The K5 Transcendental Functions

Tom Lynch, Ashraf Ahmed, Mike Schulte,
Tom Callaway, and Robert Tisdale
PC Products Division
Advanced Micro Devices

Austin, TX 78741

Abstract

This paper describes the development of the tran-
scendental instructions for the K5, AMD’s recently
completed 286 compatible superscalar microprocessor.
A multi-level development cycle, with testing between
levels, facilitated the early detection of errors and lim-
ited their effect on the design schedule. The algorithms
Jor the transcendental functions use table-driven re-
ductions followed by polynomial approzimations. Mul-
tiprecision arithmetic operations are used when neces-
sary to maintain sufficient accuracy and to ensure that
the transcendental functions have a marimum error of
one unit in the last place.

1 Introduction

This paper discusses the implementation of an
“x86” architecture floating-point unit. The first pro-
cessor to use this architecture was the 8087 numerical
extension which is described in [10]. This processor
used CORDIC to implement elementary functions. It
was pointed in [7] that series approximations, or ra-
tional approximations can be efficiently used with the
now common pipelined floating-point units. A suc-
cessful x86 architectural implementation of this is de-
scribed in [13]. In this paper, we describe an x86
style floating-point unit implemented on a superscalar
Micro-processor.

The K5 ! microprocessor is a superscalar RISC ma-
chine with a special instruction translation unit for
x86 architecture compatibility [6] [8]. Accordingly,
instructions are dispatched either from the CISC to
RISC instruction translation unit, or from a RISC-
code ROM. The more complex x86 instructions, such
as those for approximating transcendental functions,
are implemented as RISC instruction sequences which
are stored in the RISC-code ROM.

The K5 processor contains two ALUs, a load store
unit, a branch unit, and a floating-point unit, all of
which operate independently. Hence, instructions may

ltrade mark of Advanced Micro Devices

1063-6889/95 $4.00 © 1995 IEEE

163

be issued and completed out of order. Up to four
transcendental code RISC operations are dispatched
from the RISC-code ROM at a time.

Much of the transcendental code uses the pipelined
floating-point unit. This unit contains a 66-bit
floating-point adder, a 32 x 32 bit multiplier, appropri-
ate special case detection comparators, and a rounder.
The fundamental data types contain a sign bit, a 17-
bit exponent, and either a 24, 32, 53 or 64-bit man-
tissa. The extended exponent range is available for
internal calculations. Much of this hardware was in-
herited from an existing RISC microprocessor.

The nature of the floating-point unit lead to the con-
clusion that table driven reductions followed by poly-
nomial approximations similar to those described in
[12] [5] and [3] would be appropriate.

Our first requirement was that each routine calcu-
late results with a maximum error of less than 1 unit in
the last place (ulp). The second requirement was that
very few changes be made to the existing hardware.
This requirement stemmed from the multiplicative ef-
fect of widening busses in a superscalar processor, and
the short project schedule.

The existing hardware allowed for about one tem-
porary register per pipe stage, little micro-code ROM
space, a limited number of constants, and a data
path width that did not have extra guard bits bey-
ond the width of the largest architecture-visible data
type. These restrictions lead to use of a multiprecision
arithmetic, a difficult register scheduling problem, the
need to share code sections, and the packing of con-
stants based on their required precision. Add to this
the desire to produce bug-free routines on the first try,
and the microcode development problem became less
than trivial. Hand coding of the RISC operations and
register assignments was intractable. A typical routine
contains hundreds of independent variables which have
to be assigned to 15 41-bit registers. A bug fix done by
hand could take nearly a week because of ripple effects
into the remaining micro-code. Also, hand coding of

the micro-code would leave no obvious way to gauge
the reliability of the final product.

We adopted a hierarchical development flow which
mimics the formal verification ideas described in [15].
The flow started with the development of arbitrary pre-
cision versions of the routines, proceeded with versions
which contain truncated series evaluations and some
finite precision operations, and ended with the cod-
ing of fixed precision code which was compiled into
a ROM image. Most development was done in the
environment of Mathematica, so algorithm specifica-
tions were executable. Mathematica was not designed
for this application, so a library of conversion routines,
and Mathematica bug and feature work-arounds had to
be made. A special compiler was written for getting
the fixed precision algorithm statements into a ROM
image. The ROM image was checked via whole chip
RTL level simulation using the Verilog simulator.

- The next section briefly describes the transcend-

ental algorithms. Section 3 discusses the five-step de-
velopment and verification flow. Section 4 contains an
example of the development process for the function
2% — 1. The paper concludes with Section 5.

2 Algorithms

The transcendental functions implemented on the
K85 microprocessor include sin(z), cos(z), tan(z),
arctan(z), y - log(z), y - log(z + 1), and 2° — 1. The
algorithms for approximating the transcendental func-
tions consist of three main steps: argument reduction,
a Horner’s series evaluation, and formation of the final
result. The trigonometric functions reduce the domain
of 8 in [-2%%,2%9] to a range of (~/4,r/4) by sub-
tracting integer multiples of 7/2 from the input oper-
and. 7/2 is represented with up to about 256 bits de-
pending on how much precision is required. The mul-
tiple precision arithmetic made handling such a precise
value of 7 straight forward and efficient. The other
functions use table-driven reduction techniques to ac-
curately reduce the domain of the input operand.
2.1 Multiprecision Arithmetic

To obtain a maximum error of less than 1 ulp
without an extended width data path, it is necessary
to incorporate some multiprecision routines. These
routines typically operate on a three-digit data type,
where the first two digits are the top and bottom 32
bits of an internal floating-point number with a 64-
bit significand. The third digit is held in a separate
floating-point number with a 24-bit significand. This
provides a total of at least 88 bits of precision. Each
three-digit number occupies three temporary registers.
It is the job of the programmer and the compiler to
keep this conceptual entity together.

164

Analysis during design is used to determine which
steps in the algorithm require multiprecision calcula-
tion. This is later checked with a careful step-by-step
derivation of the worst case propagation of roundoff er-
rors. The precision of each operation can be specified
in the compiled input language in units of digits. Typ-
ically one extra digit is a lot of extra precision so the
faster analysis which was performed during the design
phase was almost always shown to be correct by the
more careful verification analysis.

Arithmetic operations on the multiprecision num-
bers are performed using algorithms similar to the
ones given in [11], for addition, subtraction, multiplica-
tion, and division. For example, the algorithm AddEz-
tErtMp adds two extended precision numbers a and b
to produce a multiprecision number z with a most sig-
nificant part z,, and a least significant part z;. Here,
swap(a, b) exchanges a and b, and round(r, p) rounds
r to p bits of precision using round-to-nearest-even.

Algorithm: AddErtExtMp

Input: Extended precision numbers a and b
Output: A multiprecision number z with most sig-
nificant part z,, and least significant part
z1, such that z,, + z; = (a + b)(1 +¢),
where | € |[< 2788
Procedure: if (Ja| < |b})
swap(a,b)

z; = round(a + b,64)
by = round(z,, — a,64)
z; = round(b— by, 24)
return (z.,,z;)

Initially, @ and b are compared to determine the lar-
ger of the two operands. The larger operand is assigned
to a and the smaller operand is assigned to b. Next,
a and b are added together to produce z,,, which is
rounded to 64 bits. When adding @ and b, if the expo-
nents of ¢ and b differ, b is right shifted with respect
to a. After this, a is subtracted from z,,. This returns
the value b,, which corresponds to the most significant
bits in b that are not discarded when e + b is rounded
to 64 bits. Finally z; is computed by subtracting b,
from b and rounding the result to 24 bits. Thus, z; is
an approximation to the bits that are discarded when
rounding a + b to 64 bits, and =, +z; ~ a + b.

2.2 The Algorithm for 2% - 1

As an example, the identity for approximating 2% —1

is given below. The domain of z is (-1,1).

27 — 1=20u+v) 3
=2 -1 -+ -1)+(2*-1)
where z =u+v,g=2—1and h=2" - 1.

The algorithm consists of the following steps:

1. A reduction step that obtains the values for u and
v from .

2. A Taylor’s series approximation on the reduced
value v, which returns h = 2¥ — 1.

3. A table lookup to find the value of g = 2% — 1.

4. A step that puts together g and h (based on the
above identity) to produce the value of the func-
tion.

The reduction step takes the input z and produces
two values u and v, such that u is a member of a set
with 2r 4+ 1 values and v has a reduced range. The
values of u and v are computed as

y - fnd(r-z)
r

(1)
(2)

where Rnd(z) returns the integer that is closest to z.
Since € (—1,1), u € {i/r : —r < i < r} and the do-
main of v is reduced to [g—:, 2%] For our implement-
ation, r is chosen as 16. A table with 2-16 +1 = 33
entries is used to stored the values of ¢ = 2% — 1, and
v has a reduced range of [37, 2]

A standard Taylor’s series approximation is done to
estimate h = 2¥—1. A Taylor’s series approximation is
used instead of a Chebyshev polynomial, because the
coefficients for the Taylor’s series approximation can
be generated on-the-fly. This is important, since we
have limited on-chip memory for storing coefficients.

Before performing the polynomial approximation,
the variable v is transformed to the variable w using
the identity

v=r—u

e’ —-1=2"-1 (3)

where w = v - In(2).
The truncated Taylor’s series approximation is

il “)
i=1

where the number of terms n is 9.
Using Horner’s rule, we get (from eqn. 4)

2
T(w) = ((w+Cn)w+Cn-r)wt---+Ca) = +w (5)
where
Ch=n

Cio1=C;-(i— 1), (6)

165

The series coefficients, C;, are computed, on-the-fly,
during each iteration of the series evaluation according
to equation (eqn. 6). The only operations done in mul-
tiprecision arithmetic in this step are the calculation of
w (since In(2) is multiprecision), and the addition of
w at the end of the series (eqn. 5).

Once the series is evaluated, the value for g = 2% —1
is obtained from a table-lookup. Each constant in the
table is stored as a multiprecision value. After this,
a multiprecision multiplication and two multiprecision
additions are used to perform the computation

2 —-1=g-h+g+h (7)
3 Development

A multi-level approach was used to implement the
algorithms discussed in the previous section. Each
level consisted of both an implementation stage and
a verification stage. There were five levels: the execut-
able reference function, the arbitrary precision code,
the truncated series code, the fixed precision code, and
the microcode. Figure 1 shows the various develop-
ment levels, and the implementation and verification
associated with each level.

This step-wise refinement procedure isolates differ-
ent levels of abstraction. Thus, the nature of possible
bugs at each level is of a particular type. Hence, a
different verification methodology was used for each
level. These methodologies were applied in order,
starting with the most abstract level and working
down. This approach prevents possible bugs from
propagating through the design cycle and thus caus-
ing risk to the schedule because of the need to repeat
a lot of work. For example, the Level 1 code is evalu-
ated with arbitrary precision arithmetic with (nearly) |
infinitely precise approximations, so no bugs due to
roundoff error, propagation or approximation error are
likely. When Level 1 is clean, Level 2 can be tested
just for the effects of approximation error. When this
level is clean, Level 3 is limited to only the effects of
roundoff error propagation and so on.

Much of our code was developed using Wolfram Re-
search’s Mathematica [1]. Mathematica provided the
ability to evaluate functions to an arbitrary precision
in binary arithmetic. The complete environment gave
us the ability to explore the effects of changing para-
meters like table-size, domain of the reduced argument,
number of terms in a series, etc., often by just making
plots of the effect in question.

3.1 Level 0: Arbitrary Precision Refer-
ence Function

The highest level of abstraction is a simple refer-
ence function which is used to verify the final results

Development

Verification

| 0. Standard Arbitrary Precision Function |

hand coding

~,

resuit matching

1. Arbitrary Precision Code

include polynomial approximation

error plots

2. Truncated Series Code

add important precision speclﬂcatlons

step-by-step error analysis

| 3. Fixed Precision Code

hand transiate Mathematica to "Meditation”

4. Meditation Code

simulation with tolerance checks

compile

5. ROM image

Figure 1: The Levels of Algorithm Definition and In-between Check Methods

in all other levels. Hopefully, errors in the reference, if
any, will be of a different nature than errors in the code
and hence they will not mask errors in lower level code.
The Mathematica function calls we used, have a wide
user base, and no significant bugs were known to ex-
ist. This added more credulity to routines as standard
references. In addition to relying on the Mathemat-
ica results we tried to apply common sense knowledge
about the mathematical behavior of the functions.

3.2 Level 1: Arbitrary Precision Code

The Level 1 code is an arbitrary precision imple-
mentation of the algorithm in Mathematica. This is the
first hand-generated interpretation of the algorithms
and is used to verify the correctness of the algorithm.
This includes the steps needed for range reduction,
function evaluation over the reduced range, and form-
ation of the final result.

Since the Level 1 code contains no rounding or trun-
cation, errors that occur will be due to approximating
the function incorrectly. Such errors are located by
looking for differences between the results produced
by the arbitrary precision code and those produced
by the standard. Because of the continuous nature of
the functions being approximated, we do not expect
a spurious error — many-point checking of sufficient

166

resolution thus seems safe.

Level 1 code is verified by comparing the results
produced by the arbitrary precision algorithm to the
ones produced by the reference function. These res-
ults should be identical since approximation errors and
rounding errors have not yet been introduced. This
verification ensures that conceptual errors do not ap-
pear at later levels.

3.3 Level 2: Truncated Series Code

In Level 2, the evaluation of the function over the
reduced range is replaced by an approximation. The
decisions made here include the method of polynomial
approximation, (e.g., Taylor Series or Chebyshev), and
the number of terms in the series. This level is also
coded using arbitrary precision operations and hence
no rounding errors are introduced. The truncated
series code is verified with plots of the approximation
error. These plots are generated by comparing the
results from the truncated series code to the arbitrary
precision code and the reference function. Approxima-
tion errors introduced by truncated series are well un-
derstood [4], so the error curves are expected to have
a specific form - this can be checked for.

3.4 Level 3: Fixed Precision Code

The next development level is a fixed precision im-
plementation of the algorithm in Mathematica. This is
a modification to the previous code which introduces
fixed precision operations modeled after those suppor-
ted by the K5 hardware. This level takes into account
quantization of the coefficients, rounding errors caused
by fixed precision arithmetic, and the propagation of
these errors to the final result.

The precision of the intermediate results is determ-
ined to be either one, two, or three digits. Addition-
ally, some operations that are performed in a single
step in the arbitrary precision code are split into mul-
tiple steps. This is necessary to emulate the operations
performed by the hardware.

The verification step for Level 3 is a step-by-step
error analysis of the fixed precision code. This ana-
lysis computes error bounds due to approximation er-
ror and the propagation of roundoff errors through the
algorithm.

The error analysis primarily ensures that the fixed
precision algorithm has the desired accuracy. It also
provides values for the maximum allowable errors for
all intermediate results. These numbers are used to
verify the microcode, as discussed in the next subsec-
tion. In addition to the error analysis, the results of
the Level 2 fixed precision code are checked against
the truncated series code, the arbitrary precision code
and the reference function as a further accuracy check.

3.5 Level 4: Microcode

The final development level is the microcode imple-
mentation. The fixed precision code is first translated
into an intermediate language called Meditation. The
Meditation code is then run through a compiler which
produces assembly language code as output. Finally,
the assembly language code is run through a microcode
assembler to produce a ROM image.

The Meditation language is an extension of the
microcode assembly language which provides func-
tion calls for multiprecision operations and support
for symbolic variables. The RISC machine does not
possess a stack, nor are there sufficient data registers
to emulate one. Thus, the compiler either inline ex-
pands a called routine, or arranges register concur-
rence between the subroutine and the calling program.

The Meditation language supports an important
feature which allows verification of the algorithm in
its final form. The language allows the programmer to
embed information about the error tolerance of inter-
mediate variables. Thus, along with the ROM image,
the compiler generates a set of Verilog “snooper” mod-
ules that can be incorporated into the Verilog RTL

167

model of the processor. These modules contain in-
formation which can be used in full-chip simulation
for checking intermediate values and results from the
transcendental routines.

Each time a tagged intermediate value is generated
while running numerical programs, the linked-in Veri-
log module generates the Mathematica code necessary
for performing a test on that value. After the simu-
lation is finished, the automatically generated Math-
ematica program is executed. This program produces
an error message if the value of any intermediate vari-
able or final result is larger than the error tolerance
(as obtained from the error analysis).

4 An Example :
27 -1
4.1 Level 0: Arbitrary Precision Refer-
ence Function

Unlike the other functions, there is not a direct func-
tion call for 2° — 1 in Mathematica, and the composite
calculation has numerical/performance problems when
used as an executable specification. Evaluation at a
precision equivalent to 10,000 decimal digits is accur-
ate enough for our purposes, but a bit impractical. In
practice, the precision of the computation is selected
to ensure sufficient accuracy, while maintaining reas-
onable computational delay. The N function is used to
set the precision of the computation to an appropriate
value.

The Development of

F2xMi1Lo[x_] := N[2"x - 1, 10000]

4.2 Level 1: Arbitrary Precision Code

The Level 1 implementation contains the steps in
the algorithm without series truncation or rounding.
Figure 2 is the Level 1 Mathematica formulation for
2® — 1. This code implements the algorithm given in
Section 2 to arbitrary precision.

This level was tested by comparing plots to ensure
identical behavior between the arbitrary precision code
and the reference function. In addition, fifty thousand
points were randomly chosen to ensure that the results
produced by the first two levels matched.

4.3 Level 2: Truncated Series Code

The Level 2 code is similar to the Level 1 code,
except that a truncated polynomial series is included.
For 2% — 1, a Taylor series is used so that coefficients
may be calculated on-the-fly. The Level 2 Mathematica
code is shown in Figure 3.

Level 2 is verified by plotting the error in the trun-
cated series code as compared to the reference func-
tion. The error in the polynomial approximation for
F2XM1L2 is shown in figure 4 over the domain of the

r =16 (* number of table entries *)
For[i=-r,i<=r,i=i+1, (* calculate table entries *)
aTableL1[i] = 2°(i/x) - 1;
1;
f2xmiPolyL1[xx_] := Module[{}, (* Taylor series approximation *)
Normal [Series[2"xx-1, {xx,0,100}]];
1;
f2xmiL1[xx_] := Module[{}, (* Level 1 algorithm for f£2xmi *)
x = N[xx,612];
index = Round[r x]; (* Range reduction *)
u = index/r;
vV=2x-u;
h = £2xm1PolyLi[v]; (* Polynomial approximation #*)
g = aTableL1[index]; (* Formation of result *)
result = g h + g + h;
Return result;
]
Figure 2: Mathematica Implementation of Arbitrary Precision Code
f2xmiPolyL2[xx_] := Modulel {}, (* Taylor series approximation *)
x = N[xx,80];
w = N[Log[2],80] x;
polyl= (((((((w+9)w+9 8)w+9 8 7)uw+9 8 7 6)w+9 8 7 6 5)
w+9 8 7 6 5 4)u+9 87 6 6 4 3)u"2;
poly2 = polyl 1/9!;
h = w + poly2;
Return h;
]

Figure 3: Mathematica Implementation of Truncated Series Code

168

-72

-1/32 1132

-72

Figure 4:
F2XM1L2

Polynomial Approximation Error for

-72

Figure 5: Accumulated Error for F2XM1L2

reduced argument v. The error for the entire Level 2
implementation is shown in figure 5 over the domain
of the input operand z. Since these polynomials are
known to behave in a smooth manner, this method is
sufficient to determine the maximum relative approx-

imation error. The maximum relative approximation
error for F2XM1L2 is roughly 272

4.4 Level 3: Fixed Precision Code

The next development level is a modification to the
previous code which introduces fixed precision opera-
tions modeled after those produced by the K5 hard-
ware as described in the previous section. The verific-
ation procedure for Level 3 is a formal error analysis
of the fixed precision code. This analysis also provides
maximum allowable errors tolerance that should be ex-

169

pected at steps in the production code. In addition to
the error analysis, the final results are also checked
against the reference.

The following paragraphs outline the error analysis
that was done. The reader may find it useful to refer
back to section 2 where the algorithm for 2* — 1 was
described.

For the error analysis of 2% — 1, the operand z is pre-
sumed to be exact and there is no error in the opera-
tions in which u is obtained from z. Therefore, the dif-
ference, v = r — u, is also exact (see section 2 equation
1). A multiprecision constant, In(2), with relative rep-
resentation error, |pin(2)| < 7 where 7 = 2787 is used.
Thus, the total relative rounding error, |py| < 37/2, in
the multiprecision product, w = v-In(2), is very small.

A value with a precision of 64 bits, wy, is obtained
by rounding w to 64 bits. This value is used for the
first part of the Horner evaluation of the truncated
Taylor series, because high accuracy is not required
until the final term is added. The total relative error,
{w — wo)/w| < €/2, where ¢ = 2753, The total rel-
ative rounding error, |po,| < €/2+ 33 -2711¢, in each
sum, o; = 7; + C; where m; = o4y w, is small because
the coefficients, C;, in the Horner evaluation are er-
ror free. Error accumulates again when multiplying
by w?/n!. This error is reduced when the final multi-
precision term, w, is added because w is much larger
than the first term. Including the series truncation
error, the total relative error, |ps| < 84.1-2711¢ in
h =2"Y —1 is very small.

The multiprecision values, ¢ = 2% — 1, from the
table lookup have a representation error, py < 7/2.
The total relative error, |pg.s| < 84.2- 27 !¢, in the
product is still small, but the possibility of cancelation
in the next two sums increases the total relative error,
|p2z—1| < 505.5-2711¢, Rounding to 64 bits introduces
an additional error of €/2 so that the final result has
an error less than 3¢/4, which is less than 1 ulp.

4.5 Levels 3 and 4: Meditation Code and
ROM Image

The final step is the Meditation implementation of
the Level 2 code followed by the generation of the ROM
image and the corresponding Verilog tasks. Large
numbers of random test cases are run in full-chip sim-
ulation and the generated Mathematica error tolerance
program is run to verify the accuracy of the imple-
mentation.

5 Conclusion

This paper outlined our efforts to develop accurate
and reliable transcendental functions for the K5 mi-
croprocessor. The paper described the task at hand
for each step in the development, and how the results

of performing these tasks were verified. These steps
included coding the algorithms in arbitrary precision
code, changing the operations to finite precision, and
finally producing a ROM image. The verification for
each step included graphing relative errors against a
standard, formal error analysis, simulation with error
tolerance checks, and brute force simulation.

References

[1] Mathematica : a System for Doing Mathematics
by Computer. Addison-Wesley Pub. Co., 1991.

[2] G. Bohlender, W. Walter, P. Kornerup, and D. W.
Matula. Semantics for Exact Floating Point Op-
erations. In Proceedings of the 10th Symposium
on Computer Arithmetic, pages 22-27, 1991.

[3] P. Farmwald. High Bandwidth Evaluation of Ele-
mentary Functions. In Proceedings of the 5th
Symposium on Computer Arithmetic, pages 139
142, 1991.

{4] Warren Ferguson and Tom Brightman. Accur-
ate and Monotone Approximations of Some Tran-
scendental Functions. In Proceedings of the 10th
Symposium on Computer Arithmetic, pages 237—
244, 1991.

[5] C.T. Fike. Computer Evaluation of Mathematical
Functions. Prentice Hall, 1968.

[6] Shmuel Gal and Boris Bachelus. An Accurate
Elementary Mathematical Library for the IEEE
Floating Point Standard. ACM Transactions on
Mathematical Software, 17:26-45, 1991.

[7] Tom R. Halfhill. AMD vs. SuperMan. Byte,
pages 95-103, November 1994.

{8] Mike Johnson. Superscalar Microprocessor
Design. Prentice Hall, 1991.

[9] Israel Koren and Ofra Zinaty. Evaluating Ele-
mentary Functions in a Numerical Coprocessor
Based on Rational Approximations. IEEE Trans-
actions on Computers, v39 no 8:1030-1037, 1990.

[10] P.W. Markstein. Computation of Elementary
Functions on the IBM RISC System/6000 Pro-
cessor. IBM Journal of Research and Develop-
ment, 34:111-119, 1990.

[11] Rafi Nave. Implementation of Transcendental
Functions on a Numerics Processor. In Micro-
processing and Microprogramming 11, pages 221—
225, 1983.

170

[12] Douglas M. Priest. Algorithms for Arbitrary Pre-
cision Floating Point Arithmetic. In Proceedings
of the 10th Symposium on Computer Arithmetic,
pages 132-143, 1991.

[13] Ping Tak Peter Tang. Table-Lookup Algorithms
for Elementary Functions and Their Error Ana-
lysis. In Proceedings of the 10th Symposium on
Computer Arithmetic, pages 232-236, 1991.

[14] J.H. Wilkinson. Rounding Errors in Algebraic
Processes. Her Majesty’s Stationery Office, 1963.

[15] W.R. Bevier, W.A. Hunt, Jr., J S. Moore, W.D.
Young. An Approach to Systems Verification.
Journal of Automated Reasoning, 5(4):411-428,
December 1989.

