
RGB2YUV
Converts RGB images
to the YUV color model.

void iplRGB2YUV(IplImage* rgbImage, IplImage* yuvImage);

rgbImage The source RGB image.
yuvImage The resultant YUV image.

Discussion

The function converts the RGB image rgbImage to the YUV image
yuvImage according to the following formulas:

Y = 0.3·R + 0.6·G + 0.1·B
U = B - Y
V = R - Y.

The function checks that the input image is an RGB image; it sets the
channel sequence and color model of the output image to YUV.

YUV2RGB
Converts YUV images to
the RGB color model.

void iplYUV2RGB(IplImage* yuvImage, IplImage* rgbImage);

yuvImage The source YUV image.
rgbImage The resultant RGB image.

Discussion

The function converts the YUV image yuvImage to the RGB image
yuvImage. The function checks that the input image is an YUV image and
that the output image is RGB.

Intel Image Processing Library Reference Manual

9-16

9
YCC2RGB
Converts HLS images to
the RGB color model.

void iplYCC2RGB(IplImage* YCCImage, IplImage* rgbImage);

YCCImage The source YCC image.
rgbImage The resultant RGB image.

Discussion

The function converts the YCC image YCCImage to the RGB image
rgbImage; see [Rogers85]. The function checks that the input image is an
YCC image and that the output image is RGB. Both images must be 8-bit
unsigned.

Using Color-Twist Matrices

One of the methods of color model conversion is using a color-twist
matrix. The color-twist matrix is a generalized 4 by 4 matrix [t i,j] that
converts the three channels (a, b, c) into (d, e, f) according to the
following matrix multiplication by a color-twist matrix (the superscript T
is used to indicate the transpose of the matrix).

[d, e, f, 1]
T
 = t11 t12 t13 t14 * [a, b, c, 1] T

 t21 t22 t23 t24

 t31 t32 t33 t34

 0 0 0 t44

To apply a color-twist matrix to an image, use the function
iplApplyColorTwist() . But first call the iplCreateColorTwist()
and iplSetColorTwist()functions to create the data structure
IplColorTwist. This data structure contains the color-twist matrix and
allows you to store the data internally in a form that is efficient for
computation.

Color Space Conversion

9-17

9
CreateColorTwist
Creates a color-twist
matrix data structure.

IplColorTwist* iplCreateColorTwist(int data[16],

int scalingValue);

data An array containing the sixteen values that
constitute the color-twist matrix. The values are
in row-wise order. Color-twist values that are in
the range -1 to 1 should be scaled up to be in the
range -231 to 231-1. (Simply multiply the floating
point number in the -1 to 1 range by 231.)

scalingValue The scaling value: an exponent of a power of 2
that was used to convert to integer values; for
example, if 231 was used to multiply the values,
the scalingValue is 31. This value is used for
normalization.

Discussion

The function iplCreateColorTwist() allocates memory for the data
structure IplColorTwist and creates the color-twist matrix that can
subsequently be used by the function iplApplyColorTwist() .

Return Value

A pointer to the IplColorTwist data structure containing the color-twist
matrix in the form suitable for efficient computation by the function
iplApplyColorTwist() .

Intel Image Processing Library Reference Manual

9-18

9
SetColorTwist
Sets a color-twist matrix
data structure.

void iplSetColorTwist(IplColorTwist* cTwist, int

data[16], int scalingValue);

data An array containing the sixteen values that
constitute the color-twist matrix. The values are
in row-wise order. Color-twist values that are in
the range -1 to 1 should be scaled up to be in the
range -231 to 231. (Simply multiply the floating
point number in the -1 to 1 range by 231.)

scalingValue The scaling value: an exponent of a power of 2
that was used to convert to integer values; for
example, if 231 was used to multiply the values,
the scalingValue is 31. This value is used for
normalization.

Discussion

The function iplSetColorTwist() is used to set the vaules of the color-
twist matrix in the data structure IplColorTwist that can subsequently be
used by the function iplApplyColorTwist() .

Return Value

A pointer to the IplColorTwist data structure containing the color-twist
matrix in the form suitable for efficient computation by the function
iplApplyColorTwist() .

Color Space Conversion

9-19

9
ApplyColorTwist
Applies a color-twist
matrix to an image.

void iplApplyColorTwist(IplImage* srcImage,

IplImage* dstImage, IplColorTwist* cTwist, int offset);

srcImage The source image.

dstImage The resultant image.

cTwist The color-twist matrix data structure that was
prepared by a call to the function
iplSetColorTwist() .

offset An offset value that will be added to each pixel
channel after multiplication by the color-twist
matrix.

Discussion

The function iplApplyColorTwist()applies the color-twist matrix to
each of the first three color channels in the input image to obtain the
resulting data for the three channels.

For example, the matrix below can be used to convert normalized
PhotoYCC to normalized PhotoRGB (both with an opacity channel) when
the channels are in the order YCC and RGB, respectively:

2
31

0 2
31

0

2
31

X Y 0

2
31

2
31

0 0

0 0 0 2
31

where X = -416611827 (that is, -0.194·231) and
Y = -1093069176 (that is, -0.509·231).

Intel Image Processing Library Reference Manual

9-20

9
Color-twist matrices may also be used to perform many other color
conversions as well as the following operations:

• Lightening an image
• Color saturation
• Color balance
• R, G, and B color adjustments
• Contrast Adjustment.

DeleteColorTwist
Frees memory used for
a color-twist matrix.

void iplDeleteColorTwist(IplColorTwist* cTwist);

cTwist The color-twist matrix data structure that was
prepared by a call to the function
iplCreateColorTwist() .

Discussion

The function iplDeleteColorTwist() frees memory used for the color-
twist matrix structure referred to by cTwist.

Histogram and Thresholding
Functions

10-1

10
This chapter describes functions that operate on an image on a pixel-by-
pixel basis, in particular, the operations that alter the histogram of the
image. Table 10-1 lists histogram and thresholding functions.

Table 10-1 Histogram and Thresholding Functions

Group Function Name Description

Thresholding iplThreshold Performs a simple thresholding of
an image.

Lookup Table
and Histogram

iplContrastStretch Stretches the contrast of an image
using intensity transformation.

iplComputeHisto Computes the intensity histogram
of an image.

iplHistoEqualize Enhances an image by flattening
its intensity histogram.

Thresholding

The threshold operation changes pixel values depending on whether they
are less or greater than the specified threshold. If an input pixel value is
less than the threshold, the corresponding output pixel is set to the
minimum presentable value. Otherwise, it is set to the maximum
presentable value.

Intel Image Processing Library Reference Manual

10-2

10
Threshold
Performs a simple
thresholding of an
image.

void iplThreshold(IplImage* srcImage, IplImage* dstImage,

int threshold);

srcImage The source image.

dstImage The resultant image.

threshold The threshold value to use for each pixel. The
pixel value in the output is set to the maximum
presentable value if it is greater than or equal to
the threshold value (for each channel). Otherwise
the pixel value in the output is set to the
minimum presentable value.

Discussion

The function iplThreshold() thresholds the source image srcImage
using the value threshold to create the resultant image dstImage. The
pixel value in the output is set to the maximum presentable value (for
example, 255 for an 8-bit-per-channel image) if it is greater than or equal
to the threshold value. Otherwise it is set to the minimum presentable
value (for example, 0 for an 8-bit-per-channel image). This is done for
each channel in the input image.

To convert an image to bitonal, you can use iplThreshold() function as
shown in Example 10-1.

Histogram and Thresholding Functions

10-3

10
Example 10-1 Conversion to a Bitonal Image

int example101(void) {
 IplImage *imga, *imgb;
 const int width = 4, height = 4;

 __try {
 imga = iplCreateImageHeader(
 1, 0, IPL_DEPTH_8U, "GRAY", "GRAY",
 IPL_DATA_ORDER_PIXEL, IPL_ORIGIN_TL,
 IPL_ALIGN_DWORD, width, height, NULL, NULL,
 NULL, NULL);
 if(NULL == imga) return 0;

 imgb = iplCreateImageHeader(
 1, 0, IPL_DEPTH_1U, "GRAY", "GRAY",
 IPL_DATA_ORDER_PIXEL, IPL_ORIGIN_TL,
 IPL_ALIGN_DWORD, width, height, NULL, NULL,
 NULL, NULL);
 if(NULL == imgb) return 0;

 // Create with filling
 iplAllocateImage(imga, 1, 3);
 if(NULL == imga->imageData) return 0;
 // Make a spike
 ((char*)imga->imageData)[7] = (char)7;
 iplAllocateImage(imgb, 0, 0);
 if(NULL == imgb->imageData) return 0;

 // This is important. 4 bits occupy 4 bytes
 // in the imgb image because of IPL_ALIGN_DWORD
 iplThreshold(imga, imgb, 7);

 // Check if an error occurred
 if(iplGetErrStatus() != IPL_StsOk) return 0;
 }
 __finally {
 iplDeallocate(imga, IPL_IMAGE_HEADER | IPL_IMAGE_DATA);
 iplDeallocate(imgb, IPL_IMAGE_HEADER | IPL_IMAGE_DATA);
 }
 return IPL_StsOk == iplGetErrStatus();
}

Intel Image Processing Library Reference Manual

10-4

10
Lookup Table (LUT) and Histogram Operations

A LUT can be used to specify an intensity transformation. Given an input
intensity, LUT can be used to look up an output intensity. Usually a LUT
is provided for each channel in the image, although sometimes the same
LUT can be shared by many channels.

The IplLUT Structure

You can set a lookup table using the IplLUT structure. The C language
definition of the IplLUT structure is as follows:

IplLUT Structure Definition

typedef struct _IplLUT {
int num; /* number of keys or values */

int* key;

int* value;

int* factor;

int interpolateType;

} IplLUT;

The key array has the length num; the value and factor are arrays of the
same length num-1. The interpolateType can be either
IPL_LUT_LOOKUP or IPL_LUT_INTER.
Consider the following example of num = 4:

key value factor

k1 v1 f1
k2 v2 f2
k3 v3 f3
k4

Histogram and Thresholding Functions

10-5

10
If interpolateType is LOOKUP, then any input intensity D in the range
k1 ≤ D < k2 will result in the value v1, in the range k2 ≤ D < k3 will
result in the value v2 and so on. If interpolateType is INTER, then an
intensity D in the range k1 ≤ D < k2 will result in the linearly
interpolated value

v1 + [(v2 - v1)/(k2 - k1)] * (D - k1)

The value (v2-v1)/(k2-k1) is pre-computed and stored in the array
factor in the IplLUT data structure.

The data structure described above can be used to specify a piece-wise
linear transformation that is ideal for the purpose of contrast stretching.

The histogram is a data structure that shows how the intensities in the
image are distributed. The same data structure IplLUT is used for a
histogram except that interpolateType is always IPL_LUT_LOOKUP and
factor is a NULL pointer for a histogram. However, unlike the LUT, the
value array represents counts of pixels falling in the specified ranges in
the key array.

The sections that follow describe the functions that use the above data
structure.

Intel Image Processing Library Reference Manual

10-6

10
ConstrastStretch
Stretches the contrast of
an image using an
intensity transformation.

void iplContrastStretch(IplImage* srcImage,

IplImage* dstImage, IplLUT** lut);

srcImage The source image.

dstImage The resultant image.

lut An array of pointers to LUTs, one pointer for
each channel. Each lookup table should have the
key, value and factor arrays fully initialized
(see “The IplLUT Structure”). One or more
channels may share the same LUT. Specifies an
intensity transformation.

Discussion

The function iplContrastStretch() stretches the contrast in a color
source image srcImage by applying intensity transformations specified
by LUTs in lut to produce an output image dstImage. Fully specified
LUTs should be provided to this function.

Histogram and Thresholding Functions

10-7

10
ComputeHisto
Computes the intensity
histogram of an image.

void iplComputeHisto(IplImage* srcImage, IplLUT** lut);

srcImage The source image for which the histogram will
be computed.

lut An array of pointers to LUTs, one pointer for
each channel. Each lookup table should have the
key array fully initialized. The value array will
be filled by this function. (For the key and
value arrays, see “The IplLUT Structure”
above.) The same LUT can be shared by one or
more channels.

Discussion

The function iplComputeHisto() computes the intensity histogram of an
image. The histograms (one per channel in the image) are stored in the
array lut containing all the LUTs. The key array in each LUT should be
initialized before calling this function. The value array containing the
histogram information will be filled in by this function. (For the key and
value arrays, see “The IplLUT Structure” above.)

Intel Image Processing Library Reference Manual

10-8

10
HistoEqualize
Enhances an image by
flattening its intensity
histogram.

void iplHistoEqualize(IplImage* srcImage,

IPLImage* dstImage, IplLUT** lut);

srcImage The source image for which the histogram will
be computed.

dstImage The resultant image after equalizing.

lut The histogram of the image is represented as an
array of pointers to LUTs, one pointer for each
channel. Each lookup table should have the key
and value arrays fully initialized. (For the key
and value arrays, see “The IplLUT Structure”
above.) These LUTs will contain flattened
histograms after this function is executed. In
other words, the call of iplHistoEqualize() is
destructive with respect to the LUTs.

Discussion

The function iplHistoEqualize() enhances the source image
srcImage by flattening its histogram represented by lut and places the
enhanced image in the output image dstImage. After execution, lut
points to the flattened histogram of the output image; see Example 10-2.

Histogram and Thresholding Functions

10-9

10
Example 10-2 Computing and Equalizing the Image Histogram

int example102(void) {
 IplImage *imga;
 const int width = 4, height = 4, range = 256;
 IplLUT lut = { range+1, NULL,NULL,NULL, IPL_LUT_LOOKUP };
 IplLUT* plut = &lut;

 __try {
 int i;
 lut.key = malloc(sizeof(int)*(range+1));
 lut.value = malloc(sizeof(int)*range);
 imga = iplCreateImageHeader(
 1, 0, IPL_DEPTH_8U, "GRAY", "GRAY",
 IPL_DATA_ORDER_PIXEL, IPL_ORIGIN_TL,
 IPL_ALIGN_DWORD, width, height, NULL, NULL,
 NULL, NULL);
 if(NULL == imga) return 0;

 // Create with filling
 iplAllocateImage(imga, 1, 3);
 if(NULL == imga->imageData) return 0;
 // Make the two level data
 for(i=0; i<8; i++) ((char*)imga->imageData)[i] = (char)7;
 // Initialize the histogram levels
 for(i=0; i<=range; i++) lut.key[i] = i;

 // Compute histogram
 iplComputeHisto(imga, &plut);
 // Equalize histogram = rescale range of image data
 iplHistoEqualize(imga, imga, &plut);

 // Check if an error occurred
 if(iplGetErrStatus() != IPL_StsOk) return 0;
 }
 __finally {
 iplDeallocate(imga, IPL_IMAGE_HEADER | IPL_IMAGE_DATA);
 if(lut.key) free(lut.key);
 if(lut.value) free(lut.value);
 }
 return IPL_StsOk == iplGetErrStatus();
}

This page is intentionally left blank. Needed for two-sided printing.

This page is intentionally left blank. Needed for two-sided printing.

Geometric Transforms

11-1

11
This chapter describes the functions that perform geometric transforms
to resize the image, change the image orientation, or warp the image.
Table 11-1 lists image geometric transform functions.

Table 11-1 Image Geometric Transform Functions

Group Function Name Description

Resizing iplZoom Zooms or expands an image.

iplDecimate Decimates or shrinks an image.

iplResize Resizes an image.

Changing iplMirror Mirrors an image.

Orientation iplRotate Rotates an image.

iplGetRotateShift Computes the shift for iplRotate() ,
given the rotation center and angle.

Warping iplShear Shears an image.

iplWarpAffine Performs affine transforms with the
specified coefficients.

iplWarpBilinear Performs a bilinear transform with
the specified coefficients.

iplWarpBilinearQ Performs a bilinear transform with
the specified reference quadrangle.

iplWarpPerspective Performs a perspective transform
with the specified coefficients.

iplWarpPerspectiveQ Performs a perspective transform
with the specified reference
quadrangle.

 Continued +

Intel Image Processing Library Reference Manual

11-2

11
Table 11-1 Image Geometric Transform Functions (continued)

Group Function Name Description

Warping
support

iplGetAffineBound
iplGetBilinearBound
iplGetPerspectiveBound

Compute the bounding
rectangle for the rectangular
ROI transformed by the
warping functions.

iplGetAffineQuad
iplGetBilinearQuad
iplGetPerspectiveQuad

Compute coordinates of the
quadrangle to which the ROI
is mapped by the warping
functions.

iplGetAffineTransform
iplGetBilinearTransform
iplGetPerspectiveTransform

Compute the coefficients of
transforms performed by the
warping functions.

Internally, all geometric transformation functions handle ROIs with the
following sequence of operations:

• transform the rectangular ROI of the source image to a quadrangle in
the destination image

• find the intersection of this quadrangle and the rectangular ROI of the
destination image

• update the destination image in the intersection area, taking into
account mask images (if any).

The source and destination images must be different; that is, in-place
operations are not supported. The coordinates in the source and destination
images must have the same origin.

Changing the Image Size

This section describes the functions that expand or shrink an image. They
perform image resampling by using various kinds of interpolation: nearest
neighbor, linear, or cubic convolution.

Geometric Transforms

11-3

11
Zoom
Zooms or expands an
image.

void iplZoom(IplImage* srcImage, IplImage* dstImage,

int xDst, int xSrc, int yDst, int ySrc, int interpolate);

srcImage The source image.

dstImage The resultant image.

xDst,xSrc,yDst,ySrc Positive integers specifying the fractions
xDst/xSrc ≥ 1 and yDst/ySrc ≥ 1 - the factors
by which the x and y dimensions of the image’s
ROI are changed. For example, setting
xDst = 2, xSrc = 1, yDst = 2, ySrc = 1
doubles the image size in each dimension to
increase the image area by a factor of four.

interpolate The type of interpolation to perform for
resampling. Can be one of the following:

IPL_INTER_NN Nearest neighbor.
IPL_INTER_LINEAR Linear interpolation.
IPL_INTER_CUBIC Cubic convolution.

Discussion

The function iplZoom() zooms or expands the source image srcImage

by xDst/xSrc in the x direction and yDst/ySrc in the y direction. The
interpolation specified by interpolate is used for resampling the input
image.

Intel Image Processing Library Reference Manual

11-4

11
Decimate
Decimates or shrinks an
image.

void iplDecimate(IplImage* srcImage, IplImage* dstImage,

int xDst, int xSrc, int yDst, int ySrc, int interpolate);

srcImage The source image.

dstImage The resultant image.

xDst,xSrc,yDst,ySrc Positive integers specifying the fractions
xDst/xSrc ≤ 1 and yDst/ySrc ≤ 1 - the factors
by which the x and y dimensions of the image’s
ROI are changed. For example, setting
xDst = 1, xSrc = 2, yDst = 1, ySrc = 2
decreases the image size in each dimension by
half.

interpolate The type of interpolation to perform for
resampling. Can be one of the following:

IPL_INTER_NN Nearest neighbor.

IPL_INTER_LINEAR Linear interpolation.

IPL_INTER_CUBIC Cubic convolution.

IPL_INTER_SUPER Super-sampling.

Discussion

The function iplDecimate() decimates or shrinks the source image
srcImage by xDst/xSrc in the x direction and yDst/ySrc in the y
direction. The interpolation specified by interpolate is used for
resampling the input image.

Geometric Transforms

11-5

11
Resize
Resizes an image.

void iplResize(IplImage* srcImage, IplImage* dstImage,

int xDst, int xSrc, int yDst, int ySrc, int interpolate);

srcImage The source image.

dstImage The resultant image.

xDst,xSrc,yDst,ySrc Positive integers specifying the fractions
xDst/xSrc and yDst/ySrc - the factors by
which the x and y dimensions of the image’s ROI
are changed. For example, setting
xDst = 1, xSrc = 2, yDst = 2, ySrc = 1
halves the x and doubles the y dimension.

interpolate The type of interpolation to perform for
resampling. Can be one of the following:

IPL_INTER_NN Nearest neighbor.

IPL_INTER_LINEAR Linear interpolation.

IPL_INTER_CUBIC Cubic convolution.

IPL_INTER_SUPER Super-sampling (can be
used only for xDst ≤ xSrc, yDst ≤ ySrc).

Discussion

The function iplResize() resizes the source image srcImage by
xDst/xSrc in the x direction and yDst/ySrc in the y direction.
The function differs from iplZoom and iplDecimate in that it can
increase one dimension of an image while decreasing the other dimension.

The interpolation specified by interpolate is used for resampling the
input image.

Intel Image Processing Library Reference Manual

11-6

11
Changing the Image Orientation

The functions described in this section change the image orientation by
rotating or mirroring the source image. Rotation involves image sampling
by using various kinds of interpolation: nearest neighbor, linear, or cubic
convolution. Mirroring is performed by flipping the image axis in
horizontal or vertical direction.

Rotate
Rotates an image.

void iplRotate(IplImage* srcImage, IplImage* dstImage,

double angle, double xShift, double yShift, int

interpolate);

srcImage The source image.

dstImage The resultant image.

angle The angle (in degrees) to rotate the image.
The image is rotated around the corner with
coordinates (0,0).

xShift, yShift The shifts along the x- and y-axes to be
performed after the rotation.

interpolate The type of interpolation to perform for
resampling. The following are currently
supported:

IPL_INTER_NN Nearest neighbor.

IPL_INTER_LINEAR Linear interpolation.

IPL_INTER_CUBIC Cubic convolution.

Geometric Transforms

11-7

11
Discussion

The function iplRotate() rotates the source image srcImage by angle
degrees around the origin (0,0) and shifts it by xShift and yShift along
the x- and y-axis, respectively. The interpolation specified by
interpolate is used for resampling the input image.

If you need to rotate the image around an arbitrary center (xCenter,
yCenter) rather than the origin (0,0), you can compute xShift and
yShift using the function iplGetRotateShift and then call
iplRotate().

GetRotateShift
Computes shifts for iplRotate, given
the rotation center and angle.

void iplGetRotateShift(double xCenter, double yCenter,

double angle, double* xShift, double* yShift);

xCenter, yCenter Coordinates of the rotation center for which you
wish to compute the shifts.

angle The angle (in degrees) to rotate the image around
the point with coordinates (xCenter, yCenter).

xShift, yShift Output parameters: the shifts along the x- and y-
axes to be passed to iplRotate() in order to
achieve rotation around the specified center
(xCenter, yCenter) by the specified angle.

Discussion

Use the function iplGetRotateShift() if you wish to rotate an image
around an arbitrary center (xCenter, yCenter) rather than the origin
(0,0). Just pass the rotation center (xCenter, yCenter) and the angle of

Intel Image Processing Library Reference Manual

11-8

11
rotation to iplGetRotateShift() , and the function will recompute the
shifts xShift, yShift.

Calling iplRotate() with these xShift and yShift is equivalent to
rotating the image around the center (xCenter, yCenter).

Example 11-1 Rotating an Image

int example111(void) {

 IplImage *imga, *imgb;

 const int width = 5, height = 5;

 __try {

 int i;

 double xshift=0, yshift=0;

 imga = iplCreateImageHeader(

 1, 0, IPL_DEPTH_8U, "GRAY", "GRAY",

 IPL_DATA_ORDER_PIXEL, IPL_ORIGIN_TL,

 IPL_ALIGN_DWORD, width, height, NULL, NULL,

 NULL, NULL);

 if(NULL == imga) return 0;

 imgb = iplCreateImageHeader(

 1, 0, IPL_DEPTH_8U, "GRAY", "GRAY",

 IPL_DATA_ORDER_PIXEL, IPL_ORIGIN_TL,

 IPL_ALIGN_DWORD, width, height, NULL, NULL,

 NULL, NULL);

 if(NULL == imgb) return 0;

 // Create with filling

 iplAllocateImage(imga, 1, 0);

 if(NULL == imga->imageData) return 0;

 // Make horizontal line

 for(i=0; i<width; i++)

 (imga->imageData + 2*imga->widthStep)[i] =

 (uchar)7;

 iplAllocateImage(imgb, 0, 0);

 if(NULL == imgb->imageData) return 0;

continued +

Geometric Transforms

11-9

11
Example 11-1 Rotating an Image (continued)

 // Rotate by 45 degrees around point(2,2)

 iplGetRotateShift(2.0,2.0,45.0, &xshift, &yshift);

 iplRotate(imga, imgb, 45.0, xshift, yshift,

 IPL_INTER_LINEAR);

 // Check if an error occurred

 if(iplGetErrStatus() != IPL_StsOk) return 0;

 }

 __finally {

 iplDeallocate(imga, IPL_IMAGE_HEADER|IPL_IMAGE_DATA);

 iplDeallocate(imgb, IPL_IMAGE_HEADER|IPL_IMAGE_DATA);

 }

 return IPL_StsOk == iplGetErrStatus();

}

Intel Image Processing Library Reference Manual

11-10

11
Mirror
Mirrors an image about
a horizontal or vertical
axis.

void iplMirror(IplImage* srcImage, IplImage* dstImage,

int flipAxis);

srcImage The source image.

dstImage The resultant image.

flipAxis Specifies the axis to mirror the image.
Use the following values to specify the axes:
0 for the horizontal axis,
1 for the vertical axis,
-1 for both horizontal and vertical axes.

Discussion

The function iplMirror() mirrors or flips the source image srcImage
about a horizontal or vertical axis or both.

Geometric Transforms

11-11

11
Warping

This section describes shearing and warping functions of the Image
Processing Library. These functions have been added in release 2.0.
They perform the following operations:

• affine warping (the functions iplWarpAffine and iplShear)
• bilinear warping (iplWarpBilinear, iplWarpBilinearQ)
• perspective warping (iplWarpPerspective , iplWarpPerspectiveQ).

Affine warping operations are more complex and more general than
resizing or rotation. A single call to iplWarpAffine() can perform a
rotation, resizing, and mirroring. (This can require some matrix math on
the part of the user to calculate the transform coefficients.)

Bilinear and perspective warping operations can be viewed as further
generalizations of affine warping. They give you even more degrees of
freedom in transforming the image. For example, an affine transformation
always maps parallel lines to parallel lines, while bilinear and perspective
transformations might not preserve parallelism; a bilinear transformation
might even map straight lines to curves.

Unlike rotation or zooming, the warping functions do not necessarily map
the rectangular ROI of the source image to a rectangle in the destination
image. Affine warping functions map the rectangular ROI to a
parallelogram; bilinear and perspective warping functions map the ROI to
a general quadrangle.

To help you cope with the complex behavior of warping transformations,
the library includes a number of auxiliary functions that compute the
following warping parameters:

• coordinates of the four points to which the ROI’s vertices are mapped
• the bounding rectangle for the transformed ROI
• the transformation coefficients.
These auxiliary functions are described immediately after the function that
performs the respective warping operation.

Intel Image Processing Library Reference Manual

11-12

11
Shear
Performs a shear of
the source image.

void iplShear(IplImage* srcImage, IplImage* dstImage,

double xShear, double yShear, double xShift, double

yShift, int interpolate);

srcImage The source image.

dstImage The resultant image.

xShear, yShear The shear coefficients.

xShift, yShift Additional shift values for the x and y directions.

interpolate The type of interpolation to perform for
resampling. Can be one of the following:

IPL_INTER_NN Nearest neighbor.

IPL_INTER_LINEAR Linear interpolation.

IPL_INTER_CUBIC Cubic convolution.

Discussion

The function iplShear() performs a shear of the source image according
to the following formulas:

x’ = x + xShear·y + xShift
y’ = y + yShear·x + yShift

where x and y denote the original pixel coordinates; x’ and y’ denote the
pixel coordinates in the sheared image. This shear transform is a special
case of affine transform performed by iplWarpAffine (see below).

The interpolation specified by interpolate is used for resampling the
input image.

Geometric Transforms

11-13

11
WarpAffine
Warps an image by an
affine transform.

void iplWarpAffine(IplImage* srcImage, IplImage*

dstImage, const double coeffs[2][3], int interpolate);

srcImage The source image.

dstImage The resultant image.

coeffs The affine transform coefficients.

interpolate The type of interpolation to perform for
resampling. Can be one of the following:

IPL_INTER_NN Nearest neighbor.

IPL_INTER_LINEAR Linear interpolation.

IPL_INTER_CUBIC Cubic convolution.

Discussion

The function iplWarpAffine() warps the source image by an affine
transformation according to the following formulas:

x’ = coeffs[0][0]·x + coeffs[0][1]·y + coeffs[0][2]
y’ = coeffs[1][0]·x + coeffs[1][1]·y + coeffs[1][2]

where x and y denote the original pixel coordinates; x’ and y’ denote the
pixel coordinates in the transformed image.

The interpolation specified by interpolate is used for resampling the
input image.

To compute the affine transform parameters, use the functions
iplGetAffineBound() , iplGetAffineQuad() and
iplGetAffineTransform() . These functions are described in the
sections that follow.

Intel Image Processing Library Reference Manual

11-14

11
GetAffineBound
Computes the bounding
rectangle for ROI transformed
by iplWarpAffine.

void iplGetAffineBound(IplImage* image, const double

coeffs[2][3], double rect[2][2]);

image The image to be passed to iplWarpAffine().

coeffs The iplWarpAffine() transform coefficients.

rect Output array: the coordinates of vertices of the
rectangle bounding the figure to which
iplWarpAffine() maps image’s ROI.

Discussion

The function iplGetAffineBound() computes the coordinates of vertices
of the smallest possible rectangle with horizontal and vertical sides that
bounds the figure to which iplWarpAffine() maps image’s ROI.

GetAffineQuad
Computes the quadrangle to
which the image ROI would be
mapped by iplWarpAffine.

void iplGetAffineQuad(IplImage* image, const double

coeffs[2][3], double quad[4][2]);

image The image to be passed to iplWarpAffine().

coeffs The affine transform coefficients.

Geometric Transforms

11-15

11
quad Output array: coordinates of the quadrangle to

which the image’s ROI would be mapped by
iplWarpAffine().

Discussion

The function iplGetAffineQuad() computes coordinates of the
quadrangle to which the image’s ROI would be mapped by
iplWarpAffine() with the transform coefficients coeffs.

GetAffineTransform
Computes the iplWarpAffine
coefficients, given the ROI-
quadrangle pair.

void iplGetAffineTransform(IplImage* image, double

coeffs[2][3], const double quad[4][2]);

image The image to be passed to iplWarpAffine().

coeffs Output array: the affine transform coefficients.

quad Coordinates of the 4 points to which the image’s
ROI vertices would be mapped by
iplWarpAffine().

Discussion

The function iplGetAffineTransform() computes the coefficients of
iplWarpAffine() transform, given the vertices of the quadrangle to
which the image’s ROI would be mapped by iplWarpAffine() with
these coefficients.

Intel Image Processing Library Reference Manual

11-16

11
WarpBilinear
WarpBilinearQ
Warps an image by a
bilinear transform.

void iplWarpBilinear(IplImage* srcImage, IplImage*

dstImage, const double coeffs[2][4], int warpFlag, int

interpolate);

void iplWarpBilinearQ(IplImage* srcImage, IplImage*

dstImage, const double quad[4][2], int warpFlag, int

interpolate);

srcImage The source image.

dstImage The resultant image.

coeffs Array with bilinear transform coefficients.

warpFlag A flag: either IPL_R_TO_Q (ROI to quadrangle)
or IPL_Q_TO_R (quadrangle to ROI).
See Discussion.

interpolate The type of interpolation to perform for
resampling. Can be one of the following:

IPL_INTER_NN Nearest neighbor.

IPL_INTER_LINEAR Linear interpolation.

IPL_INTER_CUBIC Cubic convolution.

quad Array of coordinates of the reference quadrangle
vertices. If warpFlag is IPL_R_TO_Q, the
rectangular ROI of the source image is mapped
to the reference quadrangle.
If warpFlag is IPL_Q_TO_R, the source
quadrangle is mapped to the rectangular ROI of
the destination image.

Geometric Transforms

11-17

11
Discussion

The functions iplWarpBilinear() and iplWarpBilinearQ() warp the
source image by a bilinear transformation according to the following
formulas:

x’ = c00·xy + c01·x + c02·y + c03

y’ = c10·xy + c11·x + c12·y + c13

where x and y denote the original pixel coordinates; x’ and y’ denote the
pixel coordinates in the transformed image.

The two functions differ in their third argument: iplWarpBilinear()
uses a 2-by-4 input array of transform coefficients cmn = coeff[m][n],
whereas iplWarpBilinearQ() computes the coefficients internally from
the input array quad containing coordinates of the reference quadrangle.

If warpFlag is IPL_R_TO_Q, the functions transform the rectangular ROI
of the source image into the reference quadrangle of the resultant image.
If warpFlag is IPL_Q_TO_R, the functions transform the source
quadrangle into the rectangular ROI of the resultant image.

The interpolation specified by interpolate is used for resampling the
input image.

To compute the bilinear transform parameters, use the auxiliary functions:
iplGetBilinearBound() , iplGetBilinearQuad() and
iplGetBilinearTransform() . These functions are described in the
sections that follow.

Intel Image Processing Library Reference Manual

11-18

11
GetBilinearBound
Computes the bounding
rectangle for ROI transformed
by iplWarpBilinear.

void iplGetBilinearBound(IplImage* image, const double

coeffs[2][4], double rect[2][2]);

image The image to be passed to iplWarpBilinear() .

coeffs The bilinear transform coefficients.

rect Output array: the coordinates of vertices of the
rectangle bounding the figure to which
iplWarpBilinear() maps image’s ROI.

Discussion

The function iplGetBilinearBound() computes the coordinates of
vertices of the smallest possible rectangle with horizontal and vertical sides
that bounds the figure to which iplWarpBilinear() maps image’s ROI.

GetBilinearQuad
Computes the quadrangle to
which the image ROI would be
mapped by iplWarpBilinear.

void iplGetBilinearQuad(IplImage* image, const double

coeffs[2][4], double quad[4][2]);

image The image to be passed to iplWarpBilinear().

coeffs The bilinear transform coefficients.

Geometric Transforms

11-19

11
quad Output array: coordinates of the quadrangle to

which the image’s ROI would be mapped by
iplWarpBilinear().

Discussion

The function iplGetBilinearQuad() computes coordinates of the
quadrangle to which the image’s ROI would be mapped by
iplWarpBilinear() with the transform coefficients coeffs.

GetBilinearTransform
Computes the iplWarpBilinear
coefficients, given the ROI-
quadrangle pair.

void iplGetBilinearTransform(IplImage* image, double

coeffs[2][4], const double quad[4][2]);

image The image to be passed to iplWarpBilinear().

coeffs Output array: the bilinear transform coefficients.

quad Coordinates of the 4 points to which the image’s
ROI vertices would be mapped by
iplWarpBilinear().

Discussion

The function iplGetBilinearTransform() computes the
iplWarpBilinear() transform coefficients, given the vertices of the
quadrangle to which the image’s ROI would be mapped by
iplWarpBilinear() with these coefficients.

Intel Image Processing Library Reference Manual

11-20

11
WarpPerspective
WarpPerspectiveQ
Warps an image by a
perspective transform.

void iplWarpPerspective(IplImage* srcImage, IplImage*

dstImage, const double coeffs[3][3], int warpFlag, int

interpolate);

void iplWarpPerspectiveQ(IplImage* srcImage, IplImage*

dstImage, const double quad[4][2], int warpFlag, int

interpolate);

srcImage The source image.

dstImage The resultant image.

coeffs Array with perspective transform coefficients.

warpFlag A flag: either IPL_R_TO_Q (ROI to quadrangle)
or IPL_Q_TO_R (quadrangle to ROI).
See Discussion.

interpolate The type of interpolation to perform for
resampling. Can be one of the following:

IPL_INTER_NN Nearest neighbor.

IPL_INTER_LINEAR Linear interpolation.

IPL_INTER_CUBIC Cubic convolution.

quad Array of coordinates of the reference quadrangle
vertices. If warpFlag is IPL_R_TO_Q, the
rectangular ROI of the source image is mapped
to the reference quadrangle.
If warpFlag is IPL_Q_TO_R, the source
quadrangle is mapped to the rectangular ROI of
the destination image.

Geometric Transforms

11-21

11
Discussion

The functions iplWarpPerspective() and iplWarpPerspectiveQ()
warp the source image by a perspective transformation according to the
following formulas:

x’ = (c00·x + c01·y + c02)/(c20·x + c21·y + c22)
y’ = (c10·x + c11·y + c12)/(c20·x + c21·y + c22)

where x and y denote the original pixel coordinates; x’ and y’ denote the
pixel coordinates in the transformed image.

The two functions differ in their third argument: iplWarpPerspective()
uses a 3-by-3 input array of transform coefficients cmn = coeff[m][n],
whereas iplWarpPerspectiveQ() computes the coefficients internally
from the input array quad containing coordinates of the reference
quadrangle.

If warpFlag is IPL_R_TO_Q, the functions transform the rectangular ROI
of the source image into the reference quadrangle of the resultant image.
If warpFlag is IPL_Q_TO_R, the functions transform the source
quadrangle into the rectangular ROI of the resultant image.

The interpolation specified by interpolate is used for resampling the
input image.

To compute the perspective transform parameters, use these auxiliary
functions: iplGetPerspectiveBound() , iplGetPerspectiveQuad()
and iplGetPerspectiveTransform() . They are described in the
sections that follow.

Intel Image Processing Library Reference Manual

11-22

11
GetPerspectiveBound
Computes the bounding
rectangle for ROI transformed
by iplWarpPerspective.

void iplGetPerspectiveBound(IplImage* image, const double

coeffs[3][3], double rect[2][2]);

image The image to be passed to
iplWarpPerspective() .

coeffs The perspective transform coefficients.

rect Output array: the coordinates of vertices of the
rectangle bounding the figure to which
iplWarpPerspective() maps image’s ROI.

Discussion

The function iplGetPerspectiveBound() computes the coordinates of
vertices of the smallest possible rectangle with horizontal and vertical
sides that bounds the figure to which iplWarpPerspective() maps
image’s ROI.

GetPerspectiveQuad
Computes the quadrangle to
which the ROI is mapped by
iplWarpPerspective.

void iplGetPerspectiveQuad(IplImage* image, const double

coeffs[3][3], double quad[4][2]);

image The image to be passed to
iplWarpPerspective() .

Geometric Transforms

11-23

11
coeffs The perspective transform coefficients.

quad Output array: coordinates of the quadrangle to
which the image’s ROI would be mapped by
iplWarpPerspective() .

Discussion

The function iplGetPerspectiveQuad() computes coordinates of the
quadrangle to which the image’s ROI would be mapped by
iplWarpPerspective() with the transform coefficients coeffs.

GetPerspectiveTransform
Computes the coefficients of
iplWarpPerspective, given the
ROI-quadrangle pair.

void iplGetPerspectiveTransform(IplImage* image, double

coeffs[3][3], const double quad[4][2]);

image The image to be passed to
iplWarpPerspective() .

coeffs Output array: perspective transform coefficients.

quad Coordinates of the 4 points to which the image’s
ROI vertices would be mapped by
iplWarpPerspective() .

Discussion

The function iplGetPerspectiveTransform() computes the
iplWarpPerspective() transform coefficients, given the vertices of the
quadrangle to which the image’s ROI would be mapped by
iplWarpBilinear() with these coefficients.

This page is intentionally left blank. Needed for two-sided printing.

This page is intentionally left blank. Needed for two-sided printing.

Image Statistics Functions

12-1

12
This chapter describes Intel Image Processing Library functions that allow
you to compute the following statistics parameters of an image:

• the C, L
1
, and L2 norms of the image pixel values

• spatial moments of order 0 to 3

• central moments of order 0 to 3.

Table 12-1 lists image statistics functions.

Table 12-1 Image Statistics Functions

Group Function Name Description

Norms iplNorm Computes the C, L1, or
L2 norm of pixel values.

Moments iplMoments Computes all image
moments of order 0 to 3.

iplGetCentralMoment
iplGetSpatialMoment

Return image moments
previously computed by
iplMoments().

iplGetNormalizedCentralMoment
iplGetNormalizedSpatialMoment

Return normalized image
moments previously
computed by
iplMoments().

iplCentralMoment
iplSpatialMoment

Compute an image
moment of the specified
order.

iplNormalizedCentralMoment
iplNormalizedSpatialMoment

Compute a normalized
image moment of the
specified order.

Intel Image Processing Library Reference Manual

12-2

12
Image Norms

The iplNorm() function described in this section allows you to compute
the following norms of the image pixel values:

• L
1
 norm (the sum of absolute pixel values)

• L
2
 norm (the square root of the sum of squared pixel values)

• C norm (the largest absolute pixel value).

This function also helps you compute the norm of differences in pixel
values of two input images as well as the relative error for two input
images.

Norm
Computes the norm of pixel
values or of differences in pixel
values of two images.

double iplNorm(IplImage* srcImageA, IplImage* srcImageB,

int normType);

srcImageA The first source image.

srcImageB The second source image.

normType Specifies the norm type. Can be IPL_C, IPL_L1, or
IPL_L2; if the srcImageB pointer is not NULL, the
normType argument can also be IPL_RELATIVEC,
IPL_RELATIVEL1, or IPL_RELATIVEL2.

Discussion

You can use the iplNorm() function to compute the following norms of
pixel values:

Image Statistics Functions

12-3

12
(1) the norm of srcImageA pixel values, ||a||

(2) the norm of differences of the source images’ pixel values, ||a - b||

(3) the relative error ||a - b|| / ||b|| (see formulas below).

Let a = {ak} and b = {bk} be vectors containing pixel values of srcImageA

and srcImageB, respectively (all channels are used except alpha channel).

(1) If the srcImageB pointer is NULL, the function returns the norm of
srcImageA pixel values:

 ||a||L1
 = Σk

 |ak| for normType = IPL_L1

 ||a||L2
 = (Σk

 |ak|
2)1/2

 for normType = IPL_L2

 ||a||C = max
k
 |ak| for normType = IPL_C.

(2) If the srcImageB pointer is not NULL, the function returns the norm of
differences of srcImageA and srcImageB pixel values:

 ||a - b||L1
 = Σk

 |ak - bk| for normType = IPL_L1

 ||a - b||L2
 = (Σk

 |ak - bk|
2)1/2

for normType = IPL_L2

 ||a - b||C = max
k
 |ak - bk| for normType = IPL_C.

(3) If normType is IPL_RELATIVEC, IPL_RELATIVEL1, or
IPL_RELATIVEL2, the srcImageB pointer must not be NULL.
The function first computes the norm of differences, as defined in (2).
Then this norm is divided by the norm of b, and the function returns the
relative error ||a - b|| / ||b||.

Return Value

The computed norm or relative error in double floating-point format.

Intel Image Processing Library Reference Manual

12-4

12
Example 12-1 Computing the Norm of Pixel Values

int example51(void) {

 IplImage *imga, *imgb;

 const int width = 4;

 const int height = 4;

 double norm;

 __try {

 imga = iplCreateImageHeader(

 1, 0, IPL_DEPTH_8U, "GRAY", "GRAY",

 IPL_DATA_ORDER_PIXEL, IPL_ORIGIN_TL,

 IPL_ALIGN_QWORD, height, width, NULL, NULL,

 NULL, NULL);

 if(NULL == imga) return 0;

 imgb = iplCreateImageHeader(

 1, 0, IPL_DEPTH_8U, "GRAY", "GRAY",

 IPL_DATA_ORDER_PIXEL, IPL_ORIGIN_TL,

 IPL_ALIGN_QWORD, height, width, NULL, NULL,

 NULL, NULL);

 if(NULL == imgb) return 0;

 iplAllocateImage(imga, 1, 127);

 if(NULL == imga->imageData) return 0;

 iplAllocateImage(imgb, 1, 1);

 if(NULL == imgb->imageData) return 0;

 norm = iplNorm(imga, imgb, IPL_RELATIVEC);

 // Check if an error occurred

 if(iplGetErrStatus() != IPL_StsOk) return 0;

 }

 __finally {

 iplDeallocate(imga,IPL_IMAGE_HEADER|IPL_IMAGE_DATA);

 iplDeallocate(imgb,IPL_IMAGE_HEADER|IPL_IMAGE_DATA);

 }

 return IPL_StsOk == iplGetErrStatus();

}

Image Statistics Functions

12-5

12
Image Moments

Spatial and central moments are important statistical characteristics of an
image. The spatial moment M

U
(m,n) and central moment U

U
(m,n) are

defined as follows:

()M m n x y PU
j

nRows

k
m

j
n

j k
k

nCols

, ,=
=

−

=

−

∑ ∑
0

1

0

1

() () ()U m n x x y y PU
j

nRows

k

m

j

n

j k
k

nCols

, ,= − −
=

−

=

−

∑ ∑
0

1

0 0
0

1

where the summation is performed for all rows and columns in the image;
Pj,k are pixel values; xk and yj are pixel coordinates; m and n are integer
power exponents; x0 and y0 are the gravity center’s coordinates:

x0 = M
U
(1,0)/M

U
(0,0)

y0 = M
U
(0,1)/M

U
(0,0).

The sum of exponents m + n is called the moment order. The library
functions support moments of order 0 to 3 (that is, 0 ≤ m + n ≤ 3).

In the Image Processing Library image moments are stored in structures of
the IplMomentState type. The type declaration is given below.

IplMomentState Structure Definition

typedef struct {
 double scale /* scaling factor for the moment */
 double value /* the moment */
} ownMoment;
typedef ownMoment IplMomentState[4][4];

Intel Image Processing Library Reference Manual

12-6

12
Moments
Computes all image
moments of order 0 to 3.

void iplMoments(IplImage* image, IplMomentState mState);

image The image for which the moments will be
computed.

mState The structure for storing the image moments.

Discussion

The function iplMoments() computes all spatial and central moments of
order 0 to 3 for the image. The moments and the corresponding scaling
factors are stored in the mState structure. To retrieve a particular moment
value, use the functions described in the sections that follow.

GetSpatialMoment
Returns a spatial moment
computed by iplMoments.

double iplGetSpatialMoment(IplMomentState mState, int

mOrd, int nOrd);

mState The structure storing the image moments.

mOrd, nOrd The integer exponents m and n (see the moment
definition in the beginning of this section).
These arguments must satisfy the condition
0 ≤ mOrd + nOrd ≤ 3.

Image Statistics Functions

12-7

12
Discussion

The function iplGetSpatialMoment() returns the spatial moment
M

U
(m,n) previously computed by the iplMoments() function.

GetCentralMoment
Returns a central moment
computed by iplMoments.

double iplGetCentralMoment(IplMomentState mState, int

mOrd, int nOrd);

mState The structure storing the image moments.

mOrd, nOrd The integer exponents m and n (see the moment
definition in the beginning of this section).
These arguments must satisfy the condition
0 ≤ mOrd + nOrd ≤ 3.

Discussion

The function iplGetCentralMoment() returns the central moment
U

U
(m,n) previously computed by the iplMoments() function.

GetNormalizedSpatialMoment
Returns the normalized
spatial moment computed
by iplMoments.

double iplGetNormalizedSpatialMoment(IplMomentState

mState, int mOrd, int nOrd);

Intel Image Processing Library Reference Manual

12-8

12
mState The structure storing the image moments.

mOrd, nOrd The integer exponents m and n (see the moment
definition in the beginning of this section).
These arguments must satisfy the condition
0 ≤ mOrd + nOrd ≤ 3.

Discussion

The function iplGetNormalizedSpatialMoment() returns the
normalized spatial moment M

U
(m,n)/(nCols

m·nRowsn
), where M

U
(m,n) is

the spatial moment previously computed by the iplMoments() function,
nCols and nRows are the numbers of columns and rows, respectively.

GetNormalizedCentralMoment
Returns the normalized
central moment computed
by iplMoments.

double iplGetNormalizedCentralMoment(IplMomentState

mState, int mOrd, int nOrd);

mState The structure storing the image moments.

mOrd, nOrd The integer exponents m and n (see the moment
definition in the beginning of this section).
These arguments must satisfy the condition
0 ≤ mOrd + nOrd ≤ 3.

Discussion

The function iplGetNormalizedCentralMoment() returns the
normalized central moment U

U
(m,n)/(nCols

m·nRowsn
), where U

U
(m,n) is

the central moment previously computed by the iplMoments() function,
nCols and nRows are the numbers of columns and rows, respectively.

Image Statistics Functions

12-9

12
SpatialMoment
Computes a spatial
moment.

double iplSpatialMoment(IplImage* image, int mOrd, int

nOrd);

image The image for which the moment will be
computed.

mOrd, nOrd The integer exponents m and n (see the moment
definition in the beginning of this section).
These arguments must satisfy the condition
0 ≤ mOrd + nOrd ≤ 3.

Discussion

The function iplSpatialMoment() computes the spatial moment
M

U
(m,n) for the image.

CentralMoment
Computes a central
moment.

double iplCentralMoment(IplImage* image, int mOrd, int

nOrd);

image The image for which the moment will be
computed.

mOrd, nOrd The integer exponents m and n (see the moment
definition in the beginning of this section).

Intel Image Processing Library Reference Manual

12-10

12
These arguments must satisfy the condition
0 ≤ mOrd + nOrd ≤ 3.

Discussion

The function iplCentralMoment() computes the central moment
U

U
(m,n) for the image.

NormalizedSpatialMoment
Computes a normalized
spatial moment.

double iplNormalizedSpatialMoment(IplImage* image, int

mOrd, int nOrd);

image The image for which the moment will be
computed.

mOrd, nOrd The integer exponents m and n (see the moment
definition in the beginning of this section).
These arguments must satisfy the condition
0 ≤ mOrd + nOrd ≤ 3.

Discussion

The function iplNormalizedSpatialMoment() computes the
normalized spatial moment M

U
(m,n)/(nCols

m·nRowsn
) for the image.

Here M
U
(m,n) is the spatial moment, nCols and nRows are the numbers of

pixel columns and rows, respectively.

Image Statistics Functions

12-11

12
NormalizedCentralMoment
Computes a normalized
central moment.

double iplNormalizedCentralMoment(IplImage* image, int

mOrd, int nOrd);

image The image for which the moment will be
computed.

mOrd, nOrd The integer exponents m and n (see the moment
definition in the beginning of this section).
These arguments must satisfy the condition
0 ≤ mOrd + nOrd ≤ 3.

Discussion

The function iplNormalizedCentralMoment() computes the
normalized central moment U

U
(m,n)/(nCols

m·nRowsn
) for the image.

Here U
U
(m,n) is the central moment, nCols and nRows are the numbers of

pixel columns and rows, respectively.

This page is intentionally left blank. Needed for two-sided printing.

This page is intentionally left blank. Needed for two-sided printing.

Supported Image Attributes
and Operation Modes

A-1

A
This appendix contains tables that list the supported image attributes and
operation modes for functions that have input and/or output images.

The ipl prefixes in the function names are omitted.

Table A-1 Image Attributes and Modes of Data Exchange Functions

Input and output images Rect. In-place Tiling

Function Depths must have the same ROI

depth order origin COI s u p p o r t e d (x)

Set u or s† operates on a single image x x x

SetFP 32f† operates on a single image x x x

PutPixel all operates on a single image x

GetPixel all operates on a single image x

Copy all x x x x x x x

CloneImage all x x x x x x x

Exchange u or s x x x x x x x

Convert u or s x

† u or s = 1u, 8s, 8u, 16s, 16u, 32s bits per channel; u = unsigned; s = signed; f = float.

Intel Image Processing Library Reference Manual

A-2

A
Table A-2 Windows DIB Conversion Functions

Function Depths Input and output images have the same

input output order origin number of channels

ConvertFromDIB all‡ 1u,8u,16u

ConvertFromDIBSep all‡ 1u,8u,16u

ConvertToDIB 1u,8u,16u all‡ x

TranslateDIB 1bpp 1u clone‡ x x

≥4bpp‡ 8u clone x x

‡ all = 1, 4, 8, 16, 24, 32 bpp DIB images; ≥4bpp = 4, 8, 16, 24, 32 bpp DIB images;
clone = in case if the data is not cloned.

For iplConvertFromDIB and iplConvertFromDIBSep , the number of channels, bit
depth per channel and the dimensions of the IplImage should be greater than or equal to
those of the DIB image. When converting a DIB RGBA image, the IplImage should also

contain an alpha channel.

Supported Image Attributes and Operation Modes

A-3

A
Table A-3 Image Attributes and Modes of Arithmetic and Logical Functions

Input and output images Rect. In-place Tiling Mask

Function Depths must have the same ROI

depth order origin COI s u p p o r t e d (x)

Abs u or s† x x x x x x x x

AddS u or s x x x x x x x x

SubtractS u or s x x x x x x x x

MultiplyS u or s x x x x x x x x

AddSFP 32f x x x x x x x x

SubtractSFP 32f x x x x x x x x

MultiplySFP 32f x x x x x x x x

MultiplySScale 8u,16u x x x x x x x x

Square all† x x x x x x x x

Add all x x x x x x x x

Subtract all x x x x x x x x

Multiply all x x x x x x x x

MultiplyScale 8u,16u x x x x x x x x

LShiftS u or s x x x x x x x x

RShiftS u or s x x x x x x x x

Not u or s x x x x x x x x

AndS u or s x x x x x x x x

OrS u or s x x x x x x x x

XorS u or s x x x x x x x x

And u or s x x x x x x x x

Or u or s x x x x x x x x

Xor u or s x x x x x x x x

† u or s = 1u, 8s, 8u, 16s, 16u, 32s bits per channel (that is, all except 32f)
 all = 1u, 8s, 8u, 16s, 16u, 32s, or 32f bits per channel

Intel Image Processing Library Reference Manual

A-4

A
Table A-4 Image Attributes and Modes of Alpha-Blending Functions

Input and output images Rect. In-place Tiling Mask

Function Depths must have the same ROI

depth order origin COI s u p p o r t e d (x)

PreMultiplyAlpha 8u,16u x x x x x x x x

AlphaComposite 8u,16u x x x x x x x x

AlphaCompositeC 8u,16u x x x x x x x x

Table A-5 Image Attributes and Modes of Filtering Functions

Input and output images Rect. Border In- Tiling Mask

Function Depths must have the same ROI Mode place

depth order origin COI s u p p o r t e d (x)

Blur u or s† x x x x x x x x x

Convolve2D u or s x x x x x x x x x

Convolve2DFP 32f x x x x x x x x x

ConvolveSep2D u or s x x x x x x x x x

MaxFilter u or s x x x x x x x x

MinFilter u or s x x x x x x x x

MedianFilter u or s x x x x x x x x

FixedFilter u or s x x x x x x x x x

† u or s = 1u, 8s, 8u, 16s, 16u, or 32s bits per channel

Table A-6 Image Attributes and Modes of Fourier and DCT Functions

Input & output images Rect. In- Tiling Mask

Function Depths have the same ROI place

input output order origin COI s u p p o r t e d (x)

DCT2D ≥8u/s‡ ≥8u/s‡ x x x

RealFft2D ≥8u/s, 32f ≥8u/s, 32f x x x x

CcsFft2D ≥8u/s, 32f ≥8u/s, 32f x x x x

‡ ≥8u/s = 8u, 8s, 16u, 16s, 32s bits per channel

Supported Image Attributes and Operation Modes

A-5

A
Table A-7 Image Attributes and Modes of Morphological Operations

Input and output images Rect. Border In-place Tiling

Function Depths must have the same ROI Mode

depth order origin COI s u p p o r t e d (x)

Erode 1u,8u,16u x x x x x x x x

Dilate 1u,8u,16u x x x x x x x x

Open 1u,8u,16u x x x x x x x x

Close 1u,8u,16u x x x x x x x x

Table A-8 Image Attributes and Modes of Color Space Conversion Functions

Input & output images Rect. In- Tiling

Function Depths have the same ROI place

input output depth order origin COI s u p p o r t e d (x)

ReduceBits 32s 1u, 8u, 16u x x x x

16u 1u, 8u x x x x

GrayToColor 32s,
gray†

color† x x x x

ColorToGray color† gray† x x x x

BitonalToGray 1u ≥8u/s‡ x

RGB to/from other
color model

 8u,16u,32s;
 for LUV, also 32f

x x x x x

ApplyColorTwist 8u,16u x x x x x x x

† gray = 1u, 8u, 16u bits per pixel
 color = 8u, 16u, 32s bits per channel
‡ ≥8u/s = 8u, 8s, 16u, 16s, 32s bits per channel

Intel Image Processing Library Reference Manual

A-6

A
Table A-9 Image Attributes and Modes of Histogram and Thresholding Functions

Input and output images Rect. In-place Tiling

Function Depths must have the same ROI

depth order origin COI s u p p o r t e d (x)

Threshold 8u,8s,16u,
16s, 32s†

x x x x x x

ComputeHisto 1u,8u,16u no output image x x

HistoEqualize 8u,16u x x x x x x x

ContrastStretch 8u,16u x x x x x x x

† output image can also be 1u bit per channel

Table A-10 Image Attributes and Modes of Geometric Transform Functions

Input and output images Rect. In- Tiling Mask

Function Depths must have the same ROI place

depth order origin COI s u p p o r t e d (x)

Mirror 1u,8u,16u x x x x x x x x

Rotate 1u,8u,16u x x x x x x

Zoom 1u,8u,16u x x x x x x x

Decimate 1u,8u,16u x x x x x x

Resize 1u,8u,16u x x x x x x

WarpAffine 1u,8u,16u x x x x x x

WarpBilinear 1u,8u,16u x x x x x x

WarpBilinearQ 1u,8u,16u x x x x x x

Warp
Perspective

1u,8u,16u x x x x x x

Warp
PerspectiveQ

1u,8u,16u x x x x x x

Shear 1u,8u,16u x x x x x x

Supported Image Attributes and Operation Modes

A-7

A
Table A-11 Image Attributes and Modes of Norm and Moment Functions

Both input images Rect. Tiling Mask

Function Depths must have the same ROI

depth order origin COI s u p p o r t e d (x)

Norm u or s† x x x x x x x

Moments all† operates on a single image x x x

[Normalized]
SpatialMoment

 all operates on a single image x x x

[Normalized]
CentralMoment

 all operates on a single image x x x

† u or s = 1u, 8s, 8u, 16s, 16u, 32s bits per channel (that is, all except 32f)
 all = 1u, 8s, 8u, 16s, 16u, 32s, or 32f bits per channel

This page is intentionally left blank. Needed for two-sided printing.

This page is intentionally left blank. Needed for two-sided printing.

Bibliography

Biblio-1

This bibliography provides a list of publications that might be useful to the
Image Processing Library users. This list is not complete; it serves only as
a starting point. The books [Rogers85], [Rogers90], and [Foley90] are
good resources of information on image processing and computer
graphics, with mathematical formulas and code examples.

The Image Processing Library is part of Intel Performance Libraries Suite.
The manuals [RPL] and [SPL] describe Intel Recognition Primitives
Library and Intel Signal Processing Library, which are other parts of the
Performance Libraries Suite.

[Bragg] Dennis Bragg. A simple color reduction filter, Graphic
Gems III: 20–22.

[Foley90] James D. Foley, Andries van Dam, Steven K. Feiner,
and John F. Hughes. Computer Graphics — Principles
and Practice, Second Edition. Addison Wesley, 1990.

[Rec709] ITU-R Recommendation BT.709, Basic Parameter
Values for the HDTV Standard for the Studio and
International Programme Exchange [formerly CCIR
Rec.709] ITU, Geneva, Switzerland, 1990.

[Rogers85] David Rogers. Procedural Elements for Computer
Graphics. McGraw-Hill, 1985.

[Rogers90] David Rogers and J.Alan Adams. Mathematical
Elements for Computer Graphics. McGraw-Hill, 1990.

[RPL] Intel Recognition Primitives Library Reference Manual.
Intel Corp. Order number 637785.

[SPL] Intel Signal Processing Library Reference Manual. Intel
Corp. Order number 630508.

Intel Image Processing Library Reference Manual

Biblio-2

[Schumacher] Dale A. Schumacher. A comparison of digital halftoning
techniques, Graphic Gems III: 57–71.

[Thomas] Spencer W. Thomas and Rod G. Bogart. Color
dithering, Graphic Gems II: 72–77.

Glossary

Glossary-1

absolute colors Colors specified by each pixel’s coordinates in
a color space. Intel Image Processing Library
functions use images with absolute colors. See
palette colors.

alpha channel A color channel, also known as the opacity
channel, that can be used in color models; for
example, the RGBA model.

arithmetic operation An operation that adds, subtracts, multiplies,
shifts, or squares the image pixel values.

channel of interest The color channel on which an operation acts
(or processing occurs). Channel of interest
(COI) can be considered as a separate case of
region of interest (ROI).

CMY Cyan-magenta-yellow. A three-channel color
model that uses cyan, magenta, and yellow
color channels.

CMYK Cyan-magenta-yellow-black. A four-channel
color model that uses cyan, magenta, yellow,
and black color channels.

COI See channel of interest.

color-twist matrix A matrix used to multiply the pixel coordinates
in one color space for determining the
coordinates in another color space.

conjugate The conjugate of a complex number a+bi is
a-bi.

DCT Acronym for the discrete cosine transform. See
“Discrete Cosine Transform” in Chapter 7.

Intel Image Processing Library Reference Manual

Glossary-2

decimation A geometric transform operation that shrinks
the source image.

DIB Device-independent bitmap, an image format
used by the library in Windows environment.

dilation A morphological operation that sets each output
pixel to the minimum of the corresponding
input pixel and its 8 neighbors.

dyadic operation An operation that has two input images. It can
have other input parameters as well.

erosion A morphological operation that sets each output
pixel to the maximum of the corresponding
input pixel and its 8 neighbors.

FFT Acronym for the fast Fourier transform. See
“Fast Fourier Transform” in Chapter 7.

four-channel model A color model that uses four color channels; for
example, the RGBA color model.

geometric transform
functions

Functions that perform geometric
transformations of images: resizing, rotation,
mirror, shear, and warping functions.

gray scale image An image characterized by a single intensity
channel so that each intensity value corresponds
to a certain shade of gray.

HLS Hue-lightness-saturation. A three-channel color
model that uses hue, lightness, and saturation
channels. The HLS and HSV models differ in
the way of scaling the image luminance. See
HSV.

HSV Hue-saturation-value. A three-channel color
model that uses hue, saturation, and value
channels. HSV is often used as a synonym for
the HSB (hue-saturation-brightness) and HSI
(hue-saturation-intensity) models. See HLS.

 Glossary

Glossary-3

hue A color channel in several color models that
measures the “angular” distance (in degrees)
from red to the particular color: 60 corresponds
to yellow, 120 to green, 180 to cyan, 240 to
blue, and 300 to magenta. Hue is undefined for
shades of gray.

in-place operation An operation whose output image is one of the
input images. See out-of-place operation.

linear filtering In this library, either neighborhood averaging
(blur) or 2D convolution operations.

linear image transforms In this library, the fast Fourier transform (FFT)
or the discrete cosine transform (DCT).

luminance A measure of image intensity, as perceived by a
“standard observer”. Since human eyes are
more sensitive to green and less to red or blue,
different colors of equal physical intensity make
different contribution to luminance. See
ColorToGray in Chapter 9.

LUT Acronym for lookup table (palette).

LUV A three-channel color model designed to acieve
perceptual uniformity, that is, to make the
perceived distance between two colors
proportional to the numerical distance.

MMX TM technology A major enhancement to the Intel Architecture
aimed at better performance in multimedia and
communications applications. The technology
uses four new data types, eight 64-bit MMX
registers, and 57 new instructions implementing
the SIMD (single instruction, multiple data)
technique.

monadic operation An operation that has a single input image. It
can have other input parameters as well.

morphological operation An erosion, dilation, or their combinations.

Intel Image Processing Library Reference Manual

Glossary-4

MSI Acronym for multi-spectral image. An MSI can
use any number of channels and colors.

non-linear filtering In the Image Processing Library, minimum,
maximum, or median filtering operation.

opacity channel See alpha channel.

out-of-place operation An operation whose output is an image other
than the input image(s). See in-place operation.

palette colors Colors specified by a palette, or lookup table.
The Image Processing Library uses palette
colors only in operations of image conversion to
and from absolute colors. See absolute colors.

PhotoYCC* A Kodak* proprietary color encoding and
image compression scheme. See YCC.

pixel depth The number of bits determining a single pixel in
the image.

pixel-oriented ordering Storing the image information in such an order
that the values of all color channels for each
pixel are clustered; for example, RGBRGB... .
See “Channel Sequence” in Chapter 2.

plane-oriented ordering Storing the image information so that all data of
one color channel follow all data of another
channel, thus forming a separate “plane” for
each channel; for example, RRRRRGGGGG...

region of interest An image region on which an operation acts
(or processing occurs).

RGB Red-green-blue. A three-channel color model
that uses red, green, and blue color channels.

RGBA Red-green-blue-alpha. A four-channel color
model that uses red, green, blue, and alpha (or
opacity) channels.

ROI See region of interest.

 Glossary

Glossary-5

saturation A quantity used for measuring the purity of
colors. The maximum saturation corresponds to
the highest degree of color purity; the minimum
(zero) saturation corresponds to shades of gray.

scanline All image data for one row of pixels.

standard gray palette A complete palette of a DIB image whose red,
green, and blue values are equal for each entry
and monotonically increasing from entry to
entry.

three-channel model A color model that uses three color channels;
for example, the CMY color model.

XYZ A three-channel color model designed to
represent a wider range of colors than the RGB
model: some XYZ-representable colors would
have a negative value of R. For conversion
formulas, see RGB2XYZ.

YCC A three-channel color model that uses one
luminance channel (Y) and two chroma
channels (usually denoted by CR and CB). The
term is sometimes used as a synonym for the
entire PhotoYCC encoding scheme. See
PhotoYCC.

YUV A three-channel color model frequently used in
television. For conversion formulas, see
RGB2YUV.

zoom A geometric transform function that magnifies
the source image.

This page is intentionally left blank. Needed for two-sided printing.

This page is intentionally left blank. Needed for two-sided printing.

Index

Index-1

A

a function that helps you

add a constant to pixel values, 5-3

add pixel values of two images, 5-7

allocate a quadword-aligned memory
block, 4-23

allocate image data, 4-12

allocate memory for 16-bit words, 4-24

allocate memory for 32-bit double words,
4-24

allocate memory for double floating-point
elements, 4-26

allocate memory for floating-point
elements, 4-25

apply a color-twist matrix, 9-19

assign a new error-handling function, 3-6

average neighboring pixels, 6-2

change the image orientation, 11-6

change the image size, 11-2

compute absolute pixel values, 5-6

compute bitwise AND of pixel values and
a constant, 5-12

compute bitwise AND of pixel values of
two images, 5-15

compute bitwise NOT of pixel values, 5-12

compute bitwise OR of pixel values and
a constant, 5-13

compute bitwise OR of pixel values of two
images, 5-15

compute bitwise XOR of pixel values and
a constant, 5-14

compute bitwise XOR of pixel values of
two images, 5-16

compute CCS fast Fourier transform, 7-7

compute discrete cosine transform, 7-8

compute image moments, 12-5

compute moments of order 0 to 3, 12-6

compute real fast Fourier transform, 7-4

compute the image histogram, 10-7

compute the norm of pixel values, 12-2

convert a bitonal image to gray scale, 9-5

convert a color image to gray scale, 9-6

convert a gray scale image to color, 9-7

convert images from DIB (changing
attributes), 4-41, 4-44

convert images from DIB (preserving
attributes), 4-38

convert images to DIB, 4-45

convert RGB images to and from other
color models, 9-8

convolve an image with 2D kernel, 6-8

convolve an image with a predefined
kernel, 6-12

Intel Image Processing Library Reference Manual

Index-2

convolve an image with a separable kernel,
6-11

copy entire images, 4-14

copy image data, 4-29

create 2D convolution kernel, 6-5

create a color twist matrix, 9-17

create a region of interest (ROI), 4-17

create image header, 4-8

create the IplTileInfo structure, 4-21

decimate the image, 11-4

delete 2D convolution kernel, 6-8

delete a color twist matrix, 9-20

delete a region of interest (ROI) structure,
4-17

delete the IplTileInfo structure, 4-22

dilate an image, 8-5

divide pixel values by 2N, 5-11

equalize the image histogram, 10-8

erode an image, 8-2

exchange data of two images, 4-31

fill image’s pixels with a value, 4-28

filter the image, 6-1

free memory allocated by Malloc
functions, 4-26

free the image data memory, 4-14

free the image header memory, 4-15

get error-handling mode, 3-4

get the error status code, 3-3

get the value of pixel (x,y), 4-34

handle an error, 3-2

magnify the image, 11-3

mirror the image, 11-10

multiply pixel values by a color-twist
matrix, 9-19

multiply pixel values by a constant, 5-5

multiply pixel values by a constant and
scale the products, 5-5

multiply pixel values of two images, 5-8

multiply pixel values of two images and
scale the products, 5-9

perform several erosions and dilations, 8-6,
8-7

pre-multiply pixel values by alpha values,
5-24

produce error messages for users, 3-5

read convolution kernel’s attributes, 6-7

reduce the image bit resolution, 9-3

report an error, 3-2

resize the image, 11-5

rotate the image, 11-6

set a color twist matrix, 9-18

set a region of interest (ROI), 4-18

set error-handling mode, 3-4

set one pixel to a new value, 4-34

set pixels to the maximum value of the
neighbors, 6-17

set pixels to the median value of the
neighbors, 6-15

set pixels to the minimum value of the
neighbors, 6-18

set the error status code, 3-3

set the image border mode, 4-19

set the IplTileInfo structure fields, 4-9,
4-22

shear images, 11-12

shift pixel bits to the left, 5-10

shift pixel bits to the right, 5-11

shrink the image, 11-4

smooth the image, 8-6, 8-7

Index

Index-3

square pixel values, 5-6

stretch the image contrast, 10-6

subtract pixel values from a constant, 5-4

subtract pixel values of two images, 5-8

threshold the source image, 10-2

warp images by affine transforms, 11-13

warp images by bilinear transforms, 11-16

warp images by perspective transforms,
11-20

zoom the image, 11-3

about this manual, 1-2

about this software, 1-1

Abs function, 5-6

absolute color images, 2-2

absolute pixel values, 5-6

Add function, 5-7

adding a constant to pixel values, 5-3

adding pixels of two images, 5-7

AddS function, 5-3

AddSFP function, 5-3

alignment

image data, 2-7

rectangular ROIs, 2-5

scanline, 2-7

AllocateImage function, 4-12

AllocateImageFP function, 4-12

allocating memory

for 16-bit words, 4-24

for 32-bit double words, 4-24

for double floating-point elements, 4-26

for floating-point elements, 4-25

quadword-aligned blocks, 4-23

alpha channel, 2-7

alpha pre-multiplication, 5-24

alpha-blending

alpha pre-multiplication, 5-24

AlphaComposite function, 5-18

AlphaCompositeC function, 5-18

ATOP operation, 5-22

IN operation, 5-22

OUT operation, 5-22

OVER operation, 5-22

PLUS operation, 5-22

PreMultiplyAlpha function, 5-24

XOR operation, 5-22

AlphaComposite function, 5-18

AlphaCompositeC function, 5-18

And function, 5-15

AndS function, 5-12

ApplyColorTwist function, 9-19

argument order conventions, 1-7

arithmetic operations, 5-1

Abs, 5-6

Add, 5-7

AddS, 5-3

AddSFP, 5-3

AlphaComposite, 5-18

AlphaCompositeC, 5-18

Multiply, 5-8

MultiplyS, 5-4

MultiplyScale, 5-9

MultiplySFP, 5-4

MultiplySScale, 5-5

PreMultiplyAlpha, 5-24

Square, 5-6

Subtract, 5-8

Intel Image Processing Library Reference Manual

Index-4

arithmetic operations (continued)

SubtractS, 5-4

SubtractSFP, 5-4

ATOP compositing operation, 5-22

attributes of an image, 4-3

audience for this manual, 1-4

averaging the neighboring pixels, 6-2

B

bit depths supported, A-1

BitonalToGray function, 9-5

bitwise AND

with a constant, 5-12

with another image, 5-15

bitwise NOT, 5-12

bitwise OR

with a constant, 5-13

with another image, 5-15

bitwise XOR

with a constant, 5-14

with another image, 5-16

Blur function, 6-2

brightening the image, 5-3

C

call-backs, 2-9

CcsFft2D function, 7-7

CentralMoment function, 12-9

changing the image orientation, 11-6

changing the image size, 11-2

channel of interest, 2-4

channel sequence, 2-3

CloneImage function, 4-14

Close function, 8-7

COI. See channel of interest

color data order, 2-3

color models, 2-1

gray scale, 2-1

multi-spectral image, 2-2

three or four channels, 2-1

color space conversion functions

ApplyColorTwist, 9-19

BitonalToGray, 9-5

ColorToGray, 9-6

CreateColorTwist, 9-17

DeleteColorTwist, 9-20

GrayToColor, 9-7

HLS2RGB, 9-11

HSV2RGB, 9-10

LUV2RGB, 9-12

ReduceBits, 9-3

RGB2HLS, 9-11

RGB2HSV, 9-10

RGB2LUV, 9-12

RGB2XYZ, 9-13

RGB2YCrCb, 9-14

RGB2YUV, 9-15

SetColorTwist, 9-18

XYZ2RGB, 9-13

YCC2RGB, 9-16

YCrCb2RGB, 9-14

YUV2RGB, 9-15

ColorToGray function, 9-6

color-twist matrices, 9-16

ComputeHisto function, 10-7

Index

Index-5

computing the norm of pixel values, 12-2

ContrastStretch function, 10-6

conventions

font, 1-5

names of constants and variables, 1-5

names of functions, 1-6

order of arguments, 1-7

Convert function, 4-32

ConvertFromDIB function, 4-41

ConvertFromDIBSep function, 4-44

converting bitonal images to gray scale, 9-5

converting color images to gray scale, 9-6

converting gray-scale images to color, 9-7

converting HLS images to RGB, 9-11

converting HSV images to RGB, 9-10

converting images from DIB (changing
attributes), 4-41, 4-44

converting images from DIB (preserving
attributes), 4-38

converting images to DIB, 4-45

converting LUV images to RGB, 9-12

converting RGB images to HLS, 9-11

converting RGB images to HSV, 9-10

converting RGB images to LUV, 9-12

converting RGB images to XYZ, 9-13

converting RGB images to YCrCb, 9-14

converting RGB images to YUV, 9-15

converting XYZ images to RGB, 9-13

converting YCC images to RGB, 9-16

converting YCrCb images to RGB, 9-14

converting YUV images to RGB, 9-15

ConvertToDIB function, 4-45

convolution, 6-3

Convolve2D function, 6-8

Convolve2DFP function, 6-8

ConvolveSep2D function, 6-11

coordinate systems, 2-4

Copy function, 4-29

copying entire images, 4-14

copying the image data, 4-29

CreateColorTwist function, 9-17

CreateConvKernel function, 6-5

CreateConvKernelChar function, 6-5

CreateConvKernelFP function, 6-5

CreateImageHeader function, 4-8

CreateROI function, 4-17

CreateTileInfo function, 4-21

creating images, 4-1, 4-8

D

darkening the image, 5-3

data architecture, 2-1

data exchange, 4-2

data exchange functions, 4-27

Convert, 4-32

Copy, 4-29

Exchange, 4-31

GetPixel, 4-34

PutPixel, 4-34

Set, 4-28

SetFP, 4-28

data ordering, 2-3

data ranges in HLS and HSV models, 9-9

data types, 2-2

DCT. See discrete cosine transform

Intel Image Processing Library Reference Manual

Index-6

DCT2D function, 7-8

Deallocate function, 4-15

DeallocateImage function, 4-14

Decimate function, 11-4

decimating the image, 11-5

DeleteColorTwist function, 9-20

DeleteConvKernel function, 6-8

DeleteConvKernelFP function, 6-8

DeleteROI function, 4-17

DeleteTileInfo function, 4-22

device-independent bitmap, 4-2

DIB. See device-independent bitmap

DIB palette images, 2-2

Dilate function, 8-5

dilation of an image, 8-5

discrete cosine transform, 7-8

dividing pixel values by 2N, 5-11

dMalloc function, 4-26

dyadic operations, 5-1

E

equalizing the image histogram, 10-8

Erode function, 8-2

erosion of an image, 8-2

ErrModeLeaf error mode, 3-4

ErrModeParent error mode, 3-5

ErrModeSilent error mode, 3-5

error checks, 3-1

Error function, 3-2

error handling, 3-1

example, 3-10

status codes, 3-8

user-defined error handler, 3-13

error handling macros, 3-7

error processing modes

IPL_ErrModeLeaf, 3-4

IPL_ErrModeParent, 3-5

IPL_ErrModeSilent, 3-5

error-handling functions, 3-2

Error, 3-2

ErrorStr, 3-5

GetErrMode, 3-4

GetErrStatus, 3-3

RedirectError, 3-6

SetErrMode, 3-4

SetErrStatus, 3-3

ErrorStr function, 3-5

Exchange function, 4-31

execution architecture, 2-8

in-place and out-of-place operations, 2-8

overflow and underflow, 2-8

saturation, 2-8

F

fast Fourier and discrete cosine transforms

CcsFft2D, 7-7

DCT2D, 7-8

RealFft2D, 7-4

fast Fourier transform, 7-1

FFT. See fast Fourier transform

filling image’s pixels with a value, 4-28, 4-34

filtering functions, 6-1

Blur, 6-2

Convolve2D, 6-8

Index

Index-7

filtering functions (continued)

Convolve2DFP, 6-8

ConvolveSep2D, 6-11

CreateConvKernel, 6-5

CreateConvKernelChar, 6-5

CreateConvKernelFP, 6-5

DeleteConvKernel, 6-8

DeleteConvKernelFP, 6-8

FixedFilter, 6-12

GetConvKernel, 6-6

GetConvKernelChar, 6-6

GetConvKernelFP, 6-6

MaxFilter, 6-17

MedianFilter, 6-15

MinFilter, 6-18

FixedFilter function, 6-12

font conventions, 1-5

Free function, 4-26

free memory allocated by Malloc functions,
4-26

function descriptions, 1-4

function name conventions, 1-6

G

geometric transform functions

Decimate, 11-4

GetAffineBound, 11-14

GetAffineQuad, 11-14

GetAffineTransform, 11-15

GetBilinearBound, 11-18

GetBilinearQuad, 11-18

GetBilinearTransform, 11-19

GetPerspectiveBound, 11-22

GetPerspectiveQuad, 11-22

GetPerspectiveTransform, 11-23

GetRotateShift, 11-7

Mirror, 11-10

Resize, 11-5

Rotate, 11-6

Shear, 11-12

WarpAffine, 11-13

WarpBilinear, 11-16

WarpBilinearQ, 11-16

WarpPerspective, 11-20

WarpPerspectiveQ, 11-20

Zoom, 11-3

GetAffineBound function, 11-14

GetAffineQuad function, 11-14

GetAffineTransform function, 11-15

GetBilinearBound function, 11-18

GetBilinearQuad function, 11-18

GetBilinearTransform function, 11-19

GetCentralMoment function, 12-7

GetConvKernel function, 6-6

GetConvKernelChar function, 6-6

GetConvKernelFP function, 6-6

GetErrMode function, 3-4

GetErrStatus function, 3-3

GetNormalizedCentralMoment function, 12-8

GetNormalizedSpatialMoment function, 12-7

GetPerspectiveBound function, 11-22

GetPerspectiveQuad function, 11-22

GetPerspectiveTransform function, 11-23

GetPixel function, 4-34

GetRotateShift function, 11-7

GetSpatialMoment function, 12-6

Intel Image Processing Library Reference Manual

Index-8

gray-scale images, 2-1

GrayToColor function, 9-7

H

handling overflow and underflow, 2-8

hardware and software requirements, 1-1

HistoEqualize function, 10-8

histogram and thresholding functions, 10-1

ComputeHisto, 10-7

ContrastStretch, 10-6

HistoEqualize, 10-8

Threshold, 10-2

histogram of an image, 10-7

histogram operations, 10-4

HLS2RGB function, 9-11

HSV2RGB function, 9-10

I

image attributes, 4-3, A-1

image compositing

alpha pre-multiplication, 5-24

AlphaComposite function, 5-18

AlphaCompositeC function, 5-18

ATOP operation, 5-22

IN operation, 5-22

OUT operation, 5-22

OVER operation, 5-17, 5-22

PLUS operation, 5-22

PreMultiplyAlpha function, 5-24

XOR operation, 5-22

image creation functions, 4-1

AllocateImage, 4-12

AllocateImageFP, 4-12

CloneImage, 4-14

CreateImageHeader, 4-8

CreateROI, 4-17

CreateTileInfo, 4-21

Deallocate, 4-15

DeallocateImage, 4-14

DeleteROI, 4-17

DeleteTileInfo, 4-22

SetBorderMode, 4-19

SetROI, 4-18

SetTileInfo, 4-22

image dimensions, 2-7

image filtering functions, 6-1

image format, 4-3

image header, 4-3

image histogram, 10-7

image moments, 12-5

image norms, 12-2

Image Processing Library functionality

2D convolution, 6-3

alpha-blending, 5-1

arithmetic operations, 5-1

color space conversion, 9-1

data exchange, 4-1

DIB environment functions, 4-36

discrete cosine transform, 7-8

error handling, 3-1

fast Fourier transform, 7-1

filtering functions, 6-1

geometric transform functions, 11-1

histogram and thresholding functions, 10-1

image creation, 4-1

Index

Index-9

Image Processing Library functionality (cont.)

image statistics, 12-1

image tiling, 2-8, 4-7

logical operations, 5-1

memory allocation, 4-23

moments and norms, 12-1

morphological operations, 8-1

supported image attributes and modes, A-1

image row data, 2-7

image size, 2-7

image structure

borders, 4-19

channel sequence, 2-3

color models, 2-1

coordinate systems, 2-4

data architecture, 2-1

data ordering, 2-3

data types, 2-2

header attributes, 4-3

image size, 2-7

regions of interest, 2-4

tile size, 2-9

tiling, 2-8, 4-7

image tiling, 2-8, 4-7

call-backs, 2-9

IplTileInfo structure, 4-7

iMalloc function, 4-24

IN compositing operation, 5-22

in-place operations, 2-8

IPL_ErrModeLeaf, 3-4

IPL_ErrModeParent, 3-5

IPL_ErrModeSilent, 3-5

iplAbs, 5-6

iplAdd, 5-7

iplAddS, 5-3

iplAddSFP, 5-3

iplAllocateImage, 4-12

iplAllocateImageFP, 4-12

iplAlphaComposite, 5-18

iplAlphaCompositeC, 5-18

iplAnd, 5-15

iplAndS, 5-12

iplApplyColorTwist, 9-19

iplBitonalToGray, 9-5

iplBlur, 6-2

iplCcsFft2D, 7-7

iplCentralMoment, 12-9

iplCloneImage, 4-14

iplClose, 8-7

iplColorToGray, 9-6

iplComputeHisto, 10-7

iplContrastStretch, 10-6

iplConvert, 4-32

iplConvertFromDIB, 4-41

iplConvertFromDIBSep, 4-44

iplConvertToDIB, 4-45

iplConvolve2D, 6-8

iplConvolve2DFP, 6-8

iplConvolveSep2D, 6-11

iplCopy, 4-29

iplCreateColorTwist, 9-17

iplCreateConvKernel, 6-5

iplCreateConvKernelChar, 6-5

iplCreateConvKernelFP, 6-5

iplCreateImageHeader, 4-8

iplCreateROI, 4-17

Intel Image Processing Library Reference Manual

Index-10

iplCreateTileInfo, 4-21

iplDCT2D, 7-8

iplDeallocate, 4-15

iplDeallocateImage, 4-14

iplDecimate, 11-4

iplDeleteColorTwist, 9-20

iplDeleteConvKernel, 6-8

iplDeleteConvKernelFP, 6-8

iplDeleteROI, 4-17

iplDeleteTileInfo, 4-22

iplDilate, 8-5

ipldMalloc, 4-26

iplErode, 8-2

iplError, 3-2

iplErrorStr, 3-5

iplExchange, 4-31

iplFixedFilter, 6-12

iplFree, 4-26

iplGetAffineBound, 11-14

iplGetAffineQuad, 11-14

iplGetAffineTransform, 11-15

iplGetBilinearBound, 11-18

iplGetBilinearQuad, 11-18

iplGetBilinearTransform, 11-19

iplGetCentralMoment, 12-7

iplGetConvKernel, 6-6

iplGetConvKernelChar, 6-6

iplGetConvKernelFP, 6-6

iplGetErrMode, 3-4

iplGetErrStatus, 3-3

iplGetNormalizedCentralMoment, 12-8

iplGetNormalizedSpatialMoment, 12-7

iplGetPerspectiveBound, 11-22

iplGetPerspectiveQuad, 11-22

iplGetPerspectiveTransform, 11-23

iplGetPixel, 4-34

iplGetRotateShift, 11-7

iplGetSpatialMoment, 12-6

iplGrayToColor, 9-7

iplHistoEqualize, 10-8

iplHLS2RGB, 9-11

iplHSV2RGB, 9-10

IplImage structure, 4-3–4-22

ipliMalloc, 4-24

IplLastStatus variable, 3-5

iplLShiftS, 5-10

iplLUV2RGB, 9-12

iplMalloc, 4-23

iplMaxFilter, 6-17

iplMedianFilter, 6-15

iplMinFilter, 6-18

iplMirror, 11-10

iplMoments, 12-6

IplMomentState structure, 12-5

iplMultiply, 5-8

iplMultiplyS, 5-4

iplMultiplyScale, 5-9

iplMultiplySFP, 5-4

iplMultiplySScale, 5-5

iplNorm, 12-2

iplNormalizedCentralMoment, 12-11

iplNormalizedSpatialMoment, 12-10

iplNot, 5-12

iplOpen, 8-6

iplOr, 5-15

iplOrS, 5-13

Index

Index-11

iplPreMultiplyAlpha, 5-24

iplPutPixel, 4-34

iplRealFft2D, 7-4

iplRedirectError, 3-6

iplReduceBits, 9-3

iplResize, 11-5

iplRGB2HLS, 9-11

iplRGB2HSV, 9-10

iplRGB2LUV, 9-12

iplRGB2XYZ, 9-13

iplRGB2YCrCb, 9-14

iplRGB2YUV, 9-15

iplRotate, 11-6

iplRShiftS, 5-11

iplSet, 4-28

iplSetBorderMode, 4-19

iplSetColorTwist, 9-18

iplSetErrMode, 3-4

iplSetErrStatus, 3-3

iplSetFP, 4-28

iplSetROI, 4-18

iplSetTileInfo, 4-22

iplShear, 11-12

iplsMalloc, 4-25

iplSpatialMoment, 12-9

iplSquare, 5-6

iplSubtract, 5-8

iplSubtractS, 5-4

iplSubtractSFP, 5-4

iplThreshold, 10-2

IplTileInfo structure, 4-7

iplTranslateDIB, 4-38

iplWarpAffine, 11-13

iplWarpBilinear, 11-16

iplWarpBilinearQ, 11-16

iplWarpPerspective, 11-20

iplWarpPerspectiveQ, 11-20

iplwMalloc, 4-24

iplXor, 5-16

iplXorS, 5-14

iplXYZ2RGB, 9-13

iplYCC2RGB, 9-16

iplYCrCb2RGB, 9-14

iplYUV2RGB, 9-15

iplZoom, 11-3

L

linear filters, 6-2

logical operations, 5-1

And, 5-15

AndS, 5-12

LShiftS, 5-10

Not, 5-12

Or, 5-15

OrS, 5-13

RShiftS, 5-11

Xor, 5-16

XorS, 5-14

lookup table. See palette color images

lookup table operations, 10-4

LShiftS function, 5-10

LUV2RGB function, 9-12

Intel Image Processing Library Reference Manual

Index-12

M

magnifying the image, 11-3, 11-5

Malloc function, 4-23

manual organization, 1-2

mask, 2-4

MaxFilter function, 6-17

maximum permissible value, 2-8

MedianFilter function, 6-15

memory allocation functions, 4-2, 4-23

dMalloc, 4-26

Free, 4-26

iMalloc, 4-24

Malloc, 4-23

sMalloc, 4-25

wMalloc, 4-24

MinFilter function, 6-18

minimum permissible value, 2-8

Mirror function, 11-10

mirroring the image, 11-10

moments, 12-5

moments and norms

CentralMoment, 12-9

GetCentralMoment, 12-7

GetNormalizedCentralMoment, 12-8

GetNormalizedSpatialMoment, 12-7

GetSpatialMoment, 12-6

Moments, 12-6

Norm, 12-2

NormalizedCentralMoment, 12-11

NormalizedSpatialMoment, 12-10

SpatialMoment, 12-9

Moments function, 12-6

monadic operations, 5-1

morphological operations

Close, 8-7

Dilate, 8-5

Erode, 8-2

Open, 8-6

MSI. See multi-spectral image

multi-image operations, 2-5

Multiply function, 5-8

multiplying and scaling pixel values

by a constant, 5-5

in two input images, 5-9

multiplying pixel values

by a color-twist matrix, 9-19

by a constant, 5-5

by a negative power of 2, 5-11

in two input images, 5-8

squares of pixel values, 5-6

MultiplyS function, 5-4

MultiplyScale function, 5-9

MultiplySFP function, 5-4

MultiplySScale function, 5-5

multi-spectral image, 2-2

N

naming conventions, 1-5

Norm function, 12-2

NormalizedCentralMoment function, 12-11

NormalizedSpatialMoment function, 12-10

Not function, 5-12

notational conventions, 1-5

numerical exceptions, 3-1

Index

Index-13

O

online version of this manual, 1-4

opacity channel. See alpha channel

Open function, 8-6

opening and smoothing the image, 8-6

operation modes of library functions, A-1

Or function, 5-15

OrS function, 5-13

OUT compositing operation, 5-22

out-of-place operations, 2-8

OVER compositing operation, 5-17, 5-22

P

palette color images, 2-2

parallelism, 1-1

pixel depth, 2-2

pixel values, setting and retrieving, 4-34

PLUS compositing operation, 5-22

PreMultiplyAlpha function, 5-24

producing error messages for users, 3-6

PutPixel function, 4-34

R

RCPack2D format, 7-1

real-complex packed format, 7-1

RealFft2D function, 7-4

rectangular region of interest, 2-4

RedirectError function, 3-6

ReduceBits function, 9-3

reducing the image bit resolution, 9-3

region of interest, 2-4, 4-16

channel, 2-4

mask image, 2-4

rectangular, 2-4

reporting an error, 3-2

Resize function, 11-5

return values, 1-4

RGB2HLS function, 9-11

RGB2HSV function, 9-10

RGB2LUV function, 9-12

RGB2XYZ function, 9-13

RGB2YCrCb function, 9-14

RGB2YUV function, 9-15

ROI. See region of interest

Rotate function, 11-6

rotating the image

around an arbitrary center, 11-7

around the origin, 11-6

RShiftS function, 5-11

S

saturation, 2-8

scanline. See image row data

scanline alignment, 2-7

Set function, 4-28

SetBorderMode function, 4-19

SetColorTwist function, 9-18

SetErrMode function, 3-4

SetErrStatus function, 3-3

SetFP function, 4-28

SetROI function, 4-18

Intel Image Processing Library Reference Manual

Index-14

SetTileInfo function, 4-22

Shear function, 11-12

shearing the image, 11-12

shifting pixel bits

to the left, 5-10

to the right, 5-11

shrinking the image, 11-4, 11-5

signed data, 2-2

SIMD instructions, 1-1

sMalloc function, 4-25

smoothing the image, 8-7

SpatialMoment function, 12-9

Square function, 5-6

squares of pixel values, 5-6

status codes, 3-8

stretching the image contrast, 10-6

Subtract function, 5-8

subtracting pixel values

from a constant, 5-4

two input images, 5-8

SubtractS function, 5-4

SubtractSFP function, 5-4

supported image attributes and modes, A-1

T-V
Threshold function, 10-2

thresholding the source image, 10-2

tiling, 2-8, 4-7

call-backs, 2-9

CreateTileInfo function, 4-21

DeleteTileInfo function, 4-22

IplTileInfo structure, 4-7

SetTileInfo function, 4-22

TranslateDIB function, 4-38

two-dimensional convolution, 6-3

user-defined error handler, 3-13

W

WarpAffine function, 11-13

WarpBilinear function, 11-16

WarpBilinearQ function, 11-16

warping the image, 11-11

WarpPerspective function, 11-20

WarpPerspectiveQ function, 11-20

Windows DIB functions, 4-2, 4-36

ConvertFromDIB, 4-41

ConvertFromDIBSep, 4-44

ConvertToDIB, 4-45

TranslateDIB, 4-38

wMalloc function, 4-24

X-Z
XOR compositing operation, 5-22

Xor function, 5-16

XorS function, 5-14

XYZ2RGB function, 9-13

YCC2RGB function, 9-16

YCrCb2RGB function, 9-14

YUV2RGB function, 9-15

Zoom function, 11-3

zooming the image, 11-3, 11-5

	Intel Image Processing Library Reference Manual
	How to Use This Manual
	Revision History
	Legal Information
	Contents
	Chapter 1 Overview
	About This Software
	Hardware and Software Requirements

	About This Manual
	Manual Organization
	Function Descriptions
	Audience for This Manual
	Online Version
	Sources of Related Information

	Notational Conventions
	Font Conventions
	Naming Conventions
	X-Y Argument Order Convention

	Chapter 2 Image Architecture
	Data Architecture
	Color Models
	Data Types and Palettes
	The Sequence and Order of Color Channels
	Coordinate Systems
	Image Regions of Interest
	Alpha (Opacity) Channel
	Scanline Alignment
	Image Dimensions

	Execution Architecture
	Handling Overflow and Underflow
	In-Place and Out-of-Place Operations

	Image Tiling
	Tile Size
	Call-backs
	ROI and Tiling
	In-Place Operations and Tiling

	Chapter 3 Error Handling
	Error-handling Functions
	Error
	GetErrStatus SetErrStatus
	GetErrMode SetErrMode
	ErrorStr
	RedirectError

	Error Macros
	Status Codes
	Error Handling Example
	Adding Your Own Error Handler

	Chapter 4 Image Creation and Access
	Image Header and Attributes
	Creating Images
	CreateImageHeader
	AllocateImage, AllocateImageFP
	DeallocateImage
	CloneImage
	Deallocate

	Setting Regions of Interest
	CreateROI
	DeleteROI
	SetROI

	Image Borders and Image Tiling
	SetBorderMode
	CreateTileInfo
	SetTileInfo
	DeleteTileInfo

	Memory Allocation Functions
	wMalloc
	iMalloc
	sMalloc
	dMalloc
	iplFree

	Image Data Exchange
	Set, SetFP
	Copy
	Exchange
	Convert
	PutPixel, GetPixel

	Working in the Windows DIB Environment
	TranslateDIB
	ConvertFromDIB
	ConvertFromDIBSep
	ConvertToDIB

	Chapter 5 Arithmetic and Logical Operations
	Monadic Arithmetic Operations
	AddS, AddSFP
	SubtractS, SubtractSFP
	MultiplyS, MultiplySFP
	MultiplySScale
	Square
	Abs

	Dyadic Arithmetic Operations
	Add
	Subtract
	Multiply
	MultiplyScale

	Monadic Logical Operations
	LShiftS
	RShiftS
	Not
	AndS
	OrS
	XorS

	Dyadic Logical Operations
	And
	Or
	Xor

	Image Compositing Based on Opacity
	AlphaComposite, AlphaCompositeC
	PreMultiplyAlpha

	Chapter 6 Image Filtering
	Linear Filters
	Blur
	CreateConvKernel, CreateConvKernelChar, CreateConvKernelFP
	GetConvKernel, GetConvKernelChar, GetConvKernelFP
	DeleteConvKernel, DeleteConvKernelFP
	Convolve2D, Convolve2DFP
	ConvolveSep2D
	FixedFilter

	Non-linear Filters
	MedianFilter
	MaxFilter
	MinFilter

	Chapter 7 Linear Image Transforms
	Fast Fourier Transform
	RealFft2D
	CcsFft2D

	Discrete Cosine Transform
	DCT2D

	Chapter 8 Morphological Operations
	Erode
	Dilate
	Open
	Close

	Chapter 9 Color Space Conversion
	Reducing the Image Bit Resolution
	ReduceBits

	Conversion from Bitonal to Gray Scale Images
	BitonalToGray

	Conversion of Absolute Colors to and from Palette Colors
	Conversion from Color to Gray Scale
	ColorToGray

	Conversion from Gray Scale to Color (Pseudo-color)
	GrayToColor

	Conversion of Color Models
	RGB2HSV
	HSV2RGB
	RGB2HLS
	HLS2RGB
	RGB2LUV
	LUV2RGB
	RGB2XYZ
	XYZ2RGB
	RGB2YCrCb
	YCrCb2RGB
	RGB2YUV
	YUV2RGB
	YCC2RGB

	Using Color-Twist Matrices
	CreateColorTwist
	SetColorTwist
	ApplyColorTwist
	DeleteColorTwist

	Chapter 10 Histogram and Thresholding Functions
	Thresholding
	Threshold

	Lookup Table (LUT) and Histogram Operations
	ConstrastStretch
	ComputeHisto
	HistoEqualize

	Chapter 11 Geometric Transforms
	Changing the Image Size
	Zoom
	Decimate
	Resize

	Changing the Image Orientation
	Rotate
	GetRotateShift
	Mirror

	Warping
	Shear
	WarpAffine
	GetAffineBound
	GetAffineQuad
	GetAffineTransform
	WarpBilinear, WarpBilinearQ
	GetBilinearBound
	GetBilinearQuad
	GetBilinearTransform
	WarpPerspective, WarpPerspectiveQ
	GetPerspectiveBound
	GetPerspectiveQuad
	GetPerspectiveTransform

	Chapter 12 Image Statistics Functions
	Image Norms
	Norm

	Image Moments
	Moments
	GetSpatialMoment
	GetCentralMoment
	GetNormalizedSpatialMoment
	GetNormalizedCentralMoment
	SpatialMoment
	CentralMoment
	NormalizedSpatialMoment
	NormalizedCentralMoment

	Appendix A Supported Image Attributes and Operation Modes
	Bibliography
	Glossary
	Index

