
Efficient Multi-Ported Memories for FPGAs

Charles Eric LaForest and J. Gregory Steffan
Department of Electrical and Computer Engineering

University of Toronto
{laforest,steffan}@eecg.toronto.edu

ABSTRACT
Multi-ported memories are challenging to implement with FPGAs
since the provided block RAMs typically have only two ports. We
present a thorough exploration of the design space of FPGA-based
soft multi-ported memories by evaluating conventional solutions to
this problem, and introduce a new design that efficiently combines
block RAMs into multi-ported memories with arbitrary numbers
of read and write ports and true random access to any memory
location, while achieving significantly higher operating frequen-
cies than conventional approaches. For example we build a 256-
location, 32-bit, 12-ported (4-write, 8-read) memory that operates
at 281 MHz on Altera Stratix III FPGAs while consuming an area
equivalent to 3679 ALMs: a 43% speed improvement and 84% area
reduction over a pure ALM implementation, and a 61% speed im-
provement over a pure “multipumped” implementation, although
the pure multipumped implementation is 7.2x smaller.

Categories and Subject Descriptors
B.3.2 [Memory Structures]: Design Style—Shared Memory

General Terms
Design Performance

Keywords
FPGA, memory, multi-port, parallel

1. INTRODUCTION
As FPGAs continue to increase in transistor density, designers

are using them to build larger and more complex systems-on-chip
that require frequent sharing, communication, queueing, and syn-
chronization among distributed functional units and compute nodes.
For ASIC implementations these mechanisms would often be im-
plemented with multi-ported memories—memories that allow mul-
tiple reads and writes to occur simultaneously—since they can avoid
serialization and contention. For example, processors normally re-
quire a multi-ported register file: more register file ports allows
the processor to exploit a greater amount of instruction-level paral-
lelism (ILP) where multiple instructions are being executed at the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FPGA’10, February 21–23, 2010, Monterey, California, USA.
Copyright 2010 ACM 978-1-60558-911-4/10/02 ...$10.00.

...

...

...

.

.

.

...

S0

S1

S2

...

...

Wm−1

W0

.

.

.

SD

R0

Rn−1

.

.

.

mW/nR

r

r

Figure 1: A multi-ported memory implemented with FPGA
logic blocks, having D single-word storage locations (S), m
write (W) ports, and n read (R) ports (encoded as mW/nR),
and n temporary registers r. Only read and write data lines are
shown (i.e., not address lines).

same time. However, FPGA-based soft processors have so far ex-
ploited little ILP, limited mainly to simple instruction pipelines.
This is partly due to the fact that multi-ported memories are par-
ticularly inefficient to implement using the resources typically pro-
vided by FPGAs.

1.1 Conventional Approaches
It is possible to implement a multi-ported memory using only

the basic logic elements of an FPGA, as illustrated in Figure 1,
which shows a D-location memory with m write ports and n read
ports. As shown, we require D m-to-one decoders to steer writes
to the appropriate memory locations, and n D-to-one multiplex-
ers to allow each read to access any memory location. Note also
that the read outputs are registered (r) to implement a synchronous
memory where the output is held stable between clock edges. The
problem is that this circuit scales very poorly, with area increasing
rapidly with memory depth and the decoding/multiplexing severely
limiting the maximum operating frequency.

It is normally more efficient to implement memories on FPGAs
using the provided block RAMs, each of which can be quite large
(e.g., 9Kbits) while supporting high operating frequencies (e.g.,
580MHz). However, FPGA block RAMs currently provide only
two ports for reading and/or writing. Note that Altera’s Mercury
line of Programmable Logic Devices (PLDs) [2] previously pro-
vided quad-port RAMs to support gigabit telecom applications—
however, this feature has not been supported in any other Altera
device, likely due to the high hardware cost.

System designers have hence used one or a combination of three
conventional techniques for increasing the effective number of ports
of FPGA block RAMs, as shown in Figure 2. The first is replica-
tion, which can increase the number of read ports by maintaining
a replica of the memory for each additional read port. However,

41

M0 R0

...W0

n−1M Rn−1

1W/1R

1W/nR

1W/1R

(a) Replication

...

R0W0 M0

M m−1 Rn−1Wm−1

1W/1R

mW/nR

1W/1R

(b) Banking

M0
r...
r

...
Wm−1

W1

W0 r...
r

Rn−1

R0
...
Rn−2

1W/1R

mW/nR

(c) Multipumping

Figure 2: Three conventional techniques for providing more
ports given a 1W/1R memory (read and write address values
are not depicted, only data values): (a) Replication maintains
an extra copy of the memory to support each additional read
port, but is limited to supporting only one write port; (b) Bank-
ing divides data across multiple memories, but each read or
write port can only access one specific memory; (c) Multipump-
ing multiplies the number of read/write ports of a memory by
adding internal data and address multiplexers and temporary
registers (r), and internally clocking the memory at a multiple
of the external clock (which quickly degrades the maximum ex-
ternal operating frequency).

this technique alone cannot support more than one write port, since
the one external write port must be routed to each block RAM to
keep it up-to-date. The second is banking, which divides memory
locations among multiple block RAMs (banks), allowing each ad-
ditional bank to support an additional read and write port. However,
with this approach each read or write port can only access its corre-
sponding memory division—hence a pure banked design does not
truly support sharing across ports. The third we call “multipump-
ing”, where any memory design is clocked at a multiple of the ex-
ternal clock, providing the illusion of a multiple of the number of
ports. For example, a 1W/1R memory can be internally clocked
at 2X the external frequency to give the illusion of being a 2W/2R
memory. A multipumped design must also include multiplexers
and registers to temporarily hold the addresses and data of pending
reads and writes, and must carefully define the semantics of the or-
dering of reads and writes. While reasonably straight-forward, the
drawback of a multipumped design is that each increase in the num-
ber of ports dramatically reduces the maximum external operating
frequency of the memory.

1.2 A More Efficient Approach
In this paper we propose a new design for true multi-ported mem-

ories that capitalizes on FPGA block RAMs while providing (i)
substantially better area scaling than a pure logic-based approach,
and (ii) higher frequencies than the multipumping approach. The
key to our approach is a form of indirection through a structure
called the Live Value Table (LVT), which is itself a small multi-
ported memory implemented in reconfigurable logic similar to Fig-
ure 1. Essentially, the LVT allows a banked design to behave
like a true multi-ported design by directing reads to appropri-

ate banks based on which bank holds the most recent or “live”
write value. The intuition for why an LVT-based design is more
efficient even though the LVT is purely implemented in logic ele-
ments is because the LVT is much narrower than the actual mem-
ory banks since it only holds bank numbers rather than full data
values—thus the lines that are decoded/multiplexed are also much
narrower and hence more efficiently placed and routed. An LVT-
based design also leverages block RAMS, which implement mem-
ory more efficiently, and has an operating frequency closer to that
of the block RAMs themselves. Additionally, LVT-based design
and multipumping are complementary, and we will show that with
multipumping we can reduce the area of an LVT-based design by
halving its maximum operating frequency. With these techniques
we can support soft solutions for multi-ported memories without
expensive hardware block RAMs with more than two ports.

1.3 Related Work
There are several prior attempts to implement multi-ported mem-

ories in the context of FPGAs, mainly for the purpose of soft pro-
cessor register files. Most soft uniprocessors exploit replication to
provide the 1W/2R register file required to support a three-operand
ISA [6–8, 13, 17]. Jones et al. [9] implement a VLIW soft proces-
sor where additional register file ports support a zero-overhead in-
terface to custom hardware functions. However, their multi-ported
register file is implemented entirely in the FPGA’s reconfigurable
logic and limits the operating frequency of their soft processor.
Saghir et al. [14, 15] implement a multi-ported register file for a
VLIW soft processor by exploiting both replication and banking;
however, this requires that the compiler schedule register accesses
such that there are not two simultaneous reads or writes to the same
bank. Nonetheless, this approach is sufficient to support multi-
threading [10,12,13] since each thread need only read/write its own
division of the register file. Manjikian exploits an aggressive form
of multipumping by performing reads and writes on consecutive
rising and falling clock edges within a processor cycle [11]. His
approach avoids Write-After-Read (WAR) violations by perform-
ing all writes before reads. Unfortunately this design requires that
the entire system use multiple-phase clocking.

1.4 Contributions
This paper makes the following contributions: (i) we present

the first thorough exploration of the design space of FPGA-based
soft multi-ported memories; (ii) we evaluate conventional meth-
ods of building such memories and confirm that they do not scale
well; (iii) we introduce the Live Value Table (LVT), an efficient
mechanism for implementing multi-ported memories with an ar-
bitrary number of read and write ports; (iv) we demonstrate that
LVT-based designs are smaller and faster than pure reconfigurable
logic implementations, as well as faster and more scalable than pure
multipumping implementations; (v) we evaluate the impact of mul-
tipumping on LVT-based designs, and demonstrate that they are
complementary.

2. EXPERIMENTAL FRAMEWORK

Memory Designs We consider only memories of 32-bit element
width as this is the common case in many computing systems. We
consider a range of multi-ported memory designs that have at least
one write port and two read ports (1W/2R) such that all ports are
usable simultaneously within a single external cycle. We do not
consider one-write-one-read (1W/1R) memories as they are trivial
to implement with a single FPGA block RAM. We also do not con-
sider memories that may stall (eg., take multiple cycles to return

42

read values should they conflict with concurrent writes), although
such designs would be compelling future work. Additionally, we
assume that multiple writes to the same address are prevented by
the system using the multi-ported memory, and that the result of
doing so is undefined. Each design is wrapped in a test harness
such that all paths begin and end at registers, allowing us to ensure
proper timing analysis and to test each design for correctness. The
Verilog sources are generic and do not contain any Altera-specific
modules or annotations.

CAD FLow We use Altera’s Quartus 9.0 to target the Altera Stratix
III EP3SL340F1760C2, a large and fast device that allows us to
compare with published results for the Nios II soft processor [5].
We do not bias the synthesis process to favour area or speed, nor
perform any circuit transformations such as retiming. We config-
ured the place and route process to make a standard effort at fitting
with only two constraints: (i) to avoid I/O pin registers to prevent
artificially long paths that would affect the clock frequency, and (ii)
to set the target clock frequency to 1Ghz to optimize circuit layout
for speed1. We report maximum operating frequency by averaging
the result of place/routes across ten different random seeds.

Measuring Area We report area as the total equivalent area, which
estimates the actual silicon area of a design point: we calculate the
sum of all the Adaptive Logic Modules (ALMs) plus the area of
the Block RAMs counted as their equivalent area in ALMs2. Each
ALM can contain unrelated logic and registers, avoiding an inflated
logic utilization measure due to underused ALMs.

3. STRATIX III ARCHITECTURE
The following describes the basic components provided by the

Altera Stratix III architecture. Although our work targets Altera’s
Stratix III FPGAs, the following concepts generally translate to the
devices of other FPGA vendors. For example, other than the differ-
ent capacities, the block RAMs in Xilinx’s Virtex-6 FPGAs would
function identically.

Adaptive Logic Module (ALM) Memory FPGAs can implement
memory using their generic reconfigurable logic composed of Adap-
tive Logic Modules (ALMs). The Stratix III ALMs each contain
two registers, some adder logic, and Look-Up Tables (LUTs). ALM
memory has virtually no constraints on capacity, configuration, and
number of ports, but pays a large area and speed penalty (Figure 1).
The CAD tools may also require a prohibitive amount of time (over
an hour) to place and route such a memory.

Block RAM (BRAM) Memory FPGAs implement block RAMs
directly on their silicon substrate. Block RAMs have two ports that
can each function either as a read or a write port. These memories
use less area and run at a higher frequency than ones created from
the FPGA’s reconfigurable logic, but do so at the expense of having
a fixed storage capacity and number of ports. The Stratix III FPGA
devices mostly contain M9K block RAMs3, which hold nine kilo-
bits of information in various widths and depths. At a width of 32
bits, an M9K holds 256 elements.
1This approach was recommended by an experienced user of Quar-
tus as more practical than iterated guessing.
2Altera graciously provided the confidential area equivalence of
BRAMs for Stratix II. We extrapolated the unavailable Stratix III
area numbers from the Stratix II data and other confidential data.
3They also contain larger M144K block RAMs which each hold
144 kilobits (as 4k×32 for example), but exist in much fewer num-
bers than M9Ks and target bulk RAM instead.

Equivalent Area (ALMs)

A
v
e
ra
g
e
F
m
a
x
(M

H
z
)

32 to 256

32

64

32

64

128

256

32 to 256

32

64

Repl-M9K

Repl-MLAB

Pure-ALM
MP-M9K 2X
MP-MLAB 2X

Figure 3: Comparison of the speed and area of various ALM,
M9K, and MLAB implementations of 32-bit 1W/2R memo-
ries of varying depth (as indicated by the number at each
data point). The prefix denotes the implementation technique:
“Pure” for pure logic, “Repl” for replication, and “MP” for
pure multipumping. The smallest possible M9K designs have
a capacity of 256 elements, hence the two M9K designs are all
overlapping. Placement/routing fail for MLAB designs of depth
greater than 64.

Memory Logic Array Block (MLAB) Memory The Stratix III
FPGA architecture clusters its ALMs into Logic Array Blocks (LABs),
each containing ten ALMs. Some of the LABs can function ei-
ther as a group of ALMs or as a single small block of memory, or
Memory LAB (MLAB). MLABs provide a halfway point between
ALM and BRAM implementations: they are small, numerous, and
widely distributed like ALMs, but implement memory in a denser,
constrained manner like BRAMs. A single MLAB holds up to 20
words of 16 bits. Unlike other memories, which perform all oper-
ations on the rising edge of the clock, MLABs read on the rising
edge and write on the falling edge. MLABs best implement small
shift registers and FIFO buffers and not arbitrarily deep memories.

4. CONVENTIONAL MULTI-PORTING
A simple two-ported memory, with one read and one write port

(1W/1R) defines the basic conceptual and physical unit of storage
from which we build multi-ported memories. We assume that each
port may access any one location per cycle, and if a read and write
to the same location occur in the same cycle, the read port obtains
the current contents of the location and the write port overwrites
the contents at the end of the cycle (“Write-After-Read” (WAR)
operation).

The simplest multi-ported memory that we consider is a 1W/2R
memory. This memory is interesting because it is not naturally sup-
ported by FPGA structures but is commonly used, for example for
soft processor register files. Figure 3 plots the area and operating
frequency of 1W/2R memories of varying depth (where the depth
is indicated by the number next to each point), and of varying im-
plementation. We use these results to discuss the following conven-
tional techniques for building multi-ported memories on FPGAs:

Pure ALMs A straightforward method for constructing a multi-
ported memory on an FPGA is to do so directly in ALMs—i.e., a
design like that shown in Figure 1. We evaluate such designs in
Figure 3, shown as the Pure-ALM series of points. From the figure
we see that even a 32-entry 1W/2R memory requires 864 ALMs

43

for this design. As we increase depth, area increases rapidly and
operating frequency drops significantly. This trend motivates the
need to use block RAMs for more efficient multi-ported memories.

Replication Replication (Figure 2(a)) is an easy way to increase
the number of read ports of a simple memory (i.e., to 1W/nR):
simply provide as many copies of the memory as you require read
ports, and route the write port to all copies to keep them up-to-date.
We evaluate replication in Figure 3 for both M9Ks (Repl-M9K) and
MLABs (Repl-MLAB). All of the Repl-M9K designs fit into two
M9K BRAMs, such that those points are all co-located in the figure.
Replication requires no additional control logic, hence these de-
signs are very efficient. For 1W/2R memories with a depth greater
than 256 elements, another pair of M9Ks would be added at every
depth increment of 256 elements—resulting in a relatively slow in-
crease in area as memory depth increases. We also consider repli-
cated designs composed of MLABs (Repl-MLAB). Unfortunately,
Quartus could not place and route any MLAB-based memory with
more than 64 elements. Since each MLAB stores the equivalent
of 160 ALMs, the Repl-MLAB implementation requires much less
interconnect than the Pure-ALM implementation but considerably
more than the Repl-M9K implementation. For example, the 32-
entry Repl-MLAB 1W/2R memory requires only 198 equivalent
ALMs, but still suffers a lower operating speed of 376 MHz. The
replicated M9K designs (Repl-M9K) are evidently far superior to
the alternatives, with an area of 90 equivalent ALMs and maximum
operating frequency of 564 MHz. However, the drawback to this
approach is that there is no way to provide additional write ports
with replication alone—we must pursue other techniques to pro-
vide more write ports.

Banking Banking (Figure 2(b)) is similar to replication, except
that the memory copies are not kept coherent; each additional mem-
ory now supports an additional read and write port, providing an
easy way to increase ports arbitrarily (mW/mR). The conventional
way to use banking is to divide memory locations evenly among the
banks, such that each read and write port are tied to a certain mem-
ory division. However, a memory with only banking is not truly
multi-ported, since only one read from a certain division is possi-
ble in a given cycle. For this reason we do not evaluate banked-only
memories, although a close estimate of the Fmax/area of a mW/mR
banked memory is the corresponding 1W/mR replicated design.

Multipumping Multipumping (Figure 2(c)) internally uses an in-
teger multiple of the external system clock to multiplex a multi-
ported memory with fewer ports, giving the external appearance
of a larger number of ports (mW/nR). This requires the addition
of multiplexers and registers to hold temporary states, as well as
the generation of an internal clock, and careful management of the
timing of read-write operations. We further describe the details of
implementing a multipumped design in the next section.

4.1 Multipumping Implementations
Since multipumped memories multiplex ports over time, the or-

der of read/write operations must be carefully managed: violating
the precedence of reads and writes would break the external ap-
pearance of them occurring at the same time. In particular, writes
must be performed at the end to avoid Write-After-Read (WAR)
violations where an earlier internal write updates a value before it
has been read by a subsequent internal read.

For non-multipumped designs, each block RAM port supports
either a read or a write, hence we use the block RAMs in “simple
dual-port” mode where a port is statically defined to be for reading

or writing. Since multipumped designs time-multiplex the block
RAM ports we can potentially exploit “true dual-port” mode, where
a block RAM port can be dynamically configured for reading or
writing. For the simplest multipumped design consisting of a single
block RAM, true dual-port mode can allow us to configure both
ports for reads and perform pairs of reads until all are done, then
configure both ports as writes and perform pairs of writes until all
are done.

A larger but more aggressive multipumped design can also ex-
ploit banking to reduce the number of cycles required to perform
reads: each bank can perform two unique reads, and all banks can
operate in parallel; when reads are completed, one pair of writes
can be performed across all banks each cycle until all writes are
performed. In other words, the block RAMs are read like a banked
memory and are written like a replicated memory. Similar tech-
niques have been published by Xilinx [16] and Actel [1] but only
for certain forms of quad-port memories, whereas our implementa-
tion supports arbitrary numbers of read and write ports.

True dual-port mode is not free: for Stratix III FPGAs [3] an
M9K block RAM in simple dual-port mode has 256 locations of
32 bits, while in true dual-port mode it has 512 locations of 16
bits since the RAM output drivers are split to support two reads.
Therefore true dual-port mode requires two M9K block RAMs to
create a 32-bit-wide memory. Despite this doubling, the number of
block RAMs required remains practical: even an 8W/16R purely
multipumped memory would need only one block RAM pair to
support each read port, for a total of 32.

The following summarizes the design of a pure multi-ported mem-
ory using true dual-port mode for the block RAMs. Given an arbi-
trary mW/nR memory, the number of cycles required to perform all
the m writes and n reads follows �m/2 + n/2x�, where x counts
the number of block RAMs. The m/2 term stems from each write
being replicated to all the block RAMs to avoid data fragmentation,
making the whole memory appear to have only two write ports. The
n/2x term comes from each block RAM being able to service any
two reads at once since the writes replicate their data to all block
RAMs. The ceiling function handles cases where there are either
more internal ports than there are external read or write ports, or the
number of internal ports does not evenly divide the number of exter-
nal ports. A fractional number of cycles in a term implies that, for
one of the cycles, some ports remain free and some writes might be
done simultaneously with the last reads. The typical case is when
the number of block RAMs equals the number of read ports, allow-
ing all reads to be performed in one cycle while leaving half the
ports available for one of the writes, which may save one cycle in
certain port configurations. Larger numbers of block RAMs will
not further reduce the number of cycles.

As a simple example, in Figure 3 we implement 1W/2R memo-
ries by double-pumping M9Ks (MP-M9K 2X) and MLABs (MP-
MLAB 2X)4. While 2X multipumping does halve the number of
M9Ks or MLABs used, the overhead of the required control cir-
cuitry negates any area savings for memories with so few ports. The
maximum external operating frequencies of the double-pumped de-
signs are also a little under half those of the replicated designs
(186 MHz for MP-MLAB 2X, and 279 MHz for MP-M9K 2X).
As we will demonstrate later, multipumping can be an important
technique to reduce area when building memories with larger num-
bers of ports.

4Again, due to Quartus’ difficulty with MLABs, the multipumping
implementation uses simple dual-port MLABs only. For 1W/2R
only, this does not affect the area or external operation.

44

..

.

M0

M1

Mm−1

..

.

... ...

... ...

Rn−1

R1

R0
... ...

Wm−1

W1

W0

..

.

...
...

...

Write
Addr.

Read
Addr.

1W/nR

1W/nR

1W/nR

mW/nR

LVT

mW/nR

Figure 4: A generalized mW/nR memory implemented using a
Live Value Table (LV T). Each write updates its own replicated
memory bank (M) and updates its entry at the same address in
the LVT. For each read, the LVT selects the memory bank that
holds the most recently written value for the requested memory
address.

4.2 Summary
A 1W/2R memory can easily be extended to have more read

ports by increasing the amount of replication, but this technique
cannot be used to add more write ports. While banking easily al-
lows multiple write ports, such designs must map reads and writes
to divisions of the memory, and do not allow true sharing. A multi-
ported memory implemented purely in ALMs scales poorly. Mul-
tipumping by itself causes a large drop in operating frequency. In
the next section, we introduce a method for transparently managing
and keeping coherent banked memories to effectively allow multi-
ple read and write ports.

5. LVT-BASED MULTIPORTED MEMORIES
We propose a new approach to implementing multi-ported mem-

ories on FPGAs that can exploit the strengths of all three con-
ventional techniques for adding ports. Our approach comprises
banks of replicated block RAMs where a mechanism of indi-
rection steers each read to the bank holding the most-recent
write value. Multipumping is orthogonal to our approach, and can
be applied to reduce the area of a memory in cases where a slower
operating frequency can be tolerated, as we demonstrate later in
Section 7. We name our indirection mechanism the Live Value Ta-
ble (LVT), since it tracks which bank contains the “live” or most-
recently updated value for each memory location. A brief outline
of this approach is described by Altera [4], but provides no details
of operation, no comparisons, and limits itself to only four ports.

5.1 The Basic Idea
Figure 4 illustrates an LVT-based multi-ported memory. The

memory is composed of m banks (M0 to Mm−1), each of which
contains a 1W/nR memory (constructed via replication of block
RAMs) such that n is equal to the desired number of read ports (R0

toRn−1). Each write port writes to its own bank, and each read port
can read from any of all the banks via its multiplexer. The banked
memory allows for arbitrary concurrent writes, while the replica-
tion within each bank supports arbitrary concurrent reads. The LVT
is a mW/nR multi-ported memory implemented using ALMs.

At a high level, the design operates as follows. During a write
to a given address, the write port updates that location in its block

Addresses

Wm−1

W1

0W

...
...

b

D

d

d

d

mW/nR

Bank #

Bank #

Bank #

Bank #

(a) Write Operation

...

Addresses

R1

R0

R1

R0

Rn−1Rn−1

...
...

b

d

d

d

D b

b

b

mW/nR

Bank #

Bank #

Bank #

Bank #

Bank #

(b) Read Operation

Figure 5: A Live Value Table (LVT) for a multi-ported memory
of depth D with m write ports (W) and n read ports (R). Each
LVT location corresponds to a memory location, and tracks the
bank number of the memory bank that holds the most recent
write value. Every write updates the corresponding location
with the destination bank number, and every read is directed
to the appropriate bank by the bank number stored in the cor-
responding LVT location. The width (b) of the bank numbers
is log2(m). The width (d) of the addresses is log2(D).

RAM bank with the new value, and the LVT simultaneously up-
dates its corresponding location with the bank number (0 to m−1).
During a read, the read port sends the address to every bank and to
the LVT. All the banks return their value for that location and the
LVT returns the number of the write port which last updated that
location, driving the multiplexer of the read port to select the output
of the proper block RAM bank.

5.2 Implementing the LVT
Figure 5 illustrates the overall structure and operation of a LVT

for a multi-ported memory of depth D with m write ports (W)
and n read ports (R). Each LVT location corresponds to a
memory location, and tracks the bank number of the memory
bank that holds the most recent write value for that memory
location. Despite being implemented entirely in ALMs, the area of
a LVT remains tractable due to its narrow width b = log2(m). For
example, compared to the 864 ALMs of the 32-element 1W/2R
Pure-ALM memory in Figure 3, a LVT of the same depth with
2R/2W ports uses only 75 ALMs5. Even with 8W/16R ports, the
corresponding LVT consumes only 649 ALMs.

During writes, the LVT uses the memory write addresses to up-
date the corresponding locations with the numbers of the ports
performing the writes. These numbers identify the block RAM
banks that hold the written values. During reads, the LVT uses
the read addresses to fetch the bank numbers that in turn steer the
outputs of those banks to the read ports. All addresses are of width
d = log2(D).

5.3 LVT Operation
As an example of the operation of a Live Value Table, Figure 6

depicts two writes and two reads to a multi-ported memory similar
to the one depicted in Figure 4. The memory contains one memory
bank for each write port (W0 and W1). Each memory bank is a
replicated block RAM memory with enough ports for each read
port (R0 and R1). The LVT at the top is implemented using ALMs
only, has the same depth as each memory bank, but stores the much
narrower bank numbers. The write ports place their bank number
in the LVT at the same address at which they write their data to the
banks. The LVT controls the output multiplexer of each read port.
The memory begins empty or otherwise uninitialized.

5A 2W/2R LVT is the smallest meaningful case here, as a memory
with a single write port does not need an LVT.

45

W0

W1

R0

R1

2W/2R

42

0

@3
42

23

1W/2R

1W/2R

@2

@3

@2

1

23

Read
Addr.

Write
Addr.

2W/2R LVT

(a) Write Operation

R0

R1

W0

W1

1W/2R

2W/2R

42

0

@3

@2

@3

@2

42

23

1

0

1W/2R

1

23

Write
Addr.

Read
Addr.

2W/2R LVT

(b) Read Operation

Figure 6: Example operation of a 2W/2R LVT-based multi-
ported memory: during write operation, W0 writes 42 to ad-
dress 3 and W1 writes 23 to address 2, and the LVT records for
each address the bank that was last written; during read oper-
ation, R0 reads address 2 and R1 reads address 3, and the LVT
selects the appropriate bank for each read address.

Figure 6(a) shows the state of the memory banks and the LVT
after port W0 writes the value 42 to address 3 and port W1 writes 23
to address 2. The values are stored into the separate memory banks
of ports W0 and W1, while the LVT stores their bank numbers at
the same addresses.

An access from any read port will simultaneously send the ad-
dress to the LVT and to each memory bank. The bank number re-
turned by the LVT directs the output multiplexer to select the output
of the block RAM memory bank containing the most current value
for the second memory element. In Figure 6(b), port R1 reads from
address 3 and thus gets 42 from bank 0, while port R0 reads from
address 2 and gets 23 from bank 1.

5.4 Block RAM Requirements
Having memory banks which can hold the entire memory con-

tents for each write port and having each of these banks internally
replicated once for each read port means that the total number of
block RAMs within all the banks equals the product of the number
of write ports and read ports, times the number of block RAMs nec-
essary to hold the entire memory contents in a single bank. For ex-
ample, the rather large case of a 32-bit 8W/16R multi-ported mem-
ory requires 128 block RAMs for depths of up to 256 elements.
Even the smallest Stratix III FPGA (EP3SL50) contains 108 M9K
block RAMs, while mid-range devices contain 275 to 355. Also,
the relatively large depth of the M9K block RAMs allows corre-
spondingly large multi-ported memories to be implemented. Larger
memories would likely require the use of deeper block RAMs such
as the Stratix M144K. In Section 7, we will demonstrate how mul-
tipumping can reduce the number of required block RAMs.

5.5 Recursive LVT Implementation
An LVT implements a multi-ported memory using ALMs and

thus grows proportionately with depth—however, since each loca-
tion stores only the few bits required to encode a memory bank
number, the memory size remains practical. It would seem desir-
able to repeat this area-saving and implement the LVT itself using
block RAMs, managed by a still smaller, inner LVT. However, we
cannot avoid implementing a LVT using ALMs since FPGAs do
not provide any suitable multi-ported block RAMs with enough
write ports and the narrow width of an LVT. Ideally, a number of
mW/1r block RAMs could be used as a replicated memory to create

a mW/nR LVT without the use of ALM-based storage, but no such
block RAMs exist on FPGAs. Additionally, any inner LVT used
to coordinate block RAMs implementing a larger outer LVT would
necessarily be implemented using ALMs and would have the same
depth and control the same number of banks and ports as the outer
LVT it sought to replace. This inner LVT would thus have the same
area as the outer LVT, and hence is not worth it.

6. LVT PERFORMANCE
While an LVT does solve the problem of adding write ports to a

memory, it also introduces additional delay due to the bank number
look-up and the read port multiplexers, and increases the area due
to internal replication of each memory bank. In this section and
the next, we demonstrate that the LVT-based approach provides (i)
substantially better area scaling than a pure logic-based approach,
and (ii) higher frequencies than multipumping approaches.

6.1 Speed vs. Area
Figure 7(a) and Figure 8(a) plot the average maximum operating

frequency (Fmax) versus area for 2W/4R and 4W/8R memories of
increasing depth (denoted by the number next to the data point). It
is apparent that the pure ALM implementation (Pure-ALM) is inef-
ficient: for the 4W/8R memory, 32 elements requires 3213 ALMs
and 256 elements requires 23767 ALMs. The larger of these pure
ALM designs are likely impractially large for most applications.

Looking at the MLAB-based LVT implementations (LVT-MLAB)
for 2W/4R, the designs are smaller but achieve a slower Fmax than
the corresponding pure ALM designs. For the 4W/8R designs, the
MLAB-based LVT implementations are both larger and slower than
the corresponding pure ALM designs. Furthermore, the MLAB-
based designs cannot support memories deeper than 64 elements
since Quartus cannot place and route them. Overall the MLAB-
based designs are uncompelling, except for providing an area-Fmax
trade-off relative to the pure ALM designs for 2W/4R memories.

From the figures it is evident that the M9K-based implementa-
tions are superior. The area of the 2W/4R and 4W/8R LVT-M9K
implementations increases much more slowly with depth than the
pure ALM implementation. Furthermore, as an indication of their
usability, these designs achieve a clock frequency close-to or better
than the 290MHz clock frequency of a NiosII/f soft processor on
the same Stratix III device [5]. For example, the 4W/8R version
has an operating frequency ranging from 361 MHz at 32 elements,
down to 281 MHz for 256 elements, with enough ports to support
four such soft processors.

6.2 Area Breakdown
Figure 7(b) and Figure 8(b) display the total equivalent area of

various implementations of the same 2W/4R and 4W/8R memories,
broken down into their components. The Pure-ALM implementa-
tion is a single multi-ported memory without any specified subcom-
ponents: the synthesis process implements all of the multiplexers,
decoders, and storage implicitly. These increase in proportion with
the depth of the memory and rapidly become impractically large.

The LVT-MLAB implementation, despite using denser memory,
suffers from higher interconnect area overhead. The area of the
LVT-MLAB memory banks increases quickly with the memory
depth since each MLAB can only store 20 words of 16 bits. Also,
Quartus could not place and route MLAB-based memories deeper
than 64 elements. The absence of output multiplexers for the 64-
element 2W/4R memory is due to a fortuitous synthesis optimiza-
tion by Quartus: each register in an ALM has two load lines, which
may eliminate the multiplexer when there are only two sources.

The LVT-M9K block RAM Memory Banks have the lowest area

46

Equivalent Area (ALMs)

A
v
e
ra
g
e
F
m
a
x
(M

H
z
)

3264

128

256

32

64

32

64

128

256

LVT-M9K
LVT-MLAB
Pure-ALM

(a) Fmax vs Area

Pure
ALM

LVT
MLAB

32 elements

LVT
M9K

Pure
ALM

LVT
MLAB

64 elements

LVT
M9K

Pure
ALM

128 elements

LVT
M9K

Pure
ALM

256 elements

LVT
M9K

5

1

15

2

E
q
u
iv
a
le
n
t
a
re
a
(A
L
M
s
)

1309264723501

Memory Banks

Live Value Table
Output Multiplexers

(b) Area Breakdown

Figure 7: Speed and area for Pure-ALM, LVT-MLAB, and LVT-M9K implementations of a 2W/4R memory with an increasing
number of memory elements.

Equivalent Area (ALMs)

A
v
e
ra
g
e
F
m
a
x
(M

H
z
)

32

64

128

256
32

64

32

64

128

256

LVT-M9K
LVT-MLAB
Pure-ALM

(a) Fmax vs Area

Pure
ALM

LVT
MLAB

32 elements

LVT
M9K

Pure
ALM

LVT
MLAB

64 elements

LVT
M9K

Pure
ALM

128 elements

LVT
M9K

Pure
ALM

256 elements

LVT
M9K

1

2

3

4

5

6

E
q
u
iv
a
le
n
t
a
re
a
(A
L
M
s
)

2376711456

Memory Banks

Live Value Table
Output Multiplexers

(b) Area Breakdown

Figure 8: Speed and area for Pure-ALM, LVT-MLAB, and LVT-M9K implementations of a 4W/8R memory with an increasing
number of memory elements.

due to their higher density and lower interconnect requirements.
Most of the multiplexing and decoding overhead in the Pure-ALM
and LVT-MLAB implementations becomes implicit in the circuitry
of the M9K block RAMs. The area of the LVT-M9K 4W/8R Mem-
ory Banks remains constant at 1446 equivalent ALMs since all of
the memory depths fit into the same number of block RAMs. Even
with the non-trivial overhead of the LVT, the LVT-M9K implemen-
tations consume much less total area than the alternatives.

The LVTs of the LVT-MLAB and LVT-M9K implementations
have the exact same internal structure and the same depth as the
corresponding Pure-ALM memory implementation and thus also
scale proportionately with the depth of the memory. However, the
LVTs only store the one or two bits required to identify a memory
bank, reducing their growth to tractable levels. As an example, the
area of the LVT of the LVT-M9K 4W/8R memory ranges from 280
ALMs up to 1977 ALMs: approximately one-tenth the area of the
corresponding Pure-ALM memory. The area of the 4W/8R output
multiplexers, when present, remains constant at 256 ALMs since
the number of banks in the LVT-MLAB and LVT-M9K memories
also remains constant. For the 2W/4R memory, the multiplexer area

fluctuates between 77 and 93 ALMs, likely due to optimizations
made possible when an ALM has inputs from only two banks.

7. MULTIPUMPING PERFORMANCE
In the previous section we observed that M9K implementations

of LVT-based multi-ported memories are faster and smaller than
the alternatives—for some applications the achievable Fmax is po-
tentially overkill. In such cases we could apply multipumping (in-
troduced earlier in Section 4) to trade Fmax for reduced area as the
application allows. In this section we describe and measure mul-
tipumping applied to LVT-based designs, and also compare with
pure multipumping-based multi-ported memory designs.

7.1 Speed vs. Area
Multipumping can bring about a useful reduction in area if the

speed of the original memory is significantly higher than required
by the surrounding system. Figure 9(a) and Figure 10(a) compare
the maximum external operating frequency (Fmax) and the total
area of M9K-based LVT 2W/4R and 4W/8R memories with 2X
and 4X multipumping, along with the equivalent pure multipump-

47

Equivalent Area (ALMs)

A
v
e
ra
g
e
F
m
a
x
(M

H
z
)

32 64

128

256

32 64
128

256

32 64
128 256

32 to 256

LVT 1X
LVT 2X
LVT 4X
MP 2X

(a) Fmax vs Area

LVT
1X

LVT
2X

32 elements

LVT
4X

MP
2X

LVT
1X

LVT
2X

64 elements

LVT
4X

MP
2X

LVT
1X

LVT
2X

128 elements

LVT
4X

MP
2X

LVT
1X

LVT
2X

256 elements

LVT
4X

MP
2X

2

4

6

8

1

E
q
u
iv
a
le
n
t
a
re
a
(A
L
M
s
)

Memory Banks

Live Value Table
Output Multiplexers

Multi-Pumping Overhead

(b) Area Breakdown

Figure 9: Speed and area for M9K-based 2W/4R multipumped memories: an LVT memory with multipumping factors of 1X (a
2W/4R memory with no multipumping), 2X (a 2W/2R memory with two internal cycles), and 4X (a 2W/1R memory with four
internal cycles), and a pure multipumping memory (MP 2X).

Equivalent Area (ALMs)

A
v
e
ra
g
e
F
m
a
x
(M

H
z
)

32

64

128

256

32 64

128

256

32 64
128

256

32 to 256

LVT 1X
LVT 2X
LVT 4X
MP 3X

(a) Fmax vs Area

LVT
1X

LVT
2X

32 elements

LVT
4X

MP
3X

LVT
1X

LVT
2X

64 elements

LVT
4X

MP
3X

LVT
1X

LVT
2X

128 elements

LVT
4X

MP
3X

LVT
1X

LVT
2X

256 elements

LVT
4X

MP
3X

5

1

15

2

25

3

35

4

E
q
u
iv
a
le
n
t
a
re
a
(A
L
M
s
)

Memory Banks

Live Value Table
Output Multiplexers

Multi-Pumping Overhead

(b) Area Breakdown

Figure 10: Speed and area for M9K-based 4W/8R multipumped memories: an LVT memory with multipumping factors of 1X
(a 4W/8R memory with no multipumping), 2X (a 4W/4R memory with two internal cycles), and 4X (a 4W/2R memory with four
internal cycles), and a pure multipumping memory (MP 3X).

ing (MP) implementations. For all cases, the internal operating
frequency remains approximately equal to the Fmax of the original
baseline memory prior to multipumping, which ranges for the LVT
4W/8R memory from 361 MHz to 281 MHz as the depth increases,
and 523 MHz for all depths of the MP 3X 4W/8R memory.

Despite the high internal operating frequencies, dividing them
by a multipumping factor does bring about a harsh external speed
penalty. For example, the 4W/8R LVT 2X multipumped implemen-
tations in Figure 10(a) operate externally at frequencies ranging
from 176 MHz to 149 MHz, which may still be practical speeds.
The MP 3X implementations also hold at 174 MHz. For either im-
plementation, it is evident that only small multipumping factors can
be used before the drop in Fmax becomes too great to be practical.
Although we have tested multipumping factors of up to eight, we
expect that most designs will use a factor of two or three.

Furthermore, although the pure multipumping (MP) implemen-
tations seem to have better performance and a greatly reduced area,
a multipumping factor of two is only possible for 1W/2R (Figure 3)

and 2W/4R memories (Figure 9(a)). Pure multipumping memories
with more ports will always require a multipumping factor of at
least three or four, which quickly drops the Fmax. By comparison,
a multipumping factor of two is always feasible for any LVT mem-
ory with an even number of read ports. The slower drop in speed of
an LVT memory as the number of ports increases (Figure 9(a) vs.
Figure 10(a)) is a consequence of its internal parallelism, instead of
the mostly serial operation of a pure multipumping memory.

7.2 Area Breakdown
The primary benefit of multipumping is reducing the area of the

memory banks at the expense of clock frequency. Although the
area of the memory banks reduces proportionally to the amount of
multipumping, the LVT does not scale down as much and limits the
overall area reduction.

As discussed in Section 5.4, the number of block RAMs in a
multi-ported LVT memory is equal to the product of the number of
read and write ports. Since multipumping divides the number of

48

internal read ports, the number of block RAMs per bank is reduced
by the same factor6. The number of read ports on the Live Value
Table reduces to match, as does the number of output multiplexers.
Figure 9(b) and Figure 10(b) show how multipumping affects the
area of each of these components for the same LVT 2W/4R and
4W/8R memories when using factors of two (2X) and four (4X),
compared to a factor of one (1X) as the baseline non-multipumped
case, which is identical to the LVT-M9K bars of Figure 7(b) and
Figure 8(b). The figures also show the area breakdown of the equiv-
alent pure multipumping (MP) memories.

For LVT memories, the multipumping factor exactly divides the
area of the memory banks by itself since now only one-half or
one-quarter the number of internal read ports exists, which also
reduces the area of the output multiplexers by the same ratio. For
the 4W/8R memory, the area of the Live Value Table shrinks by
only 24% for 2X and 36% for 4X on average since its number of
write ports remains unchanged7. The “Multipumping Overhead”
fraction contains the additional overhead of multipumping such as
the Multipumping Controller, internal multiplexers, and temporary
registers. Regardless of the depth of the memory, multipumping in-
troduces a small, nearly constant overhead: 145 ALMs for 4W/8R
LVT 2X multipumping, and 219 ALMs for 4W/8R LVT 4X on av-
erage. Summed together, these individual changes to the 4W/8R
LVT memories reduce the total area by an average of 36% for 2X
multipumping, and 54% for 4X. The unchanged number of write
ports in the LVT primarily limits how much we can reduce the area.

The pure multipumping memories (MP) use much less area since
they do not require a Live Value Table or Output Multiplexers,
nor use as many block RAMs since their banks are not replicated.
For example, the 4W/8R MP 3X memory in Figure 10(b) uses
only eight M9K block RAMs inside a total equivalent area of 511
ALMs, of which 105 are multipumping overhead. Unfortunately,
pure multipumping memories tend to have higher minimum multi-
pumping factors and thus slower Fmax than LVT memories as the
number of ports increases. In Section 8.1, we will explore the idea
of using pure multipumping memories with a small number of ports
to potentially improve the efficiency of LVT-based memories.

8. MORE AGGRESSIVE DESIGNS
In this section we describe potential design avenues that are more

aggressive than those we have presented: a way to build an even
more efficient LVT-based design, and relaxing read/write ordering
to ease constraints on the design of the multi-ported memory.

8.1 LVT-Based Memory Based on Pure Mul-
tipumped Banks

If even moderately multi-ported block RAMs became available
on FPGAs, some very significant area improvements to LVT-based
multi-ported memories would follow. For example, doubling the
number of read and write ports on a block RAM would mean need-
ing only half as many memory banks to support the write ports
of an LVT-based memory, with each bank containing only half as
many replicated memories to service the read ports, resulting in
needing only a quarter of the number of block RAMs to construct
a given LVT-based multi-ported memory. Furthermore, halving the
number of banks reduces the width of the LVT by one bit, which is
significant since a typical LVT is only three bits wide or less.
6This assumes the multipumping factor can evenly divide the num-
ber of read ports. For example, a 4W/8R LVT memory supports
factors of two, four, or eight only.
7This fact suggests that the narrower but more numerous write port
multiplexers and decoders have the largest impact on the area of
pure ALM memories.

Although most FPGAs do not provide block RAMs with more
than two ports, some of the smaller pure multipumping memories
might provide usable substitutes. This speculation is supported by
the interesting performance of the ‘MP 2X’ 2W/4R pure multi-
pumping design from Figure 9: 255 equivalent ALMs at 279 MHz,
using four M9K block RAMs. If we used this memory to con-
struct the banks of the ‘LVT 1X’ 4W/8R LVT-based memory in
Figure 10, two banks would be required instead of four, with each
bank internally replicated once to support the read ports for a total
of four 2W/4R memories. This sums to only 16 M9K block RAMs
instead of 32, and even with the additional area overhead of multi-
pumping8 the area of the memory banks would decrease by 29%,
while the area of the LVT would be halved. It is easy to see from
Figure 10(b) that these changes would significantly reduce the area
of the 256-element 4W/8R ‘LVT 1X’ implementation. The impact
on speed is harder to predict due to the large changes in the struc-
ture of the memory banks, but it is conceivable that the operating
frequency would remain near that of the underlying 2W/4R pure
multipumping memory.

8.2 Relaxed Read/Write Ordering
The primary obstacle to getting the most area benefit from multi-

pumping is the relatively small area reduction of the LVT since the
number of write ports cannot be divided. The writes must all occur
together after the reads to prevent WAR violations. If we relax the
read/write ordering and allow writes to occur before all of the reads
have completed, then time-multiplexing the internal write ports be-
comes possible. The multipumping factor can now divide both the
number of internal memory banks and the number of write ports on
the Live Value Table, further improving the area reduction.

For example, with a multipumping factor of two and the read/write
ordering preserved, our 4W/8R multi-ported memory example in-
ternally becomes a 4W/4R memory. Halving the number of read
ports only halves the size of the memory banks and reduces the
size of the LVT to a lesser degree. By comparison, if we allow
relaxed read/write ordering, then the multipumping factor can also
divide the number of write ports9, which will in turn divide the
number of memory banks in addition to their size and further re-
duce the area of the LVT. In effect, except for the small overhead
of the multipumping control circuitry, the entire 4W/8R memory
would internally reduce to a 2W/4R instance which uses about 75%
less hardware. This quadratic area reduction is immediately visible
when comparing the LVT entries in Figure 9(b) and Figure 10(b),
as well as the LVT-M9K entries in Figure 7(b) and Figure 8(b).

Relaxing the read/write ordering requires the designer to sched-
ule the reads and writes to the multi-ported memory to avoid WAR
violations which would corrupt data. For example, given our 4W/8R
example multi-ported memory with a multipumping factor of two
and relaxed read/write ordering, the reads and writes will internally
execute as two consecutive 2W/4R sets, each using one half of the
external ports. If the designer wants to simultaneously read and
write to the same location within a system cycle, both operations
must be grouped in the same read/write set by performing them
on the appropriate external ports. If the designer cannot rearrange
them, then the write operations must explicitly occur after the con-
flicting reads, either by placing them in the following read/write set,
or in the next system cycle. Fortunately, this problem is identical to
dependence analysis for optimizing software loops.

8This is pessimistic. For example, all of the multipumped memo-
ries could share a single multipumping controller.
9This assumes that the multipumping factor can evenly divide the
number of write ports.

49

9. CONCLUSIONS
FPGA systems provide efficient block RAMs, but with only two

ports. Conventional approaches to building memories on FPGAs
with a larger number of ports are either very area inefficient, slow,
or both. We introduced a smaller and faster implementation for
multi-ported memories based on the Live Value Table (LVT)—a
small, narrow, multi-ported memory implemented in logic elements
that coordinates read and write accesses such that a banked mem-
ory design to behave like a true multi-ported design. The resulting
multi-ported memories provide true Write-After-Read (WAR) ran-
dom access to any value, from an arbitrary number of ports, without
the need to schedule reads and writes.

For example, using a LVT controlling 32 M9K block RAMs, we
were able to implement a 256-element 12-ported (4W/8R) multi-
ported memory which operates at 281 MHz on Altera Stratix III
FPGAs while consuming an area equivalent to 3679 ALMs: a 43%
speed improvement and 84% area reduction over the equivalent
pure ALM implementation, and a 61% speed improvement over a
pure multipumping implementation, despite being 7.2x larger. The
higher speeds of our LVT-based designs presented the possibility
of exchanging speed for area by applying multipumping. On aver-
age, 2X multipumping reduced the total area by 36%, while 4X did
so by 54%. Our designs also allowed for lower and more practical
multipumping factors than pure multipumping implementations as
the number of ports increased.

We also proposed two potential avenues for further increasing
the efficiency of LVT-based designs: (i) relaxing the ordering of
reads and writes which avoided WAR violations would increase
the area reduction from multipumping to about 75% at 2X, minus
the overhead of multipumping, at no additional cost in speed; (ii)
implementing the memory banks of a 4W/8R LVT-based memory
using 2W/4R pure multipumping memories could reduce the area
of the memory banks by 29% and halve the area of the LVT while
conceivably keeping the operating frequency in a useful range.

In summary, our exploration of the design space led us to three
main conclusions: (i) LVT-based multi-ported memories are su-
perior to logic-element-based designs in both area and speed; (ii)
LVT-based implementations are faster than pure multipumping im-
plementations although with an area cost; (iii) pure multipumping
implementations can be sufficient if the number of required ports
or external operating frequency are modest.

10. REFERENCES

[1] Implementing Multi-Port Memories in ProASICPLUS

Devices. http://www.actel.com/documents/
APA_MultiPort_AN.pdf, July 2003. Application Note
AC176, Accessed Sept. 2009.

[2] Mercury Programmable Logic Device Family Data Sheet.
http://www.altera.com/literature/ds/
dsmercury.pdf, Jan 2003. Version 2.2, Accessed Sept.
2009.

[3] Stratix III Device Handbook Volume 1, Chapter 4: TriMatrix
Embedded Memory Blocks in Stratix III Devices.
http://www.altera.com/literature/hb/
stx3/stx3_siii51004.pdf, May 2008. Version 1.8,
Accessed Sept. 2009.

[4] Advanced Synthesis Cookbook: A Design Guide for Stratix
II, Stratix III, and Stratix IV Devices.
http://www.altera.com/literature/manual/
stx_cookbook.pdf, July 2009. Version 5.0, Accessed
Nov. 2009.

[5] Nios II Performance Benchmarks.
http://www.altera.com/literature/ds/ds_
nios2_perf.pdf, June 2009. Version 4.0, Accessed
Sept. 2009.

[6] Nios II Processor Reference Handbook.
http://www.altera.com/literature/hb/
nios2/n2cpu_nii5v1.pdf, March 2009. Version 9.0,
Accessed Sept. 2009.

[7] CARLI, R. Flexible MIPS Soft Processor Architecture. Tech.
rep., Massachusetts Institute of Technology, Computer
Science and Artificial Intelligence Laboratory, June 2008.

[8] FORT, B., CAPALIJA, D., VRANESIC, Z., AND BROWN, S.
A Multithreaded Soft Processor for SoPC Area Reduction. In
IEEE Symposium on Field-Programmable Custom
Computing Machines (April 2006), pp. 131–142.

[9] JONES, A. K., HOARE, R., KUSIC, D., FAZEKAS, J., AND

FOSTER, J. An FPGA-based VLIW processor with custom
hardware execution. In International Symposium on
Field-Programmable Gate Arrays (2005).

[10] LABRECQUE, M., AND STEFFAN, J. Improving Pipelined
Soft Processors with Multithreading. In International
Conference on Field Programmable Logic and Applications
(Aug. 2007), pp. 210–215.

[11] MANJIKIAN, N. Design Issues for Prototype
Implementation of a Pipelined Superscalar Processor in
Programmable Logic. In PACRIM 2003: IEEE Pacific Rim
Conference on Communications, Computers and Signal
Processing (Aug. 2003), vol. 1, pp. 155–158 vol.1.

[12] MOUSSALI, R., GHANEM, N., AND SAGHIR, M.
Microarchitectural Enhancements for Configurable
Multi-Threaded Soft Processors. In International Conference
on Field Programmable Logic and Applications (Aug. 2007),
pp. 782–785.

[13] MOUSSALI, R., GHANEM, N., AND SAGHIR, M. A. R.
Supporting multithreading in configurable soft processor
cores. In CASES ’07: Proceedings of the 2007 international
conference on Compilers, Architecture, and Synthesis for
Embedded Systems (New York, NY, USA, 2007), ACM,
pp. 155–159.

[14] SAGHIR, M., AND NAOUS, R. A Configurable Multi-ported
Register File Architecture for Soft Processor Cores. In ARC
2007: Proceedings of the 2007 International Workshop on
Applied Reconfigurable Computing (March 2007),
Springer-Verlag, pp. 14–25.

[15] SAGHIR, M. A. R., EL-MAJZOUB, M., AND AKL, P.
Datapath and ISA Customization for Soft VLIW Processors.
In ReConFig 2006: IEEE International Conference on
Reconfigurable Computing and FPGAs (Sept. 2006),
pp. 1–10.

[16] SAWYER, N., AND DEFOSSEZ, M. Quad-Port Memories in
Virtex Devices. http:
//www.xilinx.com/support/documentation/
application_notes/xapp228.pdf, September
2002. XAPP228 (v1.0), Accessed Sept. 2009.

[17] YIANNACOURAS, P., STEFFAN, J. G., AND ROSE, J.
Application-specific customization of soft processor
microarchitecture. In FPGA ’06: Proceedings of the 2006
ACM/SIGDA 14th international symposium on Field
Programmable Gate Arrays (New York, NY, USA, 2006),
ACM, pp. 201–210.

50

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

