Please read and understand the presentation ImplementingCAMsinStratix.ppt. These files are based on that implementation, and therefore have the same constraints. For example, this can not be used to build a ternary CAM.

Also note that in that presentation, the matchaddress output is unencoded, where in my implementation there is both an encoded output(matchaddr) and unencoded output(match_onehot).

The basic premise is to use the ability of the memory’s variable width to build the CAM. Based on this feature, an M512 block can be use to build a 16-word 5-bit wide CAM. An M4K can likewise be built to implement n 32-word 7-bit wide CAM.

Based off of these two building blocks, and with minimal logic, the user can quickly build larger CAMs. For example, a 128-word, 14-bit wide CAM would require 8 M4K memory blocks, or 24 M512 memory blocks.

With the two attached files, the user merely edits the parameters at the top to build the CAM. Note that there are two separate files, one for using M512 memory blocks and another for using M4K memory blocks. It will not combine the two to build a memory.

Note that the output of this implementation is always a one-hot, multiple match value. For example, for a 16-word CAM, if there is a match at address 3, it will output the value “0000_0000_0000_1000”. (A 16-bit CAM has address 0-15). This is what will come out on the output match_onehot. There is another output called matchaddr, which is the binary encoded value for the address, which in this case would be “0011”. This is not priority encoded, so if there are multiple matches in the CAM, than this output will be invalid.
If using the matchaddr, the match pin also has to be used, which says whether a match was found at all. This is necessary because there are 2^n + 1 possible outcomes, being the 2^n addresses, plus the possibility of there being no match.

The output matchaddr requires a good amount of logic to encode the match_onehot value, especially for deep CAMs. If you do not require it, be sure that the synthesizer removes all the logic.

Also, without the matchaddr, the design should run very fast. It should be over 200MHz in the fastest speed grade, depending on size and part. An easy way to make it run faster would be to turn on the output register in the memory. Also, if the matchaddr output port is being used, registering it before and after its algorithm will help, since this will be the bottleneck.

I have also provided simulation files M4K_CAM.vwf and M512_CAM.vwf to show the CAMs working. Note that do the same instructions as the simulation in the powerpoint.

Steps for Implementing:
1) Based on available resources, decide if the CAM is better implemented using M4K blocks or M512 blocks. A single M4K memory block makes a 32-word 7-bit wide CAM and an M512 memory block makes a 16-word 5-bit wide CAM. Wider and deeper CAMs are just made by the VHDL stitching them together. Open either the M512_CAM.vhd or M4K_CAM.vhd file, depending on choice.

2) Edit the 3 generics at the top to give the CAM width and depth.
3) Instantiate either M4K_CAM or M512_CAM into your logic. Be sure to copy the M4K.vhd or M512.vhd file into the project too.

