import cv2 as cv import numpy as np img = np.array([[5,7,9,11,13,15,17,19,21,23], [9,11,13,15,17,19,21,23,25,27], [18,20,22,24,26,28,30,32,34,36], [34,36,38,40,42,44,46,48,50,52], [59,61,63,65,67,69,71,73,75,77], [95,97,99,101,103,105,107,109,111,113], [144,146,148,150,152,154,156,158,160,162], [208,210,212,214,216,218,220,222,224,226], [59,61,63,65,67,69,71,73,75,77], [9,11,13,15,17,19,21,23,25,27]]) sigmax = 0.56 kernelSizex = 3 kernelSizey = 3 sigmay = 0.56 print("GaussianBlur test with SigmaX: ", sigmax) print("Src Image: ", img) dst = cv.GaussianBlur(np.uint8(img), (kernelSizex,kernelSizey), sigmax, sigmaY=sigmay, borderType = cv.BORDER_REPLICATE) print("Dst Image (sigmaY = %f): " % sigmay, dst) sigmay = 0.36 dst = cv.GaussianBlur(np.uint8(img), (kernelSizex,kernelSizey), sigmax, sigmaY=sigmay, borderType = cv.BORDER_REPLICATE) print("Dst Image (sigmaY = %f): " % sigmay, dst) sigmay = 0.76 dst = cv.GaussianBlur(np.uint8(img), (kernelSizex,kernelSizey), sigmax, sigmaY=sigmay, borderType = cv.BORDER_REPLICATE) print("Dst Image (sigmaY = %f): " % sigmay, dst)