Accellera Standard OVL V2

Library Reference Manual

Software Version 2.6
December 2011

© 2005-2011 Accellera Organization, Inc.
All rights reserved.

STATEMENT OF USE OF ACCELLERA STANDARDS

Accellera Standards documents are developed within Accellera and the Technical Committees of Accellera Organization, Inc.
Accellera develops its standards through a consensus development process, approved by its members and board of directors, which
brings together volunteers representing varied viewpoints and interests to achieve the final product. Volunteers are not necessarily
members of Accellera and serve without compensation. While Accellera administers the process and establishes rules to promote
fairness in the consensus development process, Accellera does not independently evaluate, test, or verify the accuracy of any of the
information contained in its standards.

Use of an Accellera Standard is wholly voluntary. Accellera disclaims liability for any personal injury, property or other damage, of any
nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly resulting from the publication, use
of, or reliance upon this, or any other Accellera Standard document. By using an Accellera standard, you agree to defend, indemnify
and hold harmless Accellera and their directors, officers, employees and agents from and against all claims and expenses, including
attorneys’ fees, arising out of your use of an Accellera Standard.

Accellera does not warrant or represent the accuracy or content of the material contained herein, and expressly disclaims any
express or implied warranty, including any implied warranty of merchantability or suitability for a specific purpose, or that the use of
the material contained herein is free from patent infringement. Accellera Standards documents are supplied as is.

The existence of an Accellera Standard does not imply that there are no other ways to produce, test, measure, purchase, market, or
provide other goods and services related to the scope of an Accellera Standard. Furthermore, the viewpoint expressed at the time a
standard is approved and issued is subject to change due to developments in the state of the art and comments received from users
of the standard. Every Accellera Standard is subjected to review periodically for revision and update. Users are cautioned to check to
determine that they have the latest edition of any Accellera Standard.

In publishing and making this document available, Accellera is not suggesting or rendering professional or other services for, or on
behalf of, any person or entity. Nor is Accellera undertaking to perform any duty owed by any other person or entity to another. Any
person utilizing this, and any other Accellera Standards document, should rely upon the advice of a competent professional in
determining the exercise of reasonable care in any given circumstances.

Accellera may change the terms and conditions of this Statement of Use from time to time as we see fit and in our sole discretion.
Such changes will be effective immediately upon posting, and you agree to the posted changes by continuing your access to or use
of an Accellera Standard or any of its content in whatever form.

Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as they relate to specific
applications. When the need for interpretations is brought to the attention of Accellera, Accellera will initiate action to prepare
appropriate responses. Since Accellera Standards represent a consensus of concerned interests, it is important to ensure that any
interpretation has also received the concurrence of a balance of interests. For this reason, Accellera and the members of its
Technical Committees are not able to provide an instant response to interpretation requests except in those cases where the matter
has previously received formal consideration.

Comments for revision of Accellera Standards are welcome from any interested party, regardless of membership affiliation with
Accellera. Suggestions for changes in documents should be in the form of a proposed change of text, together with appropriate
supporting comments. Comments on standards and requests for interpretations should be addressed to:

Accellera Organization, 1370 Trancas Street #163, Napa, CA 94558 USA
E-mail: interpret-request@lists.accellera.org

Note: Attention is called to the possibility that implementation of this standard may require use of subject matter covered by patent
rights. By publication of this standard, no position is taken with respect to the existence or validity of any patent rights in connection
therewith. Accellera shall not be responsible for identifying patents for which a license may be required by an Accellera standard or
for conducting inquiries into the legal validity or scope of those patents that are brought to its attention.

Accellera is the sole entity that may authorize the use of Accellera-owned certification marks and/or trademarks to indicate
compliance with the materials set forth herein.

Authorization to photocopy, redistribute, publish, create derivative works from, sub-license or charge others to access or use,
participate in the transfer or sale of, or directly or indirectly commercially exploit in whole or part of any Accellera standard for internal
or personal use must be granted by Accellera Organization, Inc., provided that permission is obtained from and any required fee is
paid to Accellera. To arrange for authorization please contact Lynn Horobin, Accellera, 1370 Trancas Street #163, Napa, CA 94558,
phone (707) 251-9977, e-mail lynnh@accellera.org. Permission to photocopy portions of any individual standard for educational
classroom use can also be obtained from Accellera.

2ccellera

Overview of this standard

This section describes the purpose and organization of this standard, the Accellera Standard Open Verification Library (Std. OVL)
libraries implemented in IEEE Std. 1364-1995 Verilog and SystemVerilog 3.1a, Accellera’s extensions to IEEE Std. 1364-2001
Verilog Hardware Description Language and Library Reference Manual (LRM)

Intent and scope of this document

The intent of this standard is to define Std. OVL accurately. Its primary audience is designers, integrators and verification engineers
to check for good/bad behavior, and provides a single and vendor-independent interface for design validation using simulation, semi-
formal and formal verification techniques. By using a single well-defined interface, the OVL bridges the gap between the different
types of verification, making more advanced verification tools and techniques available for non-expert users.

From time to time, it may become necessary to correct and/or clarify portions of this standard. Such corrections and clarifications may
be published in separate documents. Such documents modify this standard at the time of their publication and remain in effect until
superseded by subsequent documents or until the standard is officially revised.

ACKNOWLEDGEMENTS

These Accellera Standard OVL Libraries and Library Reference Manual (LRM) were specified and developed by experts from many
different fields, including design and verification engineers, Electronic Design Automation companies and members of the OVL VSVA
technical committee.

The following contributors were involved in the creation of previous versions of the OVL: Bryan Bullis, Ben Cohen, Himanshu Goel,
Vijay Gupta, Brent Hayhoe, Richard Ho, Dmitry Korchemny, Narayanan Krishnamurthy, David Lacey, Jim Lewis, Andrew
MacCormack, Erich Marschner, Paul Menchini, Torkil Oelgaard, Uma Polisetti, Joseph Richards, Erik Seligman, Vinaya Singh, Sean
Smith, Andy Tsay, Mike Turpin and others.

The OVL technical committee and chair reports to Accellera TC Chairman:
TC Chairman Karen Pieper
The following individuals contributed to the creation, editing and review of the Accellera Standard OVL Libraries and LRM

Alan Becker/ARM

Shalom Bresticker/Intel

Eduard Cerny/Synopsys

Harry Foster/Mentor Graphics

Vijay Shanker Gottimukkula/Synchronicity
Jerry Kaczinsky/Aldec

David Lacey/Hewlett Packard

Kenneth Elmkjeer Larsen/Mentor Graphics (OVL Chair)
Ramesh Sathianathan/Mentor Graphics
Chris Shaw/Mentor Graphics

Bipul Talukdar/Mentor Graphics

Manoj Kumar Thottasseri/Synopsys

Major version 2.0 released June 2007
Minor version 2.1 released September 2007
Minor version 2.2 released January 2008
Minor version 2.3 released June 2008
Minor version 2.4 released March 2009
Minor version 2.5 released July 2010

Minor version 2.6 released December2011

2ccellera

Table of Contents

Chapter 1
LNt OdUCHION. . . . e 7
AboutthisSManual 7
Notational CoNVENLIONSttt et e ettt 8
Assertion Syntax FOrmat. 8
RE BN ENCES o 9

Chapter 2
OV L BaSICS . . ittt e e e e e e 10
OVL ASSErtion CheCKErS. . ..ot e e e e e e e 11
HDL Implementationst e e et 11
OVL Checker CharaCteristiCS. . . .o oottt e 15
VErlog OV L . 25
Library DIirectory SIrUCIUIE.o e e e e e e e 25
USeMoOdElo 26
Header Files o 31
VHDL OV L .ttt e e e e e 42
Library Directory SIrUCTUre.o e e e 42
USeMOGEl 43
Primary VHDL Packageso et e e 50

Chapter 3
OVL Checker Data SheatsS.o e e e e e 67
OV AWaYS. . .o e 68
oVl _always On edgeo 71
(011 = 1 = 76
OVl DTS, o 82
OVl _Change. 86
OVI_Code distanCeot 92
OVl COVEIagE . . . oot 95
OVl CrC . o 98
OVl _CYClE SBOUENCE. . ..ottt e e e e 109
OVl _deCrement 116
OV _dElta . .. 119
OVl _BVEN ParitY . . oo 123
OV fifO. oo 126
OVI_fifo INdeX o e 133
OVl frame. .. e 138
ovl_handshake. 145
oVI_hold value. 152
OVI_IMpPliCation 156
OVl INCremMENt . .. 159
Accellera Standard OVL V2, Library Reference Manual, 2.6 5

December 2011

Table of Contents

OVI_MEeMOrY _8SYNC 162
OVI _MEMONY SYNC . ..ot 168
ovl_multiport fifo 175
OVl MUEEX ..t e 184
OVl NEBVEN . . 186
OVI_Nnever _UNKNOWN. 189
OVI_Never_UNKNOWN 8SYNCottt ettt 192
OV NEXE . . e e 195
OVI NEXt Stale e 201
OVl N0 COMEENtION . . . ottt e e e e 205
ovl_No overflow o 209
OVI_NO tranSItioNo 212
ovl_no underflow 216
OVI_Odd Parityot 219
OVl _One Cold e 222
OVl 0N N0t . ..o e e 227
OVl _PrOPOSItION . . . 230
OVI_QUIESCENE State oot 233
OVl raNgE . . 237
ovl_reg loaded. o e 240
oVl req ack UNniQUE.ot 244
OVl O TOOUITES . .\ttt et e e e e e e e e e 248
OVl _StaCK . . 253
OVl tIME . L o 258
OVl tranSItioN e 264
OVl _UNChange. 268
oVI valid id. ... e 274
OV ValUE . .. e 279
OVl ValUB COVEIagE. . ..ottt e e e e e e e e e e e 282
OV WIdth . . 285
OVI_Win _change. o e 289
OVI_Win_unchange. e 292
OV WINAOW e 295
ovl_Xproduct_bit coverage.t e 298
OVI_Xproduct value COVErage. vttt e et et e 304
OVI_zero one hot. 312
Chapter 4
OV L MaACI0S . ..ottt e e e e e 315
Global MaCrOS oot 315
Macros Common to All ASSEItiONSot 318
Macrosfor SpecifiC ASSEIiONSot 320
Chapter 5
OVL Backward Compatibility e 323
V2 S e 323
6 Accellera Standard OVL V2, Library Reference Manual, 2.6

December 2011

Chapter 1
Introduction

Welcome to the Accellera standard Open Verification Library V2 (OVL). TheOVL is
composed of a set of assertion checkers that verify specific properties of adesign. These
assertion checkers are instantiated in the design establishing a unifying methodology for
dynamic and formal verification.

OVL V2isasuperset of OVL V1 that includesall V1 checkers. The OVL V2 augments the
structure of the V1 original checkers by adding parameters, ports and control logic. These new
checker versions are similar, but not completely identical to their V1 counterparts. The V1
checker types were named with an “assert_” prefix and their V2 counterparts are named with an
“ovl_" prefix, with the same base names. For backward compatibility, all OVL V1 checkers
(assert_* checkers) are available and supported in OVL V2. So, al existing code utilizing OVL
V1 will function the same with OVL V2 (except for bug fixes and enhancements).

The OVL provides designers, integrators and verification engineers with asingle, vendor-
independent interface for design validation using simulation, hardware acceleration or
emulation, formal verification and semi-/hybrid-/dynamic-formal verification tools. By using a
single, well defined, interface, the OVL bridges the gap between different types of verification,
making more advanced verification tools and techniques available for non-expert users.

This document provides the reader with a set of data sheets that describe the functionality of
each assertion checker in the OVL V2, aswell as examples that show how to embed these
assertion checkersinto a design.

About this Manual

It is assumed the reader is familiar with hardware description languages and conventional
simulation environments. This document targets designers, integrators and verification
engineers who intend to use the OVL in their verification flow and to tool developers interested
in integrating the OVL in their products. This document has the following chapters:

 OVL Basics

Fundamental information about the OVL library, including usage and examples.
* OVL Assertion Data Sheets

Data sheet for each type of OVL assertion checker.
* OVL Defines

Information about the define values used in general and for configuring the checkers.

Accellera Standard OVL V2, Library Reference Manual, 2.6 7
December 2011

Introduction
Notational Conventions

Notational Conventions

The following textual conventions are used in this manual:

emphasis Italicsin plain text are used for two purposes: (1) titles of manual chapters and
appendixes, and (2) terminology used inside defining sentences.

variabl e Italicsin courier text indicate a meta-variable. Y ou must replace the meta-variable
with aliteral value when you use the associated statement.

literal Regular courier text indicates literal words used in syntax statements, code or in
output.

Syntax statements appear in sans-serif typeface as shown here. In syntax statements, wordsin
italics are meta-variables. Y ou must replace them with relevant literal values. Wordsin regular
(non-italic) sans-serif type are literals. Type them as they appear. Except for the following
meta-characters, regular charactersin syntax statements are literals. The following meta-
characters have the given syntactical meanings. Y ou do not type these characters.

[] Square brackets indicate an optional entry.

Assertion Syntax Format

OVL V2 checker types are named ovl_checker. OVL V2 checkers are instantiated in Verilog
and VHDL modules/entities with specified parameters/generics and connections to checker
ports. Each checker type’ s data sheet shows amodel of its checker’ s instance statement in a
language-neutral mnemonic syntax statement. A checker type has parameters/generics common
to all checkers and parameters/generics specific to its own type. The parameter/generic
identifiersin a checker type’s syntax statement are shown in this order:

severity level, [checker specific paraneter/generic identifiers],
property type, nsg, coverage_level, clock _edge, reset _polarity,
gating_type

A checker type has port identifiers common to all checkers and ports specific to its own type.
The port identifiersin a checker type' s syntax statement are declared in this order:

cl ock*, reset, enable, [checker specific ports], fire

except (*) that asynchronous checker types have no clock port and multiclock checker types
have multiple clock ports.

8 Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

Introduction
References

References

Thefollowing isalist of resources related to design verification and assertion checkers.

* Bening, L. and Foster, H., Principles of Verifiable RTL Design, a Functional Coding
Syle Supporting Verification Processesin Verilog, 2nd Ed., Kluwer Academic
Publishers, 2001.

» Bergeron, J., Writing Testbenches: Functional Verification of HDL Models, Kluwer
Academic Publishers, 2000.

» Bergeron, J.,, Cerny, E., Hunter, A., and Nightingale, A., Verification Methodology
Manual for SystemVerilog, Springer, 2005, ISBN 978-0-387-25538-5.

» Foster,H., Krolnik, A., Lacey, D. Assertion-Based Design, Kluwer Academic
Publishers, 2003.

Accellera Standard OVL V2, Library Reference Manual, 2.6 9
December 2011

Chapter 2
OVL Basics

The OVL iscomposed of aset of assertion checkers that verify specific properties of a design.
These assertion checkers are instantiated in the design establishing a unifying methodol ogy for
dynamic and formal verification.

OVL assertion checkers are instances of modules whose purpose in the design is to guarantee
that some conditions hold true. Assertion checkers are composed of one or more properties, a
message, a severity and coverage.

* Properties are design attributes that are being verified by an assertion. A property can be
classified as a combinational or temporal property.

A combinational property defines relations between signals during the same clock cycle
while atemporal property describes the relation between the signals over several
(possibly infinitely many) cycles.

» Messageisastring that is displayed in the case of an assertion failure.

» Severity indicates whether the error captured by the assertion library isamajor or minor
problem.

» Coverageindicates whether or not specific corner-case events occur and counts the
occurrences of specific events.

Assertion checkers benefit users by:

» Testing internal points of the design, thus increasing observability of the design.

» Simplifying the diagnosis and detection of bugs by constraining the occurrence of abug
to the assertion checker being checked.

» Allowing designersto reuse the same assertions for different methodologies, typically
simulation and formal verification.

Accellera Standard OVL V2, Library Reference Manual, 2.6 10
December 2011

OVL Basics
OVL Assertion Checkers

OVL Assertion Checkers

Assertion checkers address design verification concerns and can be used as follows to increase
design confidence:

» Combine assertion checkersto increase the coverage of the design (for example, in
corner-case behavior or interface protocols).

* Include assertion checkers when a module has an external interface. In this case,
assumptions on the correct input and output behavior should be guarded and verified.

* Include assertion checkers when interfacing with third party modules, since the designer
may not be familiar with the module description (asin the case of 1P cores), or may not
completely understand the module. In these cases, guarding the module with assertion
checkers may prevent incorrect use of the module.

» Some IP providers embed assertions with their designs, so they can be turned on for
integration checking.

Usually there is a specific assertion checker suited to cover a potential problem. In other cases,
even though a specific assertion checker might not exist, acombination of two or three assertion
checkers can provide the desired verification checks. It is also possible to combine an OVL
assertion with additional HDL logic to check for the desired behavior. The number of actual
assertions that must be added to a specific design may vary from afew to thousands, depending
on the complexity of the design and the complexity of the properties that must be checked.

Writing assertion checkers for a given design requires careful analysis and planning for
maximum efficiency. While writing too few assertions might not achieve the desired level of
checking in adesign, writing too many assertions may increase verification time, sometimes
without increasing the coverage. In most cases, however, the runtime penalty incurred by
adding assertion checkersisrelatively small.

HDL Implementations

Designersinstantiate OV L assertion checkers as logic components in design code. Two
variations are available, corresponding to the two “base” HDL language families: Verilog and
VHDL. Checker assertion and coverage logic can be instantiated in several different standard
implementations. The current implementations are in four |EEE |anguages.

* Verilog Family
» Verilog 1995 (IEEE 1364),
* SVA 2005 (IEEE 1800),
» PSL 2005 (IEEE 1850).

Accellera Standard OVL V2, Library Reference Manual, 2.6 11
December 2011

OVL Basics
OVL Assertion Checkers

« VHDL
* VHDL 1993 (IEEE 1076)

Not all checker types have been implemented in all HDLs. Table 2-1 shows the currently
implemented checker types with v marks. The table shows the checker types that have full fire
output ports implemented with [0 marks. Fire outputs of the other types of checkers are
currently tied low. Green () indicates the checker type isimplemented in al languages; red
(") indicates the checker type isimplemented only in SVA; and wheat () indicates the
checker type isimplemented in some other combination.

Checker implementations that are synthesizable are indicated with synth. Y ou must specify
OVL_SYNTHESIS (see “ Generating Synthesizable Logic” on page 27) to disable
unsynthesizable logic for these checkers. “ Synthesizing the VHDL OVL Library” on page 50
shows how to instantiate synthesizable VHDL checker logic.

Table 2-1. OVL V2 Library

Verilog VHDL
checker type Verilog-95 SVA-05 PSL-05 VHDL-93
ovl_aways VO synth VO v Vv O synth
ovl_always on_edge v v v
ovl_arbiter v
ovl_bits v
ovl_change v v v
ovl_code distance v
ovl_cycle sequence VO synth VO v Vv O synth
ovl_decrement v v v
ovl_delta v v v
ovl_even_parity v v v
ovl_fifo v
ovl_fifo_index v v v
ovl_frame v v v
ovl_handshake v v v
ovl_hold value v
ovl_implication VO synth VO v Vv O synth
ovl_increment v v v
ovl_memory_async v

12 Accellera Standard OVL V2, Library Reference Manual, 2.6

December 2011

OVL Basics
OVL Assertion Checkers

Table 2-1. OVL V2 Library
Verilog VHDL
checker type Verilog-95 SVA-05 PSL-05 VHDL-93

ovl_no_overflow v v v
ovl_no_transition v v v
ovl_no_underflow v v Vv
ovl_odd parity v v v
ovl_one cold v v v

ovl_proposition
ovl_quiescent_state

ovl_time v v v
ovl_transition v v Vv
ovl_unchange v v v

ovl_width v v v
ovl_win_change v v v
Accellera Standard OVL V2, Library Reference Manual, 2.6 13

December 2011

OVL Basics
OVL Assertion Checkers

Table 2-1. OVL V2 Library

OVL V1-Style Checkers

For backward-compatibility with designs that use OVL V1 checkers, the OVL V2.4 library
includes copies of the checkers from the V1 library (updated with code fixes, but having the
same “footprints’ asthe V1 library checkers). These checker types are recognized by their

“assert_” prefixes. Table 2-2 shows the V1-style OVL library’s checker types

Verilog VHDL
checker type Verilog-95 SVA-05 PSL-05 VHDL-93
ovl_win_unchange VO synth V0O v
ovl_window v v v
ovl_zero one hot V0O synth V0O v v O synth

implementations. None of these checker types have fire outputs because the fire ports were new
ontheovl_* checkers. The V 1-style checkers have no outputs, so they their logic is optimized
out by synthesistools (i.e., no V 1-style checkers are synthesizable).

Table 2-2. OVL V1-Style Checkers

checker type

Verilog
Verilog-95

SVA-05

PSL-05

assert_always
assert_always on_edge
assert_change
assert_cycle sequence
assert_decrement
assert_delta
assert_even_parity
assert_fifo_index
assert_frame
assert_handshake
assert_implication
assert_increment
assert_never
assert_never_unknown

assert_never_unknown_async

< L <
< L <

< L <

14

Accellera Standard OVL V2, Library Reference Manual, 2.6

December 2011

OVL Basics

OVL Assertion Checkers

checker type

Table 2-2. OVL V1-Style Checkers

Verilog-95

Verilog
SVA-05

PSL-05

assert_next
assert_no_overflow
assert_no_transition
assert_no_underflow
assert_odd_parity
assert_one_cold
assert_one_hot
assert_proposition
assert_quiescent_state
assert_range
assert_time
assert_transition
assert_unchange
assert_width
assert_win_change
assert_win_unchange
assert_window
assert_zero_one_hot

< L <

OVL Checker Characteristics

Checker Class

< L <

< L <

OVL assertion checkers are partitioned into the following checker classes:

» Combinational assertions — behavior checked with combinational logic.

* 1-cycleassertions — behavior checked in the current cycle.

» 2-cycleassertions — behavior checked for transitions from the current cycle to the next.

* n-cycle assertions — behavior checked for transitions over afixed number of cycles.

* Event-bounded assertions — behavior is checked between two events.

Accellera Standard OVL V2, Library Reference Manual, 2.6

December 2011

15

OVL Basics
OVL Assertion Checkers

Checker Parameters/Generics

Each OVL assertion checker hasits own set of parameters as described in its corresponding data
sheet. The following parameters are (typically) common to all checkers: severity level,
property type, msg, coverage level, clock edge, reset_polarity and gating_type. Each of these
types of parameters has a default value used when the corresponding checker parameter is
unspecified in the checker instance specification. These defaults are set by the following global
Verilog macros (which can be modified): OVL_SEVERITY_DEFAULT, OVL_PROPERTY _
DEFAULT, OVL_MSG _DEFAULT, OVL_COVER_DEFAULT, OVL_CLOCK_EDGE_
DEFAULT, OVL_RESET_POLARITY_DEFAULT and OVL_GATING_TYPE_DEFAULT
(see “ Setting Checker Parameter Defaults’ on page 28). VHDL OVL_CTRL_DEFAULTS are
set in the ovl_ctrl_record record (see “ovl_ctrl_record Record” on page 45).

The checker parameters/generics can be assigned instance-specific values using the appropriate
Verilog macros or VHDL constants defined in the std_ovl_defines.h and std_ovl.vhd files
respectively. The macro and constant identifier names are the same in both HDLs.

severity level

A checker’s" severity level” determines how to handle an assertion violation. The severity |level
parameter sets the checker’s severity level and can have one of the following values:

OVL_FATAL Runtime fatal error (simulation stops).

OVL_ERROR Runtime error.

OVL_WARNI NG Runtime warning (e.g., software warning).

OVL_I NFO Information only (no improper design functionality).

If severity level isnot one of these values, the checker issues the following message:

Illegal option used in paraneter ’severity_|level’

property_type

A checker’s “ property type” determines whether to use the assertion as an assert property or an
assume property (for example, a property that aformal tool uses to determine legal stimulus).
The property type also selects whether to assert/assume X/Z value checks or not. The
property_type parameter sets the checker’s property type and can have one of the following
values:

OVL_ASSERT Assert assertion check and X/Z check properties.

OVL_ASSUMVE Assume assertion check and X/Z check properties.

OVL_ASSERT_2STATE Assert assertion check properties. Ignore X/Z check properties.

OVL_ASSUME_2STATE Assume assertion check properties. Ignore X/Z check properties.
16 Accellera Standard OVL V2, Library Reference Manual, 2.6

December 2011

OVL Basics
OVL Assertion Checkers

OVL_| GNORE Ignore assertion check and X/Z check properties. Used to turn of f
checking while maintaining coverage collection. To switch off
sets of assertions, define macros for the property types, for
example: ‘define MY_OVL_CHECKS OFF ‘OVL_IGNORE.

If property_typeis not one of these values, an assertion violation occurs and the checker issues
the following message:

Illegal option used in parameter ’'property_ type’

msg

The default value of OVL_MSG _DEFAULT is“VIOLATION”. Changing this define provides
adefault message printed when a checker assertionisviolated. To override this default message
for an individual checker, set the checker’s msg parameter.

coverage_level

A checker’s“coverage level” determines the cover point information reported by the individual
checker. The coverage level parameter setsthe checker’s coverage level. This parameter can be
any bitwise-OR of the defined cover point type values (* Cover Points’ on page 23 and
“Monitoring Coverage’ on page 28):

OVL_COVER_SANI TY Report SANITY cover points.
OVL_COVER BASI C Report BASIC cover points.
OVL_COVER _CORNER Report CORNER cover points.
OVL_COVER _STATI STIC Report STATISTIC cover points.

For example, if the coverage level parameter for an instance of the assert_range checker is:

OVL_COVER BASI C + OVL_COVER CORNER

then the checker reports al three assert_range cover points (cover_test_expr_change,
cover_test_expr_at minand cover_test_expr_at max). To simplify instance specifications, two
additional cover point values are defined:

OVL_COVER_NONE Disable coverage reporting.
OVL_COVER ALL Report information for all cover points.
clock_edge

A checker’s*clock edge’ selects the active edges for the clock input to the checker. Edge-
triggered checkers perform their analyses—which include evaluating inputs, checking
assertions and updating counters—at the active edges of their clocks. The elapsed time from one

Accellera Standard OVL V2, Library Reference Manual, 2.6 17
December 2011

OVL Basics
OVL Assertion Checkers

active clock edge to the next is referred to as a clock cycle (or ssimply cycle). The clock_edge
parameter specifies the checker’s active clock edges and can have one of the following values:

OvL_POSEDGE Rising edges are active clock edges.
OVL_NEGEDGE Falling edges are active clock edges.

reset_polarity

A checker’s “reset polarity” selectsthe active level of the checker reset input. When reset
becomes active, the checker clears pending properties and internal values (coverage point
values remain unchanged). A subsequent edge of the reset signal makes reset inactive, which
initializes and activates the checker. Thereset_polarity parameter sets the checker’ s reset
polarity and can have one of the following values:

OVL_ACTI VE_LOW Reset is active when FALSE.
OVL_ACTI VE_H GH Reset is active when TRUE.
gating_type

A checker’s “gating type” selects the signal gated by the enable input. The gating_type
parameter can be set to one of the following values:

OVL_GATE_NONE Checker ignores the enable input.

OVL_GATE_CLOCK Checker pauses when enable is FALSE. The checker treats the
current cycle as a NOP. Checks, counters and internal values
remain unchanged.

OVL_GATE_RESET Checker resets (asif the reset input became active) when enable
ISFALSE.

Checker Ports

Each OVL assertion checker hasits own set of ports as described in its corresponding data
sheet. The following ports are (typically) common to all checkers.

clock

Each “edge-triggered” assertion checker has a clocking input port named clock. All of the
checker’s sampling, assertion checking and coverage collection tasks are performed at “ active’
edges of the checker’s clock input. The active clock edges are set by the checker’s clock_edge
parameter (page 17): OVL_POSEDGE (rising edges) or OVL_NEGEDGE (falling edges). The
default clock edge parameter is set by the following global variable:

OVL_CLOCK_EDGE_DEFAULT Setsthe default clock edge parameter value for checkers.
Default: OVL_POSEDGE.

18 Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Basics
OVL Assertion Checkers

Gating clock

If achecker’s gating_type parameter (page 18) is set to OVL_GATE_CLOCK, the checker's
enable signal gates' the clock input to the checker. Here the actual clock signal used internally
by the checker is the gated clock formed combinationally from clock and enable. Deasserting
enable in effect pauses the checker at the current state. No data ports are sampled; no checking
is performed; no counters are incremented; and no coverage data are collected. When enable
asserts again, the checker continues from the state it was “paused” by enable.

Theinternal clock for a checker (called clk) isformed combinationally from clock and possibly
enable (based on the gating type and active clock edge for the checker) using the following
logic:

wire gclk, clk;
“ifdef OVL_GATI NG OFF
assign gclk = clock; // dobally disabled gating
‘el se
/1l LATCH based gated cl ock
reg clken;
al ways @ (cl ock or enabl e) begin
if (clock == 1'b0)
cl ken <= enabl e;
end
assign gclk = (gating_type == ‘ OVL_GATE CLOCK) ? clock & cl ken
. clock; /! Locally disabled gating
“endi f // OVL_GATI NG OFF
/1 clk (progranmabl e edge & optional gating)
assign clk = (clock_edge == ‘ OVL_POSEDGE) ? gclk : ~gcl k;

Note that setting the OVL_GATING_OFF define disables clock (and reset) gating for all
checkers.

reset

Each assertion checker has areset input port named reset. Associated with the reset port isthe
checker’sreset_polarity parameter: OVL_ACTIVE_LOW (reset active when FALSE) or
OVL_ACTIVE_HIGH (reset active when TRUE). The default reset_polarity parameter is set
by the following global variable:

OVL_RESET_POLARI TY_ Sets the default reset_polarity parameter value for checkers.
DEFAULT Default: OVL_ACTIVE_LOW.

When a checker that is not in reset mode samples an active reset, the checker enters reset mode.
The checker cancels pending assertion checks and freezes coverage data at their current values.
At the next active clock edge that reset is not active, the checker exits reset mode. The checker
initializes assertion properties and the checker behaves asit started from itsinitialized state—
except coverage data continues from the values frozen during the reset interval.

Accellera Standard OVL V2, Library Reference Manual, 2.6 19
December 2011

OVL Basics
OVL Assertion Checkers

Gating reset

If achecker’sgating_type parameter isset to OVL_GATE_RESET, itsenablesignal ‘gates the
reset input to the checker. Here the reset signal used internally by the checker isthe gated input
formed combinationally from reset and enable (and inverted if reset is active high). The enable
Input acts as a second, active-low reset.

The internal reset for a checker (called reset_n) isformed combinationally from reset and
possibly enable using the following logic:

Wi re greset, reset _n;
“ifdef OVL_GATI NG OFF
assign greset = reset; // Gdobally disabled gating
‘el se
assign greset = (gating type == ‘OVL_GATE _RESET) ? reset & enable
. reset; // Locally disabled gating
“endi f // OVL_GATI NG OFF
/1l reset_n (programuable polarity & optional gating)
assign reset_n = (reset_polarity == ' OJ/L_ACTI VE_LOW ? greset : ~greset;

Global Reset

The reset port assignments of all assertion checkers can be overridden and controlled by the
following global variable:

OVL_GLOBAL_RESET= Overrides the reset port assignments of all assertion checkers

reset_signal with the specified global reset_signal. Checkersignore their
reset_polarity parameters and treat the global reset as an active-
low reset. Default: each checker’ s reset is specified by the reset
port and reset_polarity parameters.

Internally, each checker uses the reset signal defined by OVL_RESET_SIGNAL.:

/1 Selecting global reset or |local reset for the checker reset signal
“ifdef OVL_GLOBAL_RESET
‘define OVL_RESET_SI GNAL ‘ OVL_GLOBAL_RESET
‘el se
“define OVL_RESET_SIGNAL reset_n
“endi f

enable

Each assertion checker has an enabling input port named enable. Thisinput is used to gate
either the clock or reset signals for the checker (effectively pausing or resetting the checker).
The effect of the enable port on the checker is determined by the checker’s gating_type
parameter (page 18):

« OVL_GATE_NONE (no effect),

» OVL_GATE _CLOCK (gate clock, see “Gating clock” on page 19) or
* OVL_GATE_RESET (gate reset, see “ Gating reset” on page 20).

20 Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Basics
OVL Assertion Checkers

The default gating_type parameter is set by the following global variable:
OVL_GATING_TYPE_DEFAULT (default: OVL_GATE_CLOCK).
fire

Each assertion checker has afire signal output port named fire. Future OVL releases might
extend this output, so extra bits are reserved for future use. For the V2.4 release of OVL, thisis
a 3-bit port:

“define OVL_FIRE_WDTH 3

The fire output port has the following bits:

fire[0] Assertion fired in 2-state mode (an assertion check violation).
fire[1] X/Z check fired in non-2-state mode.
fire[2] Coverage fired.

For most checkers, each fire output bit isimplemented in a clocked process. A fire bit is TRUE
for the cycle following the cycle in which a violation occurs and stays TRUE until the property
passes. In particular, afire bit can be TRUE for consecutive cycles because:

» A checker’s checks are pipelined, so multiple violations can occur in adjacent clock
cycles.

* A multi-cycle checker (for example, ovl_next) can have asingle violation that takes
multiple cyclesto return to a passing state. Note that the number of cyclesin which afire
bit is TRUE is not the same as the number of violations for the checker.

For the asynchronous checkers (ovl_memory_async and ovl_never_unknown_async). fire
outputs are driven directly by combinatorial logic and so are only TRUE during the failing
condition. If clock-gating is enabled (i.e., the default case) and enable deasserts at a clock edge
where afire bit asserts, then the fire bit remains TRUE while the checker is paused (i.e., until
enable asserts again).

The following macros are defined for accessing individual fire bits:

“define OVL_FI RE_2STATE 0
“define OVL_FI RE_XCHECK 1
“define OVL_FI RE_COVER 2

Assertion Checks

Each assertion checker verifies that its parameter values are legal. If anillegal optionis
specified, the assertion fails. The assertion checker also checks at |east one assertion. Violation
of any of these assertionsis an assertion failure. The data sheet for the assertion shows the
various failure types for the assertion checker (except for incorrect option values for

severity level, property_type, coverage level, clock edge, reset_polarity and gating_type).

Accellera Standard OVL V2, Library Reference Manual, 2.6 21
December 2011

OVL Basics
OVL Assertion Checkers

For example, the ovl_frame checker data sheet shows the following types of assertion failures:

FRAVE Vaue of test_expr was TRUE before min_cks cycles after
start_event was sampled TRUE or its value was not TRUE
before max_cks cycles transpired after the rising edge of
start_event.

illegal start event The action_on_new_start parameter is set to
OVL_ERROR_ON_NEW_START and start_event expression
evaluated to TRUE while the checker was monitoring test_expr.

m n_cks > max_cks The min_cks parameter is greater than the max_cks parameter
(and max_cks >0). Unlessthe violation isfatal, either the
minimum or maximum check will fail.

X/Z Checks

Assertion checkers can produce indeterminate results if a checker port value containsan X or Z
bit when the checker samples the port. (Note that a checker does not necessarily sample every
port at every active clock edge.) To assure determinate results, assertion checkers have specia
assertions for X/Z checks. These assertions fall into two groups. explicit X/Z checks and
implicit X/Z checks (see “Checking X and Z Values’ on page 29). (Note that OVL does not
differentiate between X and Z values.)

Explicit X/Z Checks

Two assertion checker types are specifically designed to verify that their associated expressions
have known and driven values: ovl_never_unknown and ovl_never_unknown_async. Each has
asingle assertion check:

test _expr contains X/ Z EXxpression evaluated to avalue with an X or Z bit, and
val ue OVL_XCHECK_OFF isnot set.

Explicit X/Z checking is implemented when instances of these checkers are added explicitly to
verify relevant expressions. Setting OVL_XCHECK _OFF turns off all X/Z checks, both
explicit and implicit (in particular, al ovl_never_unknown and ovl_never_unknown_async
checkers are excluded).

Implicit X/Z Checks

All assertion checker types — except ovl_never_unknown and ovl_never_unknown_async —
have implicit X/Z checks. These are assertions that specific checker ports have known and
driven values when the checker samplesthe ports. For example, the ovl_frame checker type has
the following implicit X/Z checks:

test_expr contains X Expression valuewas X or Z.
or Z

22 Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Basics
OVL Assertion Checkers

start_event contains X Start event valuewas X or Z.

or Z

Implicit checking isimplemented inside the checker logic itself. For many checkers, implicit
X/Z-check violations are not triggered for every occurrence of a sampled X/Z value for the
associated checker port. For example, consider the ovl_implication checker, which has X/Z
checks for antecedent_expr and consequent_expr:

antecedent_expr consequent_expr Assertion fails?

a True X/Z if consequent_expr is False

b Fase Xl/Z no

c X/Z True no

d X/zZ False if antecedent_expr is True

e X/Z Xl/Z if antecedent_expr is True and consequent_expr
isFalse

Casesb and c are not reported as X/Z-check violations, because in both cases the assertion is not
violated—regardless of which 0/1 value the X/Z-valued expression takes in 2-state semantics.
Such intelligent handling of X/Z checks eliminates many “false” violations that would be
reported when a pessimistic view of X/Z valuesis assumed.

Setting OVL_IMPLICIT_XCHECK _OFF turns off the implicit X/Z checks, but not the explicit
XIZ checks.

Cover Points

Each assertion type (typically) has a set of cover points and each cover point is categorized by
its cover point type. For example, the ovl_range assertion type has the following cover points:

cover_test _expr_change BASIC — Expression changed value.
cover_test_expr_at_mn CORNER — Expression evaluated to min.
cover_test _expr_at_max CORNER — Expression evaluated to max.

The various cover point types are:

SANI TY Event that indicates that the logic monitored by the assertion
checker was activated at least at aminimal level.

BASI C (Default) Event that indicates that the logic monitored by the
assertion checker assumed a state where assertion checking can
occur.

CORNER Event that indicates that the logic monitored by the assertion

checker assumed a state that represents a corner-case behavior.

Accellera Standard OVL V2, Library Reference Manual, 2.6 23
December 2011

OVL Basics
OVL Assertion Checkers

STATI STIC Counts of relevant states assumed by the logic monitored by the
assertion checker.

Cover Groups

Some assertion types have one or more defined cover groups. Each cover group consists of one
or more bin registers that accumul ate coverage counts for corresponding coverage points. Some
bin registers are two-dimensional, where the bin indexes represent the various cover cases being
tracked and the bin values represent the associated coverage counts. For example, the

ovl_valid id assertion type has the two following cover groups:

observed_l atency Number of returned | Ds with the specified turnaround time. Bins
are:
» observed latency_good[min_cks:max_cks] — binindex is
the observed turnaround time in clock cycles.
» observed latency bad — default.
outstandi ng_ids Number of cycles with the specified number of outstanding ids.
Bins are:
 observed outstanding_ids[0:max_instances| — binindex is
theinstance ID.

24 Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Basics
Verilog OVL

Verilog OVL

The Verilog HDL Family OVL library has the following characteristics:

All Verilog assertion checkers conform to Verilog | EEE Standard 1364-1995. Top-level
filesare either called assert _checker. vli b or ovl _checker.v (newinV2), and
include the relevant logic (Verilog, SVA or PSL).

All System Verilog assertion checkers conform to Accellera SVA 2005 (IEEE 1800).
Header files use file extension .h.

Verilog files with assertion module/interfaces use extension .vlib and include assertion
logic filesin the language specified by the user.

Verilog files with assertion logic use file extension _I ogi c. v.
System Verilog files with assertion logic use file extension _| ogi c. sv.

Parameter settings are assigned with macros to make configuration of assertion checkers
consistent and simple to use by end users.

Parameters passed to assertion checkers are checked for legal values

Each assertion checker includes st d_ovl _def i nes. h defining all global variables and
std_ovl _t ask. h defining all OVL system tasks.

Global variables are named OVL_name.
System tasks are named ov| _t askname_t .

OVL V2 isbackward compatible in behavior with existing OVL V1 libraries, because
OVL V2includesthe assert_checker modules.

Library Directory Structure
The AccelleraOVL standard Verilog library has the following structure:

$STD OVL_DI R Installation directory of AccelleraOVL library.

$STD_OVL_DI R/ vl 0g95 Directory with assertion logic described in Verilog 2005
(IEEE 1364).

$STD_OVL_DI R/ sva05 Directory with assertion logic described in SVA 2005
(IEEE 1800).

$STD_OVL_DI R/ psl 05 Directory with assertion logic described in PSL 2005 (IEEE
1850).

$STD OVL_DI R/ psl 05/ vunits Directory with PSL 1.1 vunits for binding with the assertion
logic.

Accellera Standard OVL V2, Library Reference Manual, 2.6 25

December 2011

OVL Basics
Verilog OVL

For example:

shell prompt> Is -1 $STD OVL_D R
std_ovl/assert_always.vlib
std_ovl/assert_always_on_edge.vlib

étd;ovi/std_ovl_defines.h
std_ovl/std_ovl task.h

ét d._ovi / psl 05:
std_ovl / psl 05/ assert _always_logic.vlib
std_ovl/psl 05/ assert _al ways_on_edge logic.vlib

ét d._ovI. / psl 05/ vuni ts:
std_ovl / psl 05/ vuni t s/ assert _al ways. psl
std_ovl / psl 05/ vuni ts/assert_al ways_on_edge. psl

ét d._ovI. / sva05:

std_ovl/sva05/assert_always logic.vlib

std_ovl /sva05/assert _al ways_on_edge logic.vlib
ét d._ovl. /vl 0g95:

std_ovl /vl 0g95/ assert _al ways_logic.v
std_ovl /vl og95/assert _al ways_on_edge logic.v

Use Model

An Accellera Standard OVL Verilog library user specifies preferred control settings with
standard global variables defined in the following:

* A Verilogfileloaded in before the libraries.
» Specifies settings using the standard +define optionsin Verilog verification engines (via
asetup file or at the command line).
Setting the Verilog Implementation Language

The Accellera Standard OVL isimplemented in the following Verilog HDL languages: Verilog
1995(1EEE 1364), SVA 2005 (IEEE 1800) and PSL 2005 (IEEE 1850). The following Verilog
macros select the implementation language:

OVL_VERI LOG (default) Creates assertion checkers defined in Verilog-95.
OVL_SVA Creates assertion checkers defined in System Verilog.
OVL_PSL Creates assertion checkers defined in PSL (Verilog flavor).

In the case a user of the library does not specify alanguage, by default the library is
automatically set to OVL_VERILOG.

26 Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Basics
Verilog OVL

Note

D Only one library can be selected. If the user specifies both OVL_VERILOG and
OVL_SVA (or OVL_PSL), the OVL_VERILOG is undefined in the header file. Editing
the header file to disable this behavior will result in compile errors.

Instantiation in an SVA Interface Construct

If an OVL checker isinstantiated in a System Verilog interface construct, the user should define
the following global variable:

OVL_SVA | NTERFACE Ensures OVL assertion checkers can be instantiated in a System
Verilog interface construct. Default: not defined.
Limitations for Verilog-flavor PSL

The PSL implementation does not support modifying the severity level and msg parameters.
These parameters are ignored and the default values are used:

severity | evel OVL_ERROR
msg “VIOLATION”

Generating Synthesizable Logic

The following global variable removes initialization logic from OVL assertions:

OVL_SYNTHESI S Removesiinitialization logic from the OVL assertion logic.
Default: logic inside the else branch of ifdef OVL_SYNTHES'S
blocks is enabled.

Setting OVL_SYNTHESIS removes the unsynthesizable logic from Verilog-95 checkers,
making them synthesizable.
Enabling Assertion and Coverage Logic

The Accellera Standard OVL consists of two types of logic: assertion logic and coverage logic.
These capabilities are controlled via the following standard global variables:

OVL_ASSERT_ON Activates assertion logic. Default: not defined.
OVL_COVER ON Activates coverage logic. Default: not defined.

If both of these variables are undefined, the assertion checkers are not activated. The
instantiations of these checkers will have no influence on the verification performed.

Accellera Standard OVL V2, Library Reference Manual, 2.6 27
December 2011

OVL Basics
Verilog OVL

By default, coveragelogic (activated with OVL_COVER_ON) monitors cover points and cover
groups. To exclude logic that monitors cover groups define the following standard global
variable:

OVL_COVERGROUP_COFF Excludes cover group logic from the coverage logic if
OVL_COVER _ON isdefined. Default: not defined.

Asserting, Assuming and Ignoring Properties

The OVL checkers assertion logic—if activated (by the OVL_ASSERT_ON global
variable)—identifiesadesign’slegal properties. Each particular checker instance can verify one
or more assertion checks (depending on the checker type and the checker’s configuration).
Whether a checker’s properties are asserts (i.e., checks) or assumes (i.e., constraints) is
controlled by the checker’ s property_type parameter. In addition, property_type can turn on and
off X/Z checks.

A single assertion checker cannot have some checks asserts and other checks assumes.
However, you often can implement this behavior by specifying two checkers.

Monitoring Coverage

The OVL_COVER_ON define activates coverage logic in the checkers. Thisisaglobal switch
that turns coverage monitoring on.

Setting Checker Parameter Defaults

All common parameters for checkers and some parameters common to specific checker types
have default parameter values. These are the parameter values assumed by the checker when the
parameter is not specified. The std_ovl_defines.h sets the values of these defaults (i.e., to
default default values), but the default values can be overridden by redefining them. The
following Verilog defines set the values of these default parameter values for the common
checker parameters:

OVL_SEVERI TY_DEFAULT Vaue of severity level to use when it is not specified. The value
defined in std_ovl_defineshisOVL_ERROR.

OVL_PROPERTY_DEFAULT Vaue of property_typeto use when it is not specified. The value
defined in std_ovl_defineshisOVL_ASSERT.

OVL_MSG DEFAULT Vaue of msg to use when it isnot specified. The value defined in
std ovl_defineshis“VIOLATION".
OVL_COVER DEFAULT Vaue of coverage level to use when it is not specified. The

value defined in std_ovl_defineshisOVL_COVER BASIC.

OVL_CLOCK_EDGE_DEFAULT Value of clock _edge to use when it is not specified. The value
defined in std_ovl_defines.hisOVL_POSEDGE.

28 Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Basics

Verilog OVL
OVL_RESET_POLARI TY_ Vaue of reset_polarity to use when it is not specified. The value
DEFALLT defined in std_ovl_defineshis OVL_ACTIVE_LOW.
OVL_GATI NG_TYPE_ Vaue of gating_type to use when it is not specified. The value
DEFALLT defined in std_ovl_defineshisOVL_GATE CLOCK.

Disabling Clock/Reset Gating

By default, if a checker’s gating_type parameter isOVL_GATE_CLOCK, the checker’s
internal clock logic is gated by the checker’s enable input. Similarly, by default, if achecker’s
gating_type parameter isOVL_GATE _RESET, the checker’ sinternal reset logic is gated by the
checker enable input. Setting the following define, overrides this behavior:

OVL_GATI NG_OFF Turns off clock/reset gating, effectively setting all gating_type
parametersto OVL_GATE_NONE, so checkersignore their
enable inputs. Default: gating type specified by each checker’s
gating_type parameter.

Using a Global Reset

The reset port assignments of all assertion checkers can be overridden and controlled by the
following global variable:

OVL_GLOBAL_RESET= Overrides the reset port assignments of all assertion checkers

reset_signal with the specified global reset_signal. Checkersignore their
reset_polarity parameters and treat the global reset as an active-
low reset. Default: each checker’ s reset is specified by the reset
port and reset_polarity parameters.

Checking X and Z Values

By default, OVL assertion checker logic includes logic implementing assertion checks for X
and Z bits in the values of checker ports when they are sampled. To exclude part or all of this
X/Z checking logic, specify one of the following global variables:

OVL_| MPLI CI T_XCHECK _ Turns off implicit X/Z checks.
OFF
OVL_XCHECK_OFF Turns off all X/Z checks (implicit and explicit).

Reporting Assertion Information

By default, (if the assertion logic is active) every assertion violation is reported and (if the
coverage logic is active) every captured coverage point is reported. The user can limit this
reporting and can also initiate special reporting at the start and end of ssimulation.

Accellera Standard OVL V2, Library Reference Manual, 2.6 29
December 2011

OVL Basics
Verilog OVL

Limiting a Checker’s Reporting

Limits on the number of times assertion violations and captured coverage points are reported
are controlled by the following global variables:

OVL_NMAX_REPORT_ERROR Discontinues reporting a checker’s assertion violationsiif the
number of timesthe checker has reported one or more violations
reaches this limit. Default: unlimited reporting.

OVL_MAX_REPORT_COVER Discontinues reporting achecker’s cover points if the number of
POl NT times the checker has reported one or more cover points reaches
this limit.Default: unlimited reporting.

These maximum limits are for the number of times a checker instance issues a message. If a
checker issues multiple violation messages in acycle, each message is counted as asingle error
report. Similarly, if achecker issues multiple coverage messagesin a cycle, each messageis
counted as a single cover report.

Reporting Initialization Messages
The checkers' configuration information isreported at initialization timeif the following global
variableis defined:

OVL_I NI T_MSG Reports configuration information for each checker when it is
instantiated at the start of simulation. Default: no initialization

messages reported.

For each assertion checker instance, the following message is reported:

OVL_NOTE: V2.4: instance_nane initialized @hierarchy Severity:
severity |evel, Message: nsg

End-of-simulation Signal to ovl _quiescent_state Checkers

The ovl_quiescent_state assertion checker checks that the value of a state expression equals a
check value when a sample event occurs. These checkers also can perform this check at the end
of simulation by setting the following global variable:

OVL_END OF_SI MULATION Performs quiescent state checking at end of simulation when the
=eos_si gnal eos_signal asserts. Default: not defined.

30 Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Basics
Verilog OVL

Fatal Error Processing

When a checker reports aruntime fatal error (severity level isOVL_FATAL), simulation
typically continues for a certain amount of time and then the simulation ends. However, the
OVL logic can be configured so that runtime fatal errors do not end simulation. These behaviors
are controlled by the following global variables:

OVL_RUNTI ME_AFTER _ Number of time units from afatal error to end of simulation.
FATAL=time Default: 100.
OVL_FI NI SH_OFF Fatal errors do not stop simulation. Default: fatal error ends

simulation after OVL_RUNTIME_AFTER_FATAL time units.

Header Files

std_ovl _defines.h

/1 Accellera Standard V2.4 Open Verification Library (OVL).
/'l Accellera Copyright (c) 2005-2009. Al rights reserved.

“ifdef OVL_STD DEFI NES H
/1 do nothing

“el se

“define OVL_STD DEFI NES H
“define OVL_VERSI ON “V2. 4"

“ifdef OVL_ASSERT ON
“ifdef OVL_PSL
“ifdef OVL_VERILOG
“undef OVL_PSL
“endi f
“ifdef OVL_SVA
“ifdef OVL_PSL
“undef OVL_PSL
“endi f
“endi f
“el se
‘i fdef OVL_VER LOG
‘el se
“define OVL_VERI LOG
“endi f
“ifdef OVL_SVA
“undef OVL_VERI LOG
“endi f
“endi f
“endi f

Accellera Standard OVL V2, Library Reference Manual, 2.6 31
December 2011

OVL Basics
Verilog OVL

“ifdef OVL_COVER ON
“ifdef OVL_PSL
“ifdef OVL_VERILOG
“undef OVL_PSL
“endi f
“ifdef OVL_SVA
“ifdef OVL_PSL
“undef OVL_PSL
“endi f
“endi f
‘el se
“ifdef OVL_VERILOG
‘el se
“define OVL_VERI LOG
“endi f
“ifdef OVL_SVA
“undef OVL_VERI LOG
“endi f
“endi f
“endi f

“ifdef OVL_ASSERT ON
“ifdef OVL_SHARED CODE
‘el se
“defi ne OVL_SHARED CODE
“endi f
“el se
“ifdef OVL_COVER ON
“ifdef OVL_SHARED CODE
‘el se
“defi ne OVL_SHARED CODE
“endi f
“endi f
“endi f

/'l specifying interface for System Veril og
“ifdef OVL_SVA | NTERFACE
“define nodule interface
“define endnodul e endi nterface
‘el se
“define nodul e nodul e
“define endnodul e endnodul e
“endi f

/1 Selecting global reset or |local reset for the checker reset signal
“ifdef OVL_GLOBAL_RESET
“define OVL_RESET SI GNAL " OVL_GLOBAL_RESET
“el se
“define OVL_RESET_SIGNAL reset _n
“endif

/1 active edges

“define OVL_NCEDGE O
“define OVL_POSEDGE 1
“define OVL_NEGEDGE 2
“define OVL_ANYEDGE 3

32 Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Basics
Verilog OVL

/1 default edge_type (ovl_al ways_on_edge)
“ifdef OVL_EDGE_TYPE_DEFAULT

/1 do nothing
“el se

“define OVL_EDCGE TYPE DEFAULT " OVL_NOEDGE
“endif

/'l severity levels

“define OVWL_FATAL O
“define OVL_ERROR 1
“define OVL_WARNI NG 2
“define OVL_I NFO 3

/1 default severity |evel
“ifdef OVL_SEVERI TY_DEFAULT
/1 do not hi ng

‘el se
“define OVL_SEVERI TY_DEFAULT "~ OVL_ERRCR
“endi f
/'l coverage levels (note that 3 would set both SANI TY & BASI C)
“define OVL_COVER NONE 0
“define OVL_COVER SANI TY 1
“define OVL_COVER BASIC 2

“define OVL_COVER _CORNER 4
“define OVL_COVER STATISTIC 8
“define OVL_COVER ALL 15

/1 default coverage |evel
“ifdef OVL_COVER DEFAULT
/1 do nothing
‘el se
“define OVL_COVER DEFAULT "~ OVL_COVER BASI C
“endi f

/] property type

“define OVL_ASSERT
“define OVL_ASSUME
“define OVL_I GNORE
“define OVL_ASSERT_2STATE 3
“define OVL_ASSUME 2STATE 4

N~ O

/1 fire bit positions (first two also used for xcheck input to error_t)
“define OVL_FI RE_2STATE 0
“define OVL_FI RE_XCHECK 1
“define OVL_FI RE_COVER 2

/1 default property type
“ifdef OVL_PROPERTY_DEFAULT
/1 do nothing

‘el se
“define OVL_PROPERTY_DEFAULT " OVL_ASSERT
“endi f
Accellera Standard OVL V2, Library Reference Manual, 2.6 33

December 2011

OVL Basics
Verilog OVL

/1 default nessage
“ifdef OVL_MSG DEFAULT
/1 do nothing
“el se
“define OVL_MSG DEFAULT “VI OLATI ON’
“endif

/1 necessary condition

“define OVL_TRI GGER_ON_MOST_PI PE 0
“define OVL_TRIGGER ON FIRST PIPE 1
“define OVL_TRI GGER_ON FI RST_NOPI PE 2

/1 default necessary_condition (ovl_cycl e_sequence)
“ifdef OVL_NECESSARY_CONDI TI ON_DEFAULT
/1 do nothing
“el se
“define OVL_NECESSARY_CONDI TI ON_DEFAULT " OVL_TRI GGER_ON_MOST_PI PE
“endif

/'l action on new start

“define OVL_| GNORE_NEW START 0
“define OVL_RESET_ON_NEW START 1
“define OVL_ERROR ON NEW START 2

/1 default action_on_new start (e.g. ovl_change)
“ifdef OVL_ACTI ON_ON_NEW START_DEFAULT
/1 do nothing
“el se
“define OVL_ACTI ON_ON_NEW START_DEFAULT " OVL_| GNORE_NEW START
“endif

/'l inactive |evels

“define OVL_ALL ZERCS 0
“define OVL_ALL_ONES 1
“define OVL_ONE_COLD 2

/1 default inactive (ovl _one_cold)
“ifdef OVL_I NACTI VE_DEFAULT
/1 do nothing
“el se
“define OVL_I NACTI VE_DEFAULT "~ OVL_ONE_COLD
“endif

/[l ovl 2.4 new interface
“define OVL_ACTIVE LOWN O
“define OVL_ACTIVE HIGH 1

“define OVL_GATE_NONE O
“define OVL_GATE _CLOCK 1
“define OVL_GATE RESET 2

“define OVL_FIRE WDTH 3

“ifdef OVL_CLOCK EDGE DEFAULT

/1 do not hing
“el se

“define OVL_CLOCK EDGE DEFAULT " OVL_POSEDGE
“endi f

34

Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Basics
Verilog OVL

“ifdef OVL_RESET_POLARI TY_DEFAULT
/1 do nothing
“el se
“define OVL_RESET _POLARI TY_DEFAULT " OVL_ACTI VE_LOW
“endi f

“ifdef OVL_GATI NG _TYPE_DEFAULT
/1 do nothing
“el se
“define OVL_GATI NG TYPE DEFAULT " OVL_GATE CLOCK
“endi f

/'l ovl runtine after fatal error
“define OVL_RUNTI ME_AFTER FATAL 100

/'l Covergroup define
“ifdef OVL_COVER ON
i fdef OVL_COVERGROUP_OFF
“el se
“define OVL_COVERGROUP_ON
“endi f // OVL_COVERGROUP_OFF
“endif // OVL_COVER ON

/'l Ensure x-checking logic disabled if ASSERTs are off
“ifdef OVL_ASSERT_ON
‘el se
“define OVL_XCHECK OFF
“define OVL_I MPLI CI T_XCHECK OFF
“endif

“endif // OVL_STD DEFI NES_H

std_ovl_init.h

/1 Accellera Standard V2.4 Open Verification Library (OVL).
/'l Accellera Copyright (c) 2005-2009. Al rights reserved.
“ifdef OVL_SHARED CODE
“ifdef OVL_SYNTHESI S
‘el se
“ifdef OVL_INIT_MSG
initial
ovl init _nsg t; // Call the User Defined Init Message Routine
“endif // OVL_IN T_MsSG
“endif // OVL_SYNTHESI S
“endif // OVL_SHARED CODE

Accellera Standard OVL V2, Library Reference Manual, 2.6 35
December 2011

OVL Basics
Verilog OVL

std_ovl _clock.h

/1 Accellera Standard V2.4 Open Verification Library (OVL).
/'l Accellera Copyright (c) 2005-2009. Al rights reserved.
wire clk;
“ifdef OVL_SHARED CODE
wire gclk;
“ifdef OVL_GATI NG OFF
assign gclk = clock; // dobally disabled gating
“el se
/1l LATCH based gated cl ock
reg clken;
always @ (cl ock or enable) begin
if (clock == 1" b0)
cl ken <= enabl e;
end

assign gclk = (gating_type == “OVL_GATE CLOCK) ? clock & clken

: clock; // Locally disabled gating
“endif // OVL_GATI NG_OFF
/1 clk (progranmabl e edge & optional gating)
assign clk = (clock _edge == “OVL_POSEDGE) ? gclk : ~gclk;
“el se
assign clk = cl ock;
“endif // OVL_SHARED CODE

std_ovl _reset.h

/'l Accellera Standard V2.4 Open Verification Library (OVL).
/'l Accellera Copyright (c) 2005-2009. Al rights reserved.
wWire reset_n;
“i fdef OVL_SHARED CODE

Wi re greset;

“ifdef OVL_GATI NG _OFF

assign greset = reset; // G obally disabled gating
“el se

assign greset = (gating_type == ~OVL_GATE_RESET) ? reset & enable

: reset; // Locally disabled gating
“endi f // OVL_GATI NG COFF

/'l reset_n (programmebl e polarity & optional gating)

assign reset_n = (reset_polarity == “OVL_ACTIVE_LON ? greset ~gr eset ;
‘el se
assign reset_n = reset;
“endi f // OVL_SHARED CODE
36 Accellera Standard OVL V2, Library Reference Manual, 2.6

December 2011

OVL Basics
Verilog OVL

std_ovl _count.h

/1 Accellera Standard V2.4 Open Verification Library (OVL).
/'l Accellera Copyright (c) 2005-2009. Al rights reserved.

/1 Support for printing of count of OVL assertions
“ifdef OVL_IN T_MSG

“ifdef OVL_I NI T_COUNT
i nteger ovl _init_count;
initial begin
/'l Reset, prior to counting
ovl init _count = 0;
/1 Display total nunber of OVL instances, just after initialization
$nonitor (“\nOVL_METRICS: % OVL assertions initialized\n”\

,ovl init_count);
end

“endi f
“endi f

std_ovl _cover.h

/'l Accellera Standard V2.4 Open Verification Library (OVL).
/'l Accellera Copyright (c) 2005-2009. Al rights reserved.

/|l Paranmeters that should not be edited

par amet er OVL_COVER SANI TY_ON = (coverage_| evel & “~OVL_COVER_SANI TY);
par anet er OVL_COVER BASI C_ON = (coverage_l evel & “OVL_COVER BASI C);
par amet er OVL_COVER CORNER_ON = (coverage_| evel & " OVL_COVER_CORNER);
paramet er OVL_COVER STATI STI C_ON =

(coverage | evel & " OVL_COVER STATI STIO);
std_ovl_task.h

/1 Accellera Standard V2.4 Open Verification Library (OVL).
/'l Accellera Copyright (c) 2005-2009. Al rights reserved.

“ifdef OVL_SYNTHESI S
‘el se
i nteger error_count;
i nt eger cover_count;
initial error_count =
initial cover_count =
“endif // OVL_SYNTHESI S

e

Accellera Standard OVL V2, Library Reference Manual, 2.6

37
December 2011

OVL Basics
Verilog OVL

task ovl _error _t;
i nput xcheck;
i nput [8*128-1:0] err_nsg;
reg [8*16-1:0] err_typ;

begin
“ifdef OVL_SYNTHESI S
‘el se
case (severity level)
* OVL_FATAL coerr_typ = "OVL_FATAL";
‘OVL_ERROR : err_typ = "OVL_ERROR';
“OVL_WARNING : err_typ = "OVL_WARNI NG';
“ OVL_I NFO ;oerr_typ = "OVL_I NFO';
def aul t :
begin
err_typ = "OVL_ERROR";
$di spl ay("OVL_ERROR: |11l egal option used in paraneter
severity_level, setting nessage type to OVL_ERROR : tinme 9%®t
%', $tinme);
end
endcase

“ifdef OVL_MAX REPORT_ ERROR
if (error_count < ‘OVL_MAX_ REPORT_ERROR)

“endif
case (property_type)
* OVL_ASSERT,
* OVL_ASSUVE . begin
$display("% : % : % : %s : severity %0d : time %Ot : %,
err_typ, assert_nanme, msg, err_nsg, severity level, $tine);
end
* OVL_ASSERT_2STATE,
‘ OVL_ASSUME_2STATE : begin
if (xcheck == *‘OVL_FI RE_2STATE) begin
$display("% : % : % : %s : severity %0d : tine %Ot : %,
err_typ, assert_nanme, msg, err_nsg, severity level, $tine);
end
end
“ OVL_| GNORE . begin end
def aul t . begin end
endcase

“ifdef OVL_FI NI SH OFF

‘el se
if (severity level == *OVL_FATAL) begin
case (property type)
* OVL_ASSERT,
* OVL_ASSUME : begin ovl _finish_t; end
‘ OVL_ASSERT_2STATE,
‘ OVL_ASSUME_2STATE : begin
i f (xcheck == ‘OVL_FI RE_2STATE) begin; ovl _finish t; end end
“ OVL_| GNORE . begin end
def aul t : begin end
endcase
end

“endif // OVL_FI NI SH CFF
“endif // OVL_SYNTHESI S
end

endtask // ovl _error _t

38 Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Basics
Verilog OVL

task ovl _finish_t;

begin
“ifdef OVL_SYNTHESI S
‘el se

OVL_RUNTI ME_AFTER FATAL $fi ni sh;

“endif // OVL_SYNTHESI S

end

endtask // ovl _finish_t

task ovl _init_nsg_t;
begin
“ifdef OVL_SYNTHESI S
‘el se
case (property type)
* OVL_ASSERT,
* OVL_ASSUMNE,
‘ OVL_ASSERT_2STATE,
‘ OVL_ASSUME_2STATE : begin
“ifdef OVL_SYNTHESI S
‘el se
“ifdef OVL_I N T_COUNT
#0.1 ‘OVL_INIT_COUNT = ‘OVL_I NI T_COUNT + 1;
‘el se
$di splay("OVL_NOTE: %: % initialized @%n Severity: 9%0d,
Message: %", ‘' OVL_VERSI ON, assert_nane,
severity level, nsg);
“endi f
“endif // OVL_SYNTHESI S
end
“OVL_I GNORE : begin
/1 do nothing
end
default : $display("OVL_ERROR Illegal option used in paraneter
property_type : %i');
endcase
“endif // OVL_SYNTHESI S
end
endtask // ovl __init_nsg_t

Accellera Standard OVL V2, Library Reference Manual, 2.6 39
December 2011

OVL Basics
Verilog OVL

task ovl _cover t;
i nput [8*64-1:0] cvr_nsg;
begin
“ifdef OVL_SYNTHESI S
‘el se
cover_count = cover_count + 1;
“ifdef OVL_MAX_REPORT_COVER PO NT
if (cover_count <= ‘OVL_MAX REPORT_COVER PO NT) begin

“endi f
if (coverage_level > 'OVL_COVER ALL)
$di spl ay("OVL_ERROR: |11l egal option used in paraneter
coverage level : time %Ot : %, $tinme);
el se

$di splay("OVL_COVER PONT : % : %0)s : tine %t : %,
assert _nane, cvr_nsg, $tine);
‘i fdef OVL_MAX_REPORT_COVER PO NT
end
“endi f
“endif // OVL_SYNTHESI S

end
endtask // ovl _cover _t

“ifdef OVL_SVA
‘el se
/1 FUNCTI ON THAT CALCULATES THE LOG BASE 2 OF A NUMBER
|| ========
/1 NOTE: only used in sva05
function integer |o0g2;
i nput integer Xx;

i nteger i;
i nteger result;
begin
result = 1;
if (x <= 0) result = -1;
el se
for (i = 0; (1<<i) <= x; i=i+l) result = i+1;
|l og2 = result;
end

endf uncti on
‘“endif // OVL_SVA

40 Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Basics

Verilog OVL
function ovl _fire 2state f;
i nput property_type;
i nteger property_type;
begin
case (property_type)
* OVL_ASSERT,
* OVL_ASSUME . ovl _fire 2state f = 1’ bl;
* OVL_ASSERT _ ZSTATE
O\/L_ASSUNE_ZSTATE ovl fire 2state f = 1'bl;
“ OVL_| GNORE : ovl _fire 2state f = 1’ bO;
def aul t : ovl _fire 2state f = 1’ bO;
endcase
end
endfunction // ovl fire 2state f
function ovl _fire_xcheck_f;
i nput property_type;
i nteger property_type;
begin
“ifdef OVL_SYNTHESI S
/1 fire_xcheck is not synthesizable
ovl _fire_xcheck f = 1'bO0;
‘el se
case (property_type)
* OVL_ASSERT,
* OVL_ASSUVE . ovl _fire_xcheck f = 1'bil;
* OVL_ASSERT _ ZSTATE
* OVL_ASSUNME ZSTATE ovl _fire_xcheck f = 1'bO0;
“ OVL_I GNORE . ovl _fire xcheck f = 1’ bO0;
def aul t . ovl _fire_xcheck f = 1’ bO0;
endcase
“endif // OVL_SYNTHESI S
end
endfunction // ovl _fire_xcheck_f
Accellera Standard OVL V2, Library Reference Manual, 2.6 41

December 2011

OVL Basics
VHDL OVL

VHDL OVL

The OVL library includes VHDL implementations of OVL checkers. The current (V2.4)
version of OVL only contains 10 checkers but missing checkers will be added in future OVL
versions. The V2.4 OVL checkers arethe ovl_checker_type versions of the components (which
include the enable and fire ports). VHDL wrappers are provided for the missing checkers that
allow the Verilog checkersto be instantiated from VHDL (see “Use Model” on page 43).

The VHDL OVL components are compatible with the Verilog OVL versions, except the VHDL
components include an additional generic called controls that provides global configuration of
the library. The VHDL implementation has the following additional characteristics:

 VHDL OVL issynthesizable (see “ Synthesizing the VHDL OVL Library” on page 50).

* VHDL OVL components support both std logic and std_ulogic port types.

* VHDL OVL implementation contains constants that are equivalent to (have the same
name and values) the corresponding Verilog macro defines. However some macros are
not present in the VHDL implementation because they are implemented by an
ovl_ctrl_record constant (see “ovl_ctrl_record Record” on page 45) or are not needed.

Library Directory Structure

In the OVL installation, the following files are used for the VHDL implementation.

std_ovl/
ovl _checker _t ype.vhd
std_ovl.vhd
std_ovl_procs.vhd
std_ovl_components.vhd

std_ovl_u_components.vhd

std_ovl_components_vlog.vhd

std_ovl_u_components vlog.vhd

std_ovl_clock gating.vhd

Checker entity declarations.
Type/constant declarations package.
Procedures package.

std_ovl_components package containing checker
component declarations.

std_ovl_u_components package and std_ulogic
wrapper components.

Alternative std_ovl_components package
containing wrappersto alow Verilog checkersto
be used for checkers that are missing from the
VHDL implementation.

Alternative std_ovl_u_components package
containing std_ulogic wrappersto allow Verilog
checkers to be used for checkers that are missing
from the VHDL implementation.

Internal clock gating component.

42

Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Basics

VHDL OVL
std_ovl_reset_gating.vhd Internal reset gating component.
std_ovl /vhdl 93/
ovl_checker _type_rtl.vhd Checker architecture bodies.
std_ovl /vhdl 93/ syn_src
std_ovl_procs_syn.vhd Synthesizable version of std_ovl_procs.vhd.
ovl_checker_type rtl.vhd Synthesizable versions of architecture bodies.
std_ovl /vhdl 93/ 1 egacy/
std_ovl.vhd Component declarationsto allow V1
assert_checker Verilog checkersto be used in
VHDL.
Use Model

Compiling the VHDL OVL

All the VHDL OVL files (except std_ovl_u_components.vhd) should be compiled into the
logical library name accellera_ovl_vhdl (standardized for portability). When EDA vendors
provide optimized versions of the VHDL OVL components for their tools, they will use this
library name. The accellera_ovl_vhdl library can be compiled into a central location that can be
shared by designers. Thelibrary is configured using a project-specific ovl_ctrl_record record as
shown in “ Configuring the Library” on page 45, so modifying the default configuration values
in the std_ovl package is not necessary. The library must be compiled using the EDA tools
VHDL-93 option.

The current VHDL OVL implementation does not contain all of the OVL checkers. Therefore,
wrapper components have been provided that allow Verilog implementations of the missing
checkersto be used in VHDL. These wrapper components are found in the
std_ovl_componets_viog.vhd file (which aso containsa std_ovl_components package). This
package is the same as the package in the std_ovl_components.vhd file, but it includes
component declarations for the missing checkers. The same package name is used in both files,
so only one std_ovl_components file should be compiled into the library. The
std_ovl_u_components viog.vhd fileis similar to the std_ovl_components.vhd fileand is
intended for users that require std_ulogic based ports.

Note
D Dueto limitationsin VHDL/Verilog mix simulation, the value of the max genericin

instantiations of the ovl_no_underflow and ovl_no_overflow checkersisignored. The
value actually used is the default value of the max parameter defined in the Verilog
implementation of these checkers, ((1 << width) - 1).

Accellera Standard OVL V2, Library Reference Manual, 2.6 43
December 2011

OVL Basics
VHDL OVL

The two sections that follow show how to compile the VHDL OVL with, and without, the
Verilog checkers. Only one set of instructions must be used.

Note
D By using the same package name in both use models, switching to the full VHDL OVL

implementation (when it is available) will not require changing the users’ code.

VHDL OVL Compile Order

The accellera_ovl_vhdl library’s compile order is as follows:

std_ovl/std _ovl.vhd

std_ovl /std_ovl conponents. vhd
std _ovl/std _ovl procs. vhd
std_ovl/std_ovl _cl ock_gating. vhd

std_ovl/std_ovl reset _gating.vhd

o o A W D P

std_ovl/ovl_*.vhd
7. std_ovl/vhdl 93/ovl _* rtl.vhd

If checkerswith std_ulogic-based ports are required, then the std_ovl_u_components.vhd file
should be compiled into the accellera_ovi_vhdl_u library after the accellera_ovl_vhdl library
files are compiled.

VHDL OVL Compile Order with Verilog OVL

To alow Verilog checkersto be used for the checkers that are currently missing from the
VHDL implementation, compile the VHDL OVL with the Verilog OVL:

1. Compilethe Verilog OVL checkersinto the accellera ovl_viog library (typically done
with a one-line command to compile the std_owvl/ovi*.v files). For example:

conpi l e_conmmand -work accellera_ovl _vlog \
+def i ne+OVL_VERI LOG \
+defi ne+OVL_ASSERT_ON \
+def i ne+OVL_FI NI SH_CFF \
+i ncdi r +${ OVL_PATH} \
${ OVL_PATH}/ ovl *. v

2. Compilethefollowing VHDL OVL filesinto the accellera ovl_vhdl library:

std _ovl/std ovl.vhd

a
b. std_ovl/std_ovl _conponents_vl og. vhd

o

std_ovl /std_ovl procs. vhd

d. std_ovl/std_ovl _clock_gating.vhd

44 Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Basics
VHDL OVL

e. std ovl/std ovl _reset_gating.vhd
f. std_ovl/ovl _*.vhd

g. std_ovl/vhdl 93/ovl _* rtl.vhd

If checkerswith std_ulogic-based ports are required, then the std_ovl_u_components_viog.vhd
file should be compiled into the accellera_ovl_vhdl_u library after the accellera_ovl_vhdl
library files are compiled. For adescription of the std_ovl_u_components package, see
“std_ulogic Wrappers’ on page 48.

Configuring the Library

VHDL OVL hasall the global library configuration features of the Verilog implementation
(which are provided by the Verilog macro defines), for example: globally enabling/disabling
X/Z-checking on all checker instances. Global library configuration is controlled by a
ovl_ctrl_record (declared in std_ovl.vhd) constant assigned to the controls generic on every
checker instance. An ovl_ctrl_record record constant should be defined in a design-specific
work library package for use on all checker instances, so the configuration of the checkers can
be controlled from one place. In particular, changing constants in the central std_ovl.vhd fileis
not necessary. In fact, the VHDL OVL files are read-only and modifying any of them is not
recommended.

ovl_ctrl _record Record

The ovl_ctrl_record record is divided into three groups:

* Elementsthat are of the ovl_ctrl type and can be assigned OVL_ON or OVL_OFF
values. These elements mainly control the generate statements used in the checkers.

» User-configurable values that control the message printing and how long the simulation
should continue after afatal assertion occurs.

» Default values of the generics that are common to all checkers.

Table 2-3 showsthe ovl_ctrl_record record elements and how they map to the Verilog macro
values that configure the Verilog implementation of the OVL.

Table 2-3. ovl_ctrl_record Elements

ovl_ctrl_record Description Verilog Macro VHDL Value
xcheck_ctrl Enables/disables all X/Z OVL_XCHECK_ OFF OVL_OFF
checking code.
implicit_xcheck_ctrl Enablesldisablgsimplicit OVL_IMPLICIT_ OVL_OFF
X/Z checks. XCHECK_OFF
Accellera Standard OVL V2, Library Reference Manual, 2.6 45

December 2011

OVL Basics

VHDL OVL
Table 2-3. ovl_ctrl_record Elements (cont.)
ovl_ctrl_record Description Verilog Macro VHDL Value
init_nmsg ctrl Enables/disables code that OVL_INIT_MSG OVL_OFF
prints checker initialization
messages or a count of the
number of checkers
initialized.
init_count _ctrl Enables/disablescounting of OVL_I NI T_COUNT OVL_OFF
number of checkers
initialized when
init_msg_ctrl isset to
OVL_ON.
assert_ctrl Enables/disables all 2-state OVL_ASSERT_ON OVL_ON
and X/Z check assertions.
cover _ctrl Enables/disables converge OVL_COVER_ON OVL_ON
code.
gl obal _reset ctrl Enables/disablestheuseof a OVL_G.OBAL_RESET OvVL_ON
global reset signal.
finish ctrl Enables/disables halti ng of OVL_FI NI SH CFF OVL_OFF
simulation when afatal
assertion is detected.
gating ctrl Enables/disables clock or OVL_GATI NG_OFF OVL_OFF
reset gating.
max_report_error M aximum number of OVL_MAX_REPORT 15
assertion error messagesthat ERROR
a checker should report.
max_report_cover _ M aximum number of OVL_REPORT _ 15
poi nt coverage messagesthata ~ COVER_PONT
checker should report.
runtime_after fatal Time after afatal assertionis OVL_RUNI ME_ 100 ns
detected that the simulation ~AFTER_FATAL
should be halted.
severity_ | evel _ severity level generic OVL_SEVERI TY_ OVL_ERROR
defaul t default \7a| ue. DEFAULT
property_type_ property_type generic OVL_PROPERTY_ OVL_ASSERT
def aul t default value. DEFAULT
msg_def aul t msg generic default value. OVL_NMSG DEFAULT “VI OLATI ON’
coverage | evel _ coverage level generic OVL_COVER _ OVL_COVER _
def aul t default value. DEFAULT BASI C
46 Accellera Standard OVL V2, Library Reference Manual, 2.6

December 2011

OVL Basics

VHDL OVL

Table 2-3. ovl_ctrl_record Elements (cont.)
ovl_ctrl_record Description Verilog Macro VHDL Value
cl ock_edge_defaul t clock _edge generic default OVL_CLOCK _ OVL_POSEDGE

value. EDGE_DEFAULT
reset _polarity_ resethol arity generic OVL_RESET _ OVL_ACTI VE_
def aul t default value. POLARI TY_DEFAULT LOW
gating_type_default gating type generic default OVL_GATI NG_ OVL_GATE_
- TYPE_DEFAULT CLOCK

value.

The following example shows how to declare and use an ovl_ctrl_record record constant:

library accellera_ovl _vhdl;
use accellera_ovl _vhdl.std ovl.all;

package proj _pkg is
-- OVL configuration
constant ovl _proj_controls :
generate statenent controls

xcheck_ctrl =>
implicit _xcheck ctrl =>
init_msg_ctrl =>
init_count_ctrl =
assert _ctrl =>
cover_ctrl =>
gl obal _reset _ctrl =>
finish_ctrl =>
gating_ctrl =

ovl _

ctrl _record := (

OVL_ON,
OVL_ON,
OVL_ON,
OVL_CFF,
OVL_ON,
OVL_ON,
OVL_CFF,
OVL_ON,
OVL_ON,

user configurable library constants

mex_report_error => 4,
max_report _cover _poi nt => 15,
runtime_after fatal => “150 ns

-- default values for comopn generics
severity | evel default =
property_type_defaul t =>

OVL_SEVERI TY_DEFAULT,
OVL_PROPERTY_DEFAULT,

--nmeg_defaul t =>
nmsg_def aul t =
coverage_ | evel default =>
cl ock_edge_def aul t =
reset _polarity_default =>
gating_type_defaul t =>
)
end package proj _pkg;

library accellera_ovl _vhdl;
use accellera_ovl _vhdl.std ovl.all;

use accellera_ovl _vhdl.std ovl _conponents.all; -- optional

use work. proj _pkg. all;

OVL_MSG_DEFAULT,

ovl _set msg(“ YOUR DEFAULT MESSAGE"),
OVL_COVER DEFAULT,
OVL_CLOCK_EDGE_DEFAULT,
OVL_RESET_PCLARI TY_DEFAULT,

OVL_GATI NG_TYPE_DEFAULT

- not needed if
using direct instantiation

Accellera Standard OVL V2, Library Reference Manual, 2.6

December 2011

47

OVL Basics
VHDL OVL

architecture rtl of designis

begin
---rtl code---
ovl _gen : if (ovl _proj_controls.assert_ctrl
----user ovl signal conditioning code---
ovl _ul : ovl _next

generic map (
nsg => “Check 1",
num cks = 1,
check_over| appi ng => OVL_CHK_OVERLAP_OFF
check_m ssing_start => OVL_OFF,
cover age_| evel => OVL_COVER_CORNER,
control s => ovl _proj_controls

)

port map (
cl ock = cl k,
reset => reset_n,
enabl e => enabl e_1,
start_event |, => start_event _1
test _expr => test_1,
fire = fire_ 1

)

ovl _u2 : ovl _next

generic map (
nsg => “Check 2",
num cks = 2,
check_over| appi ng => OVL_CHK OVERLAP_ON
check _m ssing start => OVL_ON,
coverage_ | evel => OVL_COVER ALL,
severity_ | evel => OVL_FATAL,
controls => ovl _proj_controls

port map (
cl ock = cl k,
reset => reset_n,
enabl e => enabl e_2,
start_event => start_event_2,
test _expr => test_2,
fire => fire_2

)
end generate ovl _gen;
end architecture rtl;

std_ulogic Wrappers

= OL_ON)

generate

The std_ovl_u_components.vhd file contains the std_ovl_u_components package and
ovl_checker type components that have std_ulogic/std_ulogic_vector ports. These components
are wrappers for the ovl_checker componentsin the accellera_ovl_vhdl library. Asthese
std_ulogic wrappers have the same entity names as the checkersin the accellera_ovl_vhdl
library, the std_ovl_u_components.vhd file should be compiled into the accellera_ovl_vhdl _u
library.

48

Accellera Standard OVL V2, Library Reference Manual, 2.6

December 2011

OVL Basics
VHDL OVL

To use these components, add the following declarations to the instantiating code:

Iibrary accellera_ovl _vhdl

use accellera_ovl _vhdl.std ovl.all;

library accellera_ovl _vhdl _u;

-- optional - not needed if using direct instantiation
use accellera_ovl _vhdl _u.std ovl _u_conponents. all

Number of Checkers in a Simulation

To print the number of OVL checkersinitialized in asimulation set init_msg_ctrl and
init_count_ctrl itemsto OVL_ON and include the following code:

library accellera_ovl _vhdl

use accellera_ovl _vhdl.std ovl.all;

use accellera_ovl _vhdl.std ovl procs.all;
use work. proj _pkg. al |

entity tbis

end entity tb;

architecture tb of tb is
begin
ovl _print_init_count_p : process
begi n
wait for O ns;
ovl _print_init_count_proc(ovl _proj _controls);
wait; -- forever

end process ovl _print_init_count_p;
end architecture tb;

“2-state” and “X/Z-check” Assertions in VHDL

The OVL checker components contain separate sections of code that implement the “ 2-state”
and “ X/Z-check” assertion checks. These terms are derived from the use of the Verilog family
of HDLs. However, the VHDL OVL implementation uses 9-state std_logic values so 2-state
assertion checks and X/Z checks have a dlightly different meaning for the VHDL OVL
checkers. Note that the VHDL implementation is fully compatible with the Verilog
implementation.

Verilog OVL checkers assertion checks are mapped to VHDL asfollows:

» 2-state assertion checks:
* Verilog0=>VHDL ‘0'/'L’
e Verilogl=>VHDL ‘1'/'H’
» X/Z-checks:
* VeilogX orZ=>VHDL ‘X’,‘Z","W’,*U" or ‘-".

Accellera Standard OVL V2, Library Reference Manual, 2.6 49
December 2011

OVL Basics
VHDL OVL

Synthesizing the VHDL OVL Library

All code in the VHDL implementation is synthesizable—apart from the path_name attribute in
the architectures and the std_ovl_procs.vhd file. Until all the synthesis tool vendors support the
use of the path_name attribute, a synthesizable version of the architecturesis provided in the
std_ovl/vhdl93/syn_src directory. The order of analysisfor the synthesisversion of thelibrary is
as follows (ensure that the files are compiled into the accellera_ovl_vhdl library):

std _ovl/std ovl.vhd
std_ovl/std_ovl conponents. vhd

std_ovl /vhdl 93/ syn_src/std_ovl _procs_syn. vhd

1
2
3
4. std_ovl/std_ovl _clock_gating.vhd
5. std_ovl/std ovl _reset _gating.vhd
6. std_ovl/ovl _*.vhd

7

std_ovl /vhdl 93/ syn_src/ovl _* rtl.vhd

Primary VHDL Packages

std_ovl.vhd

-- Accellera Standard V2.4 Open Verification Library (OVL).
-- Accellera Copyright (c) 2009. Al rights reserved.

library ieee;
use ieee.std _logic_1164.all;

package std_ovl is

-- subtypes for commobn generics

subt ype ovl _severity_level i s integer range -1 to 3

subtype ovl _severity level _natural is ovl_severity level range 0 to
ovl _severity_ |l evel’ high

subt ype ovl _property_type is integer range -1 to 4,

subtype ovl property type natural is ovl _property type range O to
ovl property type’ high

subt ype ovl coverage_| evel i s integer range -1 to 15;

subt ype ovl _coverage_ |l evel _natural is ovl_coverage |level range O to
ovl _coverage_| evel ' hi gh

subt ype ovl _active_edges is integer range -1 to 3

subt ype ovl _active_edges_natural is ovl _active_edges range 0 to
ovl _active_edges’ hi gh

subtype ovl _reset _polarity i s integer range -1 to 1;

subtype ovl _reset _polarity natural is ovl _reset_polarity range 0 to
ovl _reset_polarity’ high
subt ype ovl _gating_type is integer range -1 to 2
subt ype ovl gating type_natural is ovl _gating type range 0 to
ovl gating type' high

50 Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Basics

VHDL OVL

-- subtypes for checker specific generics
subt ype ovl _necessary_condition is integer range 0 to 2
subt ype ovl _action_on_new start i s integer range 0 to 2
subt ype ovl _inactive i s integer range 0 to 2
subt ype ovl _positive_2 i s integer range 2 to

i nt eger’ hi gh;
subt ype ovl _chk_overl ap is integer range 0 to 1;
-- subtypes for control constants
subtype ovl _ctrl i s integer range 0 to 1;
subt ype ovl _nsg_default_type is string(l to 50);

-- user nodifiable library control itens
type ovl _ctrl _record is record
-- generate statement contro

xcheck_ctrl : ovl _ctrl
implicit_xcheck_ctrl : ovl _ctrl
init_msg ctrl :ovl _ctrl
init_count _ctrl :ovl _ctrl
assert _ctrl : ovl _ctrl
cover _ctrl . ovl _ctrl
gl obal _reset _ctrl : ovl _ctrl
finish_ctrl : ovl _ctrl
gating_ctrl : ovl _ctrl

-- user configurable library constants

max_report_error : natural
max_report _cover _poi nt : natural
runtime_after fatal : string(1 to 10);

-- default values for commopn generics

severity |evel default . ovl _severity |l evel natural
property type default . ovl _property type_natural
nmsg_def aul t . ovl _meg_default _type;
coverage_ | evel _default . ovl _coverage_l evel _natural
cl ock_edge_def aul t : ovl _active_edges_natural
reset _polarity_default : ovl _reset_polarity_natural
gating_ type default : ovl _gating type_natural

end record ovl _ctrl _record;

-- global signals
signal ovl _gl obal reset_signal : std_logic
signal ovl _end_of sinul ation_signal : std logic := 0

-- global variable
shared variable ovl _init_count : natural :=0

-- Hard-coded library constants

-- NOTE: These constants nust not be changed by users. Users can
-- configure the library using the ovl _ctrl_record. Please see

-- “ovl _ctrl _record Record” on page 45.

constant OVL_VERSI ON ;ostring 1= “V2.4";

Accellera Standard OVL V2, Library Reference Manual, 2.6 51
December 2011

OVL Basics
VHDL OVL

-- This constant may be changed in future releases of the library or

-- by EDA vendors.
constant OVL_FI RE_W DTH

constant OVL_NOT_SET

-- generate statenment control constants

constant OVL_ON
constant OVL_OFF

-- fire bit selection constants
constant OVL_FI RE_2STATE
const ant OVL_FI RE_XCHECK
constant OVL_FI RE_COVER

-- severity |level
constant OVL_SEVERI TY_LEVEL_NOT_SET

constant OVL_FATAL
constant OVL_ERROR
constant OVL_WARNI NG
constant OVL_I| NFO

-- coverage |levels
constant OVL_COVERAGE LEVEL_NOT_SET

constant OVL_COVER_NONE
constant OVL_COVER SANI TY
constant OVL_COVER BASI C
const ant OVL_COVER CORNER
constant OVL_COVER STATI STI C
constant OVL_COVER ALL

-- property type
constant OVL_PROPERTY_TYPE NOT_SET

const ant OVL_ASSERT
constant OVL_ASSUME
constant OVL_| GNORE
const ant OVL_ASSERT_2STATE
constant OVL_ASSUME 2STATE

-- active edges
constant OVL_ACTI VE_EDGES NOT_SET

constant OVL_NOEDGE
constant OVL_POSEDGE
const ant OVL_NEGEDGE
const ant OVL_ANYEDGE

-- necessary condition

constant OVL_TRI GGER_ON_MOST_PI PE
constant OVL_TRI GGER ON _FI RST_PI PE
constant OVL_TRI GGER_ON_FI RST_NOPI PE

nat ur al

I
w0

i nteger := -1,

ovl _ctrl :=1
ovl _ctrl := 0;

i nt eger
i nt eger
i nt eger

ovl _severity_| evel
;= OVL_NOT_SET;

ovl _severity_level
ovl severity |evel
ovl severity |evel
ovl _severity_| evel

ovl _coverage_| evel
.= OVL_NOT_SET;

ovl coverage_| evel
ovl _coverage_| evel
ovl _coverage_| evel
ovl _coverage_I evel
ovl _coverage_| evel
ovl coverage_| evel

ovl _property_type
: = OVL_NOT_SET;

ovl _property_type :
ovl _property type :
ovl _property_type :
ovl property type :
ovl _property type :

ovl _active_edges
;= OVL_NOT_SET;

ovl _active_edges :
ovl _active_edges :
ovl _active_edges :
ovl _active_edges :

ovl _necessary_condition :
ovl _necessary_condition :
ovl _necessary_condition :

o n
whkR o

PoORNRO

o~

TRTI TR
hroNRO

TRTRRTIT
whkRo

noa
N O

52

Accellera Standard OVL V2, Library Reference Manual, 2.6

December 2011

OVL Basics
VHDL OVL

action on new start

constant OVL_I GNORE_NEW START
constant OVL_RESET_ON_NEW START
constant OVL_ERROR _ON_NEW START

i nactive levels

constant OVL_ALL_ZERGCS
constant OVL_ALL_ONES
constant OVL_ONE_COLD

reset polarity
constant OVL_RESET_PCLARI TY_NOT_SET

constant OVL_ACTI VE_LOW
constant OVL_ACTI VE_H GH

-- gating type
constant OVL_GATElI NG TYPE_NOT_SET

constant OVL_GATE_NONE
constant OVL_GATE_CLOCK
const ant OVL_GATE_RESET

-- ovl _next check_overl appi ng val ues
constant OVL_CHK _OVERLAP_COFF
constant OVL_CHK OVERLAP_ON

-- checker xcheck type
constant OVL_I MPLI C T_XCHECK
constant OVL_EXPLI Cl T_XCHECK

default val ues
constant OVL_SEVERI TY_DEFAULT

constant OVL_PROPERTY_DEFAULT
const ant OVL_MSG_NUL

constant OVL_MSG DEFAULT
constant OVL_MSG NOT_SET
constant OVL_COVER DEFAULT
constant OVL_CLOCK EDCGE DEFAULT
constant OVL_RESET_PCOLARI TY_DEFAULT

constant OVL_GATI NG TYPE_DEFAULT

constant OVL_CTRL_DEFAULTS

ovl _action_on_new start
ovl _action_on_new start
ovl _action_on_new start

TR
NRO

ovl _inactive :
ovl _inactive :
ovl _inactive :

o
N

ovl _reset_polarity
;= OVL_NOT_SET;

ovl _reset _polarity :
ovl _reset _polarity :

inon
e

ovl _gating_type
: = OVL_NOT_SET;

ovl _gating type := 0;
ovl _gating type := 1,
ovl _gating_type := 2;
ovl _chk_overlap := 1,
ovl _chk_overlap := 0;

fal se;
true;

bool ean :
bool ean :

ovl severity |evel
: = OVL_ERROR,

ovl _property_type
: = OVL_ASSERT;

string(10 to ovl _nsg_defaul t_type’ high)

;= (others => NUL);
ovl _nsg _default _type
:= “VIOLATION' & OVL_MSG_NUL;
string
ovl _coverage_I evel
: = OVL_COVER _BASI C,
ovl _active_edges
: = OVL_POSEDGE;
: ovl _reset_polarity
;= OVL_ACTI VE_LOW
ovl _gating_type
.= OVL_GATE_CLOCK;

ovl _ctrl _record := (

Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

53

OVL Basics

VHDL OVL
-- generate statenment controls
xcheck_ctrl => OVL_ON,
implicit _xcheck ctrl => OVL_ON,
init_msg_ctrl => OVL_OFF,
init_count_ctrl => OVL_OFF,
assert _ctrl => OVL_ON
cover_ctrl => OVL_OFF
gl obal _reset ctrl => OVL_OFF,
finish_ctrl => OVL_ON,
gating_ctrl => OVL_ON
-- user configurable library constants
mex_report_error => 15,
max_report_cover _point => 15,
runtime_after fatal => “100 ns “,
-- default values for comon generics
severity_ | evel default => OVL_SEVERI TY_ DEFAULT,
property_type_defaul t => OVL_PROPERTY_DEFAULT,
nsg_def aul t => OVL_MSG DEFAULT,
coverage | evel default => OVL_COVER DEFAULT
cl ock_edge_defaul t => OVL_CLOCK EDGE_DEFAULT
reset _polarity_default => OVL_RESET POLARI TY_DEFAULT,
gating_type_defaul t => OVL_GATI NG TYPE DEFAULT

) .

end’package std_ovl;

std_ovl _procs.vhd

-- Accellera Standard V2.4 Open Verification Library (OVL).
-- Accellera Copyright (c) 2009. Al rights reserved.

-- NOTE : This file not suitable for use with synthesis tools,
-- std_ovl procs_syn.vhd inst ead.

library ieee;

use ieee.std_logic_1164.all;
use work.std ovl.all;

use std.textio.all

package std_ovl _procs is

use

-- Users nust only use the ovl_set_nsg and ovl _print_init_count_proc

-- subprograns. Al other subprograns are for interna

use only.

-- This allows the default nessage string to be set for a
-- ovl _ctrl _record. nsg_default constant.

function ovl _set_nsg (
const ant defaul t
) return string;

54

Accellera Standard OVL V2, Library Reference Manual, 2.6

December 2011

OVL Basics
VHDL OVL

-- ovl _print_init_count_proc

-- This is used to print a nessage stating the nunber of checkers
-- that have been initialized.

procedure ovl print_init_count_proc (
constant controls cin ovl _ctrl _record

);

procedure ovl _error_proc (

constant err_nmnsg in string;
constant severity |evel in ovl severity |evel
constant property_type in ovl _property_type
constant assert_nane in string;
constant nsg in string;
constant path in string;
constant controls cin ovl _ctrl _record,
si gnal fatal _sig ;. out std | ogic
vari abl e error_count : inout natura

)

-- ovl _init_nsg_proc

procedure ovl _init_nmsg _proc (
constant severity_| evel in ovl _severity_| evel
constant property_type in ovl property_type
constant assert_name in string;
constant neg in string;
constant path in string;
constant controls in ovl _ctrl _record

)

-- ovl _cover_proc

procedure ovl cover_proc (
constant cvr_nsg in string;
constant assert_nane in string;
constant path in string;
constant controls in ovl _ctrl _record,
vari abl e cover count i nout natura

)

Accellera Standard OVL V2, Library Reference Manual, 2.6 55

December 2011

OVL Basics
VHDL OVL

procedure ovl _finish_proc (
constant assert_name
constant path

constant runtine_after _fata
si gnal fatal _sig

);

function ovl 2state is on (
constant controls
constant property_type

) return bool ean;

in string;

in string;

in string;

in std | ogic

in ovl _ctrl _record;

in ovl _property_type

function ovl _xcheck_is_on (
constant controls
constant property_type
constant explicit_x_check
) return bool ean;

function ovl _get _ctrl_val (
constant instance_va
constant default _ctrl _val
) return natural

function ovl _get _ctrl _val (
constant instance_va
constant default_ctrl _val
) return string;

function cover_itemset (
constant |evel
constant item

) return bool ean;

in ovl _ctrl _record;
in ovl _property_type;
in bool ean

in i nteger;

in nat ur a

in string;

in string

in ovl _coverage_I evel
in ovl coverage_| eve

56

Accellera Standard OVL V2, Library Reference Manual, 2.6

December 2011

OVL Basics
VHDL OVL

function ovl _is_x (
S Do
) return bool ean;

function ovl _is x (
S Do
) return bool ean;

function or_reduce (
% s
) return std_| ogic;

function and_reduce (
% D
) return std_| ogic;

function xor_reduce (
v s
) return std_| ogic;

function
| o
r o
) return std_|l ogi c_vector;

std_l ogi c_vector;
i nteger

function
I D
r s
) return std_ | ogic_vector;

std_Il ogi c_vector;
i nt eger

-- unsi gned conparison functions
-- Note: the width of | nust be >

Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

57

OVL Basics
VHDL OVL

function “>" (

I cin std_Il ogi c_vector
r cin nat ura

) return bool ean;

L e

function “<* (
I cin std_|l ogi c_vector
r cin nat ur a

) return bool ean;

type err_array is array (ovl _severity level natural) of
(1 to 16);

constant err_typ : err_array := (OVL_FATAL =
OVL_ERROR => *
OVL_WARNI NG => *
OVL_I NFO =

end package std_ovl _procs;

package body std_ovl _procs is

-- Users nmust only use the ovl _set_msg and ovl _print_in

string

OVL_FATAL”,
OVL_ERROR’,
OVL_WARNI NG,
OVL_INFO') ;

t _count _proc

-- subprograns. All other subprograns are for internal use only.

-- This allows the default nessage string to be set for
-- ovl _ctrl _record. nsg_default constant.

function ovl _set _nsg (
constant default cin string
) return string is

a

vari abl e new default : ovl _nsg_default_type := (others => NUL);

begin
new default(1 to default’high) := default;
return new defaul t;

end function ovl _set nsg;

58 Accellera Standard OVL V2, Library Reference Manual, 2.6

December 2011

OVL Basics
VHDL OVL

-- ovl _print_init_count_proc
-- This is used to print a nessage stating the nunmber of checkers that
-- have been initialized.

procedure ovl _print_init_count_proc (

constant controls cin ovl _ctrl _record
) is
variable In : I|ine;
begin
if ((controls.init_nmsg_ctrl = O/L_ON) and
(controls.init_count_ctrl = O/L_QON)) then

witeline(output, In);
wite(ln, “OVL_METRICS:
“ & integer’imge(ovl _init_count) & “ OVL assertions initialized”);
witeline(output, In);
witeline(output, In);
end if;
end procedure ovl _print_init_count_ proc;

procedure ovl _error_proc (

constant err_nsg in string;
constant severity_ | evel in ovl _severity_ |evel
constant property_type in ovl property_type
constant assert_nane in string;
constant nsg in string;
constant path in string;
constant controls cin ovl _ctrl _record;
si gnal fatal _sig : out std_l ogic
vari abl e error_count . inout natura
) is
variable In : |ine;
constant severity level ctrl : ovl_severity |level natural :=
ovl _get _ctrl _val (severity level, controls.severity |evel default);
constant property type ctrl : ovl_property type natural :=
ovl _get _ctrl _val (property_type, controls.property type_default);
constant nsg_ctrl . string i=
ovl _get ctrl _val (nsg, controls.nsg default);
begin
error_count := error_count + 1;

if (error_count <= controls.nmax_report_error) then
case (property_type_ ctrl) is
when OVL_ASSERT | OVL_ASSUME | OVL_ASSERT_2STATE
| OVL_ASSUME_2STATE =>
wite(ln, err_typ(severity level _ctrl) & *“
& assert _nane & “ “

& msg_ctrl & *“ : "
& err_nsg
& " . severity * &
ovl _severity level’'inmage(severity level ctrl)
& " time “ & tine'inmage(now)

Accellera Standard OVL V2, Library Reference Manual, 2.6 59
December 2011

OVL Basics

VHDL OVL
& *“ " & path);
witeline(output, In);
when OVL_|I GNORE => nul | ;
end case;
end if;

if ((severity level _ctrl = OVL_FATAL) and
(controls.finish ctrl = OVL_ON)) then
fatal _sig <= *1";
end if;
end procedure ovl _error_proc;

procedure ovl _init_msg_proc (

constant severity_ | evel in ovl _severity_ |evel
constant property_type in ovl property_type
constant assert_nane in string;
constant nsg in string;
constant path in string;
constant controls in ovl _ctrl _record
) is
variable I'n : I|ine;
constant severity level _ctrl : ovl _severity level _natural :=
ovl _get ctrl _val (severity level, controls.severity |evel default);
constant property type ctrl : ovl _property type natural :=
ovl _get ctrl _val (property type, controls.property type default);
constant msg_ctrl : string 1=
ovl _get _ctrl _val (nsg, controls.nmsg_default);
begi n
if (controls.init_count_ctrl = OVL_ON) then
ovl _init _count := ovl _init_count + 1;
el se

case (property type ctrl) is
when OVL_ASSERT | OVL_ASSUME | OVL_ASSERT_2STATE
| OVL_ASSUME_2STATE =>
wite(ln, “OVL_NOTE: “ & OVL_VERSION & “: *“
& assert_nane
& “ initialized @“ & path
& " Severity: “ &
ovl _severity_ level’imge(severity level _ctrl)
& “, Message: “ & nsg_ctrl);
witeline(output, In);
when OVL_| GNORE => NULL;
end case;
end if;
end procedure ovl _init_nsg_proc;

60

Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Basics

VHDL OVL
-- ovl _cover_proc
procedure ovl _cover_proc (
constant cvr_nsg in string;
constant assert_name cin string;
constant path in string;
constant controls cin ovl _ctrl _record;
vari abl e cover _count : inout natura
) is
variable I'n : I|ine;
begin
cover_count := cover_count + 1;
if (cover_count <= controls.nax_report_cover_point) then
wite(ln, “OVL_COVER PO NT : *
& assert _nane & “ : *
& cvr_nsg & “ @ *
& “time “ & tine’inage(now
& " “ & path);
witeline(output, In);
end if;
end procedure ovl _cover_proc;
-- ovl _finish_proc
procedure ovl _finish_proc (
constant assert_nane in string;
constant path cin string;
constant runtine_after _fatal : in string;
si gnal fatal _sig cin std | ogic
) is
variable In : I|ine;
variable runtinme_after _fatal _time : tinme
begin
if (fatal _sig = *1') then
-- convert string to tine
wite(ln, runtine _after fatal);
read(ln, runtinme_after_fatal tine);
wait for runtinme_after fatal tine;
report * OVL : Simnul ation stopped due to a fatal error : *“ &
assert_nane & “ : “ & “time * &
tinme'image(now) & “ “ & path severity failure
end if;
end procedure ovl _finish_proc;
Accellera Standard OVL V2, Library Reference Manual, 2.6 61

December 2011

OVL Basics
VHDL OVL

function ovl _2state_is_on (

constant controls cin ovl ctrl _record,
constant property_type cin ovl _property_type
) return boolean is
constant property type ctrl : ovl _property type natural :=
ovl _get ctrl _val (property type, controls.property type default);
begin
return (controls.assert_ctrl = OVL_ON) and

(property_type_ctrl /= OVL_I GNORE)
end function ovl_2state_is_on;

function ovl _xcheck_is_on (

constant controls cin ovl _ctrl _record,
constant property type cin ovl property type
constant explicit_x_check cin bool ean
) return boolean is
constant property type ctrl : ovl_property type natural :=
ovl _get _ctrl _val (property_type, controls.property type_default);
begi n
return (controls.assert_ctrl = OVL_ON) and
(property type ctrl /= OVL_| GNORE) and
(property_type ctrl /= OVL_ASSERT 2STATE) and
(property_type_ ctrl /= OVL_ASSUME 2STATE) and
(control s. xcheck_ctrl = OVL_ON) and

((controls.inplicit_xcheck_ctrl = O/WL_ON) or explicit_x_check);
end function ovl _xcheck is_on;

function ovl _get _ctrl_val (

constant instance_val cin i nt eger
constant default _ctrl _val cin nat ur al
) return natural is
begin

if (instance_val = OVL_NOT_SET) then
return default_ctrl _val
el se
return instance_val
end if;
end function ovl _get _ctrl _val

62

Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Basics

VHDL OVL
-- ovl _get _ctrl _val
function ovl _get _ctrl_val (
constant instance_val in string;
constant default _ctrl _val cin string
) return string is
variable nsg default width : integer := ovl _nsg_default _type’ high
begin
if (instance_val = OVL_MSG NOT_SET) then
-- get width of nmsg_default val ue
for i in 1 to ovl_nsg_default_type’ high | oop
if (default_ctrl_val (i) = NUL) then
nmsg _default width :=1i - 1;
exit;
end if;
end | oop;
return default _ctrl _val (1 to nmsg_default_width);
el se
return instance_val
end if;
end function ovl _get _ctrl _val
-- cover_itemset
-- determines if a bit in the level integer is set or not.
function cover_itemset (
constant |evel cin ovl _coverage_I evel
constant item cin ovl coverage_| eve
) return boolean is
begin
return ((level nod (item* 2)) >= item;
end function cover_item set;
-- ovl _is_x
function ovl _is_x (
S cin std_l ogic
) return boolean is
begi n
return is_x(s);
end function ovl _is_x;
-- ovl _is x
function ovl is x (
S cin std_l ogi c_vector
) return boolean is
begin
return is_x(s);
end function ovl _is_x;
Accellera Standard OVL V2, Library Reference Manual, 2.6 63

December 2011

OVL Basics
VHDL OVL

function or_reduce (
v

) return std_logic is
variable result : std_|l ogic;

begin
for i in v range | oop
if i =vileft then
result := v(i);
el se
result :=result or v(i);
end if;
exit when result =21
end | oop;

return result;
end function or_reduce;

function and_reduce (
%

) return std_logic is
variable result : std_|ogic;

begin
for i in v range | oop
if i =vileft then
result = v(i);
el se
result :=result and v(i);
end if;
exit when result =0
end | oop;

return result;
end function and_reduce;

function xor_reduce (
%

) return std logic is
variable result : std_|ogic;

begin
for i in v range | oop
if i =vileft then
result := v(i);
el se
result :=result xor v(i);
end if;
end | oop;

return result;
end function xor_reduce;

in std_Il ogi c_vector
in std_Il ogi c_vector
in std_|l ogi c_vector

64

Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Basics
VHDL OVL

- sl |

function “sll” (
I cin std_Il ogi c_vector;
r cin i nt eger

) return std_logic_vector is

begin

return to_stdl ogicvector(to_bitvector(l) sll r);
end function “sll”;

- srl

function “srl” (
I cin std_Il ogi c_vector;
r cin i nteger

) return std_|l ogic_vector is

begi n

return to_stdl ogicvector(to_bitvector(l) srl r);
end function “srl”;

function unsigned numbits (arg: natural) return natural is
vari able nbits: natural;
vari able n: natural;

begin
n := arg;
nbits := 1;

while n > 1 | oop
nbits := nbits+1;
n:=n/ 2
end | oop;
return nbits;
end unsi gned_num bits;

function to_unsigned (arg, size: natural) return std_logic_vector is
variable result: std_|logic_vector(size-1 downto 0);
variable i_val: natural := arg;
begi n
for i inOtoresult'left |oop
if (i_val nod 2) = 0 then
result(i) :="'0";
else result(i) :="'1";
end if;
i_val :=1i _val/Z2;
end | oop;
return result;
end to_unsi gned;

Accellera Standard OVL V2, Library Reference Manual, 2.6 65
December 2011

OVL Basics
VHDL OVL

-- unsigned conparison functions
-- Note: the width of | nust be > 0.

function “>" (

I cin std_| ogi c_vector
r s in nat ur a

) return boolean is

begin
if is x(1) then return false; end if;
if unsigned_numbits(r) > 1'length then return false; end if;
return not (I <= to_unsigned(r, |I'length));

end function “>"

-- “ <“

function “<* (
I cin std_l ogi c_vector
r cin nat ur a

) return boolean is

begin
if is_x(l) then return false; end if;
if unsigned numbits(r) > 1'length then return O <r; end if;
return (I < to_unsigned(r, |I'length));

end function “<*

end package body std _ovl procs;
66 Accellera Standard OVL V2, Library Reference Manual, 2.6

December 2011

Chapter 3
OVL Checker Data Sheets

Each OVL assertion checker type has a data sheet that provides the specification for checkers of
that type. This chapter lists the checker data sheets in aphabetical order by checker type. Data
sheets contain the following information:

e Syntax
Syntax statement for specifying a checker of the type, with:
» Parameters/Generics — parameters/generics that configure the checker.
» Ports— checker ports.
» Description
Description of the functionality and usage of checkers of the type, with:
» Assertion Checks — violation types (or messages) with descriptions of failures.
» Cover Points — cover point messages with descriptions.
» Cover Groups — cover group messages with descriptions.
» Errors* — possible errorsthat are not assertion failures.
* Notes*
Notes describing any special features or requirements.
 Seealso
List of other similar checker types.
 Examples
Examples of directives and checker applications.

* not applicable to all checker types.

Accellera Standard OVL V2, Library Reference Manual, 2.6 67
December 2011

OVL Checker Data Sheets
ovl_always

ovl _always

Checks that the value of an expression is TRUE.

Parameters/Generics. coverage level

fire[OVL_FI RE_W DTH- 1:0]}— Severity_level clock_edge
property_type reset_polarity
—test_expr ovl_always msg gating_type

Class: 1-cycle assertion

clock reset enable
[} [} [}

Syntax

ovl _al ways
[#(severity level, property_ type, mnmsg, coverage_l evel, clock_edge,
reset_polarity, gating type)]
i nstance_nane (cl ock, reset, enable, test_expr, fire);

Parameters/Generics

severity_|l evel Severity of the failure. Default: OVL_SEVERITY_DEFAULT
(OVL_ERROR).

property_type Property type. Default: OVL_PROPERTY_DEFAULT
(OVL_ASSERT).

nmsg Error message printed when assertion fails. Default:
OVL_MSG DEFAULT (“VIOLATION").

cover age_| evel Coverage level. Default: OVL_COVER _DEFAULT
(OVL_COVER _BASIC).

cl ock_edge Active edge of the clock input. Default:
OVL_CLOCK_EDGE DEFAULT (OVL_POSEDGE).

reset_polarity Polarity (active level) of the reset input. Default:

OVL_RESET_POLARITY DEFAULT
(OVL_ACTIVE_LOW).

gating_type Gating behavior of the checker when enable is FALSE. Default:
OVL_GATING_TYPE DEFAULT (OVL_GATE_CLOCK).

68 Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets

ovl_always
Ports
cl ock Clock event for the assertion.
reset Synchronous reset signal indicating completed initialization.
enabl e Enable signal for clock, if gating_type= OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_typeis OVL_NONE.
t est _expr Expression that should evaluate to TRUE on the active clock
edge.
fire Fire output. Assertion failure when fire[0] is TRUE. X/Z check
[OVL_FI RE_WDTH-1: 0] failurewhen fire[1] is TRUE. Cover event when fire[2] is TRUE.
Description

The ovl_always assertion checker checksthe single-bit expression test_expr at each active edge
of clock. If test_expr isnot TRUE, an always check violation occurs.

Assertion Checks

ALVWAYS Expression did not evaluate to TRUE.
Implicit X/Z Checks

test_expr contains X or Z Expression valuewas X or Z.

Cover Points

none

Cover Groups

none
See also
ovl_always on edge ovl_never
ovl_implication ovl_proposition
Accellera Standard OVL V2, Library Reference Manual, 2.6 69

December 2011

OVL Checker Data Sheets
ovl_always

Example

ovl _al ways #(

* OVL_ERROR, /'l severity_|evel
* OVL_ASSERT, /1 property type
“Error: reg_a < reg_b is not TRUE", /'l nsg

* OVL_COVER NONE, /1l coverage_| evel
* OVL_POSEDCGE, /'l cl ock_edge

“ OVL_ACTI VE_LOW /'l reset_polarity
* OVL_GATE_CLOCK) /1 gating_type

reg a lt reg_ b (

cl ock, /1l clock
reset, /] reset
enabl e, /1 enabl e
reg a < reg_b, /'l test_expr
fire); /Il fire

Checksthat (reg_a < reg_b) is TRUE at each rising edge of clock.
cock LT LI LI LI L L7 LI

reset J ']]]]]]

reg_a<reg_b

ALWAYS Error: reg_a < reg_b is not TRUE

70 Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets
ovl_always_on_edge

ovl _always _on_edge

Checks that the value of an expression is TRUE when a sampling event undergoes a specified

transition.

Parameter Generics:

fire[OVL_FI RE_W DTH- 1:0] severity level coverage level

—>| sampling_event edge_type clock edge
ovl_always_on_edge property_type reset_polarity

msg gating_type

—>test_expr

clock reset enable

Class. 2-cycle assertion

T T

Syntax

ovl _always_on_edge

T

[#(severity level, edge type, property type, nsg, coverage |l evel,

cl ock_edge,

reset _polarity, gating type)]

i nstance_nane (cl ock, reset, enable, sanpling event, test_expr, fire);

Parameters/Generics

severity_ | evel

edge_type

property_type

msg

coverage_| evel

cl ock_edge

reset _polarity

Severity of the failure. Default: OVL_SEVERITY _DEFAULT
(OVL_ERROR).

Transition type for sampling event: OVL_NOEDGE,
OVL_POSEDGE, OVL_NEGEDGE or OVL_ANYEDGE.
Default: OVL_NOEDGE.

Property type. Default: OVL_PROPERTY_DEFAULT
(OVL_ASSERT).

Error message printed when assertion fails. Default:
OVL_MSG DEFAULT (“VIOLATION").

Coverage level. Default: OVL_COVER _DEFAULT
(OVL_COVER BASIC).

Active edge of the clock input. Default:
OVL_CLOCK_EDGE _DEFAULT (OVL_POSEDGE).

Polarity (active level) of the reset input. Default:
OVL_RESET _POLARITY_DEFAULT
(OVL_ACTIVE_LOW).

gating_type Gating behavior of the checker when enable is FALSE. Default:
OVL_GATING_TYPE DEFAULT (OVL_GATE_CLOCK).
Accellera Standard OVL V2, Library Reference Manual, 2.6 71

December 2011

OVL Checker Data Sheets
ovl_always_on_edge

Ports
cl ock Clock event for the assertion.
reset Synchronous reset signal indicating completed initialization.
enabl e Enable signal for clock, if gating_type= OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_typeis OVL_NONE.
sanpl i ng_event Expression that (along with edge type) identifies when to
evaluate and test test_expr.
test _expr Expression that should evaluate to TRUE on the active clock
edge.
fire Fire output. Assertion failure when fire[0] is TRUE. X/Z check
[OVL_FI RE_W DTH- 1: 0] failurewhen fire[1] is TRUE. Cover event when fire[2] is TRUE.
Description

Theovl_always on_edge assertion checker checksthe single-bit expression sampling_event for
aparticular type of transition. If the specified transition of the sampling event occurs, the single-
bit expression test_expr is evaluated at the active edge of clock to verify the expression does not
evaluate to FALSE.

The edge _type parameter determines which type of transition of sampling_event initiates the
check:

* OVL_POSEDGE performsthe check if sampling_event transitions from FALSE to
TRUE.

* OVL_NEGEDGE performs the check if sampling_event transitions from TRUE to
FALSE.

* OVL_ANYEDGE performsthe check if sampling_event transitions from TRUE to
FALSE or from FALSE to TRUE.

* OVL_NOEDGE awaysinitiates the check. Thisisthe default value of edge_type. In
this case, sampling_event is never sampled and the checker has the same functionality as
ovl_always.

The checker isavariant of ovl_always, with the added capability of qualifying the assertion
with a sampling event transition. This checker is useful when events are identified by their
transition in addition to their logical state.

72 Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets
ovl_always_on_edge

Assertion Checks

ALVAYS_ON_EDGE

Implicit X/Z Checks

test_expr contains X or Z

sampling_event contains X
orzZ

Cover Points

none

Cover Groups

none

See also

ovl_aways
ovl_implication

Examples

Examplel

ovl _al ways_on_edge #(

Expression evaluated to FAL SE when the sampling event
transitioned as specified by edge type.

Expression valuewas X or Z.
Sampling event value was X or Z.

ovl_never
ovl_proposition

* OVL_ERROR, /'l severity_|evel
* OVL_POSEDGE, /1 edge_type

* OVL_ASSERT, /1 property type
“Error: new req when FSM not ready”, /'l msg

* OVL_COVER_NONE,
* OVL_POSEDGE,

“ OVL_ACTI VE_LOW
“ OVL_GATE_CLOCK)

/'l coverage_| evel
/'l cl ock_edge

/'l reset _polarity
/1 gating_type

request _when_FSM.idle (

cl ock, /1 clock
reset, /'l reset
enable, /1 enabl e
req, /1 sanpling_event
state == ‘|1 DLE, /'l test_expr
fire_request when FSM _idle); Il fire
Accellera Standard OVL V2, Library Reference Manual, 2.6 73

December 2011

OVL Checker Data Sheets
ovl_always_on_edge

Checksthat (state == ‘IDLE) is TRUE at each rising edge of clock when req transitions from
FALSE to TRUE.
cock LI LI LI LI I 171 171"

reset [! ! ! ! ! !
red I S — L — L
state [IDLE ['WR] 'IDLE [RD [“WAIT

ALWAYS_ON_EDGE Error: new req when FSM not ready

Example 2

ovl _always_on_edge #(

* OVL_ERROR, /'l severity_level
* OVL_ANYEDGE, /'l edge_type

* OVL_ASSERT, /] property_type
“Error: regtransition when FSM not idle’, /1 msg

* OVL_COVER_NONE, /1 coverage_| evel
* OVL_POSEDGE, /'l cl ock_edge

“ OVL_ACTI VE_LOW /1l reset _polarity
‘ OVL_GATE_CLOCK) /] gating_type

req_transition_when FSMidle (

cl ock, /'l clock

reset, /'l reset

enabl e, /'l enabl e

redg, /'l sanpling_event
state == ‘| DLE, /] test_expr

fire_reg transition when FSM idle); Il fire

Checks that (state == *IDLE) is TRUE at each rising edge of clock when req transitions from
TRUE to FALSE or from FALSE to TRUE.
cock L 1L L LI

reset []
S N SR : L.
state [IDLE ['WR] TOLE [RD_[_WAIT

ALWAYS_ON_EDGE Error: req transition when FSM not idle

74 Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets
ovl_always_on_edge

Example 3

ovl _al ways_on_edge #(

* OVL_ERROR, /'l severity_level
* OVL_NCEDGE, /1 edge_type

* OVL_ASSERT, /] property_type
“BError: req when FSM not idle”, /'l nsg

* OVL_COVER_NONE, /'l coverage_| evel
* OVL_POSEDGE, /'l cl ock_edge

“ OVL_ACTI VE_LOW /1l reset _polarity
“ OVL_GATE_CLOCK) /1 gating_type

req_when_FSM.idle (

cl ock, /'l clock
reset, /] reset
enabl e, /1 enabl e
1’ bO, /1 sanpling_event
lreq || (state == ‘1DLE), /'l test_expr
fire_req when FSM idle); Il fire
Checksthat (Ireq || (state == *IDLE)) is TRUE at each rising edge of clock.

cock LI LI LI LI L1 LI LI

reset _| . . : : : : :

state [DLE [WR | TLE | RD | "WAIT

ALWAYS_ON_EDGE Error: req when FSM not idle

Accellera Standard OVL V2, Library Reference Manual, 2.6 75
December 2011

OVL Checker Data Sheets
ovl_arbiter

ovl_arbiter

Checksthat aresource arbiter provides grantsto corresponding requests according to a specified
arbitration scheme and within a specified time window.

fire[OVL_FIRE_WIDTH-1:0] }— Parameter s'Generics.
__|reqgs[width-1:0] severity level one_cycle gnt_check
—_|gnts[width-1:0] width property_type
ovl_arbiter pr_lorlty_W|dth msg
. |priorities[priority_width*width-1:0] min_cks coverage_|evel
max_cks clock_edge
clock reset enable arbitration_rule reset_polarity
' ' priority_check gating_type

Syntax

ovl _arbiter

Class: event-bounded assertion

[#(severity_level, width, priority_w dth, mn_cks, nmax_cks,
one_cycle_gnt _check, priority check, arbitration_rule,
property type, nsg, coverage_ |level, clock edge, reset polarity,
gating_type)]

i nstance_nane (cl ock, reset, enable, reqs, priorities, gnts, fire);

Parameters/Generics

severity_ | evel

wi dt h
priority_wdth

m n_cks

max_cks

one_cycl e_gnt _check

Severity of the failure. Default: OVL_SEVERITY _DEFAULT
(OVL_ERROR).

Width of regs and gnts ports (number of channels). Default: 2.
Number of bitsto encode a priority valuein priorities. Default: 1.

Minimum number of clock cycles after arequest that its grant can
beissued. If min_cksisO, agrant can be issued in the same cycle
the request is made. Default: 1

Maximum number of clock cycles after arequest that its grant
can beissued. A value of 0 indicates no upper bound for grants.
Default: 0.

Whether or not to perform grant_one checks.
one_cycle_gnt_check =0
Turns off the grant_one check.
one_cycl e_gnt _check = 1 (Default)
Turns on the grant_one check.

76

Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets
ovl_arbiter

arbitration_rule

priority_check

property_type

neg

coverage_| evel

cl ock_edge

reset _polarity

gating_type

Ports

cl ock
reset

enabl e

reqs[w dt h-1: 0]

priorities
[priority_w dth*w dth
-1:0]

Arbitration scheme used by the arbiter. This parameter turns on
the corresponding check for the arbitration scheme.
arbitration_rule = 0 (Default) no scheme
arbitration_rule = 1 fair (round robin)
arbitration rule = 2 FIFO

arbitration_rule = 3 least-recently used

Whether or not to perform priority checks.

priority_check = 0 (Default)
Turns off the priority check.

priority check =1
Turnson the priority check. The min_cks parameter must be 0
orl.

Property type. Default: OVL_PROPERTY_DEFAULT
(OVL_ASSERT).

Error message printed when assertion fails. Default:
OVL_MSG _DEFAULT (“VIOLATION").

Coverage level. Default: OVL_COVER _DEFAULT
(OVL_COVER BASIC).

Active edge of the clock input. Default:
OVL_CLOCK_EDGE_DEFAULT (OVL_POSEDGE).

Polarity (active level) of the reset input. Default:
OVL_RESET_POLARITY_DEFAULT
(OVL_ACTIVE_LOW).

Gating behavior of the checker when enable is FALSE. Default:
OVL_GATING_TYPE DEFAULT (OVL_GATE_CLOCK).

Clock event for the assertion.
Synchronous reset signal indicating completed initialization.

Enable signal for clock, if gating_type = OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_typeisOVL_NONE.

Concatenation of request signalsto the arbiter. Each bit in the
vector is arequest from the corresponding channel.

Concatenation of non-negative integer values corresponding to
the request priorities of the corresponding req channels (O isthe
lowest priority). If the priority check is on, priorities must not
change while any channel iswaiting for agrant (otherwise
certain checks might produce incorrect results). If the priority
check is off, this port isignored (however, the port must be
configured with the specified width).

Accellera Standard OVL V2, Library Reference Manual, 2.6 77

December 2011

OVL Checker Data Sheets

ovl_arbiter
gnt s[wi dt h-1: 0] Concatenation of grant signals from the arbiter. Each bit in the
vector isagrant to the corresponding channel.
fire Fire output. Assertion failure when fire[0] is TRUE. X/Z check
[OVL_FI RE_WDTH- 1: 0] failurewhen fire[1] is TRUE. Cover event when fire[2] is TRUE.
Description

The ovl_arbiter checker checks that an arbiter follows a specified arbitration process. The
checker checks regs and gnts at each active edge of clock. These are two bit vectors
representing respectively requests from the channels and grants from the arbiter. Both vectors
have the same size (width), which is the same as the number of channels.

A request from a channel is signaled by asserting its corresponding regs bit, which should be
followed (according to the configured arbitration rules) by aresponding assertion of the same
bit in gnts. If arequest deasserts before the arbiter issues the corresponding grant, all checksfor
that request are cancelled. If arequest remains asserted in the cycle its grant isissued, a new
request is assumed.

The ovl_arbiter checker checks the following rules:

* A grant should not be issued to a channel without arequest.
* A grant asserts for one cycle (unless the grant is for consecutive requests).

* A grant should beissued in the time window specified by [min_cks:max_cks| after its
request.

The ovl_arbiter checker can be configured to check that at most one grant is issued each cycle
(i.e., asingle grant at atime).

Theovl_arbiter checker also can be configured to check a specific arbitration scheme by turning
the priority check on or off and selecting avalue for arbitration_rule. The combination of the
two selections determines the expected arbitration scheme.

* Primary rule.

If the priority check is on, priority arbitration is the primary rule. When arequest is
made, the valuesin priorities are the priorities of the corresponding channelsin
ascending priority order (avalue of 0 isthe lowest priority). If multiple requests are
pending, the grant should be issued to the channel with the highest priority. If more than
one channel has the highest priority, the grant is made according to the secondary rule
(applied to the channels with that priority).

If the priority check is off, only the secondary rule is used to arbitrate the grant.

78 Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets
ovl_arbiter

» Secondary rule.

The secondary rule is determined by the arbitration_rule parameter. Thisrule appliesto
the channels with the highest priority if the priority check ison and to all channelsif the
priority check is off. If arbitration_ruleis 0, no secondary rule is assumed (if the
priority check is on and multiple channels have the highest priority, any of them can
receive the grant). If the priority check is off, no arbitration scheme checks are

performed.

If arbitration_ruleisnot 0, the secondary ruleis one of the following:

* Fairness or round-robin rule (arbitration_ruleis 1).

Grant is not issued to a (high-priority) channel that has received a grant while
another channel’ srequest is pending.

e First-in first-out (FIFO) rule (arbitration_ruleis 2).

Grant isissued to a (high-priority) channel with the longest pending request.

* Least-recently used (LRU) rule (arbitration_ruleis 3).

Grant isissued to a (high-priority) channel whose previous grant was issued the
longest time before the current cycle.

Assertion Checks

GNT_ONLY_| F_REQ

ONE_CYCLE_GNT

GNT_I N_W NDOW

H GHEST_PRIORI TY

FAI RNESS

Grant was issued without a request.
Gnt bit was TRUE, but the corresponding req bit was not
TRUE or transitioning from TRUE.

Grant was asserted for longer than 1 cycle.
Grant was TRUE for 2 cyclesin response to only one request.

Grant was not issued within the specified tinme
Wi ndow.
Grant was issued before min_cks cycles or no grant was
issued by max_cks cycles.

Grant was issued for a request other than the hi ghest
priority request.
priority check =1
Grant was issued, but another pending request had higher
priority than al the requests that received grants.

Two grants were issued to the same channel while another
channel’ s request was pending.
arbitration_ rule = 1
Two grants were issued to a channel while arequest from
another channel was pending (violating the fairnessrule).

Accellera Standard OVL V2, Library Reference Manual, 2.6 79

December 2011

OVL Checker Data Sheets
ovl_arbiter

FI FO

LRU

S| NGLE_GRANT

Implicit X/Z Checks

regs contains X or Z

grants contains X or Z

priorities contains X or Z

Cover Points

cover _reg_granted

cover _req_aborted

cover _reqg_granted_at _

m n_cks

cover _reqg_granted_at _

max_cks

tinme_to_grant

concurrent _requests

Grant was issued for a request that was not the
| ongest pendi ng request.
arbitration_ rule = 2
Grant was issued, but one or more other (high priority)
requests were pending longer than the granted request
(violating the FIFO rule).

Grant was issued to a channel that was more-recently used than
another channel with a pending request.
arbitration_rule = 3
Grant was issued, but another channel with a pending (high
priority) request received its previous grant before the granted
channel received its previous grant (violating the fairness
rule).

Multiple grants were issued in the same cl ock cycle.
one_cycle_gnt_check =1
More than one gnts bit was TRUE in the same clock cycle.

Requests contained X or Z bits. Because this valueis held
internally, the checker cannot operate correctly until reset.

Grants contained X or Z bits. Because thisvalueis held
internally, the checker cannot operate correctly until reset.

Priorities contained X or Z hits.

BASIC — Number of granted requests for each channel.
BASIC — Number of aborted requests for each channel.

CORNER — Number of times grant was issued min_cks cycles
after its request was asserted.

CORNER — Number of times grant was issued max_cks cycles
after its request was asserted.

STATISTIC — Reports the number of requests granted at each
cycle in the time window.

STATISTIC — Reports for each channel, the number of times
each other channel had requests concurrent with that channel.

80

Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets
ovl_arbiter

Cover Groups

time_to_grant

concurrent _requests

Number of grants with the specified request-to-grant latency.
Bins are:
 time_to_grant_good[min_cks:max_cks| — bin index isthe
observed latency in clock cycles.
 time_to_grant_bad — default.

Number of cycles with the specified number of concurrent
requests. Bins are:
» oObserved regs good[l:width] — bin index isthe number of
concurrent requests.

Accellera Standard OVL V2, Library Reference Manual, 2.6 81

December 2011

OVL Checker Data Sheets
ovl_bits

ovl_bits

Checks that the number of asserted (or deasserted) bits of the value of an expression iswithin a
specified range.

Parameter/Generics. property_type
severity level msg
fire[OVL_FIRE_WIDTH-1:0] }— \uidith coverage level
ovl_bits asserted clock _edge
—>|test_expr{width-1:0] min I’eS_et_pol arity
max gating_type
clock reset enable . .
 y— T Class: 1-cycle assertion
Syntax
ovl _bits

[#(severity level, min, nmax, width, asserted, property type, nsg,
coverage | evel, clock edge, reset _polarity, gating type)]
i nstance_nane (clock, reset, enable, test_expr, fire);

Parameters/Generics

severity_ | evel Severity of the failure. Default: OVL_SEVERITY _DEFAULT
(OVL_ERROR).

wi dt h Width of the test_expr argument. Default: 1.

asserted Whether to count asserted or deasserted bits.

asserted = 0

Counts FAL SE (deasserted) hits.
asserted = 1 (Default)

Counts TRUE (asserted) bits.

mn Whether or not to perform min checks. Default: 1.
mn=20
Turns off the min check.
mn =1
Minimum number of bitsin test_expr that should be asserted
(or deasserted).

max Maximum number of bitsintest_expr that should be asserted (or
deasserted). Max must be > min. Default: 1.

property_type Property type. Default: OVL_PROPERTY_DEFAULT
(OVL_ASSERT).

msg Error message printed when assertion fails. Default:

OVL_MSG_DEFAULT (“VIOLATION”).

82 Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets
ovl_bits

cover age_| evel
cl ock_edge

reset_polarity

gating_type

Ports

cl ock
r eset

enabl e

test _expr[w dt h-1:0]

fire
[OVL_FI RE_W DTH- 1: 0]

Description

Coverage level. Default: OVL_COVER_DEFAULT
(OVL_COVER_BASIC).

Active edge of the clock input. Default:
OVL_CLOCK_EDGE_DEFAULT (OVL_POSEDGE).

Polarity (active level) of the reset input. Default:
OVL_RESET POLARITY _DEFAULT
(OVL_ACTIVE_LOW).

Gating behavior of the checker when enableis FALSE. Default:
OVL_GATING_TYPE_DEFAULT (OVL_GATE_CLOCK).

Clock event for the assertion.
Synchronous reset signal indicating completed initialization.

Enable signal for clock, if gating_type = OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_typeis OVL_NONE.

Variable or expression to check.

Fire output. Assertion failure when fire[0] is TRUE. X/Z check
failurewhenfire[1] is TRUE. Cover event when fire[2] is TRUE.

The ovl_bits checker checks the multiple-bit expression test_expr at each active edge of clock
and counts the number of TRUE bits (if asserted is 1) or FALSE bits (if asserted is0). If the
count is< min amin violation occurs and if the count is> max, amax violation occurs. X and Z
bits are not included in the bit count.

Assertion Checks

M N

Fewer than ‘min’ bits were asserted.
mn >0 and asserted =1
The number of TRUE bitsin the value of test_expr was less
than the minimum specified by min.

Fewer than ‘min’ bits were deasserted.
mn > 0 and asserted = 0
The number of FALSE bitsin the value of test_expr was less
than the minimum specified by min.

Accellera Standard OVL V2, Library Reference Manual, 2.6 83

December 2011

OVL Checker Data Sheets
ovl_bits

MAX

Il egal paraneter
val ues set where
mn > nmax

Implicit X/Z Checks

test_expr contains X or Z

Cover Points

cover _val ues_checked

cover_bits within_
limt

cover_bits_at_min

cover_bits_at nmax

Cover Groups

More than ‘max’ bits were asserted.
asserted = 1
The number of TRUE bitsin the value of test_expr was more
than the maximum specified by max.

More than ‘max’ bits were deasserted.
asserted = 0
The number of FALSE bitsin the value of test_expr was
more than the maximum specified by max.

Max is not O, but max < min.

Expression contained X or Z bits.

SANITY — Number of cyclestest expr changed value.

BASIC — Number of cyclesthe number of counted test_expr
bits was in range.

CORNER — Number of cycles the number of counted test_expr
bits was min.

CORNER — Number of cycles the number of counted test_expr
bits was max.

none
See also
ovl_mutex ovl_one_hot
ovl_one cold
84 Accellera Standard OVL V2, Library Reference Manual, 2.6

December 2011

OVL Checker Data Sheets
ovl_bits

Examples

ovl _bits #(
* OVL_ERROR,

N

TN

OVL_ASSERT,
“Error:
* OVL_COVER _NONE

* OVL_POSEDGE

“ OVL_ACTI VE_LOW
‘ OVL_GATE_CLOCK)

I D select bits out of

ovl _id_sel _bits_in_range (

cl k,
reset,
id_ok,

i d_sel,

fire_id se hits);

range.”,

11
/1
/1
/1
/11
11
11
/1
/1
/1
/1

/1
I
11

11
/1

severity_| evel
wi dt h
asserted

mn

max
property_type
nmsg
coverage_| evel

cl ock_edge
reset_polarity
gating_type

cl ock

reset

enabl e

t est _expr

fire

Checksthat id_sel hasexactly 1 or 2 TRUE bits each clk cycleid ok is TRUE.

clk !

i d_ok

id_sel

fire_ id sel bits

Error: ID select
More than ‘ max’

bits out of
bits were asserted.

OVL_BI TS_MAX

range.

Error:
Fewer than

: : : : : : : : :
‘(C\/L_BI TS M N*"

I D select bits out of

range.

‘mn’ bits were asserted.

Accellera Standard OVL V2, Library Reference Manual, 2.6

December 2011

85

OVL Checker Data Sheets
ovl_change

ovl _change

Checks that the value of an expression changes within a specified number of cycles after a start
event initiates checking.

Parameter Generics:

fire[OVL_FIRE_WIDTH-1:0] }— Severity level msg
— start_event width coverage level
ovl_change num_cks clock _edge
— . test_expr[width-1:0] action_on_new_start reset_polarity

property_type gating_type
Class. n-cycle assertion

clock reset enable
A A A

Syntax

ovl _change
[#(severity level, width, numcks, action_on _new start,
property type, nsg, coverage_level, clock edge, reset _polarity,
gating_type)]
i nstance_nane (cl ock, reset, enable, start_event, test_expr, fire);

Parameters/Generics

severity_|l evel Severity of the failure. Default: OVL_SEVERITY_DEFAULT
(OVL_ERROR).

wi dt h Width of the test_expr argument. Default: 1.

num cks Number of cyclesto check for achangein the value of test_expr.
Default: 1.

action_on_new start Method for handling a new start event that occurs before

test_expr changes value or num_cks clock cycles transpire
without achange. Values are: OVL_IGNORE_NEW_START,
OVL_RESET_ON_NEW_START and
OVL_ERROR_ON_NEW_START. Default:
OVL_IGNORE_NEW_START.

property_type Property type. Default: OVL_PROPERTY _DEFAULT
(OVL_ASSERT).

nmsg Error message printed when assertion fails. Default:
OVL_MSG_DEFAULT (“VIOLATION").

cover age_| evel Coverage level. Default: OVL_COVER_DEFAULT
(OVL_COVER_BASIC).

cl ock_edge Active edge of the clock input. Default:

OVL_CLOCK_EDGE_DEFAULT (OVL_POSEDGE).

86 Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets
ovl_change

reset_polarity

gating_type

Ports

cl ock
r eset

enabl e

start_event

test _expr[w dth-1:0]

fire
[OVL_FI RE_W DTH- 1: 0]

Description

Polarity (active level) of the reset input. Default:
OVL_RESET POLARITY DEFAULT
(OVL_ACTIVE_LOW).

Gating behavior of the checker when enableis FALSE. Default:
OVL_GATING_TYPE_DEFAULT (OVL_GATE_CLOCK).

Clock event for the assertion.
Synchronous reset signal indicating completed initialization.

Enable signal for clock, if gating_type= OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_typeis OVL_NONE.

Expression that (along with action_on_new_start) identifies
when to start checking test_expr .
Expression that should change value within num_cks cyclesfrom

the start event unless the check isinterrupted by avalid new start
event.

Fire output. Assertion failure when fire[0] is TRUE. X/Z check
failurewhenfire[1] is TRUE. Cover event when fire[2] is TRUE.

The ovl_change assertion checker checksthe expression start_event at each active edge of clock
to determineif it should check for achange in the value of test_expr. If start_event is sampled
TRUE, the checker evaluates test_expr and re-evaluates test_expr at each of the subsequent
num_cks active edges of clock. If the value of test_expr has not changed from its start value by
the last of the num_cks cycles, the assertion fails.

The method used to determine how to handle a new start event, when the checker isin the state
of checking for achangeintest_expr, iscontrolled by the action_on _new_start parameter. The
checker has the following actions:

« OVL_IGNORE _NEW_START

The checker does not sample start_event for the next num_cks cycles after a start event
(even if test_expr changed).

« OVL_RESET _ON_NEW_START

The checker samples start_event every cycle. If acheck is pending and the value of
start_event is TRUE, the checker terminates the pending check (no violation occurs
even if the current cycleisnum_cks cycles after the start event and test_expr has not
changed) and initiates a new check with the current value of test_expr.

Accellera Standard OVL V2, Library Reference Manual, 2.6 87

December 2011

OVL Checker Data Sheets
ovl_change

« OVL_ERROR ON_NEW_START

The checker samples start_event every cycle. If acheck is pending and the value of
start_event is TRUE, the assertion failswith anillegal start event violation. In this case,
the checker does not initiate a new check and does not terminate a pending check.

The checker is useful for ensuring proper changes in structures after various events, such as
verifying synchronization circuits respond after initial stimuli. For example, it can be used to
check the protocol that an “acknowledge” occurs within a certain number of cycles after a
“reguest”. It also can be used to check that a finite-state machine changes state after an initial

stimulus.

Assertion Checks

CHANGE

illegal start event

Implicit X/Z Checks

test_expr contains X or Z
start_event contains X or Z

Cover Points

cover _wi ndow_open

cover _wi ndow cl ose

cover _wi ndow resets

Cover Groups

none

Thetest_expr expression did not change value for num_cks
cycles after start_event was sampled TRUE.

The action_on_new_start parameter is set to
OVL_ERROR_ON_NEW_START and start_event expression
evaluated to TRUE while the checker wasin the state of checki ng
for achange in the value of test_expr.

Expression value contained X or Z bits.
Start event valuewas X or Z.

BASIC — A change check was initiated.

BASIC — A change check lasted the full num_cks cycles. If no
assertion failure occurred, the value of test_expr changed in the
last cycle.

CORNER — The action_on_new_start parameter is
OVL_RESET _ON NEW START, and start_event was sampled
TRUE while the checker was monitoring test_expr, but it had not
changed value.

88

Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets

ovl_change
See also
ovl_time ovl_win_unchange
ovl_unchange ovl_window
ovl_win_change
Examples
Example 1
ovl change #(
“ OVL_ERRCR, /'l severity_level
1, /1 width
3, /1 num cks
“ OVL_| GNORE_NEW START, /1 action_on_new start
* OVL_ASSERT, /1 property type
“BError: invalid synchronization”, /'l msg
‘ OVL_COVER DEFAULT, /'l coverage_l| evel
* OVL_POSEDGE, /'l cl ock_edge
“ OVL_ACTI VE_LOW /'l reset _polarity
* OVL_GATE_CLOCK) /'l gating_type
val i d_sync_out (
cl ock, /'l clock
reset, /'l reset
enabl e, /'l enabl e
sync == 1, /1 start_event
out, /'l test_expr
fire_valid_sync_out); Il fire
Checks that out changes within 3 cycles after sync asserts. New starts are ignored.
clock
reset : : : : : : . . : . .
: ' 1, 2, 3y, ' 2, 3
sync \) | \ L)
out S ' ' ‘J ' :
X start events ignored CHANGE Error: invalid synchronization
Accellera Standard OVL V2, Library Reference Manual, 2.6 89

December 2011

OVL Checker Data Sheets
ovl_change

Example 2

ovl _change #(

* OVL_ERROR, /'l severity_level

1, /1 width

3, /'l num cks

“ OVL_RESET_ON_NEW START, /1 action_on_new start
* OVL_ASSERT, /] property_type
“Error: invalid synchronization”, /'l msg

‘ OVL_COVER DEFAULT, /'l coverage_| evel

* OVL_POSEDGE, /1 cl ock_edge

“ OVL_ACTI VE_LOW /] reset_polarity

‘ OVL_GATE_CLOCK) /1 gating_ type

valid_sync_out (

cl ock, /1 clock
reset, /] reset

enabl e, /!l enable
sync == 1, /] start_event
out, /] test_expr
fire_valid sync out); Il fire

Checks that out changes within 3 cycles after sync asserts. A new start terminates the pending
check and initiates a new check.

clock 1 1 2 3
reset : : : : : : : : : : :
! ' VN : ' — L 23 :
sync) \ \) \ \ ’\I\‘\)))
Out 1 1 '_|_| 1 1 | T T T T Aj 1

x start events reset change check CHANGE Error: invalid synchronization

90 Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets

ovl_change

Example 3
ovl _change #(

* OVL_ERROR, /'l severity_level

1, /1 width

3, /'l num cks

“ OVL_ERROR _ON_NEW START, /1 action_on_new start

* OVL_ASSERT, /] property_type

“Error: invalid synchronization”, /'l msg

‘ OVL_COVER DEFAULT, /'l coverage_| evel

* OVL_POSEDGE, /1 cl ock_edge

“ OVL_ACTI VE_LOW /] reset_polarity

‘ OVL_GATE_CLOCK) /1 gating_ type

valid_sync_out (

cl ock, /1 clock

reset, /] reset

enabl e, // enable

sync == 1, /] start_event

out, /'l test_expr
/]l fire

fire_valid sync out);

Checks that out changes within 3 cycles after sync asserts. A new start reports anillegal start
event violation (without initiating a new check) but any pending check is retained (even on the
last check cycle).

clock

reset :

syne :':'5"55“55
out s I SN s S

illegal start event v CHANGE Error: invalid synchronization

Accellera Standard OVL V2, Library Reference Manual, 2.6 91
December 2011

OVL Checker Data Sheets
ovl_code_distance

ovl _code_distance

Checks that when an expression changes value, the number of bitsin the new value that are
different from the bitsin the value of a second expression iswithin a specified range.

fire[OVL_FIRE_WIDTH-1:0] }— Parameters/Generics:

severity level msg
—>|test_expri[width-1:0] width coverage level
ovl_code_distance min clock_edge
max reset_polarity

—|test_expr2[width-1:0] .
property_type gating_type

Class. 1-cycle assertion

clock reset enable
A A A

Syntax

ovl _code_di stance
[#(severity level, mn, nmax, w dth, property type, nsg,
coverage | evel, clock _edge, reset _polarity,
gating_type)]
i nstance_nane (cl ock, reset, enable, test_exprl, test_expr2, fire);

Parameters/Generics

severity_| evel
wi dt h

nmn

max

property_type

msg

coverage_| evel

cl ock_edge

reset _polarity

gating_type

Severity of the failure. Default: OVL_SEVERITY _DEFAULT
(OVL_ERROR).

Width of test_expr and test_expr2. Default: 1.
Minimum code distance. Default: 1.
Maximum code distance. Default: 1.

Property type. Default: OVL_PROPERTY _DEFAULT
(OVL_ASSERT).

Error message printed when assertion fails. Default:
OVL_MSG_DEFAULT (“VIOLATION").

Coverage level. Default: OVL_COVER_DEFAULT
(OVL_COVER_BASIC).

Active edge of the clock input. Default:
OVL_CLOCK_EDGE_DEFAULT (OVL_POSEDGE).

Polarity (active level) of the reset input. Default:
OVL_RESET_POLARITY_DEFAULT
(OVL_ACTIVE_LOW).

Gating behavior of the checker when enable is FALSE. Default:
OVL_GATING_TYPE_DEFAULT (OVL_GATE_CLOCK).

92

Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets
ovl_code_distance

Ports

cl ock
reset

enabl e

test _exprl[wi dt h-1: 0]
test _expr2[wi dt h-1: 0]

fire
[OVL_FI RE_W DTH- 1: 0]

Description

Clock event for the assertion.
Synchronous reset signal indicating completed initialization.

Enable signal for clock, if gating_type= OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_typeis OVL_NONE.

Variable or expression to check when its value changes.

Variable or expression from which the code distance from
test_exprlis calculated.

Fire output. Assertion failure when fire[0] is TRUE. X/Z check
failurewhenfire[1] is TRUE. Cover event when firg[2] is TRUE.

The ovl_code_distance assertion checker checks the expression test_expr1 at each active edge
of clock to determine if test_exprl has changed value. If so, the checker evaluates a second
expression test_expr2 and cal cul ates the absol ute value of the difference between the two values
(called the code distance). If the code distance is < min or > max, the assertion failsand a
code_distance violation occurs.

Assertion Checks

CODE_DI STANCE

Implicit X/Z Checks

test_exprl contains X or Z
test_expr2 contains X or Z

Cover Points

cover _test_expr_
changes

cover _code_di stance_
within_limt
observed_code_

di st ance

cover _code_di stance_
at_mn

Code di stance was not within specified linmts.
Code distance from test_exprl to test_expr2 islessthan min
or greater than max.

Expression contained X or Z hits.
Second expression contained X or Z hits.

SANITY — Number of cyclestest_exprl changed value.

BASIC — Number of cyclestest_exprl changed to avalue
whose code distance from test_expr2 was in the range from min
to max.

BASIC — Reports the code distances that occurred at |east once.

CORNER — Number of cyclestest_exprl changed to avalue
whose code distance from test_expr2 was min.

Accellera Standard OVL V2, Library Reference Manual, 2.6 93

December 2011

OVL Checker Data Sheets
ovl_code_distance

cover _code_di st ance_ CORNER — Number of cyclestest_exprl changed to avalue
at _max whose code distance from test_expr2 was max.

Cover Groups

observed_code_di stance Number of cyclestest _exprl changed to avalue having the
specified code distance from test_expr2. Bins are:
» observed_code_distance_good[min:max] — bin index isthe
code distance from test_expr2.
e observed code distance bad — default.

94 Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets
ovl_coverage

ovl _coverage

Ensures that an HDL statement is covered during simulation.

—{test_expr

clock reset enable

Parameter Generics:

fire[OVL_FIRE WIDTH-1:0] |— SEverity_level clock_edge
property_type reset_polarity
ovl_coverage msg gating_type

coverage level
Class: 1-cycle assertion

T

Syntax

ovl _coverage

[#(severity level, property_ type, mnmsg, coverage_l evel, clock_edge,
reset_polarity, gating type)]
i nstance_nane (cl ock, reset, enable, test_expr, fire);

Parameters/Generics

severity_| evel

property_type

neg

coverage_| evel

cl ock_edge

reset _polarity

Severity of the failure. Default: OVL_SEVERITY_DEFAULT
(OVL_ERROR).

Property type. Default: OVL_PROPERTY_DEFAULT
(OVL_ASSERT).

Error message printed when assertion fails. Default:
OVL_MSG DEFAULT (“VIOLATION").

Coverage level. Default: OVL_COVER _DEFAULT
(OVL_COVER BASIC).

Active edge of the clock input. Default:
OVL_CLOCK_EDGE DEFAULT (OVL_POSEDGE).

Polarity (active level) of the reset input. Default:
OVL_RESET _POLARITY_DEFAULT
(OVL_ACTIVE_LOW).

gating_type Gating behavior of the checker when enable is FALSE. Default:
OVL_GATING_TYPE_DEFAULT (OVL_GATE_CLOCK).
Ports
cl ock Clock event for the checker. The checker samples on therising
edge of the clock.
reset Synchronous reset signal indicating completed initialization.
enabl e Expression that indicates whether or not to check test_expr.
Accellera Standard OVL V2, Library Reference Manual, 2.6 95

December 2011

OVL Checker Data Sheets
ovl_coverage

test _expr Signal or expression to check.

fire Fire output. Assertion failure when fire[0] is TRUE. X/Z check

[OVL_FI RE_WDTH- 1: 0] failure when fire[1] is TRUE. Cover event when fire[2] is TRUE.
Description

The test_expr must not be 1 when the checker is enabled. The checker checks the single-bit
expression test_expr at each rising edge of clock whenever enableis TRUE. If test_expr is1,
the assertion fails and msg is printed.

This checker is used to determine coverage of the test_expr and to gather coverpoint data. As
such, the sense of the assertion is reversed. Unlike other OVL checkers (which verify assertions
that are not expected to fail), ovl_coverage checkers' assertions areintended to fail. Y ou can set
property_typeto "‘OVL_IGNORE to disable the OVL_COVERED assertion check, but retain
the collection of cover point data.

Assertion Checks

COVERAGE The HDL statement was covered.
Expression evaluated to 1.
Implicit X/Z Checks

test_expr contains X or Z Expression contained X or Z bits.

Cover Points

cover _val ues_checked SANITY — Number of cyclestest_expr changed value.

cover _conputati ons_ STATISTIC — Number of timestest_expr was 1 when enable
checked was TRUE.

Cover Groups

None

See also

ovl_vaue coverage

96 Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets
ovl_coverage

Examples

ovl coverage #(
.severity level (‘ OVL_I NFO,
.property type(‘ OVL_ASSERT),
. meg(“ OVL_COVERAGE: queue full™),
.coverage_|l evel (* OVL_COVER ALL))
ovl _cover_queue_state full (
.cl ock(cl ock),
.reset(reset),
. enabl e(accept _requests),
.test_expr(cur_state == FULL),

fire(fire));
I ssues a coverage message when accept_requestsis TRUE and cur_stateis FULL at therising
edge of clock.
cl k]]] 1 1 1 1 L1 °L_]
reset _| ., : : : : : : : :
accept_requests _E_' E E I |_E_| E E E E
cur_state ——EMTY @ [FUL T B [@ [0O
OVL_COVERAGE

The HDL statenment was covered

Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

97

OVL Checker Data Sheets
ovl_crc

ovl _crc

Ensures that the CRC checksum values for a specified expression are calculated properly.

. _ Parameter S/Generics:
—|test_expr[width-1:0] severity level big endian
— | initiali - 101 b == — = i
— y;l:g ize fire [OVL_FIRE_WIDTH-1:0] width | r everse endian
—»|compare ovl_crc data_width invert
— | crefwidth-1:0] crc_width combinational
—|crc_latch
orejaie clock reset enable crc_lenakr)lle property_type
T T T crc_latcl __enabl e msg
polynomial coverage level
standard_polynomial clock _edge
initial_value reset_polarity
Isb first gating_type
Class: event-bounded assertion
Syntax
ovl crc

[#(severity level, width, data width, crc_wi dth, crc_enable,
crc_l atch_enabl e, polynom al, standard_pol ynom al,
initial _value, Isb first, big endian, reverse_endian, invert,
conbi national, property type, nsg, coverage |level, clock edge,
reset _polarity, gating type)]
i nstance_nane (clock, reset, enable, test_expr, initialize, valid,
compare, crc, crc_latch, fire);

Parameters/Generics

severity_|l evel Severity of the failure. Default: OVL_SEVERITY_DEFAULT
(OVL_ERROR).

wi dt h Width of test_expr. Default: 1.

data_wi dth Width of adataitem in the message stream.

data width = 0
Dataitem width iswidth bits (i.e., test_expr holds acomplete
dataitem).

data_wi dth = n x width (n > 0)
Dataitem width is n times the width of test_expr. Each data
item is the concatenation of the values of test_expr collected
over nvalid cycles. For example, if test_expr has the values
2'b11, 2'b10, 2'b01 and 2'b10 over 4 consecutive valid
cycles, then the corresponding dataitem is 8 b11100110.

crc_width Degree of the CRC generator polynomial, width of the CRC
checksum and width of the crc port (if crc_enableis 1). Defaullt:
5.
98 Accellera Standard OVL V2, Library Reference Manual, 2.6

December 2011

OVL Checker Data Sheets
ovl_crc

crc_enabl e

crc_latch_enabl e

pol ynomi al

st andard_pol ynoni al

initial _value

I sb_first

Which data port contains the input CRC value.

crc_enable = 0 (Default)
Test_expr containstheinput CRC value. Crc_width cannot be
< width, or a CRC check violation occurs each compare
cycle. The crc port isignored.

crc_enable = 1 _ _
The crc port contains the complete input CRC value.

Whether or not to latch the internal CRC register value.

crc_latch_enable = 0 (Default)
The current value of the CRC register is compared with the
input CRC value when compare asserts. The crc_latch port is
ignored.

crc_latch_enable = 1
The current value of the CRC register islatched if crc_latch
is TRUE. The latched CRC value is compared with the input
CRC value when compare asserts.

Normal representation of the CRC generator polynomial. Equal
to the concatenation of the polynomial coefficientsin descending
order, skipping the high-order coefficient. For example, the
polynomial value representing:

16 12 5
X +x "+x +1

is4h'1021 (16'b0001 0000 0010 0001). Default: 5'b00101

(x5+x2+1)

Polynomial to useif polynomial isO:
1 — CRC-5-USB (2'h05)
2— CRC-7 (2'h09)
3— CRC-16-CCITT (4'h1021)
4 — CRC-32-1EEE802.3 (8h04C11DB7)
5 — CRC-64-1S0 (16'h000000000000001B)

Initial value of the internal CRC register.
initial _value = 0 (Default)

All O's, for example: 8'h00000000.
initial _value =1

All 1's, for example: 8b11111111.
initial _value = 2

Alternating 10's, for example: 8'b10101010.
initial _value = 3

Alternating 01's, for example: 8'b01010101.

Bit order in the CRC register.
Isb_first = 0 (Default)

MSB first bit order.
Isb_first =1

LSB first bit order (i.e., reflected).

Accellera Standard OVL V2, Library Reference Manual, 2.6 99

December 2011

OVL Checker Data Sheets
ovl_crc

bi g_endi an

reverse_endi an

i nvert

conbi nati ona

property_type

neg

coverage_| evel

cl ock_edge

reset _polarity

Byte order of a message data item.
bi g_endi an = 0 (Default)
Little-endian byte order.
big_endian = 1
Big-endian byte order.

Byte order in the CRC value.
reverse_endi an = 0 (Default)
Byte order is the same as the byte order of a message data
item (i.e., same asthe big_endian parameter).
reverse_endian = 1
Byte order is the opposite of the byte order of a message data

item (i.e., inverse of big_endian parameter).

Sense of the input CRC value.
invert = 0 (Default)
Input CRC valueisthe CRC checksum.
invert =1
Input CRC vaueisthe inverted CRC checksum.

Type of logic used to calculate CRC values.
conbi national = 0 (Default)
CRC iscalculated sequentialy. The input CRC value isthe

CRC checksum for the previous cycle.
conbi national =1
CRC is calculated combinationally. The input CRC valueis

the CRC checksum for the current cycle.

Property type. Default: OVL_PROPERTY _DEFAULT
(OVL_ASSERT).

Error message printed when assertion fails. Default:
OVL_MSG_DEFAULT (“VIOLATION").

Coverage level. Default: OVL_COVER_DEFAULT
(OVL_COVER_BASIC).

Active edge of the clock input. Default:
OVL_CLOCK_EDGE_DEFAULT (OVL_POSEDGE).

Polarity (active level) of the reset input. Default:
OVL_RESET_POLARITY_DEFAULT
(OVL_ACTIVE_LOW).

gating_type Gating behavior of the checker when enable is FALSE. Default:
OVL_GATING_TYPE_DEFAULT (OVL_GATE_CLOCK).
| Ports
cl ock Clock event for the checker. The checker samples inputs on the
rising edge of the clock.
| reset Synchronous reset signal indicating completed initialization.
100 Accellera Standard OVL V2, Library Reference Manual, 2.6

December 2011

OVL Checker Data Sheets

ovl_crc
enabl e Expression that indicates whether or not to check the inputs.
test _expr[w dt h-1: 0] Variable or expression containing the input data.
initialize Initialization signal. If TRUE, the checker loadsitsinternal CRC

register with the initial value specified by theinitial_value
parameter (before reading test_expr).

val i d Datavalid signal. If TRUE, the checker loads the next group of
bits from the message stream (or the input CRC valueif compare
Is TRUE and the crc_enable parameter is 0) from test_expr.

conpar e CRC check signal. If TRUE, the checker initiates a crc assertion
check in the current cycle.

crc[crc_wi dt h-1: 0] Variable or expression containing the input CRC valueif the
crc_enable parameter is 1. If crc_enableis 0, this port isignored.

crc_l atch Internal CRC register latch signal. If TRUE, the checker loads

and processes the test_expr value (if valid) and latches the value
of the internal CRC register for comparison with an input CRC
value (the next cycle compare asserts). Thisinput isignored
unlesscrc_latch enableis 1.

fire Fire output. Assertion failure when fire[0] is TRUE. X/Z check
[OVL_FI RE_W DTH- 1: 0] faillurewhen fire[1] is TRUE. Cover event when fire[2] is TRUE.
Description

The ovl_crc checker ensures CRC checksums are calculated properly. The checker evaluates
theinitialize signal at each rising edge of clock whenever enableis TRUE. If initializeis TRUE,
the checker restartsits CRC calculation algorithm, which initializes the internal CRC register to
theinitial value specified by theinitial _value parameter. After that, in the current cycle and in
each subsequent cycle, the checker checks the valid signal. If valid is TRUE and compareis
FALSE, the value of test_expr is taken as the next group of bitsin the message stream. By
default, this group is shifted into the internal CRC register, displacing the group at the opposite
end and the internal CRC register is then updated with the CRC register value XORed with a
value from alookup table. Thisinternal CRC value is the calculated CRC checksum for the
message stream read from test_expr sinceinitialization.

After initialization, the checker also checks the compare signal each cycle. By defaullt:

e width crc_width

If compare and valid are both TRUE, the checker compares the value of test_expr with
theinternal CRC value. If they do not match, a CRC check violation occurs.

Accellera Standard OVL V2, Library Reference Manual, 2.6 101
December 2011

OVL Checker Data Sheets

ovl_crc

width < crc_width

If compare and valid are both TRUE, the checker compares the value of test_expr with
the first width bits of the internal CRC value. If they do not match, a CRC check
violation occurs. Then, each successive cycle in which compare and valid are both
TRUE, the checker compares the value of test_expr with the corresponding bits of the
internal CRC value. If they do not match, a CRC check violation occurs.

Because applications for CRC checking are so diverse, the ovl_crc checker contains a generic
CRC calculator adaptable to virtually any CRC scheme and implementation. The following
information is required to configure the calculator properly:

Data stream handling

The algorithm shifts data into the CRC register and generates the internal CRC value
one dataitem at atime. By default, the test_expr port contains an entire data item.
However, the checker can support seria input and systems where data items are loaded
in multibit pieces. In these cases, specify the width of a dataitem with the data width
parameter. The checker will accumulate the data item from test_expr over consecutive
valid cyclesand onthelast cycle (i.e., when the dataitem is compl ete) shift the dataitem
onto the CRC register.

Algorithm controls

The standard variations on CRC computation are configured with checker parameters.
The CRC generator polynomial is specified by setting the polynomial parameter to its
normal representation. L SB first and big-endian data representation conventions are
selected by setting the Isb_first and big_endian parameters respectively to 1.

CRC comparison

By default, the input CRC values are embedded in the data stream seen at the test_expr
port. Setting the crc_enable parameter to 1 configures the checker to take the input CRC
value from the crc port instead, so message dataload and CRC compare operations can
overlap.

Input CRC transformations that invert the sense and flip the endian nature of CRC
values are controlled with the invert and reverse_endian parameters respectively.

CRC computation timing

CRC comparison can be adjusted to handle the different time requirements for various
implementations.

By default, the current internal CRC register value is used when comparing input and
expected CRC values. Setting the crc_latch_enable parameter to 1 configures the
checker to latch the current internal CRC register value each cycle crc_latch is TRUE
(and then initialize the register). In the next cycle compare is TRUE, the input CRC
value is compared with the latched value (even as a new message is being accumulated
and anew CRC is being calcul ated).

102

Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets
ovl_crc

By default, the checker assumes the input CRC is calculated sequentially, so the input
CRC value reflects the message accumul ated up to the previous clock cycle. Setting the
combinational parameter to 1 configures the checker to assume the computation is
combinational. The input CRC value reflects the message accumulated up to the current

clock cycle.
Standard CRC polynomials:
Name crc_width Generator Polynomial polynomial
CRC-5-USB 5 XX+ 1 2'h05
CRC-7 7 X +x +1 2'h09
CRC-16-CCITT 16 xCrxP X+ 1 4h1021
CRC-32-IEEES02.3 32 e xP e x P+ x "+ x+x'"" 8ho4ac11DB7
X10+X8+X7+X5+X4+X2+X+1
CRC-64-1SO 64 LS NC N B 16'h00000000
000001B
Assertion Checks
CRC I nput CRC val ue did not match the expected CRC val ue.

crc_enable=0
Compare was TRUE, but the value of test_expr (or inverted
valueif invert is 1) does not match the internal CRC value
calculated for the associated message stream.
crc_enable=1
Comparewas TRUE, but the value of crc (or inverted valueif
invert is 1) does not match the internal CRC value calculated
for the associated message stream.

Implicit X/Z Checks
test_expr contains X or Z Expression contained X or Z bits.
valid contains X or Z Expression contained X or Z bits.
initialize contains X or Z Expression contained X or Z hits.
crc contains X or Z Expression contained X or Z bits.
crc_latch contains X or Z Expression contained X or Z bits.

compare contains X or Z Expression contained X or Z hits.

Accellera Standard OVL V2, Library Reference Manual, 2.6 103
December 2011

OVL Checker Data Sheets
ovl_crc

Cover Points

cover _val ues_checked SANITY — Number of cyclestest_expr changed value.

cover_crc_ STATISTIC — Number of cyclesthe internal CRC register was
conput ati ons_checked updated.

cover _cycl es_checked CORNER — Number of cycles CRC checksum comparisons
were performed.

Cover Groups

None

See also

none

Examples

Example 1

ovl _crc #(
.severity level (‘ OVL_ERROR),
.wi dth(8),
.crc_width(4),
.crc_enabl e(1),
. pol ynomi al (4’ b0101),
.initial_val ue(0),
. property type(‘ OVL_ASSERT),
.meg(“OVL_VIQLATION : "))
.coverage_| evel (* OVL_COVER_NONE) ,

CRCL(
.clock(cl ock),
.reset(1'bl),
.enabl e(1' bl),
.test_expr(data_in),
.initialize(start_crc),
.valid(1 bl),
.conpare(1’ bl),
.crc(crc_out),
.crc_latch(1 b0),
fire(fire));

Checksthat CRC checksums are calculated properly on all active edges of the clock. The CRC
generator polynomial is x*+x*+1 .

104 Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets
ovl_crc

Example 2

ovl _crc #(

.severity_ level (‘ O/L_ERROR),

.wi dth(8),

.crc_width(4),

.crc_enabl e(1),

.crc_latch_enabl e(1),

. pol ynomi al (4’ b0101),

.initial_val ue(0),

. property_type(* OVL_ASSERT)

.meg(“OVL_VIOLATION : "),

.coverage_| evel (* OVL_COVER_NONE))

CRC2(
.cl ock(cl ock),
.reset (1’ bl),
.enabl e(1' bl),
.test_expr(data_in),
.initialize(start_crc),
.valid(1 bl),
.conpare(!sel _data),
.crc(crc_out),
.crc_latch(data_bl ock_rdy),
fire(fire));

Checksthat CRC checksums (latched when data_block rdy asserts) are equal to the input CRC
checksums on crc_out when sel_data deasserts. The CRC generator polynomial is x*+x*+1 .

Example 3

ovl _crc #(

.severity_level (* O/L_ERROR),

.wi dt h(32),

.crc_width(32),

. pol ynomi al (8 h04C11DB7),

.initial _value(l)

.reverse_endi an(1),

. property_type(* OVL_ASSERT),

.meg(“OVL_VIOLATION : "),

.coverage_| evel (* OVL_COVER_NONE))

CRC3(
. cl ock(cl ock),
.reset(1'bl),
.enabl e(1' bl),
.test_expr(data_in),
.initialize(start_crc),
.valid(data_in_valid),
.conpare(crc_valid),
.crc(32' b0),
.crc_latch(1 b0),
.fire(fire));

Checks that reverse-endian transformations of the CRC checksums equal the values on data_in
when data_in_valid and crc_valid both assert. The CRC generator polynomial is:

32 26 23 22 16 12 11 10 8 7 5 4 2
XTH+HXxT XXX O FxX X X X X XX X +x+1

Accellera Standard OVL V2, Library Reference Manual, 2.6 105
December 2011

OVL Checker Data Sheets
ovl_crc

Example 4

ovl _crc #(
.severity_ level (‘ O/L_ERROR),
.width(7),
.crc_width(7),
.crc_latch_enabl e(1),
. pol ynomi al (7' b0001001),
.initial_value(l),
.big_endian(1),
.reverse_endi an(1),
. property_type(* OVL_ASSERT)
.meg(“OVL_VI OLATION : "),
.coverage_| evel (* OVL_COVER_NONE))
CRC4
.cl ock(cl ock),
.reset (1’ bl),
.enabl e(1' bl),
.test_expr(data_in),
.initialize(start_crc),
.valid(data_in_valid),
. conmpare(sel _crc),
.crc(7' b0),
.crc_l atch(data bl ock_rdy),
fire(fire));

Checksthat CRC checksums (latched when data_block rdy asserts) are equal to the input CRC
checksums on data_in when sel_crc asserts. Data values of data_in are big endian and CRC

values of data_in are little endian. The CRC generator polynomial is x”+x* +1 .

Example 5

ovl _crc #(
.severity level (‘' OVL_ERROR),
.width(4),
.data_w dt h(16),
.crc_wdth(16),
. pol ynomi al (16’ h1021),
.initial _value(l),
. property_type(* OVL_ASSERT)
.meg(“OVL_VIOLATION : "),
.coverage_| evel (* OVL_COVER_NONE))
CRC5(
.cl ock(cl ock),
.reset (1’ bl),
.enabl e(1' bl),
.test_expr(data_in),
.initialize(start_crc),
.valid(data_in_valid),
. conpar e(compare),
.crc(16’ bo),
.crc_latch(1 b0),
fire(fire));

106 Accellera Standard OVL V2, Library Reference Manual, 2.6

December 2011

OVL Checker Data Sheets
ovl_crc

Checks that the associated bits of CRC checksums equal the values on data_in when

data _in_valid and compare both assert. Each 16-bit dataitem is composed of 4-bit groups
accumulated over 4 consecutive valid data cycles. Each cycle adataitem is complete, its value
is shifted onto the CRC register and the register is updated with the internal CRC value. The
input CRC value is al'so accumulated from data_in in consecutive valid data cycles (i.e., when
data_in_validis TRUE) if compareis TRUE. However, since theinternal CRC value is known,
a CRC check violation occurs each cycle the current group of data_in bits does not match the

corresponding bitsin the internal CRC value. The CRC generator polynomial is

16 12 5
X +x " +x +1-

Example 6

ovl _crc #(

.severity_level (* O/L_ERROR),

.width(112),

.crc_wdth(1e),

.crc_enable(1),

. pol ynomi al (16’ h1021),

.initial_val ue(3),

. conbi nati onal (1),

. property_type(* OVL_ASSERT),

.meg(“OVL_VIOLATION : "),

.coverage_| evel (* OVL_COVER _NONE))

CRC5(
. cl ock(cl ock),
.reset(1'bl),
.enabl e(1' bl),
.test_expr(data_in[127:16),
.initialize(valid),
.valid(valid),
.conpare(valid),
.crc(data_in[15:0]),
.crc_latch(1 b0),
fire(fire));

Checksthat every cyclevalid is TRUE, data_in[15:0] equals the CRC checksum for the current

value of data_in[127:16] with an initial value of 4 h5555. The CRC generator polynomial is

16 12 5
X +x " +x +1-

Accellera Standard OVL V2, Library Reference Manual, 2.6 107
December 2011

OVL Checker Data Sheets
ovl_crc

Example7

ovl _crc #(
.severity_ level (‘ O/L_ERROR),
.w dt h(128),
.crc_width(1e),
.crc_enabl e(1),
. pol ynomi al (16’ h1021),
. property_type(* OVL_ASSERT),
.meg(“OVL_VIOLATION : "),
.coverage_| evel (* OVL_COVER _NONE))
CRC5
. cl ock(cl ock),
.reset(1'bl),
.enabl e(1' bl),
.test_expr(data_in),
.initialize(l bl),
.valid(1 bl),
.conpare(1’ bl),
.crc(crc),
.crc_latch(1 b0),
fire(fire));

Checksthat every active clock cycle, the value of crc equals the CRC checksum of the value of

data_in sampled in the previous cycle. The CRC generator polynomial is x'® + x 12 + x> + 1.

108 Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets
ovl_cycle_sequence

ovl _cycle sequence

Checksthat if a specified necessary condition occurs, it is followed by a specified sequence of
events.

Parameter s/Generics. msg

fire[OVL_FIRE_WIDTH-1:0] |— SEverity_level coverage |evel
num_cks clock _edge

ovl_cycle_sequence necessary_condition reset_polarity
property_type gating_type

—|event_sequence[num_cks-1:0]
Class. n-cycle assertion

clock reset enable
A A A

Syntax

ovl cycl e_sequence
[#(severity level, numcks, necessary_condition, property type,
nmsg, coverage_level, clock _edge, reset_polarity, gating type)]
i nstance_nane (cl ock, reset, enable, event_sequence, fire);

Parameters/Generics

severity_ | evel Severity of the failure. Default: OVL_SEVERITY _DEFAULT
(OVL_ERROR).

num cks Width of the event_sequence argument. This parameter must not
be less than 2. Default: 2.

necessary_condi tion Method for determining the necessary condition that initiates the

sequence check and whether or not to pipeline checking. Values
are: OVL_TRIGGER_ON_MOST_PIPE (default),
OVL_TRIGGER ON_FIRST_PIPE and
OVL_TRIGGER_ON_FIRST _NOPIPE.

property_type Property type. Default: OVL_PROPERTY_DEFAULT
(OVL_ASSERT).

msg Error message printed when assertion fails. Default:
OVL_MSG _DEFAULT (“VIOLATION").

cover age_| evel Coverage level. Default: OVL_COVER _DEFAULT
(OVL_COVER_BASIC).

cl ock_edge Active edge of the clock input. Default:
OVL_CLOCK_EDGE DEFAULT (OVL_POSEDGE).

reset_polarity Polarity (active level) of the reset input. Default:

OVL_RESET_POLARITY_DEFAULT
(OVL_ACTIVE_LOW).

Accellera Standard OVL V2, Library Reference Manual, 2.6 109
December 2011

OVL Checker Data Sheets
ovl_cycle_sequence

gating_type

Ports

cl ock
reset

enabl e

event _sequence
[num cks-1: 0]

fire
[OVL_FI RE_W DTH- 1: 0]

Description

Gating behavior of the checker when enable is FALSE. Default:
OVL_GATING_TYPE_DEFAULT (OVL_GATE_CLOCK).

Clock event for the assertion.
Synchronous reset signal indicating completed initialization.

Enable signal for clock, if gating_type= OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_typeisOVL_NONE.

Expression that is a concatenation where each bit represents an
event.

Fire output. Assertion failure when fire[0] is TRUE. X/Z check
faillurewhenfirg[1] is TRUE. Cover event when fire[2] is TRUE.

The ovl_cycle sequence assertion checker checks the expression event_sequence at the active
edge of clock to identify whether or not the bitsin event_sequence assert sequentially on
successive active edges of clock. For example, the following series of 4-bit values (whereb is
any bit value) isavalid sequence:

1bbb — blbb — bblb — bbbl

This series corresponds to the following series of events on successive active edges of clock:

cyclel event_sequence[3] ==
cycle2 event_sequence[2] ==
cycle3 event_sequence[l] ==
cycled4 event_sequence[0] ==

The checker aso hasthe ability to pipelineitsanaysis. Here, one or more new sequences can be
initiated and recognized while a sequence isin progress. For example, the following series of 4-
bit values (where b is any bit value) constitutes two overlapping valid sequences:

1bbb — blbb — 1blb — blbl — bblb — bbbl

110

Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets
ovl_cycle_sequence

This series corresponds to the following sequences of events on successive active edges of
clock:

cyclel event_sequence[3] ==
cycle2 event _sequence[2] ==

cycle3 event_sequence[l] == event_sequence[3] ==
cycle4 event_sequence[0] == event_sequence[2] ==
cycle5 event_sequence[l] ==
cycle6 event_sequence[0] ==

When the checker determines that a specified necessary condition has occurred, it subsequently
verifies that a specified event or event sequence occurs and if not, the assertion fails.

The method used to determine what constitutes the necessary condition and the resulting trigger
event or event sequence is controlled by the necessary_condition parameter. The checker has
the following actions:

+ OVL_TRIGGER_ON_MOST_PIPE
The necessary condition is that the bits:

event _sequence [numcks -1], . . . ,event_sequence [1]

are sampled equal to 1 sequentially on successive active edges of clock. When this
condition occurs, the checker verifiesthat the value of event_sequence[0] is 1 at the next
active edge of clock. If not, the assertion fails.

The checking is pipelined, which meansthat if event_sequence[num_cks-1] is sampled
equal to 1 while a sequence (including event_sequence[Q]) isin progress and
subsequently the necessary condition is satisfied, the check of event_sequence[0] is
performed.

« OVL_TRIGGER ON_FIRST PIPE

The necessary condition is that the event_sequence [num_cks-1] bit is sampled equal to
1 on an active edge of clock. When this condition occurs, the checker verifies that the
bits:

event _sequence [numcks -2], . . . ,event_sequence [0]

are sampled equal to 1 sequentially on successive active edges of clock. If not, the
assertion fails and the checker cancels the current check of subsequent eventsin the
sequence.

The checking is pipelined, which meansthat if event_sequence[num cks-1] is sampled
equal to 1 while acheck isin progress, an additional check isinitiated.

Accellera Standard OVL V2, Library Reference Manual, 2.6 111
December 2011

OVL Checker Data Sheets
ovl_cycle_sequence

OVL_TRIGGER ON_FIRST NOPIPE

The necessary condition isthat the event_sequence [num_cks-1] bit is sampled equal to
1 on an active edge of clock. When this condition occurs, the checker verifies that the
bits:

event _sequence [numcks -2], . . . ,event_sequence [O0]

are sampled equal to 1 sequentially on successive active edges of clock. If not, the
assertion fails and the checker cancels the current check of subsequent eventsin the
sequence.

The checking is not pipelined, which meansthat if event_sequence[num cks-1] is
sampled equal to 1 while acheck isin progress, it isignored, even if the check is
verifying the last bit of the sequence (event_sequence [0]).

Assertion Checks

CYCLE_SEQUENCE The necessary condition occurred, but it was not followed by the
event or event seguence.

illegal numcks The num_cks parameter is less than 2.

par anet er

Implicit X/Z Checks

First event in the sequence Value of thefirst event in the sequence was X or Z.
contains X or Z

Subsequent eventsin the Value of a subsequent event in the sequence was X or Z.
sequence contain X or Z

First num_cks-1 eventsin Values of the events in the sequence (except the last event) were
the sequence contain X or X or Z.

Z

Last event in the sequence Value of the last event in the sequence was X or Z.
contains X or Z

Cover Points

cover_sequence_trigger BASIC — Thetrigger sequence occurred.

Cover Groups

none
See also
ovl_change ovl_unchange
112 Accellera Standard OVL V2, Library Reference Manual, 2.6

December 2011

OVL Checker Data Sheets
ovl_cycle_sequence

Examples

Examplel

ovl _cycl e_sequence #(

* OVL_ERROR

3,

‘ OVL_TRI GGER_ON_MOST_PI PE,

* OVL_ASSERT,

“Error: invalid WR sequence”,
‘ OVL_COVER DEFAULT,

* OVL_POSEDCGE,

“ OVL_ACTI VE_LOW

“ OVL_GATE_CLOCK)

valid wite_sequence (

cl ock,

reset,

enabl e,

{ r_opcode =="'WR,
r_opcode =="WAIT,
(r_opcode == ‘W) ||
(r_opcode ==' DONE) },
fire_valid write sequence);

/1
/1
/1
/11
11
11
/1
/1
11

/1
/1
11
/1

/1

severity_ | evel

num cks
necessary_condition
property_type

nmsg

cover age_| evel

cl ock_edge

reset _polarity
gating_type

cl ock

reset

enabl e

event _sequence

fire

Checksthat a‘*WR, ‘WAIT sequence in consecutive cyclesisfollowed by a‘DONE or ‘WR.

The sequence checking is pipelined.

r_opcode

CYCLE_SEQUENCE Error: invalid WR sequence

Accellera Standard OVL V2, Library Reference Manual, 2.6

December 2011

113

OVL Checker Data Sheets
ovl_cycle_sequence

Example 2

ovl _cycl e_sequence #(

* OVL_ERROR,

3,

“ OVL_TRI GGER_ON_FI RST_PI PE,
* OVL_ASSERT,

“Error: invalid WR sequence”,

* OVL_COVER DEFAULT,
* OVL_POSEDGE,

“ OVL_ACTI VE_LOW

“ OVL_GATE_CLOCK)

valid wite_sequence (

cl ock,

reset,

enabl e,

{ r_opcode == ‘WR
(r_opcode == "WAIT) |
(r_opcode == ‘WR),
(r_opcode == “VWAIT) |
(r_opcode == ‘DONE) },

fire_valid write sequence);

/1
/1
/1
/11
11
11
/1
/1
11

/1
/1
11
/1

I

severity_ | evel

num cks
necessary_condition
property_type

nmsg

cover age_| evel

cl ock_edge

reset _polarity
gating_type

cl ock

reset

enabl e

event _sequence

fire

Checksthat a‘WR isfollowed by a*WAIT or another ‘WR, which is then followed by a

‘“WAIT or a‘DONE (in consecutive cycles). The sequence checking is pipelined: anew ‘WR

during a sequence check initiates an additional check.
cock /L L oo rerere e e r e

r_opcode

CYCLE_SEQUENCE Error: invalid WR sequence 4)

114

Accellera Standard OVL V2, Library Reference Manual, 2.6

December 2011

OVL Checker Data Sheets
ovl_cycle_sequence

Example 3

ovl _cycl e_sequence #(

* OVL_ERROR, /'l severity_level

3, /1 num cks

“ OVL_TRI GGER_ON_FI RST_NOPI PE, /1 necessary_condition
* OVL_ASSERT, /'l property_type
“Error: invalid WR sequence”, /'l nmsg

‘ OVL_COVER DEFAULT, /1 coverage_| evel

* OVL_POSEDGE, /'l cl ock_edge

“ OVL_ACTI VE_LOW /1l reset _polarity

* OVL_GATE_CLOCK) /'l gating_type

valid wite_sequence (

cl ock, /'l clock

reset, /'l reset

enabl e, /'l enabl e

{ r_opcode == ‘WR, /1l event _sequence
(r_opcode == "WAIT) |

(r_opcode == ‘WR),

(r_opcode == ‘DONE) },

fire_valid write sequence); Il fire

Checksthat a‘WR isfollowed by a*WAIT or another ‘WR, which is then followed by a
‘DONE (in consecutive cycles). The sequence checking is not pipelined: anew ‘WR during a

sequence check does not initiate an additional check.
cock /1 [L[LI rrrrrrrrrtl

r_opcode

CYCLE_SEQUENCE Error: invalid WR sequence‘)

Accellera Standard OVL V2, Library Reference Manual, 2.6 115
December 2011

OVL Checker Data Sheets
ovl_decrement

ovl_decrement

Checks that the value of an expression changes only by the specified decrement value.

Parameters/Generics:. msg

fire[OVL_FI RE_W DTH 1:0)}— Severity_level coverage_level
width clock _edge

ovl_decrement value reset_polarity
property_type gating_type

—{test_expr[width-1:0]

clock reset enable Class. Z_Cyde tion

T T T

Syntax

ovl _decrenent
[#(severity_level, width, value, property_type, nsg, coverage_l| evel,
cl ock_edge, reset_polarity, gating type)]
i nstance_nane (cl ock, reset, enable, test_expr, fire);

Parameters/Generics

severity_|l evel Severity of the failure. Default: OVL_SEVERITY_DEFAULT
(OVL_ERROR).

wi dt h Width of the test_expr argument. Default: 1.

val ue Decrement value for test_expr. Default: 1.

property_type Property type. Default: OVL_PROPERTY_DEFAULT
(OVL_ASSERT).

msg Error message printed when assertion fails. Default:
OVL_MSG _DEFAULT (“VIOLATION").

cover age_| evel Coverage level. Default: OVL_COVER _DEFAULT
(OVL_COVER_BASIC).

cl ock_edge Active edge of the clock input. Default:
OVL_CLOCK_EDGE_DEFAULT (OVL_POSEDGE).

reset_polarity Polarity (active level) of the reset input. Default:

OVL_RESET_POLARITY_DEFAULT
(OVL_ACTIVE_LOW).

gating_type Gating behavior of the checker when enableis FALSE. Default:
OVL_GATING_TYPE_DEFAULT (OVL_GATE_CLOCK).

116 Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets
ovl_decrement

Ports

cl ock
reset

enabl e

test _expr[w dth-1:0]
fire

[OVL_FI RE_W DTH-1: 0]

Description

Clock event for the assertion.
Synchronous reset signal indicating completed initialization.

Enable signal for clock, if gating_type= OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_typeis OVL_NONE.

Expression that should decrement by value whenever its value
changes from the active edge of clock to the next active edge of
clock.

Fire output. Assertion failure when fire[0] is TRUE. X/Z check
failurewhenfirg[1] is TRUE. Cover event when fire[2] is TRUE.

The ovl_decrement assertion checker checks the expression test_expr at each active edge of
clock to determineif its value has changed from its value at the previous active edge of clock. If
s0, the checker verifies that the new value equal s the previous value decremented by value. The
checker alowsthe value of test_expr to wrap, if the total change equal's the decrement value.
For example, if width is 5 and value is 4, then the following change in test_expr isvalid:

5" b00010 — 5’ bl1l1110

The checker is useful for ensuring proper changes in structures such as counters and finite-state
machines. For example, the checker isuseful for circular queue structures with address counters
that can wrap. Do not use this checker for variables or expressions that can increment. Instead
consider using the ovl_delta checker.

Assertion Checks

DECREMENT

Implicit X/Z Checks

test_expr contains X or Z

Cover Points

cover _test _expr_change

Cover Groups

none

Expression evaluated to avalue that is not its previous value
decremented by value.

Expression value contained X or Z bits.

BASIC — Expression changed value.

Accellera Standard OVL V2, Library Reference Manual, 2.6 117

December 2011

OVL Checker Data Sheets
ovl_decrement

Notes

1. The assertion check compares the current value of test_expr with its previous value.
Therefore, checking does not start until the second rising edge of clock after reset

deasserts.

See also

ovl_delta
ovl_increment

Examples

ovl _decrenment #(

* OVL_ERROR,
4,

1,

* OVL_ASSERT,

“BError: invalid binary decrenent”

* OVL_COVER DEFAULT,
* OVL_POSEDGE,

“ OVL_ACTI VE_LOW

* OVL_GATE_CLOCK)

val id_count (

cl ock,
reset,
enabl e,
count,

fire_vaid count);

/1
/1
/1
/11
11
11
/1
/1
11

/1
/1
11
/1
I

ovl_no_underflow

severity_ | evel
wi dt h

val ue
property_type
nmsg

cover age_| evel
cl ock_edge
reset _polarity
gating_type

cl ock
reset
enabl e
test _expr
fire

Checks that the programmable counter’ s count variable only decrements by 1. If count wraps,
the assertion fails, because the change is not a binary decrement.

clock

reset :

count 1001 IOUU OIII UIIO OIUI UIOO OUII OOIU OOOI OUUO [T00T

DECREMENT Error: invalid binary decrement -

118

Accellera Standard OVL V2, Library Reference Manual, 2.6

December 2011

OVL Checker Data Sheets

ovl_delta
ovl delta
Checks that the value of an expression changes only by avalue in the specified range.
Parameter s’Generics:
fire[OVL_FIRE WIDTH-1:0] |— SEverity_level
width coverage level
ovl_delta min clock_edge
o max reset_polarity
—test_expr[width-1:0] property_type g atin g_type
clock reset enable . .
T T T Class. 2-cycle assertion
Syntax
ovl _delta
[#(severity level, width, mn, max, property_type, nsg,
coverage_ | evel, clock _edge, reset_polarity, gating_type)]
i nstance_nane (cl ock, reset, enable, test_expr, fire);
Parameters/Generics
severity_ | evel Severity of the failure. Default: OVL_SEVERITY_DEFAULT
(OVL_ERROR).
wi dt h Width of the test_expr argument. Default: 1.
m n Minimum delta value allowed for test_expr. Default: 1.
max Maximum delta value allowed for test_expr. Default: 1.
property_type Property type. Default: OVL_PROPERTY_DEFAULT
(OVL_ASSERT).
msg Error message printed when assertion fails. Default:
OVL_MSG DEFAULT (“VIOLATION").
cover age_| evel Coverage level. Default: OVL_COVER _DEFAULT
(OVL_COVER_BASIC).
cl ock_edge Active edge of the clock input. Default:
OVL_CLOCK_EDGE _DEFAULT (OVL_POSEDGE).
reset_polarity Polarity (active level) of the reset input. Default:

OVL_RESET_POLARITY DEFAULT
(OVL_ACTIVE_LOW).

gating_type Gating behavior of the checker when enable is FALSE. Default:
OVL_GATING_TYPE DEFAULT (OVL_GATE_CLOCK).

Accellera Standard OVL V2, Library Reference Manual, 2.6 119
December 2011

OVL Checker Data Sheets
ovl_delta

Ports

cl ock
reset
enabl e

test _expr[w dth-1:0]

fire
[OVL_FI RE_W DTH- 1: 0]

Description

Clock event for the assertion.
Synchronous reset signal indicating completed initialization.

Enable signal for clock, if gating_type= OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_typeis OVL_NONE.

Expression that should only change by a deltavalue in the range
min to max.

Fire output. Assertion failure when fire[0] is TRUE. X/Z check
failurewhen fire[1] is TRUE. Cover event when firg[2] is TRUE.

The ovl_delta assertion checker checks the expression test_expr at each active edge of clock to
determine if its value has changed from its value at the previous active edge of clock. If so, the
checker verifies that the difference between the new value and the previous value (i.e., the delta
value) isin the range from min to max, inclusive. If the deltavalue is less than min or greater

than max, the assertion fails.

The checker is useful for ensuring proper changes in control structures such as up-down
counters. For these structures, ovl_delta can check for underflow and overflow. In datapath and
arithmetic circuits, ovl_delta can check for “smooth” transitions of the values of various
variables (for example, for avariablethat controls aphysical variable that cannot detect a severe
change from its previous value).

Assertion Checks

DELTA

Implicit X/Z Checks

test_expr contains X or Z

Cover Points

cover _test_expr_change

cover _test _expr_delta_

at_mn

cover _test_expr_delta_

at _max

Cover Groups

Expression changed value by a delta value not in the range min
to max.

Expression value contained X or Z hits.

BASIC — Expression changed value.
CORNER — Expression changed value by adeltaequal to min.

CORNER — Expression changed value by a delta equal to max.

120

Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets
ovl_delta

none

Errors

The parameters/generics min and max must be specified such that min isless than or equal to
max. Otherwise, the assertion fails on each tested clock cycle.

Notes

1. The assertion check compares the current value of test_expr with its previous value.
Therefore, checking does not start until the second rising edge of clock after reset
deasserts.

2. The assertion check allows the value of test_expr to wrap. The overflow or underflow
amount isincluded in the delta value calcul ation.

See also
ovl_decrement ovl_no_underflow
ovl_increment ovl_range

ovl_no_overflow

Examples

ovl delta #(

“ OVL_ERRCR, /'l severity_level
16, /1 wdth

0, /1l mn

8, /'l max

* OVL_ASSERT, /1 property type
“Error: y val ues not snooth”, /'l nsg

* OVL_COVER _DEFAULT, /| coverage_| evel
* OVL_PCOSEDCGE, /'l cl ock_edge

“ OVL_ACTI VE_LOW /'l reset_polarity
* OVL_GATE_CLOCK) /'l gating_type

valid_snmooth (

cl ock, /1l clock
reset, /] reset
enabl e, // enabl e

Y, /'l test_expr

fire_valid smooth); Il fire

Accellera Standard OVL V2, Library Reference Manual, 2.6 121
December 2011

OVL Checker Data Sheets
ovl_delta

Checks that the y output only changes by a maximum of 8 units each cycle (min is0).
clock

reset 1 Ll 1 : 1 1 Ll 1 1 1 1

y

DELTA Error: y values not smooth <—

122 Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets
ovl_even_parity

ovl _even_parity

Checks that the value of an expression has even parity.

Parameter Generics:

fire[OVL_FIRE_WIDTH-1:0] }— SEverity_level coverage |evel
width clock _edge

ovl_even_parity property_type reset_polarity
msg gating_type

—test_expr[width-1:0]

clock reset enable Class. 1_CyC|e tion

T T T

Syntax

ovl _even_parity
[#(severity level, width, property type, nsg, coverage_level,
cl ock_edge, reset_polarity, gating type)]
i nstance_nane (cl ock, reset, enable, test_expr, fire);

Parameters/Generics

severity_|l evel Severity of the failure. Default: OVL_SEVERITY_DEFAULT
(OVL_ERROR).

wi dt h Width of the test_expr argument. Default: 1.

property_type Property type. Default: OVL_PROPERTY_DEFAULT
(OVL_ASSERT).

msg Error message printed when assertion fails. Default:
OVL_MSG_DEFAULT (“VIOLATION").

cover age_| evel Coverage level. Default: OVL_COVER _DEFAULT
(OVL_COVER_BASIC).

cl ock_edge Active edge of the clock input. Default:
OVL_CLOCK_EDGE _DEFAULT (OVL_POSEDGE).

reset _polarity Polarity (active level) of the reset input. Default:

OVL_RESET POLARITY DEFAULT
(OVL_ACTIVE_LOW).

gating_type Gating behavior of the checker when enable is FALSE. Default:
OVL_GATING TYPE DEFAULT (OVL_GATE_CLOCK).

Accellera Standard OVL V2, Library Reference Manual, 2.6 123
December 2011

OVL Checker Data Sheets
ovl_even_parity

Ports
cl ock Clock event for the assertion.
reset Synchronous reset signal indicating completed initialization.
enabl e Enable signal for clock, if gating_type= OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_typeis OVL_NONE.
t est _expr[w dt h- 1: 0] Expression that should evaluate to avalue with even parity on the
active clock edge.
fire Fire output. Assertion failure when fire[0] is TRUE. X/Z check
[OVL_FI RE_WDTH-1: 0] failurewhen fire[1] is TRUE. Cover event when fire[2] is TRUE.
Description

The ovl_even_parity assertion checker checks the expression test_expr at each active edge of
clock to verify the expression evaluates to avalue that has even parity. A value has even parity
if itisOor if the number of bitsset to 1 iseven.

The checker isuseful for verifying control circuits, for example, it can be used to verify afinite-

state machine with error detection. In a datapath circuit the checker can perform parity error
checking of address and data buses.

Assertion Checks

EVEN_PARI TY Expression evaluated to a value whose parity is not even.
Implicit X/Z Checks

test_expr contains X or Z Expression value contained X or Z bits.

Cover Points

cover_test _expr_change SANITY — EXxpression has changed value.

Cover Groups

none

See also

ovl_odd_parity

124 Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets
ovl_even_parity

Examples

ovl _even_parity #(

* OVL_ERROR, /'l severity_|evel
8, /1 width

* OVL_ASSERT, /1 property type
“Error: data has odd parity”, /'l msg

‘ OVL_COVER DEFAULT, /'l coverage_| evel
* OVL_POSEDGE, /'l cl ock_edge

“ OVL_ACTI VE_LOW /'l reset _polarity
* OVL_GATE_CLOCK) Il gating_type

val i d_data_even_parity (

cl ock, /1 clock

reset, /'l reset

enabl e, /] enabl e

dat a, I'l test_expr
Il fire

fire_valid data even parity);

Checks that data has even parity at each rising edge of clock.
cock — LI L oL/ rerererer—

reset [| I I I l I I l I l l .
data A [5 1T 0 [C T 7 T C 1] 3 [6 [©
L» EVEN_PARITY
Error: data has odd parity
Accellera Standard OVL V2, Library Reference Manual, 2.6 125

December 2011

OVL Checker Data Sheets
ovl_fifo

ovl_fifo

Checks the data integrity of a FIFO and checks that the FIFO does not overflow or underflow.

—|enqg Parameters/Generics. high_water_mark
—>|deq fire [OVL_FIRE_WIDTH-1:0] sgverlty_level value_check
—|full — e T width property _type
—=|empty ovl_fifo depth
—|eng_data[width-1:0] pas_s_thru Coverage—l evel
—+|deq_data[width-1:0] registered clock_edge
—|preload|preload_count*width-1:0]* eng_latency reset_polarity

clock reset enable deq_latency gating_type

! f f preload_count

*if prel oad_count = 0: Class: event-bounded assertion

prel oad iswi dt h bitswide

Syntax

ovl _fifo
[#(severity_level, depth, width, high_water_mark, eng_l atency,
deq_l| atency, value_check, pass_thru, registered, preload_count,
property type, nsg, coverage_ |level, clock edge, reset polarity,
gating_type)]
i nstance_nane (cl ock, reset, enable, enq, enqg_data, deq, deq_data,
full, enpty, preload, fire);

Parameters/Generics

severity_|l evel Severity of the failure. Default: OVL_SEVERITY_DEFAULT
(OVL_ERROR).

wi dt h Width of adataitem. Default: 1.

depth FIFO depth. The depth must be > 0. Default: 2.

pass_thru How the FIFO handles a dequeue and enqueue in the same cycle

if the FIFO is empty.

pass_thru = 0 (Default)
No pass-through mode. Simultaneous dequeue/enqueue of an
empty FIFO is an dequeue violation.

pass thru =1
Pass-through mode. Enqueue happens before the dequeue.
Simultaneous enqueue/dequeue of an empty FIFO isnot a
dequeue violation.

126 Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets
ovl_fifo

regi stered

eng_| at ency

deqg_| at ency

pr el oad_count

hi gh_wat er _mar k

val ue_check

property_type

neg

cover age_| evel

cl ock_edge

How the FIFO handles an enqueue and dequeue in the same cycle

if the FIFO isfull.

regi stered = 0 (Default)
No registered mode. Simultaneous enqueue/dequeue of afull
FIFO is an enqueue violation.

registered = 1
Registered mode. Dequeue happens before the enqueue.
Simultaneous enqueue/dequeue of afull FIFO isnot an
enqueue violation.

Latency for enqueue data.
eng_l atency = 0 (Default)
Checks and coverage assume enq_data is valid and the
enqueue operation is performed in the same cycle enq asserts.
eng_latency > 0
Checks and coverage assume enq_data is valid and the
enqueue operation is performed enq_latency cycles after enq
asserts.

Latency for dequeued data.
deq_l atency = 0 (Default)
Checks and coverage assume deq_data isvalid and the
dequeue operation is performed in the same cycle deq asserts.
deqg_latency > 0
Checks and coverage assume deq_data isvalid and the
dequeue operation is performed deq_latency cycles after deq
asserts.

Number of itemsto preload the FIFO on reset. The preload port
Isaconcatenated list of items to be preloaded into the FIFO.
Default: 0 (FIFO empty on reset).

FIFO high-water mark. Must be < depth. A value of 0 disables
the high-water mark cover point. Default: O.

Whether or not to perform value checks.
val ue_check = 0 (Default)

Turns off the value check.
val ue_check =1

Turns on the value check.

Property type. Default: OVL_PROPERTY DEFAULT
(OVL_ASSERT).

Error message printed when assertion fails. Default:
OVL_MSG_DEFAULT (“VIOLATION").

Coverage level. Default: OVL_COVER_DEFAULT
(OVL_COVER_BASIC).

Active edge of the clock input. Default:
OVL_CLOCK_EDGE_DEFAULT (OVL_POSEDGE).

Accellera Standard OVL V2, Library Reference Manual, 2.6 127

December 2011

OVL Checker Data Sheets
ovl_fifo

reset _polarity

gating_type

Ports

cl ock
reset

enabl e

enq

eng_dat a[wi dt h- 1: 0]

deq

deq_dat a[wi dt h- 1: 0]

full

enpty

Polarity (active level) of the reset input. Default:
OVL_RESET POLARITY DEFAULT
(OVL_ACTIVE_LOW).

Gating behavior of the checker when enableis FALSE. Default:
OVL_GATING_TYPE_DEFAULT (OVL_GATE_CLOCK).

Clock event for the assertion.
Synchronous reset signal indicating completed initialization.

Enable signal for clock, if gating_type= OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_typeisOVL_NONE.

FIFO enqueue input. When enq asserts, the FIFO performs an
enqueue operation. A dataitem is enqueued onto the FIFO and
the FIFO counter increments by 1. If enq_latency is 0, the
enqueue is performed in the same cycle enq asserts. Otherwise,
the enqueue and counter increment occur enq_latency cycles
later.

Enqueue data input to the FIFO. Contains the data item to
enqueue in that cycle (if enq_latency = 0) or to enqueue in the
cycleenq_latency cycles later (if eng_latency > 0).

FIFO dequeue input. When deq asserts, the FIFO performs a
dequeue operation. A dataitem is dequeued from the FIFO and
the FIFO counter decrements by 1. If deq_latency is O, the
dequeue is performed in the same cycle deq asserts. Otherwise,
the dequeue and counter decrement occur deq_latency cycles
later.

Dequeue data output from the FIFO. Contains the dequeued data
iteminthat cycle (if deg_latency = 0) or in the cycle enq_latency
cycleslater (if enq_latency > 0).

Output status flag from the FIFO.
ful =0

FIFO not full.
full =1

FIFO full.

Output status flag from the FIFO.
enmpty = 0
FIFO not empty.

enpty =1
FIFO empty.

128

Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets

ovl_fifo
prel oad Concatenated preload data to enqueue on reset.
[prel oad_count*wi dth-1 preload_count =0
. 0] No preload of the FIFO is assumed. The width of preload should

be width, however no values from preload are used. The FIFO is
assumed to be empty on reset.

prel oad_count > 0

Checker assumes the value of preload is a concatenated list of
items that were al engqueued on the FIFO on reset (or simulation
start). The width of preload should be preload _count * width
(preload items are the same width). Preload values are enqueued
from the low order item to the high order item.

fire Fire output. Assertion failure when fire[0] is TRUE. X/Z check
[OVL_FI RE_W DTH- 1: 0] faillurewhen fire[1] is TRUE. Cover event when fire[2] is TRUE.
Description

The ovl_fifo assertion checker checks that a FIFO functions legally. A FIFO isamemory
structure that stores and retrieves data items based on afirst-in first-out queueing protocol. The
FIFO has configured properties specified as parameters/generics to the ovl_fifo checker: width
of the data items (width), capacity of the FIFO (depth), and the high-water mark that identifies
the point at which the FIFO isamost full (high_water _mark). Control and data signalsto and
from the FIFO are connected to the ovl_fifo checker.

The checker checks eng and deq at the active edge of clock each cycle the checker is active. If
enq is TRUE, the FIFO is enqueuing a data item onto the FIFO. If deqis TRUE, the FIFO isin
the process of dequeuing a dataitem. Both enqueue and dequeue operations can each take more
than one cycle. If the enq_latency parameter is defined > 0, then enq_data is ready enq_latency
clock cycles after the enq signal asserts. Similarly, if the deq_latency parameter is defined > 0,
then deq_data is ready deq_latency clock cycles after the deq signal asserts. All assertion
checks and coverage are based on enqueue/dequeue data after the latency periods.

The checker checks that the FIFO does not enqueue an item when it is supposed to be full
(enqueue check) and the FIFO does not dequeue an item when it is supposed to be empty
(dequeue check). The checker also checks that the FIFO'’ s full and empty status flags operate
correctly (full and empty checks). The checker also can verify the dataintegrity of dequeued
FIFO data (value check).

The checker also can be configured to handle other FIFO characteristics such as preloading
items on reset and allowing pass-through operations and registered enqueue/dequeues.

Accellera Standard OVL V2, Library Reference Manual, 2.6 129
December 2011

OVL Checker Data Sheets
ovl_fifo

Assertion Checks

ENQUEUE Enqueue occurred that would overflow the FIFQ
registered = 0
Eng was TRUE, but eng_latency cycleslater, FIFO contained
depth items.
registered = 1
Eng was TRUE, but eng_latency cycleslater, FIFO contained
depth items and no item was to be dequeued that cycle.

DEQUEUE Dequeue occurred that woul d underfl ow the FIFO
pass_thru = 0
Deqwas TRUE, but deq_latency cycleslater, FIFO contained
no items.
pass_thru = 1
Degwas TRUE, but eng_latency cycleslater, FIFO contained
no items and no item was to be enqueued that cycle.

FULL FIFO ‘full’ signal asserted or deasserted in the
wrong cycl e.
FIFO contained fewer than depth items but full was TRUE or
FIFO contained depth items but full was FALSE.

EMPTY FIFO ‘enpty’ signal asserted or deasserted in the
wrong cycl e.
FIFO contained one or more items but empty was TRUE or
FIFO contained no items but empty was FAL SE.

VALUE Dequeued FI FO val ue did not equal the correspondi ng
enqueued val ue.
deq latency = 0
Deq was TRUE, but deq_data did not equal the
corresponding enqueued item.
deq_latency > 0
Deq was TRUE, but deq_latency cycles later deq_data did
not equal the corresponding enqueued item.
This check automatically turns off if an enqueue or dequeue
check violation occurssinceit isno longer possibleto correspond
enqueued with dequeued values. The check turns back on when
the checker resets.

130 Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets
ovl_fifo

Implicit X/Z Checks

eng contains X or Z

deq contains X or Z

full contains X or Z
empty contains X or Z
enq_data contains X or Z
deq_data contains X or Z

Cover Points

cover _enqueues
cover _dequeues

cover _si nul taneous_
eng_deq

cover _eng_foll owed by

deq

cover _hi gh_wat er _mark

cover _si mul t aneous_
deqg_enqg_when_enpty

cover _si nmul t aneous_
deq_enqg_when_ful
cover _fifo_enpty

cover_fifo_ful

cover _observed counts

Cover Groups

observed contents

Engueue signal was X or Z.

Dequeue signal was X or Z.

FIFO full signal was X or Z.

FIFO empty signal was X or Z.

Enqueue data expression contained X or Z hits.
Dequeue data expression contained X or Z bits.

SANITY — Number of dataitems enqueued on the FIFO.
SANITY — Number of dataitems dequeued from the FIFO.
BASIC — Number of cycles enq and deq asserted together.

BASIC — Number of times eng asserted, then deasserted in the
next cycle and stayed deasserted until eventually deq asserted.

CORNER — Number of times the FIFO count transitioned from
< high_water_mark to > high_water _mark. Not reported if
high_ water_markisO.

CORNER — Number of cycles the FIFO was enqueued and
dequeued simultaneously when it was empty.

CORNER — Number of cycles the FIFO was enqueued and
dequeued simultaneously when it was full.

CORNER —Number of cycles FIFO was empty after processing
enqueues and dequeues for the cycle.

CORNER — Number of cycles FIFO was full after processing
enqueues and dequeues for the cycle.

STATISTIC — Reports the FIFO counts that occurred at |east
once.

Number of cyclesthe number of entriesin the FIFO changed to
the specified value. Bins are:
» oObserved fifo_contentg O:depth] — bin index is the number
of entriesin the FIFO.

Accellera Standard OVL V2, Library Reference Manual, 2.6 131

December 2011

OVL Checker Data Sheets
ovl_fifo

See also

ovl_fifo_index
ovl_no_overflow

ovl_no_underflow

132

Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets
ovl_fifo_index

ovl_fifo_index

Checks that a FIFO-type structure never overflows or underflows. This checker can be
configured to support multiple pushes (FIFO writes) and pops (FIFO reads) during the same

clock cycle.

Parameter s/Generics. property_type

fire[OVL_FIRE_WIDTH-1:0] }— sSeverity level msg
—»{ push[push_width-1:0] depth coverage level
ovl_fifo_index push_width clock_edge
o pop_width reset_polarity

—> pop[pop_width-1:0]

clock reset enable

simultaneous _push_pop gating_type

T T

Syntax

ovl fifo_index

Class: n-cycle assertion

[#(severity_level, depth, push_w dth, pop_w dth
si mul t aneous_push_pop, property type, nsg, coverage_ | evel

cl ock_edge,

reset _polarity, gating type)]

i nstance_nane (cl ock, reset, enable, push, pop, fire);

Parameters/Generics

severity_ | evel

depth

push_wi dt h
pop_wi dth

si mul t aneous_push_pop

property_type

msg

cover age_| evel

cl ock_edge

Severity of the failure. Default: OVL_SEVERITY _DEFAULT
(OVL_ERROR).

Maximum number of elements in the FIFO or queue structure.
This parameter must be > 0. Default: 1.

Width of the push argument. Default: 1.
Width of the pop argument. Default: 1.

Whether or not to allow simultaneous push/pop operationsin the
same clock cycle. When set to O, if push and pop operations
occur in the same cycle, the assertion fails. Default: 1
(simultaneous push/pop operations are allowed).

Property type. Default: OVL_PROPERTY_ _DEFAULT
(OVL_ASSERT).

Error message printed when assertion fails. Default:
OVL_MSG _DEFAULT (“VIOLATION").

Coverage level. Default: OVL_COVER_DEFAULT
(OVL_COVER_BASIC).

Active edge of the clock input. Default:
OVL_CLOCK_EDGE_DEFAULT (OVL_POSEDGE).

Accellera Standard OVL V2, Library Reference Manual, 2.6 133

December 2011

OVL Checker Data Sheets
ovl_fifo_index

reset_polarity

gating_type

Ports

cl ock

reset

enabl e

push[push_wi dt h-1: 0]
pop[pop_wi dt h-1: 0]

fire
[OVL_FI RE_W DTH- 1: 0]

Description

Polarity (active level) of the reset input. Default:
OVL_RESET POLARITY DEFAULT
(OVL_ACTIVE_LOW).

Gating behavior of the checker when enableis FALSE. Default:
OVL_GATING_TYPE_DEFAULT (OVL_GATE_CLOCK).

Clock event for the assertion.
Synchronous reset signal indicating completed initialization.

Enable signal for clock, if gating_type= OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_typeis OVL_NONE.

Expression that indicates the number of push operations that will
occur during the current cycle.

Expression that indicates the number of pop operations that will
occur during the current cycle.

Fire output. Assertion failure when fire[0] is TRUE. X/Z check
failurewhenfire[1] is TRUE. Cover event when firg[2] is TRUE.

The ovl_fifo_index assertion checker tracks the numbers of pushes (writes) and pops (reads)
that occur for a FIFO or queue memory structure. This checker does permit simultaneous
pushes/pops on the queue within the same clock cycle. It checks that the FIFO never overflows
(i.e., too many pushes occur without enough pops) and never underflows (i.e., too many pops
occur without enough pushes). This checker is more complex than the ovl_no_overflow and
ovl_no_underflow checkers, which check only the boundary conditions (overflow and

underflow respectively).

Assertion Checks

OVERLOW
UNDERFLOW
| LLEGAL PUSH AND POP

Push operation overflowed the FIFO.
Pop operation underflowed the FIFO.

Push and pop operations performed in the same clock cycle, but
the simultaneous _push_pop parameter is set to 0.

134

Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets
ovl_fifo_index

Implicit X/Z Checks

push contains X or Z Push expression value contained X or Z bits.
pop contains X or Z Pop expression value contained X or Z bits.

Cover Points

cover _fifo_push BASIC — Push operation occurred.

cover _fifo_pop BASIC — Pop operation occurred.

cover fifo full CORNER — FIFO was full.

cover_fifo_enpty CORNER — FIFO was empty.

cover_fifo_ CORNER — Push and pop operations occurred in the same clock

si mul t aneous_push_pop cycle.

Cover Groups

none

Errors

Depth paranmeter value Depth parameter issetto 0.
must be > 0

Notes

1. The checker checks the values of the push and pop expressions. By default, (i.e.,
simultaneous_push _popis 1), “simultaneous’ push/pop operations are alowed. In this
case, the checker assumes the design properly handles simultaneous push/pop
operations, so it only checks that the FIFO buffer index at the end of the cycle has not
overflowed or underflowed. The assertion cannot ensure the FIFO buffer index does not
overflow between a push and pop performed in the same cycle. Similarly, the assertion
cannot ensure the FIFO buffer index does not underflow between a pop and push
performed in the same cycle.

See also

ovl_fifo ovl_no_underflow
ovl_no_overflow

Accellera Standard OVL V2, Library Reference Manual, 2.6 135
December 2011

OVL Checker Data Sheets
ovl_fifo_index

Examples

Examplel

ovl _fifo_index #(

* OVL_ERROR,

N e

* OVL_ASSERT,
“Error”,

* OVL_COVER _DEFAULT,
* OVL_PCOSEDCE,

“ OVL_ACTI VE_LOW

* OVL_GATE_CLOCK)

no_over _underfl ow (

cl ock,

reset,

enabl e,

push,

pop,

fire_fifo_no over_underflow);

/1
/1
/1
/11
11
11
/1
/1
/1
/11
11

I
11
/1
I
11
/1

severity_ | evel

depth

push_w dt h

pop_wi dth

si mul t aneous_push_pop
property_type

nmsg

coverage_| evel

cl ock_edge

reset _polarity

gating_type

cl ock
reset
enabl e
push
pop
fire

Checks that an 8-element FIFO never overflows or underflows. Only single pushes and pops
can occur in aclock cycle (push_width and pop_width values are 1). A push and pop operation
in the same clock cycleis allowed (value of simultaneous_push_popis1).

clock
reset __ |
push
pop
count 0 i T i 2 i 3 i

OVERFLOW Error <

136

Accellera Standard OVL V2, Library Reference Manual, 2.6

December 2011

OVL Checker Data Sheets
ovl_fifo_index

Example 2

ovl _fifo_index #(

* OVL_ERROR, /'l severity_level
8, /1 depth

1, /1 push_wi dth

1, /1 pop_w dth

0, /1 simultaneous_push_pop
* OVL_ASSERT, /1 property type
“viol ation”, /'l nsg

* OVL_COVER DEFAULT, /'l coverage_| evel
* OVL_POSEDCE, /'l cl ock_edge

“ OVL_ACTI VE_LOW /'l reset_polarity
* OVL_GATE_CLOCK) /'l gating_type

no_over _underfl ow (

cl ock, I/ clock
reset, /'l reset
enabl e, /'l enabl e
push, /1 push
pop. I'l" pop
fire fifo_no over_underflow); I fire

Checksthat an 8-element FIFO never overflows or underflows and that in no cycle do both push
and pop operations occur.
cock — L[L I oI LT o7 7> I

reset __ | : : ; : ; ; ; : : :
push
pop , , ,
count 0 | 1 | 2 | 3 | 4 | 3 I 4 I 5 I 6 | 7 [6 I

ILLEGAL PUSH AND POP Error<—_

Accellera Standard OVL V2, Library Reference Manual, 2.6 137
December 2011

OVL Checker Data Sheets
ovl_frame

ovl _frame

Checks that when a specified start event is TRUE, then an expression must not evaluate TRUE
before a minimum number of clock cycles and must transition to TRUE no later than a
maximum number of clock cycles.

Parameters/Generics:
fire[OVL_FIRE_WIDTH-1:0] }— severity level

— > start_event min_cks coverage level
ovl_frame max_cks clock_edge
action_on_new_start reset_polarity

—test_expr

property_type gating_type
Class: n-cycle assertion

clock reset enable
A A A

Syntax

ovl franme
[#(severity_level, mn_cks, max_cks, action_on_new start,
property type, nsg, coverage_ |level, clock edge, reset polarity,
gating_type)]
i nstance_nane (clock, reset, enable, start_event, test_expr, fire);

Parameters/Generics

severity_| evel Severity of the failure. Default: OVL_SEVERITY _DEFAULT
(OVL_ERROR).
m n_cks Number of cycles after the start event that test_expr must not

evaluate to TRUE. The special case where min_cksis 0O turns off
minimum checking (i.e., test_expr can be TRUE in the cycle
following the start event). Default: O.

max_cks Number of cyclesafter the start event that during which test_expr
must transition to TRUE. The special case where max_cksisO
turns off maximum checking (i.e., test_expr does not need to
transition to TRUE). Default: 0.

action_on_new start Method for handling a new start event that occurs while a check
Ispending. Values are: OVL_IGNORE_NEW_START,
OVL_RESET ON_NEW_START and
OVL_ERROR _ON_NEW_START. Default:
OVL_IGNORE_NEW _START.

property_type Property type. Default: OVL_PROPERTY _DEFAULT
(OVL_ASSERT).
nmsg Error message printed when assertion fails. Default:

OVL_MSG_DEFAULT (“VIOLATION”).

138 Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets
ovl_frame

cover age_| evel
cl ock_edge

reset_polarity

gating_type

Ports

cl ock
r eset

enabl e

start_event

t est _expr

fire
[OVL_FI RE_W DTH- 1: 0]

Description

Coverage level. Default: OVL_COVER_DEFAULT
(OVL_COVER_BASIC).

Active edge of the clock input. Default:
OVL_CLOCK_EDGE_DEFAULT (OVL_POSEDGE).

Polarity (active level) of the reset input. Default:
OVL_RESET POLARITY _DEFAULT
(OVL_ACTIVE_LOW).

Gating behavior of the checker when enableis FALSE. Default:
OVL_GATING_TYPE_DEFAULT (OVL_GATE_CLOCK).

Clock event for the assertion.
Synchronous reset signal indicating completed initialization.

Enable signal for clock, if gating_type = OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_typeis OVL_NONE.

Expression that (along with action_on_new_start) identifies
when to initiate checking of test_expr.

Expression that should not evaluate to TRUE for min_cks -1
cyclesafter start_event initiates acheck (unlessmin_cksis0) and
that should evaluate to TRUE before max_cks cycles transpire
(unless max_cksis0).

Fire output. Assertion failure when fire[0] is TRUE. X/Z check
failurewhen fire[1] is TRUE. Cover event when fire[2] is TRUE.

The ovl_frame assertion checker checks for a start event at each active edge of clock. A start
event occursif start_eventisarising signa (i.e., hastransitioned from FAL SE to TRUE, either
at the clock edge or in the previous cycle). A start event also occursif start_event is TRUE at
the active clock edge after a checker reset.

When a new start event occurs, the checker performs the following steps:

1. A frameviolation occursif test_expr is not TRUE at the start event.

2. Unlessitisdisabled by setting min_cksto 0, aminimum check isinitiated. The check
evaluates test_expr at each subsequent active edge of clock for the next min_cks cycles.
However, if asampled value of test_expr is TRUE, the minimum check fails and the
checker returns to the state of waiting for a start event.

Accellera Standard OVL V2, Library Reference Manual, 2.6 139

December 2011

OVL Checker Data Sheets
ovl_frame

3. Unlessitisdisabled by setting max_cksto 0 (or a minimum violation has occurred), a

maximum check isinitiated. The check evaluates test_expr at each subsequent active
edge of clock for the next (max_cks - min_cks) cycles. However, if a sampled value of
test_expr is TRUE, the checker returns to the state of waiting for a start event. If its
value does not transition to TRUE by the time max_cks cycles transpire (from the start
of checking), the maximum check fails at cycle max_cks.

4. The checker returns to the state of waiting for a start event.

The method used to determine how to handle start_event when the checker isin the state of
checking test_expr is controlled by the action_on_new_start parameter. The checker has the
following actions:

OVL_IGNORE_NEW_START

The checker does not sample start_event until it returns to the state of waiting for a start
event.

OVL_RESET ON_NEW_START

Each time the checker samplestest_expr, it also samples start_event. If start_event is
rising, then:

» If test_expr is TRUE, aframe violation occurs and all pending checks are
terminated.

» Iftest_expr isnot TRUE, pending checks are terminated (no violation occurs even if
the current cycleisthe last cycle of amax_cks check or acycle with a pending
min_cks check). If min_cks and max_cks are not both O, new frame checks are
initiated.

OVL_ERROR_ON_NEW_START

Each time the checker samplestest_expr, it also samples start_event. If start_event is
TRUE, the assertion fails with an illegal start event error. If the error is not fatal, the
checker returns to the state of waiting for a start event at the next active clock edge.

Assertion Checks

FRAVE_M N Value of test_expr was TRUE at arising start_event or before

min_cks cycles after arising start_event.

FRAVE_MAX Vaue of test_expr was not TRUE at acycle starting min_cks

cycles after arising start_event and ending max_cks after the
rising edge of start_event.

FRAMVE_M NO_NMAX_0 Both min_cks and max_cks are O, but the value of test_expr was

not TRUE at the rising edge of start_event.

140

Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets
ovl_frame

illegal start event

m n_cks > max_cks

Implicit X/Z Checks

test_expr contains X or Z
start_event contains X or Z

Cover Points

start _event

Cover Groups

none

Notes

The action_on_new_start parameter is set to
OVL_ERROR_ON_NEW_START and arising start_event
occurred while a check was pending .

The min_cks parameter is greater than the max_cks parameter
(and max_cks > 0). Unless the violation isfatal, either the
minimum or maximum check will fail.

Expression valuewas X or Z.
Start event valuewas X or Z.

BASIC — Thevalue of start_event was TRUE on an active edge
of clock.

1. The special case where min_cks and max_cks are both O is the default. Here, test_expr
must be TRUE every cycle thereis a start event.

See also
ovl_change ovl_unchange
ovl_next ovl_width
ovl_time
Accellera Standard OVL V2, Library Reference Manual, 2.6 141

December 2011

OVL Checker Data Sheets
ovl_frame

Examples

Examplel

ovl _frame #(

* OVL_ERROR, /'l severity_level

2, /1 mn_cks

4, /'l max_cks

“ OVL_| GNORE_NEW START, /1 action_on_new start
* OVL_ASSERT, /] property_type
“Error: invalid transaction”, /'l msg

‘ OVL_COVER DEFAULT, /'l coverage_| evel

* OVL_POSEDGE, /1 cl ock_edge

“ OVL_ACTI VE_LOW /] reset_polarity

* OVL_GATE_CLOCK) /'l gating_type

val i d_transaction (

cl ock, /1 clock
reset, !/l reset

enabl e, /1 enabl e
req, /'l start_event
ack, /'l test_expr

fire_valid transaction); Il fire

Checksthat after arising edge of req, ack goes high between 2 and 4 cycles |ater. New start
events during transactions are not considered to be new transactions and are ignored.

1 2 3 4 1 2 3
clock
reset '] : : : : : : : : : :
req :) :) \ : : N \
ack 1 1 1 1 1 I_:_| 1 1 1
FRAME Error: invalid transaction
142 Accellera Standard OVL V2, Library Reference Manual, 2.6

December 2011

OVL Checker Data Sheets

ovl_frame

Example 2
ovl _frame #(

* OVL_ERROR, /'l severity_level

2, /1 mn_cks

4, /'l max_cks

“ OVL_RESET_ON_NEW START, /1 action_on_new start

* OVL_ASSERT, /] property_type

“Error: invalid transaction”, /'l msg

‘ OVL_COVER DEFAULT, /'l coverage_| evel

* OVL_POSEDGE, /1 cl ock_edge

“ OVL_ACTI VE_LOW /] reset_polarity

‘ OVL_GATE_CLOCK) /1 gating_ type

valid_transaction (

cl ock, /1 clock
reset, /'l reset

enabl e, /] enabl e

req, /'l start_event
ack, /'l test_expr
fire valid transaction); Il fire

Checksthat after arising edge of req, ack goes high between 2 and 4 cycleslater. A new start
event during atransaction restarts the transaction.

1 2 3 4 1 1 2 3
clock
reset L[. 1 .
req . [: : : : :
ack ! ' ' ' A . :
FRAME Error: invalid transaction
Accellera Standard OVL V2, Library Reference Manual, 2.6 143

December 2011

OVL Checker Data Sheets
ovl_frame

Example 3

ovl _frame #(

* OVL_ERROR, /'l severity_level

2, /1 mn_cks

4, /'l max_cks

“ OVL_ERROR _ON_NEW START, /1 action_on_new start
* OVL_ASSERT, /] property_type
“Error: invalid transaction”, /'l msg

‘ OVL_COVER DEFAULT, /'l coverage_| evel

* OVL_POSEDGE, /1 cl ock_edge

“ OVL_ACTI VE_LOW /] reset_polarity

‘ OVL_GATE_CLOCK) /1 gating_ type

valid_transaction (

cl ock, /'l clock
reset, /'l reset

enabl e, /1 enabl e

req, /] start_event
ack, /'l test_expr
fire_valid_ transaction); Il fire

Checksthat after arising edge of req, ack goes high between 2 and 4 cycles later. Also checks
that a new transaction does not start before the previous transaction is acknowledged. If a start
event occurs during a transaction, the checker does does not initiate a new check.

1 2 3 4 1 2 3
clock
P — i R S |
req : X . : —1 : :
ack 1 1 1 1 I__l 1 1 I_:_I_
illegal start event/
144 Accellera Standard OVL V2, Library Reference Manual, 2.6

December 2011

OVL Checker Data Sheets
ovl_handshake

ovl _handshake

Checks that specified request and acknowledge signals follow a specified handshake protocol.

Parameter s/Generics:
fire[OVL_FIRE_WIDTH-1:0] }— Severity level property_type
—req min_ack_cycle
ovl handshake max_ack _cycle coverage level
—ack B reg_drop clock_edge
deassert_count reset_polarity
clock reset enable max_ack length gating_type
' Class: event-bounded assertion
Syntax

ovl _handshake

[#(severity level, min_ack _cycle, max_ack_cycle, req_drop,
deassert_count, max_ack |l ength, property_type, nsg,
coverage_ | evel, clock edge, reset_polarity, gating_type)]

i nstance_nane (clock, reset, enable, req, ack, fire);

Parameters/Generics

severity_| evel

m n_ack_cycl e

max_ack_cycl e

req_drop

deassert _count

max_ack_| ength

property_type

neg

coverage_| evel

Severity of the failure. Default: OVL_SEVERITY_DEFAULT
(OVL_ERROR).

Minimum number of clock cycles before acknowledge. A value
of O turns off the ack min cycle check. Default: O.

Maximum number of clock cycles before acknowledge. A value
of O turns off the ack max cycle check. Default: O.

If greater than O, value of req must remain TRUE until
acknowledge. A value of 0 turns off the req drop check. Default:
0.

Maximum number of clock cycles after acknowledge that req can
remain TRUE (i.e., reqg must not be stuck active). A value of 0
turns of f the req deassert check. Default: O.

Maximum number of clock cyclesthat ack can be TRUE. A
value of 0 turns off the max ack length check. Default: O.

Property type. Default: OVL_PROPERTY_DEFAULT
(OVL_ASSERT).

Error message printed when assertion fails. Default:
OVL_MSG _DEFAULT (“VIOLATION").

Coverage level. Default: OVL_COVER _DEFAULT
(OVL_COVER BASIC).

Accellera Standard OVL V2, Library Reference Manual, 2.6 145

December 2011

OVL Checker Data Sheets
ovl_handshake

cl ock_edge Active edge of the clock input. Default:
OVL_CLOCK_EDGE DEFAULT (OVL_POSEDGE).
reset_polarity Polarity (active level) of the reset input. Default:

OVL_RESET_POLARITY DEFAULT
(OVL_ACTIVE_LOW).

gating_type Gating behavior of the checker when enable is FALSE. Default:
OVL_GATING_TYPE DEFAULT (OVL_GATE_CLOCK).

Ports
cl ock Clock event for the assertion.
reset Synchronous reset signal indicating completed initialization.
enabl e Enable signal for clock, if gating_type= OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_typeis OVL_NONE.
req Expression that starts a transaction.
ack Expression that indicates the transaction is complete.
fire Fire output. Assertion failure when fire[0] is TRUE. X/Z check
[OVL_FI RE_W DTH- 1: 0] failurewhen fire[1] is TRUE. Cover event when fire[2] is TRUE.
Description

The ovl_handshake assertion checker checks the single-bit expressions req and ack at each
active edge of clock to verify their values conform to the request-acknowledge handshake
protocol specified by the checker parameters/generics. A request event (where req transitions to
TRUE) initiates a transaction on the active edge of clock and an acknowledge event (where ack
transitions to TRUE) signals the transaction is compl ete on the active edge of clock. The
transaction must not include multiple request events and every acknowledge must have a
pending request. Other checks—to ensure the acknowledge is received in a specified window,
the request is held active until the acknowledge, the requests and acknowledges are not stuck
active and the pulse length is not too long—are enabled and controlled by the checker’s
parameters/generics.

When aviolation occurs, the checker discards any pending request. Checking is restarted the
next cycle that ack is sampled FALSE.

146 Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets
ovl_handshake

Assertion Checks

MULTI PLE_REQ VI OLATI ON

ACK_W THOUT REQ_
VI OLATI ON

ACK_M N_CYCLE_
VI OLATI ON

ACK_MAX_CYCLE
VI OLATI ON

REQ_DROP_VI OLATI ON

REQ _DEASSERT_VI OLATI ON

ACK_MAX_LENGTH
VI OLATI ON

Implicit X/Z Checks

req contains X or Z

ack contains X or Z
Cover Points

cover _req_asserted

cover _ack_asserted

Cover Groups
none
See also

ovl_win_change
ovl_win_unchange

The value of req transitioned to TRUE while waiting for an
acknowledge or while acknowledge was asserted. Extra requests
do not initiate new transactions.

The value of ack transitioned to TRUE without a pending
request.

The value of ack transitioned to TRUE before min_ack cycle
clock cycles transpired after the request.

The value of ack did not transition to TRUE before
max_ack _cycle clock cycles transpired after the request.

The value of req transitioned from TRUE before an
acknowledge.

The value of req did not transition from TRUE before
deassert_count clock cycles transpired after an acknowledge.

The value of ack did not transition from TRUE before
max_ack_length clock cycles transpired after an acknowledge.

Req expression value was X or Z.
Ack expression valuewas X or Z.

BASIC — A transaction initiated.
BASIC — A transaction completed.

ovl_window

Accellera Standard OVL V2, Library Reference Manual, 2.6 147

December 2011

OVL Checker Data Sheets
ovl_handshake

Examples

Examplel

ovl _handshake #(
* OVL_ERROR

coooo

* OVL_ASSERT,

“hol d- hol da handshake error”,

* OVL_COVER_DEFAULT,
* OVL_POSEDGE,

* OVL_ACTI VE_LOW

“ OVL_GATE_CLOCK)

val i d_hol d_hol da (

cl ock,
reset,
enabl e,
hol d,

hol da,

fire_valid_hold_holda);

Checks that multiple hold requests are not made while waiting for a holda acknowledge and that

/'l severity_level
/1 mn_ack cycle
/1 max_ack_cycl e
/'l req_drop

/'l deassert_count
/'l max_ack_l ength
/1 property type
/'l nsg

/'l coverage_| evel
/'l cl ock_edge

/'l reset_polarity
/1 gating_type

/1l clock
/] reset

// enabl e
/'l req

/1 ack

Il fire

every holda acknowledge isin response to a unique hold request.

clock

reset : . : : |
hold JQ e : C | |. :

holda : e : I\l_ S T

multiple req violation/ ack without req violation

clock

reset : .
hold ! L

holda : I

ack without req violation

multiple req violation

ack without req violation

After aviolation, checking isturned off until holda acknowledge is sampled deasserted.

clock

reset !

hold N

holda '

. multiple req violation

I E L_%____

148

Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets
ovl_handshake

Example 2

ovl _handshake #(

* OVL_ERROR,

coowWwN

* OVL_ASSERT,
“hol d- hol da handshake error”,

* OVL_COVER_DEFAULT,

* OVL_POSEDGE,
* OVL_ACTI VE_LOW
“ OVL_GATE_CLOCK)

val i d_hol d_hol da (

cl ock,
reset,
enabl e,
hol d,

hol da,
fire_valid_hold_holda);

/1
/1
/1
/11
11
11
/1
/1
/1
/11

11
/1

11
11
I
11
11
I

severity_ | evel
m n_ack_cycl e
max_ack_cycl e
req_drop
deassert _count
max_ack_Il engt h
property_type
nmsg
coverage_| evel
cl ock_edge
reset_polarity
gating_type

cl ock
reset
enabl e
req
ack
fire

Checks that multiple hold requests are not made while waiting for a holda acknowledge and that

every holda acknowledge isin response to a unique hold request. Checks that holda
acknowledge asserts 2 to 3 cycles after each hold request.

clock

reset
hold

holda

ack min cycle vi

| ! |
| |
K
| |
olation

ack max cycle violation 4)

N

Accellera Standard OVL V2, Library Reference Manual, 2.6

December 2011

149

OVL Checker Data Sheets
ovl_handshake

Example 3

ovl _handshake #(

* OVL_ERROR,

NOOOoO

* OVL_ASSERT,

“hol d- hol da handshake error”
‘ OVL_COVER DEFAULT,

* OVL_PCSEDGE

* OVL_ACTI VE_LOW
“ OVL_GATE_CLOCK)

val i d_hol d_hol da (

cl ock,
reset,
enabl e,
hol d,

hol da,

fire_valid_hold_holda);

/1
/1
/1
/11
11
11
/1
/1
/1
/11

11
/1

11
11
I
11
11
I

severity_ | evel
m n_ack_cycl e
max_ack_cycl e
req_drop
deassert _count
max_ack_Il engt h
property_type
nmsg
coverage_| evel
cl ock_edge
reset_polarity
gating_type

cl ock
reset
enabl e
req
ack
fire

Checks that multiple hold requests are not made while waiting for a holda acknowledge and that
every holda acknowledge isin response to a unique hold request. Checks that holda

acknowledge asserts for 2 cycles.

clock

reset !
hold '

holda

' l ! ‘//J L
ack max length violation

150

Accellera Standard OVL V2, Library Reference Manual, 2.6

December 2011

OVL Checker Data Sheets
ovl_handshake

Example 4

ovl _handshake #(

* OVL_ERROR, /'l severity_level
0, /1 mn_ack cycle
o, /1 max_ack_cycl e
1, /'l req_drop

1, /'l deassert_count
0, /1 max_ack | ength
* OVL_ASSERT, /1 property type
“hol d- hol da handshake error”, /'l nsg

* OVL_COVER _DEFAULT, /'l coverage_| evel
* OVL_POSEDCGE, /'l cl ock_edge

“ OVL_ACTI VE_LOW /'l reset_polarity
* OVL_GATE_CLOCK) /'l gating_type

val i d_hol d_hol da (

cl ock, /1l clock
reset, /] reset
enabl e, /'l enable
hol d, /'l req

hol da, !/ ack
fire_valid_hold_holda); I fire

Checks that multiple hold requests are not made while waiting for a holda acknowledge and that
every holda acknowledge isin response to a unique hold request. Checks that hold request
remains asserted until its holda acknowledge and then deasserts in the next cycle.

clock
reset
hold
holda .
\ req drop violation req deassert violation/
Accellera Standard OVL V2, Library Reference Manual, 2.6 151

December 2011

OVL Checker Data Sheets

ovl_hold_value

ovl _hold value

Checks that once an expression matches the value of a second expression, the first expression
does not change value until a specified event window arrives and then changes value some time

in that window.

fire [OVL_FIRE_WIDTH-1:0] |— Parameters/Genencs:

severity level

—»|test_expr{width-1:0] width coverage level

ovl_hold_value min clock_edge

—+value[width-1:0] max reset_polarity

property_type gating_type
clock reset enable .

Class: n-cycle assertion

Syntax

[y

T T

ovl hol d_val ue
[#(severity_level, mn, nmax, width, property_type, nsg,
coverage | evel, clock edge, reset _polarity, gating type)]
i nstance_nane (cl ock, reset, enable, test _expr, value, fire);

Parameters/Generics

severity_l evel

wi dt h

mn

property_type

msg

coverage_| evel

Severity of the failure. Default: OVL_SEVERITY _DEFAULT
(OVL_ERROR).

Width of test_expr and value. Default: 2.

Number of cycles after the value match that the event window
opens. Default: O (test_expr can change valuein any cycle).

Number of cycles after the value match that the event window
closes. But if max =0, no event window opens and there are the
following special cases:
mn=0and MmaxX = 0
When test_expr and value match, test_expr must change
value in the next cycle.
mn>0and MaX = 0
When test_expr and value match, test_expr must not change
value in the next min-1 cycles.
Default: O.

Property type. Default: OVL_PROPERTY DEFAULT
(OVL_ASSERT).

Error message printed when assertion fails. Default:
OVL_MSG_DEFAULT (“VIOLATION").

Coverage level. Default: OVL_COVER_DEFAULT
(OVL_COVER_BASIC).

152

Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets
ovl_hold_value

cl ock_edge

reset _polarity

gating_type

Ports

cl ock
reset

enabl e

test _expr[w dth-1:0]
val ue[wi dt h- 1: 0]

fire
[OVL_FI RE_W DTH- 1: 0]

Description

Active edge of the clock input. Default:
OVL_CLOCK_EDGE DEFAULT (OVL_POSEDGE).

Polarity (active level) of the reset input. Default:
OVL_RESET _POLARITY_DEFAULT
(OVL_ACTIVE_LOW).

Gating behavior of the checker when enable is FALSE. Default:
OVL_GATING_TYPE_DEFAULT (OVL_GATE_CLOCK).

Clock event for the assertion.
Synchronous reset signal indicating completed initialization.

Enable signal for clock, if gating_type= OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_typeis OVL_NONE.

Variable or expression to check.
Vaue to match with test_expr.

Fire output. Assertion failure when fire[0] is TRUE. X/Z check
failurewhenfire[1] is TRUE. Cover event when fire[2] is TRUE.

The ovl_hold_value assertion checker checkstest_expr and value at the active edge of clock. If
test_expr has changed value and the values of test_expr and value match, the checker verifies
that the value of test_expr holds as follows:

* 0 = mn = max (default)

If the value of test_expr does not change in the next cycle, ahold_value violation

OCcCurs.

e 0 =mn < nmax

If the value of test_expr has not changed within the next max cycles, ahold_value

violation occurs.

* 0 < mn < nmax

If the value of test_expr changes before an event window opens min cycles later, a
hold_value violation occurs. Then, if the value of test_expr changes, the event window
closes. However if test_expr still has not changed value max cycles after the value
match, the event window closes and a hold_value violation occurs.

Accellera Standard OVL V2, Library Reference Manual, 2.6 153

December 2011

OVL Checker Data Sheets
ovl_hold_value

e O =nmx < mn

If the value of test_expr changes within the next min-1 cycles ahold_value violation

occurs.

The checker returns to the state of checking test_expr and value in the next cycle.

Assertion Checks

HOLD_VALUE

Implicit X/Z Checks

test_expr contains X or Z
value contains X or Z

Cover Points

cover _test_expr_
changes

cover_hol d_val ue_for _

m n_cks

cover _hol d_val ue_for _

max_cks

A match occurred and the expression had the same value in the
next cycle.
0 = min = nmax
After matching value, test_expr held the same valuein the
next cycle.

A match occurred and the expression held the same value for the
next ‘max’ cycles.
0 = min < max
After matching value, test_expr held the same value for the
next max cycles.

A match occurred and the expression changed value before the
event window or held the same value through the event window.
0 < mn < max
After matching value, test_expr did not hold the same value
for the next min-1 cyclesor test_expr held the same value for
the next max cycles.

A match occurred and the expression changed value before the
event window opened.
O =mx <nmn
After matching value, test_expr did not hold the same value
for the next min-1 cycles.

Expression contained X or Z bits.
Vaue contained X or Z hits.

SANITY — Number of cyclestest expr changed value.

CORNER — Number of timestest_expr held value for exactly
min cycles.

CORNER — Number of timestest_expr held value for exactly
max+1 cycles.

154

Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets
ovl_hold_value

cover _hol d value for _
max_cks

observed _hol d tine

Cover Groups

observed hold tine

CORNER — Indicates that the test_expr was held exactly equal
to value for specified max clocks. Not reported if max = 0 and
min > 0.

STATISTIC — Reports the hold times (in cycles) that occurred
at least once.

Number of times the test_expr value was held for the specified
number of hold cycles. Bins are:

» Observed hold_time good[mint+1:maximum] — binindex is
the observed hold timein clock cycles. The value of
maximumis:
o 1(if min=max=0),
e min+ 4095 (if min > max = 0), or
e max + 1 (if max > 0).

» Observed hold_time bad — default.

Accellera Standard OVL V2, Library Reference Manual, 2.6 155

December 2011

OVL Checker Data Sheets
ovl_implication

ovl_implication

Checksthat a specified consequent expressionis TRUE if the specified antecedent expressionis
TRUE.

Parameter s/Generics. coverage |level

fire[OVL_FIRE_WIDTH-1:0] }— Severity level clock edge
— antecedent_expr property_type reset_polarity
ovl_implication msg gating_type

—|consequent_expr Class: 1-cycle assertion

clock reset enable
A A A

Syntax

ovl _inplication
[#(severity level, property type, nsg, coverage | evel, clock edge,
reset _polarity, gating type)]
i nstance_nane (cl ock, reset, enable, antecedent_expr, consequent_expr,
fire);

Parameters/Generics
Severity of the failure. Default: OVL_SEVERITY_DEFAULT

(OVL_ERROR).

Property type. Default: OVL_PROPERTY _DEFAULT
(OVL_ASSERT).

nmsg Error message printed when assertion fails. Default:
OVL_MSG_DEFAULT (“VIOLATION”).

Coverage level. Default: OVL_COVER_DEFAULT
(OVL_COVER_BASIC).

cl ock_edge Active edge of the clock input. Default:
OVL_CLOCK_EDGE DEFAULT (OVL_POSEDGE).

Polarity (active level) of the reset input. Default:
OVL_RESET_POLARITY_DEFAULT
(OVL_ACTIVE_LOW).

severity_| evel

property_type

coverage_| evel

reset _polarity

gating_type Gating behavior of the checker when enable is FALSE. Default:
OVL_GATING _TYPE DEFAULT (OVL_GATE_CLOCK).
Ports
cl ock Clock event for the assertion.
reset Synchronous reset signal indicating completed initialization.
156 Accellera Standard OVL V2, Library Reference Manual, 2.6

December 2011

OVL Checker Data Sheets
ovl_implication

enabl e
ant ecedent _expr
consequent _expr

fire
[OVL_FI RE_W DTH- 1: 0]

Description

Enable signal for clock, if gating_type = OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_typeis OVL_NONE.

Antecedent expression that is tested at the clock event.

Consequent expression that should evaluate to TRUE if
antecedent_expr evaluates to TRUE when tested.

Fire output. Assertion failure when fire[0] is TRUE. X/Z check
failurewhenfirg[1] is TRUE. Cover event when fire[2] is TRUE.

The ovl_implication assertion checker checks the single-bit expression antecedent_expr at each
active edge of clock. If antecedent_expr is TRUE, then the checker verifies that the value of
consequent_expr isalso TRUE. If antecedent_expr isnot TRUE, then the assertion isvalid
regardless of the value of consequent_expr.

Assertion Checks

| MPLI CATI ON
Implicit X/Z Checks

antecedent_expr contains X
orz

consequent_expr contains
XorZ

Cover Points

cover _ant ecedent

Cover Groups

none

Notes

Expression evaluated to FALSE.

Antecedent expression value was X or Z.

Consequent expression value was X or Z.

BASIC — The antecedent_expr evaluated to TRUE.

1. Thisassertion checker isequivalent to:

ovl _al ways

[#(severity level, property type, nsg, coverage | evel, clock edge,
reset _polarity, gating type)]

i nstance_nane (clock, reset, enable,
(ant ecedent _expr ? consequent_expr : 1'bl), fire);

Accellera Standard OVL V2, Library Reference Manual, 2.6 157

December 2011

OVL Checker Data Sheets
ovl_implication

See also
ovl_aways ovl_never
ovl_aways on_edge ovl_proposition
Examples

ovl _inplication #(

* OVL_ERROR, /'l severity_level
* OVL_ASSERT, /] property_type
“BError: q valid but q full”, /'l nsg

‘ OVL_COVER _DEFAULT, /'l coverage_| evel
* OVL_POSEDGE, /'l cl ock_edge

“ OVL_ACTI VE_LOW /1l reset _polarity
* OVL_GATE_CLOCK) /1 gating_type

not _full (

cl ock, /1 clock

reset, /'l reset

enabl e, /'l enabl e

g_valid, /] antecedent _expr
g_not_full, /1 consequent _expr
fire not _full); Il fire

Checksthat g not_full is TRUE at each rising edge of clock for which g valid is TRUE.
cock — L L L LI LI

reset _[|
g_valid : :)) : :)
g_not_full j ! X ' ! ! e

IMPLICATION Error: q valid but q full <—J

158 Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets
ovl_increment

ovl_increment

Checks that the value of an expression changes only by the specified increment value.

Parameters/Generics:. msg

fire[OVL_FIRE_WIDTH-L:0] | Severity_level coverage_|evel
width clock _edge

ovl_increment value reset_polarity
property_type gating_type

—test_expr[width-1:0]

clock reset enable Class. Z_Cyde tion

T T T

Syntax

ovl _i ncrenent
[#(severity_level, width, value, property_type, nsg, coverage_l| evel,
cl ock_edge, reset_polarity, gating type)]
i nstance_nane (cl ock, reset, enable, test_expr, fire);

Parameters/Generics

severity_|l evel Severity of the failure. Default: OVL_SEVERITY_DEFAULT
(OVL_ERROR).

wi dt h Width of the test_expr argument. Default: 1.

val ue Increment value for test_expr. Default: 1.

property_type Property type. Default: OVL_PROPERTY_DEFAULT
(OVL_ASSERT).

msg Error message printed when assertion fails. Default:
OVL_MSG _DEFAULT (“VIOLATION").

cover age_| evel Coverage level. Default: OVL_COVER _DEFAULT
(OVL_COVER_BASIC).

cl ock_edge Active edge of the clock input. Default:
OVL_CLOCK_EDGE_DEFAULT (OVL_POSEDGE).

reset_polarity Polarity (active level) of the reset input. Default:

OVL_RESET_POLARITY_DEFAULT
(OVL_ACTIVE_LOW).

gating_type Gating behavior of the checker when enableis FALSE. Default:
OVL_GATING_TYPE_DEFAULT (OVL_GATE_CLOCK).

Accellera Standard OVL V2, Library Reference Manual, 2.6 159
December 2011

OVL Checker Data Sheets
ovl_increment

Ports
cl ock Clock event for the assertion.
reset Synchronous reset signal indicating completed initialization.
enabl e Enable signal for clock, if gating_type= OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_typeis OVL_NONE.
t est _expr[w dt h- 1: 0] Expression that should increment by value whenever its value
changes from the active edge of clock to the next active edge of
clock.
fire Fire output. Assertion failure when fire[0] is TRUE. X/Z check
[OVL_FI RE_WDTH- 1: 0] failurewhen fire[1] is TRUE. Cover event when fire[2] is TRUE.
Description

The ovl_increment assertion checker checks the expression test_expr at each active edge of
clock to determineif its value has changed from its value at the previous active edge of clock. If
s0, the checker verifies that the new value equals the previous value incremented by value. The
checker alowsthe value of test_expr to wrap, if the total change equals the increment value.
For example, if width is 5 and value is 4, then the following changein test_expr isvalid:

5'b11110 — 5' b00010

The checker is useful for ensuring proper changes in structures such as counters and finite-state
machines. For example, the checker isuseful for circular queue structures with address counters
that can wrap. Do not use this checker for variables or expressions that can decrement. Instead
consider using the ovl_delta checker.

Assertion Checks

| NCREMENT Expression evaluated to avalue that is not its previous value
incremented by value.

Implicit X/Z Checks

test_expr contains X or Z Expression value contained X or Z bits.

Cover Points

cover_test _expr_change BASIC — Expression changed value.

Cover Groups

none

160 Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets
ovl_increment

Notes

1. The assertion check compares the current value of test_expr with its previous value.
Therefore, checking does not start until the second rising edge of clock after reset
deasserts.

See also

ovl_decrement ovl_no_overflow
ovl_delta

Examples

ovl _increment #(

* OVL_ERROR, /'l severity_level
4, /1 width

1, /1 val ue

* OVL_ASSERT, /'l property_type
“Error: invalid binary increment”, /'l msg

‘ OVL_COVER DEFAULT, /1 coverage_| evel
* OVL_POSEDGE, /'l cl ock_edge

“ OVL_ACTI VE_LOW /1l reset _polarity
* OVL_GATE_CLOCK) /'l gating_type

val id_count (

cl ock, /1 clock
reset, /] reset
enabl e, /1 enabl e
count, /] test_expr
fire_valid_count); Il fire

Checks that the programmable counter’ s count variable only increments by 1. If count wraps,
the assertion fails, because the change is not a binary increment.

reset : : : : ! ! : : : : : '
count 0000 0001 | 0010 [0011 [0I00 [0101 | 0110 | OIIT [1000 | 1001 [0000
INCREMENT Error: invalid binary increment -
Accellera Standard OVL V2, Library Reference Manual, 2.6 161

December 2011

OVL Checker Data Sheets
ovl_memory_async

ovl_memory_async

Checksthe integrity of accesses to an asynchronous memory.

_ Parameter sGenerics:

_,:ZEdr[addr i l_f(.)r]e [OVL_FIRE_WIDTH-1:0] f— severity |evel value check
— rdata[data:width-1:0] ggg?_m%tt?] property_type
—»{wen ovl_memory_async “ize coverage leve
—|waddr[addr_width-1:0] “dledm_ heck od .
_ »|wdata[data_width-1:0] addr_cnhec ren_edge
—|start_addr[addr_width-1:0] 'nlt_CheCk Wen_edge]
__.lend_addrfaddr_width-1:0] one_read_check reset_polarity

reset enable one write_check gating_type

)

Syntax

ovl _nenory_async

' Class; event-bounded assertion

[#(severity level, data_w dth, addr_wi dth, memsize, addr_check,

i nit_check,

one_read_check, one write _check, val ue_check,

property type, nsg, coverage_level, wen_edge, ren_edge,
reset_polarity, gating type)]
i nstance_nane (reset, enable, start_addr, end_addr, ren, raddr, rdata,

wen, waddr,

Parameters/Generics

severity_| evel

wdata, fire);

Severity of the failure. Default: OVL_SEVERITY_DEFAULT
(OVL_ERROR).

dat a_wi dt h Number of bitsin adataitem. Default: 1
addr _wi dt h Number of bitsin an address. Default: 1
mem si ze Number of dataitemsin the memory. Default: 2
addr _check Whether or not to perform address checks.
addr _check = 0
Turns off the address check.
addr _check = 1 (Default)
Turns on the address check.
i nit_check Whether or not to perform initialization checks.
init_check =0
Turns off the initialization check.
init_check = 1 (Default)
Turns on the initialization check.
162 Accellera Standard OVL V2, Library Reference Manual, 2.6

December 2011

OVL Checker Data Sheets
ovl_memory_async

one_r ead_check

one_write_check

val ue_check

property_type

neg

cover age_| evel

ren_edge

wen_edge

reset _polarity

Whether or not to perform one_read checks.
one_read_check = 0 (Default)

Turns off the one _read check
one_read check =1

Turns on the one_read check.

Whether or not to perform one_write checks.
one_write_check = 0 (Default)

Turns off the one_write check.
one_wite check =1

Turns on the one_write check.

Whether or not to perform value checks.
val ue_check = 0 (Default)

Turns off the value check.
val ue_check =1

Turns on the value check.

Property type. Default: OVL_PROPERTY DEFAULT
(OVL_ASSERT).

Error message printed when assertion fails. Default:
OVL_MSG _DEFAULT (“VIOLATION").

Coverage level. Default: OVL_COVER_DEFAULT
(OVL_COVER_BASIC).

Active edge of the ren input. Default:
OVL_CLOCK_EDGE_DEFAULT (OVL_POSEDGE).

Active edge of the wen input. Default:
OVL_CLOCK_EDGE DEFAULT (OVL_POSEDGE).

Polarity (active level) of the reset input. Default:
OVL_RESET _POLARITY_DEFAULT
(OVL_ACTIVE_LOW).

December 2011

gating_type Gating behavior of the checker when enable is FALSE. Default:
OVL_GATING_TYPE_DEFAULT (OVL_GATE_CLOCK).
Ports
reset Synchronous reset signal indicating completed initialization.
enabl e Enable signal for ren and wen, if gating_type =
OVL_GATE_CLOCK (the default gating type) or reset (if
gating_type=OVL_GATE_RESET). Ignored if gating_typeis
OVL_NONE.
start _addr First address of the memory.
end_addr Last address of the memory.
Accellera Standard OVL V2, Library Reference Manual, 2.6 163

OVL Checker Data Sheets
ovl_memory_async

ren Read enable input, whose active edge initiates a read operation
from the memory location specified by raddr.

raddr Read address input.

rdata Read data input that holds the data item read from memory.

wen Write enable input, whose active edge initiates a write operation
of the data item in wdata to the memory location specified by
waddr.

waddr Write address input.

wdat a Write data input.

fire Fire output. Assertion failure when fire[0] is TRUE. X/Z check

[OVL_FI RE_W DTH- 1: 0] failurewhenfirg[1] is TRUE. Cover event when fire[2] is TRUE.

Description

The ovl_memory_async checker checks the two memory access enable signals wen and ren
combinationally. The active edges of these signals are specified the wen_edge and ren_edge
parameters/generics (and by enableif gating_typeisOVL_GATE_CLOCK). At the active edge
of wen, the values of waddr, start_addr and end_addr are checked. If waddr is not in the range
[start_addr:end_addr], an address check violation occurs. Otherwise, awrite operation to the
location specified by waddr isassumed. Similarly, at the active edge of ren, the values of raddr,
start_addr and end_addr are checked. If raddr isnot in the range [start_addr:end_addr], an
address check violation occurs. Otherwise, aread operation from the location specified by raddr
isassumed. Also, if raddr isuninitialized (i.e., has not been written to previously or at the
current time), then an initialization check violation occurs.

By default, the address and init checks are on, but can be turned off by setting the addr_check
and init_check parameters/genericsto 0. Note that other checks are valid only if the addresses
arevalid, so it isrecommended that addr_check be left at 1. The checker can be configured to
perform the following additional checks:

one_ wite check =1

At the active edge of wen, if the previous access to the data at the address specified by
waddr was awrite or a simultaneous read/write to that address, aone_write check
violation occurs, unless the current operation is a simultaneous read/write to that
location.

one_read_check =1

At the active edge of ren, if the previous access to the data at the address specified by
raddr was aread (but not a simultaneous read/write to that address), a one_read check
violation occurs.

164

Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets
ovl_memory_async

e val ue_check

At the active edge of wen, the current value of wdata is the value assumed to be written
to the memory location specified by waddr. At the active edge of ren, if the value of
rdata does not match the expected value last written to the address specified by raddr, a
value check violation occurs.

Note that when active edges of wen and ren occur together, a simultaneous read/write operation
is assumed. Here, the read is performed first (for example, if raddr = waddr).

Assertion Checks

ADDRESS

I NI TI ALI ZATI ON

ONE_READ

ONE_WRI TE

VALUE

Write address was out of range.
At an active edge of wen, waddr < start_addr or waddr >
end addr.

Read address was out of range.
At an active edge of ren, raddr < start_addr or raddr >
end_addr.

Read location was not initialized.
At an active edge of ren, the memory location pointed to by
raddr had not had data written to it since the last reset.

Memory location had two read accesses without an intervening
write access.
one_read check =1
At an active edge of ren, the previous access to the memory
location pointed to by raddr was another read.

Memory location had two write accesses without an intervening
read access.
one_read check =1
At an active edge of wen, the previous access to the memory
location pointed to by waddr was another write (and the
current memory access is not a simultaneous read/write to
that location).

Dataitem read from alocation did not match the data last written
to that location.
val ue_check =1
At an active edge of ren, the value of rdata did not equal the
expected value, which was the value of wdata when awrite
access to the memory location pointed to by the current value
of raddr last occurred.

Accellera Standard OVL V2, Library Reference Manual, 2.6 165

December 2011

OVL Checker Data Sheets
ovl_memory_async

Implicit X/Z Checks

start_addr contains X or Z
end _addr contains X or Z
raddr contains X or Z
rdata contains X or Z
waddr contains X or Z
wdata contains X or Z

Cover Points

cover _reads

cover_wites

cover wite then read_

from sane_addr
cover _read_addr

cover_wite_addr

cover _two wites_
wi t hout _read

cover _two_reads_
without_write

cover _read fromstart _

addr

cover_wite to_start _
addr

cover _read fromend_
addr

cover_wite_ to_end_
addr

cover wite then read_

fromstart addr

cover_wite_ then_read_

from end_addr

Start address contained X or Z bits.
End address contained X or Z bits.
Read address contained X or Z bits.
Read data contained X or Z bits.
Write address contained X or Z bits.
Write data contained X or Z bits.

SANITY — Number of read accesses.
SANITY — Number of write accesses.

BASIC — Number of times awrite access was followed by a
read from the same address.

STATISTIC — Reports which addresses were read at least once.

STATISTIC — Reports which addresses were written at |east
once.

STATISTIC — Number of times a memory location had two
write accesses but no read access of the dataitem stored by the
first write.

STATISTIC — Number of times a memory location had two
read accesses but no write access overwriting the data item read
by the first read.

CORNER — Number of read accesses to the location specified
by start_addr.

CORNER — Number of write accesses to the location specified
by start_addr.

CORNER — Number of read accesses to the location specified
by end_addr.

CORNER — Number of write accesses to the location specified
by end_addr.

CORNER — Number of times awrite access to start_addr was
followed by aread from start_addr.

CORNER — Number of times awrite access to end_addr was
followed by aread from end_addr.

166

Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets
ovl_memory_async

Cover Groups

observed_r ead_addr Number of read operations made from the specified address. Bins
are:
» Observed read addr[O:addr_width - 1] — bin index isthe
memory address.

observed_write_addr Number of write operations made to the specified address. Bins
are:
» Observed write addr[O:addr_width - 1] — binindex isthe
memory address.

Accellera Standard OVL V2, Library Reference Manual, 2.6 167
December 2011

OVL Checker Data Sheets
ovl_memory_sync

ovl_memory_sync

Checks the integrity of accesses to a synchronous memory.

; C,*ock - C*I oK Parameter s/Generics. one write_check
—>{ren B fire [OVL FIRE. WIDTH-1:0] severity_level value_check
__Jlraddrfaddr_width-1:0] data_width property_type
—»| rdata[data_width-1:0] addr_V_n dth
—>{wen ovl_memory_sync mem_size coverage level
.| waddr[addr_width-1:0] pass_thru wen_edge
—| wdata[data_width-1:0] addr_check ren_edge
— | start_addr[addr_width-1:0] init_check reset_polarity
—»| end_addr[addr_width-1:0] conflict_check gating_type

reset enable one_read check

! ! Class: event-bounded assertion

Syntax

ovl _nmenory_sync
[#(severity_ level, data_w dth, addr_w dth, nmemsize, addr_check,
init_check, conflict_check, pass_thru, one_read check
one_write_check, value_check, property type, nsg,
coverage_|l evel, wen_edge, ren_edge, reset_polarity,

gating_type)]
i nstance_nane (reset, enable, start_addr, end_addr, r_clock, ren,
raddr, rdata, w_clock, wen, waddr, wdata, fire);

Parameters/Generics

Severity of the failure. Default: OVL_SEVERITY_DEFAULT
(OVL_ERROR).

Number of bitsin adataitem. Default: 1
Number of bitsin an address. Default: 1
Number of dataitemsin the memory. Default: 2

severity_| evel

data_w dth
addr_wi dth
mem si ze

How the memory handles a simultaneous read and write accessto

the same address. This parameter appliesto theinitialization and

value checks.

pass_thru = 0 (Default)
No pass-through mode (i.e., read before write). Simultaneous
read/write access to the same location should return the
current data item as the read data.

pass_thru =1
Pass-through mode (i.e., write before read). Simultaneous
read/write access to the same location should return the new
dataitem asthe read data. Only specify pass-through mode if
r_clock ===w_clock and conflict_check = 0.

pass_thru

168 Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets
ovl_memory_sync

addr _check

i ni t_check

conflict_check

one_r ead_check

one_write_check

val ue_check

property_type

nmsg

cover age_| evel

Whether or not to perform address checks.
addr _check =0

Turns off the address check.
addr _check = 1 (Default)

Turns on the address check.

Whether or not to perform initialization checks.
init_check =0

Turns off the initialization check.
init_check = 1 (Default)

Turns on the initialization check.

Whether or not to perform conflict checks.

conflict_check = 0 (Default)
Turns off the conflict check.

conflict _check =1
Turns on the conflict check. Only select the conflict check if
r_clock === w_clock.

Whether or not to perform one_read checks.
one_read_check = 0 (Default)

Turns off the one_read check.
one_read _check =1

Turns on the one_read check.

Whether or not to perform one_write checks.
one_write_check = 0 (Default)

Turns off the one_write check.
one_ wite check =1

Turns on the one_write check.

Whether or not to perform value checks.
val ue_check = 0 (Default)

Turns off the value check.
val ue_check = 1

Turns on the value check.

Property type. Default: OVL_PROPERTY DEFAULT
(OVL_ASSERT).

Error message printed when assertion fails. Default:
OVL_MSG _DEFAULT (“VIOLATION").

Coverage level. Default: OVL_COVER _DEFAULT
(OVL_COVER BASIC).

December 2011

ren_edge Active edge of ther_clock input. Default:
OVL_CLOCK_EDGE_DEFAULT (OVL_POSEDGE).
wen_edge Active edge of the w_clock input. Default:
OVL_CLOCK_EDGE _DEFAULT (OVL_POSEDGE).
Accellera Standard OVL V2, Library Reference Manual, 2.6 169

OVL Checker Data Sheets

ovl_memory_sync

reset_polarity

gating_type

Ports

reset

enabl e

start _addr
end_addr
r_cl ock

ren

r addr
rdata
w_cl ock

wen

waddr
wdat a

fire

[OVL_FI RE_W DTH- 1: 0]

Description

Polarity (active level) of the reset input. Default:
OVL_RESET POLARITY DEFAULT
(OVL_ACTIVE_LOW).

Gating behavior of the checker when enableis FALSE. Default:
OVL_GATING_TYPE_DEFAULT (OVL_GATE_CLOCK).

Synchronous reset signal indicating completed initialization.

Enable signal for r_clock and w_clock, if gating_type =
OVL_GATE_CLOCK (the default gating type) or reset (if
gating_type = OVL_GATE_RESET). Ignored if gating_typeis
OVL_NONE.

First address of the memory.
Last address of the memory.
Clock event for read operations.

Read enableinput that initiates a read operation from the memory
location specified by raddr.

Read address input.
Read data input that holds the data item read from memory.
Clock event for write operations.

Write enable input that initiates awrite operation of the dataitem
in wdata to the memory location specified by waddr.

Write address input.
Write data input.

Fire output. Assertion failure when fire[0] is TRUE. X/Z check
failurewhenfire[1] is TRUE. Cover event when firg[2] is TRUE.

The ovl_memory_async checker checks wen at the active edge of w_clock. If wen is TRUE, the
checker checks the values of waddr, start_addr and end_addr. If waddr isnot in the range
[start_addr:end addr], an address check violation occurs. Otherwise, awrite operation to the
location specified by waddr is assumed. Similarly, the checker checks ren at the active edge of
r_clock. If ren is TRUE, the checker checks the values of raddr, start_addr and end_addr. If
raddr isnot in therange [start_addr:end_addr], an address check violation occurs. Otherwise, a
read operation from the location specified by raddr is assumed. Also, if raddr is uninitialized
(i.e., has not been written to previously or at the current time), then an initialization check

violation occurs.

170

Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets
ovl_memory_sync

By default, the address and init checks are on, but can be turned off by setting the addr_check
and init_check parameters/genericsto 0. Note that other checks are valid only if the addresses
arevalid, so it isrecommended that addr_check be left at 1.

The checker can be configured to perform the following additional checks:

e conflict_check =1

At the active edges of w_clock/r_clock, if wen =ren = TRUE and waddr = raddr, then a
conflict check violation occurs (w_clock and r_clock must be the same signal).

e one wite check =1
pass_thru = 0

At the active edge of w_clock, if wen is TRUE and the previous access to the data at
the address specified by waddr was awrite or a simultaneous read/write to that
address, aone_write check violation occurs, unless the current operation isa
simultaneous read/write to that location.

pass thru =1

At the active edge of w_clock, if wen is TRUE and the previous access to the data at
the address specified by waddr was awrite (but not a simultaneous read/write to that
address), aone_write check violation occurs.

e one_read check =1
pass_thru = 0

At the active edge of r_clock, if ren is TRUE and the previous access to the data at
the address specified by raddr was aread (but not a simultaneous read/write to that
address), aone_read check violation occurs.

pass_thru =1

At the active edge of r_clock, if ren is TRUE and the previous access to the data at
the address specified by raddr was aread or a simultaneous read/write to that
address, aone_read check violation occurs, unless the current operationis a
simultaneous read/write to that location.

e value check =1

At the active edge of w_clock, if wen is TRUE, the current value of wdata is the value
assumed to be written to the memory location specified by waddr. At the active edge of
r_clock, if renis TRUE and the value of rdata does not match the expected value last
written to the address specified by raddr, a value check violation occurs.

Accellera Standard OVL V2, Library Reference Manual, 2.6 171
December 2011

OVL Checker Data Sheets
ovl_memory_sync

Assertion Checks

ADDRESS

I NI TI ALI ZATI ON

CONFLI CT

ONE_READ

ONE_WRI TE

VALUE

Write address was out of range.
At an active edge of w_clock, wen was TRUE but waddr <
start_addr or waddr > end_addr.

Read address was out of range.
At an active edge of r_clock, ren was TRUE but raddr <
start_addr or raddr > end_addr.

Read location was not initialized.
At an active edge of r_clock, ren was TRUE but the memory
location pointed to by raddr had not had data written to it
since the last reset.

Simultaneous read/write accesses to same address.
conflict _check =1
At an active edge of r_clock, ren was TRUE but wen was a so
TRUE and raddr = waddr. This check assumesr_clock and
w_clock are the same signal.

Memory location had two read accesses without an intervening
write access.
one_read_check =1
At an active edge of r_clock, ren was TRUE but the previous
access to the memory location pointed to by raddr was
another read.

Memory location had two write accesses without an intervening
read access.
one_read check =1
At an active edge of w_clock, wen was TRUE but the
previous access to the memory location pointed to by waddr
was another write.

Dataitem read from alocation did not match the data last written
to that location.
val ue_check =1
At an active edge of r_clock, ren was TRUE but the value of
rdata did not equal the expected value, which was the value
of wdata when awrite access to the memory location pointed
to by the current value of raddr last occurred.

172

Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets
ovl_memory_sync

Implicit X/Z Checks

start_addr contains X or Z
end _addr contains X or Z
ren contains X or Z

raddr contains X or Z
rdata contains X or Z

wen contains X or Z
waddr contains X or Z
wdata contains X or Z

Cover Points

cover _reads

cover_wites

cover wite then read_

from sanme_addr

cover_sane_addr _
si mul t aneous_
read write

cover _different_addr_
si mul t aneous__
read_ wite

cover _read fromstart _

addr

cover wite to_start
addr

cover _read fromend_
addr

cover wite to _end_
addr

cover wite then read_

fromstart _addr

cover wite then read_

from end_addr
cover _read_addr

cover_wite_addr

Start address contained X or Z bits.
End address contained X or Z bits.
Read enablewas X or Z.

Read address contained X or Z hits.
Read data contained X or Z bits.
Write enable was X or Z.

Write address contained X or Z hits.
Write data contained X or Z bits.

SANITY — Number of read accesses.
SANITY — Number of write accesses.

BASIC — Number of times awrite access was followed by a
read from the same address.

CORNER — Number of times a simultaneous read/write access
to the same address occurred. Not meaningful unlesspass _thruis
1.

CORNER — Number of times a simultaneous read/write access
to different addresses occurred. Not meaningful unless pass_thru
is 1.

CORNER — Number of read accesses to the location specified
by start_addr.

CORNER — Number of write accesses to the location specified
by start_addr.

CORNER — Number of read accesses to the location specified
by end_addr.

CORNER — Number of write accesses to the location specified
by end_addr.

CORNER — Number of times awrite access to start_addr was
followed by aread from start_addr.

CORNER — Number of times awrite access to end_addr was
followed by aread from end_addr.

STATISTIC — Reportswhich addresseswereread at | east once.

STATISTIC — Reports which addresses were written at |east
once.

Accellera Standard OVL V2, Library Reference Manual, 2.6 173

December 2011

OVL Checker Data Sheets
ovl_memory_sync

cover_read to wite_
del ays

cover wite to read_
del ays

cover _two wites_
wi t hout read

cover _two_reads_
without wite

Cover Groups

observed_read_addr

observed_write_addr

observed_del ay_from_
read to wite

observed_del ay_from_
wite to_read

STATISTIC — Reports which delays (in numbers of active
w_clock edges) from aread to the next write (to any address)
occurred at |least once.

STATISTIC — Reports which delays (in numbers of active
r_clock edges) from awrite to the next read (to any address)
occurred at |east once.

STATISTIC — Number of times a memory location had two
write accesses but no read access of the dataitem stored by the
first write.

STATISTIC — Number of times a memory location had two
read accesses but no write access overwriting the data item read
by the first read.

Number of read operations made from the specified address. Bins
are:
» observed read addr[O:addr_width - 1] — binindex isthe
memory address.

Number of write operations made to the specified address. Bins
are:
» observed write_addr[O:addr_width - 1] — bin index isthe
memory address.

Number of times the delay (in cycles) between aread from a
memory location and awrite to that |ocation matched the
specified latency value. Bins are:
» observed delay from read to write[0:31] — binindex is
the observed latency.

Number of times the delay (in cycles) between awriteto a
memory location and a read from that location matched the
specified latency value. Bins are:
» observed delay from write_to read[0:31] — binindex is
the observed latency.

174

Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets
ovl_multiport_fifo

ovl_multiport_fifo

Checks the data integrity of a FIFO with multiple enqueue and dequeue ports, and checks that
the FIFO does not overflow or underflow.

— enq[enq_count_l:()] ParametefS/GenerICS

.| deq[deq_count-1:0] severity_level high_water_mark
| ful fire [OVL_FIRE_WIDTH-1:0] |— Width full_check
—|empty _ _ depth empty_check
ovl_multiport_fifo enq_count value check
—| enq_data[eng_count*width-1:0] deg count roperty type
—|deq_data[deq_count*width-1:0] p% thru Property_typ
—| preload[preload_count*width-1:0]* . ed level
clock reset enable register coverage_levt
T T T enq_latency clock _edge
*if prel oad_count = 0: deq_latency reset_polarity
prel oad iSwi dt h bitswide preload count gating_type

Class. n-cycle assertion

Syntax

ovl _nmultiport fifo

[#(severity level, width, depth, eng_count, deq_count,
prel oad_count, pass_thru, registered, high_water_nark,
eng_l atency, deq_l atency, val ue_check, full _check, enpty_check
property_type, nsg, coverage_level, clock_edge, reset_polarity,
gating_type)]

i nstance_nane (clock, reset, enable, enq, deq, enq _data, deq_data,
full, enpty, preload, fire);

Parameters/Generics

severity_| evel Severity of the failure. Default: OVL_SEVERITY _DEFAULT
(OVL_ERROR).
wi dt h Width of adataitem in the FIFO. Default: 1.
dept h FIFO depth. The depth must be > 0. Default: 2.
eng_count Number of FIFO enqueue ports. Must be < depth. Default: 2.
deq_count Number of FIFO dequeue ports. Must be < depth. Default: 2.
Accellera Standard OVL V2, Library Reference Manual, 2.6 175

December 2011

OVL Checker Data Sheets
ovl_multiport_fifo

pass_t hru

regi stered

eng_l at ency

deqg_I at ency

pr el oad_count

hi gh_wat er _mar k

How the FIFO handles dequeues and enqueues in the same cycle
if the FIFO count is such that a dequeue violation might occur.
pass_thru = 0 (Default)
No pass-through mode means dequeue before enqueue. A
dequeue violation occursif the number of scheduled
dequeues > the current FIFO count.
pass =1
Pass-through mode means enqueue before dequeue. A
dequeue violation occurs if the number of scheduled
dequeues — the number of scheduled enqueues > the current
FIFO count.

How the FIFO handles dequeues and enqueues in the same cycle
if the FIFO count is such that an enqueue violation might occur.
regi stered = 0 (Default)
No registered mode means enqueue before dequeue. An
enqueue violation occursiif the current FIFO count + the
number of scheduled enqueues > depth.
registered = 1
Registered mode means dequeue before enqueue. An
enqueue violation occursiif the current FIFO count + the
number of scheduled enqueues — the number scheduled
dequeues > depth.

Latency for enqueue data.
eng_l atency = 0 (Default)
Checks and coverage assume enq_data is valid and the
enqueue operation is performed in the same cycle enq asserts.
eng_l atency > 0
Checks and coverage assume eng_data isvalid and the
enqueue operation is performed enq_latency cycles after enq
asserts.

Latency for dequeued data. It is used for the value check.
deq_l atency = 0 (Default)
Checks and coverage assume deq_data isvalid and the
dequeue operation is performed in the same cycle deq asserts.
deq latency > 0
Checks and coverage assume deq_data isvalid and the
dequeue operation is performed deq_latency cycles after deq
asserts.

Number of items to preload the FIFO on reset. The preload port
isaconcatenated list of items to be preloaded into the FIFO.
Default: 0 (FIFO empty on reset).

FIFO high-water mark. Must be < depth. A value of 0 disables
the high_water_mark cover point. Default: O.

176

Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets
ovl_multiport_fifo

full _check

enpty_check

val ue_check

property_type

neg

cover age_| evel

cl ock_edge

reset _polarity

gating_type

Ports

cl ock
r eset

enabl e

eng[enqg_count - 1: 0]

Whether or not to perform full checks.
full _check = 0 (Default)

Turns off the full check.
full _check =1

Turns on the full check.

Whether or not to perform empty checks.
enpty_check = 0 (Default)

Turns off the empty check.
enpty_check = 1

Turns on the empty check.

Whether or not to perform value checks.
val ue_check = 0 (Default)

Turns off the value check.
val ue_check =1

Turns on the value check.

Property type. Default: OVL_PROPERTY DEFAULT
(OVL_ASSERT).

Error message printed when assertion fails. Default:
OVL_MSG _DEFAULT (“VIOLATION").

Coverage level. Default: OVL_COVER_DEFAULT
(OVL_COVER_BASIC).

Active edge of the clock input. Default:
OVL_CLOCK_EDGE_DEFAULT (OVL_POSEDGE).

Polarity (active level) of the reset input. Default:
OVL_RESET POLARITY _DEFAULT
(OVL_ACTIVE_LOW).

Gating behavior of the checker when enableis FALSE. Default:
OVL_GATING_TYPE_DEFAULT (OVL_GATE_CLOCK).

Clock event for the assertion.
Synchronous reset signal indicating completed initialization.

Enable signal for clock, if gating_type= OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_typeis OVL_NONE.

Concatenation of FIFO enqueue inputs. When one or more enq
bits are sampled TRUE, the FIFO performs an enqueue operation
from the asserted bits' corresponding enqueue data ports
(enqg_latency cycleslater). Dataitems are enqueued in order from
the least to most-significant bits and the FIFO counter is
incremented by the number of TRUE enq bits

Accellera Standard OVL V2, Library Reference Manual, 2.6 177

December 2011

OVL Checker Data Sheets
ovl_multiport_fifo

deq[deq_count - 1: 0]

full

enpty

eng_data
[eng_count *wi dt h- 1: 0]

deqg_data
[deg_count *wi dt h-1: 0]

pr el oad
[prel oad_count *wi dt h-1
: 0]

fire
[OVL_FI RE_W DTH- 1: 0]

Concatenation of FIFO dequeue inputs. When one or more deq
bits are sampled TRUE, the FIFO performs a dequeue operation
from the asserted bits' corresponding dequeue data ports
(deq_latency cycleslater). Dataitems are dequeued in order from
the least to most-significant bits and the FIFO counter is
decremented by the number of TRUE deq bits

Output status flag from the FIFO.
full =0

FIFO not full.
full =1

FIFO full.

Output status flag from the FIFO.
enpty = 0

FIFO not empty.
empty =1

FIFO empty.

Concatenation of enqueue datainputs. If the value check ison,
this port contains the data items to enqueue eng_latency cycles
after the enq bits assert.

Concatenation of dequeue datainputs. If the value check ison,
this port contains the dequeued data items deq_latency cycles
after the deq bits assert.

Concatenated preload data to enqueue on reset.

prel oad_count = 0

No preload of the FIFO is assumed. The width of preload should
be width, however no values from preload are used. The FIFO is
assumed to be empty on reset.

prel oad_count > 0

Checker assumes the value of preload is a concatenated list of
items that were all enqueued on the FIFO on reset (or simulation
start). The width of preload should be preload count * width
(preload items are the same width). Preload values are enqueued
from the low order item to the high order item.

Fire output. Assertion failure when fire[0] is TRUE. X/Z check
faillurewhenfirg[1] is TRUE. Cover event when fire[2] is TRUE.

178

Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets
ovl_multiport_fifo

Description

The ovl_multiport_fifo assertion checker checks that a multiport FIFO functions legally. A
multiport FIFO is amemory structure that stores and retrieves data items based on afirst-in
first-out queueing protocol. The FIFO can have multiple enqueue data ports and multiple
dequeue data ports (the number of each does need to match). Each enqueue data port has a
corresponding enqueue signal that indicates the data port’ s value should be enqueued. Similarly,
each dequeue data port has a corresponding dequeue signal that indicates a dataitem from the
FIFO should be dequeued to that port.

A FIFO with multiple enqueue ports can signal an enqueue from any combination of the ports
each enqueue clock cycle. Similarly, a FIFO with multiple dequeue ports can signal a dequeue
to any combination of the ports each dequeue clock cycle. When multiple ports are enqueued
(dequeued) in acycle, the order their contents are enqueued (dequeued) is always the same. A
FIFO can aso have enqueue and dequeue latency constants. Enqueue latency is the number of
clock cycles after an enqueue signal asserts that the corresponding enqueue datavalueisvalid at
the corresponding enqueue data port. Dequeue latency is the number of clock cyclesit takesfor
a dequeue to produce a data value at its corresponding dequeue port.

To connect the ovl_multiport_fifo checker to the FIFO logic:

» Concatenate the enqueue signals—arranged in order from first-in (least-significant bit)
to last-in (most-significant bit)—and connect to the enq port. Concatenate the dequeue
signals—arranged in order from first-out (least-significant bit) to last-out (most-
significant bit)—and connect to the deq port.

» If the checker will perform value checks, concatenate the enqueue data ports in the same
order as the enq bits and connect to the enq_data port. Concatenate the dequeue data
ports in the same order as the deq bits and connect to the deq_data port. Otherwise,
connect enq_data and deq_data to O.

» If the checker will perform full checks, connect the FIFO-full status flag to the full port.
Otherwise, connect full to 1'bO. If the checker will perform empty checks, connect the
FIFO-full status flag to the empty port. Otherwise, connect empty to 1’ bO0.

The checker checks eng and deq at the active edge of clock. If an enq bit is TRUE, an enqueue
operation is scheduled for the corresponding enqueue data port enq_latency cycles later (or in
the current cycleif enq_latency is0). Similarly, if adeq bit is TRUE, a dequeue operation is
scheduled to the corresponding dequeue data port deq_latency cycles later (or in the current
cycleif deq_latency is0).

At each active edge of clock, the checker does the following:

1. Updatesits FIFO counter with the results of enqueues and dequeues from the previous
cycle.

2. Checksthefull flag if full_checkis 1. If full is FALSE and the FIFO count = depth or if
full is TRUE and the FIFO count < depth, afull check violation occurs.

Accellera Standard OVL V2, Library Reference Manual, 2.6 179
December 2011

OVL Checker Data Sheets
ovl_multiport_fifo

3. Checksthe empty flag if empty_checkis 1. If empty is FAL SE and the FIFO count = 0 or
if empty is TRUE and the FIFO count > 0, an empty check violation occurs.

4. Checksfor apotential overflow. If the number of enqueues scheduled for the current
cycle exceeds the current number of unused FIFO locations, an enqueue check violation
occurs. In this case, since the FIFO state is unknown, value checks are turned off until
the next checker reset.

5. Checksfor apotential underflow. If the number of dequeues scheduled for the current
cycle exceeds the current number of FIFO entries, a dequeue check violation occurs. In
this case, since the FIFO state is unknown, value checks are turned off until the next
checker reset.

6. If value checkis 1 (and no enqueue or dequeue violations have occurred), the checker
maintains an internal copy of what it expects the FIFO entries to be. The checker issues
avalue check violation for each internal dequeued data item that does not match the
corresponding value of deq_data.

A corner-case situation occurs when both enqueues and dequeues are scheduled simultaneously
in the same cycle. By default, the checker enforces the best-case (i.e., most restrictive)
scenarios. For the enqueue check, enqueues are “ performed” before dequeues. For the dequeue
check, dequeues are “ performed” before enqueues. However, the checker can be configured to
allow worse-case (i.e., less restrictive) scenarios by setting the registered and pass _thru
parameters/generics:

* Inregistered mode, the enqueue check calculates the FIFO count by subtracting the
number of dequeues before adding the number of enqueues, resulting in aless restrictive
check.

» In pass-through mode, the dequeue check calcul ates the FIFO count by adding the
number of enqueues before subtracting the number of dequeues, resulting in aless
restrictive check.

By default, the FIFO is empty at the start of the first cycle after areset (or the start of
simulation). However, the checker can be configured to match a FIFO that contains data items
at theseinitial points. To do this, the checker “preloads’ these data items. The preload_count
parameter specifies the number of dataitemsto preload.

If value_checkis 1, at the start of any cycle in which reset has transitioned from active to
inactive, the checker reads the preload port. Thisisa port containing a concatenated value equal
to preload count data items. The checker enqueues these data items onto the internal FIFO in
order from the low-order item to the high-order item.

Uses: FIFO, queue, buffer, ring buffer, elasticity buffer.

180 Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets
ovl_multiport_fifo

Assertion Checks

ENQUEUE Enqueue occurred that would overflow the FIFQ
registered = 0
One or more enq bits were TRUE, but eng_latency cycles
later, FIFO count + number of enqueued items > depth.
registered = 1
One or more eng bits were TRUE, but enq_latency cycles
later, FIFO count + number of enqueued items — number of
dequeued items.

DEQUEUE Dequeue occurred that woul d underfl ow the FIFO

pass thru = 0
One or more deg bits were TRUE, but deq_latency cycles
later, FIFO count < number of dequeued items.

pass_thru =1
One or more deq bits were TRUE, but deq_latency cycles
later, FIFO count < number of dequeued items — number of
enqueued items.

FULL The FI FO was not full when the full signal was
assert ed.
Full was TRUE, but the FIFO contained fewer than depth
items.

The full signal was not asserted when the FIFO was

full.
Full was FAL SE, but the FIFO \contained depth items.
FULL FIFO‘full’ signal was asserted, but the FI FO was not
full.

FIFO contained fewer than depth items but full was TRUE.

FIFO‘full’ signal was not asserted, but the FIFO was
full.

FIFO contained depth items and full was FALSE.

EMPTY FIFO ‘enpty’ signal was asserted, but the FIFO was
not enpty.]
FIFO contained one or more items but empty was TRUE.

FIFO ‘enpty’ signal was not asserted, but the FIFO
was enpty. _
FIFO contained no items but empty was FAL SE.

Accellera Standard OVL V2, Library Reference Manual, 2.6 181
December 2011

OVL Checker Data Sheets
ovl_multiport_fifo

VALUE

Implicit X/Z Checks

enq contains X or Z
deq contains X or Z
full contains X or Z
empty contains X or Z

enq_data contains X or Z

deq_data contains X or Z

Cover Points

cover _enqueues
cover _dequeues

cover _si nmul t aneous_
eng_deq

cover _hi gh_wat er _mar k

cover _si nul taneous_
deg_enqg_when_enpty

cover _si mul t aneous_
deqg_enqg_when_ful

cover_fifo_enpty

cover fifo_ful

Dequeued FI FO val ue did not equal the corresponding
enqueued val ue.
deq latency = 0
A deq bit was TRUE, but the corresponding dataitem in
deq_data did not equal the item originally enqueued.
deg_latency > 0
A deg bit was TRUE, but deq_latency cycles later the
corresponding dataitem in deq_data did not equal the item
originally enqueued.
This check automatically turns off if an enqueue or dequeue
check violation occurssinceit isno longer possibleto correspond
enqueued with dequeued values. The check turns back on when
the checker resets.

Enqueue contained X or Z hits.

Dequeue contained X or Z bhits.

FIFO full signal was X or Z. Check is off if full_checkisO.
FIFO empty signal was X or Z. Check is off if empty_check isO.

Enqueue dataitem in the enq_data expression contained X or Z
bits when it was scheduled to be enqueued onto the FIFO.

Dequeue dataitem in the deq_data expression contained X or Z
bits when it was scheduled to be dequeued from the FIFO.

SANITY — Number of dataitems enqueued on the FIFO.
SANITY — Number of dataitems dequeued from the FIFO.

BASIC — Number of cycles both an enqueue and a dequeue
(to/ffrom the same port??) were scheduled to occur.

CORNER — Number of times the FIFO count transitioned from
< high_water_mark to > high_water _mark. Not reported if
high water_mark isO.

CORNER — Number of cycles the FIFO was enqueued and
degueued simultaneously when it was empty.

CORNER — Number of cycles the FIFO was enqueued and
dequeued simultaneously when it was full.

CORNER — Number of cycles FIFO was empty after processing
enqueues and dequeues for the cycle.

CORNER — Number of cycles FIFO was full after processing
enqueues and dequeues for the cycle.

182

Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets
ovl_multiport_fifo

cover _observed_counts

Cover Groups

mul tiport fifo_corner

mul tiport fifo_
statistic

STATISTIC — Reports the FIFO counts that occurred at |east
once.

Number of cyclesthe number of entriesin the FIFO changed to a
value with the specified characteristic. Bins are:
» cov_fifo_full_count — FIFO isfull.
» cov_fifo_empty_count — FIFO is empty.
 cov_fifo_full _count — number of entriesis=>
high_water_mark.

Current number of entriesin the FIFO. Binis:
e cov_observed fifo_contents

Accellera Standard OVL V2, Library Reference Manual, 2.6 183

December 2011

OVL Checker Data Sheets
ovl_mutex

ovl_mutex

Checks that the bits of an expression are mutually exclusive.

fire [OVL_FIRE_WIDTH-1:0] |— Parameters’Generics: msg

severity level coverage level

—»|test_expr{width-1:0] width clock _edge
ovl mutex invert_mode reset_polarity

B property_type gating_type

clock reset enable Class 1_CyC|e tion

A A A

Syntax

ovl nmut ex
[#(severity level, width, invert_node, property type, nsg,
coverage_| evel, clock_edge, reset_polarity, gating_type)]
i nstance_nane (clock, reset, enable, test_expr, fire);

Parameters/Generics

severity_l evel Severity of the failure. Default: OVL_SEVERITY_DEFAULT
(OVL_ERROR).

wi dt h Width of test_expr. Default: 2.

i nvert _node Sense of the active bits for the mutex check.

i nvert _mode = 0 (Default)

Expression value must not have more than one TRUE bit.
invert_node =1

Expression value must not have more than one FAL SE hit.

property_type Property type. Default: OVL_PROPERTY _DEFAULT
(OVL_ASSERT).

nmsg Error message printed when assertion fails. Default:
OVL_MSG_DEFAULT (“VIOLATION").

cover age_| evel Coverage level. Default: OVL_COVER_DEFAULT
(OVL_COVER_BASIC).

cl ock_edge Active edge of the clock input. Default:
OVL_CLOCK_EDGE _DEFAULT (OVL_POSEDGE).

reset_polarity Polarity (active level) of the reset input. Default:

OVL_RESET _POLARITY DEFAULT
(OVL_ACTIVE_LOW).

gating_type Gating behavior of the checker when enable is FALSE. Default:
OVL_GATING _TYPE DEFAULT (OVL_GATE_CLOCK).

184 Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets
ovl_mutex

Ports

cl ock
r eset
enabl e

test _expr[w dth-1:0]

fire
[OVL_FI RE_W DTH- 1: 0]

Description

Clock event for the assertion.
Synchronous reset signal indicating completed initialization.

Enable signal for clock, if gating_type= OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_typeisOVL_NONE.
Variable or expression to check.

Fire output. Assertion failure when fire[0] is TRUE. X/Z check
failurewhenfire[1] is TRUE. Cover event when fire[2] is TRUE.

The ovl_mutex assertion checker checkstest_expr at each active edge of clock. By default, if
more than one bit of test_expr is TRUE, a mutex violation occurs. Setting invert_mode to 1
reverses the sense of the bits. A mutex violation occurs if more than one bit of test_expr is

FALSE.

Assertion Checks

MUTEX

Implicit X/Z Checks

test_expr contains X or Z

Cover Points

cover val ues_checked

cover_no_mutex_bits

cover _all _nutexes_
covered

cover _nut ex_bi t map

Cover Groups

none

Expression’s bits are not nutually exclusive.
invert_node = 0

Expression had more than one TRUE bit.
invert_node =1

Expression had more than one FAL SE bit.

Expression contained X or Z bits.

SANITY — Number of cyclestest_expr loaded a new value.

CORNER — Number of cyclesal bitsin test_expr were TRUE
and invert_ mode =0 or al bitsin test_expr were FALSE and
invert mode = 1.

CORNER — Whether or not all mutex bits were covered.

STATISTIC — Number of cycles a new mutex bit was covered
legally. The TRUE bits of the mutex_bitmap variable indicate the
covered mutex bits.

Accellera Standard OVL V2, Library Reference Manual, 2.6 185

December 2011

OVL Checker Data Sheets
ovl_never

ovl_never

Checks that the value of an expression is not TRUE.

Parameters/Generics. coverage level

fire[OVL_FIRE_WIDTH-1:0] | Severity_level clock_edge
property_type reset_polarity
—test_expr ovl_never msg gating_type

Class: 1-cycle assertion

clock reset enable
[} [} [}

Syntax

ovl _never
[#(severity level, property_ type, mnmsg, coverage_l evel, clock_edge,
reset _polarity, gating_ type)]
i nstance_nane (cl ock, reset, enable, test_expr, fire);

Parameters/Generics

severity_|l evel Severity of the failure. Default: OVL_SEVERITY_DEFAULT
(OVL_ERROR).

property_type Property type. Default: OVL_PROPERTY_DEFAULT
(OVL_ASSERT).

nmsg Error message printed when assertion fails. Default:
OVL_MSG DEFAULT (“VIOLATION").

cover age_| evel Coverage level. Default: OVL_COVER _DEFAULT
(OVL_COVER _BASIC).

cl ock_edge Active edge of the clock input. Default:
OVL_CLOCK_EDGE DEFAULT (OVL_POSEDGE).

reset_polarity Polarity (active level) of the reset input. Default:

OVL_RESET_POLARITY DEFAULT
(OVL_ACTIVE_LOW).

gating_type Gating behavior of the checker when enable is FALSE. Defaullt:
OVL_GATING_TYPE DEFAULT (OVL_GATE_CLOCK).

186 Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets

ovl_never
Ports
cl ock Clock event for the assertion.
reset Synchronous reset signal indicating completed initialization.
enabl e Enable signal for clock, if gating_type= OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_typeis OVL_NONE.
t est _expr Expression that should not evaluate to TRUE on the active clock
edge.
fire Fire output. Assertion failure when fire[0] is TRUE. X/Z check
[OVL_FI RE_WDTH-1: 0] failurewhen fire[1] is TRUE. Cover event when fire[2] is TRUE.
Description

The ovl_never assertion checker checks the single-bit expression test_expr at each active edge
of clock to verify the expression does not evaluate to TRUE.

Assertion Checks

NEVER Expression evaluated to TRUE.
Implicit X/Z Checks

test_expr contains X or Z Expression value contained X or Z bits.

Cover Points

none

Cover Groups

none

Notes

1. By default, the ovl_never assertion is pessimistic and the assertion failsif test_expr is
not O (i.e.equals 1, X, Z, etc.). However, if OVL_XCHECK_OFF is set, the assertion
failsif and only if test_expr is 1.

See also
ovl_aways ovl_implication
ovl_always on edge ovl_proposition
Accellera Standard OVL V2, Library Reference Manual, 2.6 187

December 2011

OVL Checker Data Sheets
ovl_never

Examples

ovl _never #(

* OVL_ERROR, /'l severity_|evel
* OVL_ASSERT, /1 property type
“ry /'l nsg

* OVL_COVER _DEFAULT, /1l coverage_| evel
* OVL_POSEDCGE, /'l cl ock_edge

“ OVL_ACTI VE_LOW /'l reset_polarity
* OVL_GATE_CLOCK) /'l gating_type

val id_count (

cl ock, !/ clock
reset, /'l reset
enabl e, /] enabl e
reg_a < reg_b, 11 t_est_expr
fire_valid_count); Il fire

Checksthat (reg_a < reg_b) is FALSE at each rising edge of clock.

clock

reset ' 1 1 1 1 1]]]]]]

reg_a<reg_b i I I . _|i> .
test_expr contains X/Z value NEVER

188 Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets
ovl_never_unknown

ovl_never_unknown

Checks that the value of an expression contains only 0 and 1 bits when a qualifying expression
is TRUE.

Parameters/Generics. coverage level
fire[OVL_FIRE_WIDTH-1:0] }— Severity level clock edge
—>|qualifier property_type reset_polarity
ovl_never_unknown msg gating_type
—test_expr{width-1:0] Class: 1-cycle assertion
clock reset enable

T T T

Syntax

ovl _never _unknown
[#(severity level, width, property type, nsg, coverage_ |l evel,
cl ock_edge, reset _polarity, gating type)]
i nstance_nane (cl ock, reset, enable, qualifier, test_expr, fire);

Parameters/Generics

severity_ | evel Severity of the failure. Default: OVL_SEVERITY _DEFAULT
(OVL_ERROR).

wi dt h Width of the test_expr argument. Default: 1.

property_type Property type. Default: OVL_PROPERTY_DEFAULT
(OVL_ASSERT).

msg Error message printed when assertion fails. Default:
OVL_MSG _DEFAULT (“VIOLATION").

cover age_| evel Coverage level. Default: OVL_COVER _DEFAULT
(OVL_COVER_BASIC).

cl ock_edge Active edge of the clock input. Default:
OVL_CLOCK_EDGE_DEFAULT (OVL_POSEDGE).

reset_polarity Polarity (active level) of the reset input. Default:

OVL_RESET_POLARITY_DEFAULT
(OVL_ACTIVE_LOW).

gating_type Gating behavior of the checker when enableis FALSE. Default:
OVL_GATING_TYPE_DEFAULT (OVL_GATE_CLOCK).

Accellera Standard OVL V2, Library Reference Manual, 2.6 189
December 2011

OVL Checker Data Sheets
ovl_never_unknown

Ports

cl ock
reset

enabl e

qualifier

test _expr[w dth-1:0]

fire
[OVL_FI RE_W DTH- 1: 0]

Description

Clock event for the assertion.
Synchronous reset signal indicating completed initialization.

Enable signal for clock, if gating_type= OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_typeis OVL_NONE.

Expression that indicates whether or not to check test_expr .

Expression that should contain only 0 or 1 bits when qualifier is
TRUE.

Fire output. Assertion failure when fire[0] is TRUE. X/Z check
failurewhenfire[1] is TRUE. Cover event when firg[2] is TRUE.

The ovl_never_unknown assertion checker checks the expression qualifier at each active edge
of clock to determine if it should check test_expr. If qualifier is sampled TRUE, the checker
evaluates test_expr and if the value of test_expr containsabit that isnot O or 1, the assertion

fails.

The checker is useful for ensuring certain data have only known values following a reset
sequence. It also can be used to verify tristate input ports are driven and tristate output ports
drive known values when necessary.

Assertion Checks

test _expr contains X/ Z
val ue

Cover Points
cover _qualifier

cover _t est _expr_change

Cover Groups

none

Thetest_expr expression contained at least one bit that was not O
or 1; qualifier wassampled TRUE; and OVL_XCHECK_OFFis
not set.

BASIC — A never_unknown check was initiated.
SANITY — Expression changed value.

190

Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets
ovl_never_unknown

Notes

1. If OVL_XCHECK_ OFF isset, al ovl _never _unknown checkers are turned off.

See also

ovl_never
ovl_never_unknown_async
ovl_one cold

Examples

ovl _never _unknown #(

“ OVL_ERRCR,
8,

* OVL_ASSERT,
“Error:
* OVL_COVER _DEFAULT,
* OVL_PCOSEDCE,

“ OVL_ACTI VE_LOW

* OVL_GATE_CLOCK)

valid _data (

cl ock,
reset,
enabl e,
rd_data,

dat a,
fire_ valid data);

dat a unknown or undriven”,

ovl_one_hot
ovl_zero one hot

/'l severity_level
/1 width

/1 property type
/'l nsg

/1l coverage_| evel
/'l cl ock_edge

/'l reset_polarity
/1 gating type

I/ clock

/'l reset

/] enabl e

/1 qualifier
/'l test_expr
/Il fire

Checksthat values of data are known and driven when rd_data is TRUE.

cock 1 [1 oI I L1745l

reset ! : : : : : : : : : :
TSN D T I s o o N B S S S

data XXXX] 10XX [1010 [XXXX 00XX [001X [0010 [XXXX

NEVER_UNKNOWN Error: data unknown or undriven

Accellera Standard OVL V2, Library Reference Manual, 2.6

December 2011

191

OVL Checker Data Sheets
ovl_never_unknown_async

ovl _never_unknown_async

Checks that the value of an expression combinationally contains only 0 and 1 bits.

Parameter Generics:

fire[OVL_FIRE_WIDTH-1:0] |— SEverity_level coverage_level

width clock _edge
ovl_never_unknown_async property_type reset_polarity
msg gating_type

—test_expr[width-1:0]
Class; combinational assertion

reset enable
[} [}

Syntax

ovl _never _unknown_async
[#(severity level, width, property type, nsg, coverage_level,
cl ock_edge, reset_polarity, gating type)]
i nstance_nane (reset, enable, test_expr, fire);

Parameters/Generics

severity_| evel

wi dt h

property_type

neg

cover age_| evel

cl ock_edge

reset _polarity

Severity of the failure. Default: OVL_SEVERITY_DEFAULT
(OVL_ERROR).

Width of the test_expr argument. Default: 1.

Property type. Cannot be OVL_ASSUME for SVA and PSL
implementations. Default: OVL_PROPERTY _DEFAULT
(OVL_ASSERT).

Error message printed when assertion fails. Default:
OVL_MSG _DEFAULT (“VIOLATION").

Coverage level. Default: OVL_COVER_DEFAULT
(OVL_COVER_BASIC).

Ignored parameter.

Polarity (active level) of the reset input. Default:
OVL_RESET_POLARITY_DEFAULT
(OVL_ACTIVE_LOW).

gating_type Gating behavior of the checker when enable is FALSE. Default:
OVL_GATING TYPE DEFAULT (OVL_GATE_CLOCK).
Ports
reset Synchronous reset signal indicating completed initialization.
192 Accellera Standard OVL V2, Library Reference Manual, 2.6

December 2011

OVL Checker Data Sheets
ovl_never_unknown_async

enabl e Enable signal for clock, if gating_type= OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_typeis OVL_NONE.

test _expr[w dt h- 1: 0] Expression that should contain only 0 or 1 bits when qualifier is
TRUE.
fire Fire output. Assertion failure when fire[0] is TRUE. X/Z check
[OVL_FIRE_WDTH- 1: 0] failure when fire[1] is TRUE. Cover event when fire[2] is TRUE.
Description

The ovl_never_unknown_async assertion checker combinationally evaluatestest_expr and if
the value of test_expr contains a bit that isnot O or 1, the assertion fails.

The checker is useful for ensuring certain data have only known values following a reset
sequence. It also can be used to verify tristate input ports are driven and tristate output ports
drive known values when necessary.

Assertion Checks

test _expr contains X Z Thetest_expr expression contained at least one bit that was not 0
val ue or 1 and OVL_XCHECK_OFF isnot set.

Cover Points

none

Cover Groups

none

Notes
1. If OVL_XCHECK_OFFisset, al ovl_never_unknown_async checkers are turned off.

2. TheVerilog-95 version of this asynchronous checker handles‘OVL_ASSERT,
‘OVL_ASSUME and ‘OVL_IGNORE. The SVA and PSL versions of this checker do
not implement property_type ‘OVL_ASSUME. The SVA version uses immediate
assertions and in |EEE 1800-2005 SystemV erilog immediate assertions cannot be
assumptions. Assume is only available in a concurrent (clocked) form of an assertion
statement. The SVA version treats‘OVL_ASSUME asan ‘OVL_ASSERT. The PSL
version generates an error if property_typeis‘OVL_ASSUME.

See also

ovl_never

Accellera Standard OVL V2, Library Reference Manual, 2.6 193
December 2011

OVL Checker Data Sheets
ovl_never_unknown_async

Examples

ovl _never _unknown_async #(

* OVL_ERROR,

8,

* OVL_ASSERT,

“Error: data unknown or undriven”,
* OVL_COVER DEFAULT,

* OVL_POSEDGE,

“ OVL_ACTI VE_LOW

“ OVL_GATE_CLQOCK)

valid_data (

bus_gnt,

enabl e,

dat a,

fire_valid data);

/'l severity_|evel
/1 width

/1 property type

/'l msg

/'l coverage_| evel
/'l cl ock_edge

/'l reset _polarity
/1 gating_type

/'l reset

/] enabl e
/'l test_expr
Il fire

Checks that values of data are known and driven while bus_gnt is TRUE.

bus_gnt

e [

data XXXX [1010 IXI0] 1010

IXXXX_00XX] 0011 [XXXX

NEVER_UNKNOWN_ASYNC Error: data unknown or undriven

194

Accellera Standard OVL V2, Library Reference Manual, 2.6

December 2011

OVL Checker Data Sheets
ovl_next

ovl _next

Checks that the value of an expression is TRUE a specified number of cycles after a start event.

Parameter S/Generics:
fire[OVL_FIRE_WIDTH-1:0] }— Severity level

—>|start_event num_cks coverage level
ovl_next check_overlapping clock_edge
check _missing_start reset_polarity

—|test_expr

property_type gating_type
Class. n-cycle assertion

clock reset enable
[} [} [}

Syntax

ovl _next
[#(severity_l evel, numcks, check_overl appi ng, check_mi ssing_start,
property_type, nsg, coverage_level, clock_edge, reset_polarity,
gating_type)]
i nstance_nane (cl ock, reset, enable, start_event, test_expr, fire);

Parameters/Generics

severity_l evel Severity of the failure. Default: OVL_SEVERITY_DEFAULT
(OVL_ERROR).

num cks Number of cycles after start_event is TRUE to wait to check that
the value of test_expr is TRUE. Default: 1.

check_over | appi ng Whether or not to perform overlap checking. Default: 1 (overlap
checking off).

* If set to O, overlap checking is performed. From the active
edge of clock after start_event is sampled TRUE to the active
edge of clock of the cycle beforetest_expr issampled for the
current next check, the checker performs an overlap check.
During thisinterval, if start_event is TRUE at an active edge
of clock, then the overlap check fails (illegal overlapping
condition).

* |If setto 1, overlap checking is not performed.

check_nmi ssing_start Whether or not to perform missing-start checking. Default: O
(missing-start checking off).

* |If set to O, missing start checks are not performed.

* If set to 1, missing start checks are performed. The checker
samplestest_expr every active edge of clock. If the value of
test_expr is TRUE, then num_cks active edges of clock prior
to the current time, start_event must have been TRUE
(initiating a next check). If not, the missing-start check fails
(start_event without test_expr).

Accellera Standard OVL V2, Library Reference Manual, 2.6 195
December 2011

OVL Checker Data Sheets
ovl_next

property_type
nmeg

cover age_| evel
cl ock_edge

reset_polarity

gating_type

Ports

cl ock

r eset
enabl e
start_event

t est _expr

fire
[OVL_FI RE_W DTH- 1: 0]

Description

Property type. Default: OVL_PROPERTY_ _DEFAULT
(OVL_ASSERT).

Error message printed when assertion fails. Default:
OVL_MSG _DEFAULT (“VIOLATION").

Coverage level. Default: OVL_COVER_DEFAULT
(OVL_COVER_BASIC).

Active edge of the clock input. Default:
OVL_CLOCK_EDGE_DEFAULT (OVL_POSEDGE).

Polarity (active level) of the reset input. Default:
OVL_RESET POLARITY DEFAULT
(OVL_ACTIVE_LOW).

Gating behavior of the checker when enableis FALSE. Default:
OVL_GATING_TYPE_DEFAULT (OVL_GATE_CLOCK).

Clock event for the assertion.
Synchronous reset signal indicating completed initialization.

Enable signal for clock, if gating_type= OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_typeis OVL_NONE.

Expression that (along with num_cks) identifies when to check
test_expr.

Expression that should evaluate to TRUE num_cks cycles after
start_event initiates a next check.

Fire output. Assertion failure when fire[0] is TRUE. X/Z check
failurewhenfire[1] is TRUE. Cover event when firg[2] is TRUE.

The ovl_next assertion checker checksthe expression start_event at each active edge of clock. If
start_event is TRUE, acheck isinitiated. The check waitsfor num_cks cycles(i.e., for num_cks
additional active edges of clock) and evaluatestest_expr. If test_expr isnot TRUE, the assertion
fails. These checks are pipelined, that is, acheck isinitiated each cycle start_event is TRUE
(even if overlap checking is on and even if an overlap violation occurs).

If overlap checking is off (check overlapping is 1), additional checks can start while a current
check is pending. If overlap checking is on, the assertion failsif start_event is sampled TRUE
while a check is pending (except on the last clock).

If missing-start checking is off (check_missing_start is 0), test_expr can be TRUE any time. If
missing-start checking is on, the assertion failsif test_expr is TRUE without a corresponding

196

Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets
ovl_next

start event (num_cks cycles previously). However, if test_expr is TRUE in the interval of
num_cks - 1 cycles after areset and has no corresponding start event, the result isindeterminate
(i.e., the missing-start check might or might not fail).

Assertion Checks

start _event without
t est _expr

illegal overlapping
condition detected

test _expr without
start_event

num cks <=0

num cks == 1 and
check _overlapping == 0

Implicit X/Z Checks

test_expr contains X or Z

start_event contains X or Z

Cover Points

cover_start_event

cover _over | appi ng_
start_events

Cover Groups
none
See also

ovl_change
ovl_frame

The value of start_event was TRUE on an active edge of clock,
but num_cks cycleslater the value of test_expr was not TRUE.

The check_overlapping parameter is set to 0 and start_event was
TRUE on the active edge of clock, but a previous check was
pending.

The check_missing_start parameter is set to 1 and start_event
was not TRUE on the active edge of clock, but num_cks cycles
later test_expr was TRUE.

The num_cks parameter islessthan 1.

The num_cks parameter is 1 and check _overlapping is 0, which
turns on overlap checking even though overlaps are not relevant.

Expression valuewas X or Z.
Start event valuewas X or Z.

BASIC — Thevalue of start_event was TRUE on an active edge
of clock.

CORNER — The check_overlapping parameter is TRUE and the
value of start_event was TRUE on an active edge of clock while
acheck was pending.

ovl_time
ovl_unchange

Accellera Standard OVL V2, Library Reference Manual, 2.6

December 2011

197

OVL Checker Data Sheets
ovl_next

Examples

Examplel

ovl _next #(

* OVL_ERROR, /'l severity_level

4, /1 num cks

1, /1 check_overl apping (off)
0, /'l check_mi ssing_start (off)
* OVL_ASSERT, /] property_type

“error:”, /'l msg

‘ OVL_COVER DEFAULT, /'l coverage_| evel

* OVL_POSEDGE, /1 cl ock_edge

“ OVL_ACTI VE_LOW /] reset_polarity

* OVL_GATE_CLOCK) /'l gating_type

valid next_a b (

cl ock, /1 clock
reset, Il reset

enabl e, /] enabl e

a, /] start_event
b, /1 tgst_expr
fire_valid_next_a_b); Il fire

Checksthat b is TRUE 4 cycles after ais TRUE.
clock —/_ L [1L o[Lrrrrrerrererrrird

reset ' . . .
a ! e : ! — T . .
b ' ' [' I U S B
start_event without test_expr error —
198 Accellera Standard OVL V2, Library Reference Manual, 2.6

December 2011

OVL Checker Data Sheets
ovl_next

Example 2

ovl _next #(

* OVL_ERROR, /'l severity_level

4, /1 num cks

0, /1 check_over!l appi ng (on)

0, /'l check_mi ssing_start (off)
* OVL_ASSERT, /] property_type

“error:”, /'l msg

‘ OVL_COVER DEFAULT, /'l coverage_| evel

* OVL_POSEDGE, /1 cl ock_edge

“ OVL_ACTI VE_LOW /] reset_polarity

‘ OVL_GATE_CLOCK) /1 gating_ type

valid next_a b (

cl ock, /1 clock
reset, /] reset

enabl e, /] enabl e

a, /] start_event
b, Il test_expr
fire_valid next a b); Il fire

Checks that b is TRUE 4 cycles after a is TRUE. Overlaps are not allowed
dock T L [LI L[LI LIl e e

reset ' " not an overlap
. ! : on last cycle, : ' : :
a . 1. X X 1. m— L -
b ') L [L
illegal overlapping condition detected error
Accellera Standard OVL V2, Library Reference Manual, 2.6 199

December 2011

OVL Checker Data Sheets
ovl_next

Example 3

ovl _next #(

* OVL_ERROR, /'l severity_level

4, /1 num cks

1, /1 check_overl apping (off)
1, /'l check_missing_start (on)
* OVL_ASSERT, /] property_type

“error:”, /'l msg

‘ OVL_COVER DEFAULT, /'l coverage_| evel

* OVL_POSEDGE, /1 cl ock_edge

“ OVL_ACTI VE_LOW /] reset_polarity

‘ OVL_GATE_CLOCK) /1 gating_ type

valid next_a b (

cl ock, /1 clock
reset, /] reset

enabl e, /] enabl e

a, /] start_event
b, /1 tgst_expr
fire_valid_next_a_b); Il fire

Checksthat b is TRUE 4 cycles after ais TRUE. Missing-start check is on.

reset —:J ' ')
a o [: : TS — :
b R e T e T e T

-— .
missing-start check indeterminate test_expr without start_event error
for 3 cycles after reset

200 Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets
ovl_next_state

ovl _next_state

Checks that an expression transitions only to specified values.

fire [OVL_FIRE_WIDTH-1:0] |— Parameter sGenerics.
—s{test_expr[width-1:0] sev e”ty_l evel property_type
—|curr_state[width-1:0] width
ovl_next_state next_count coverage |evel
—next_state[next_count*width-1:0] min_hold cl OCk_edge_
max_hold reset_polarity
clock reset enable disallow gating_type

T T

Syntax

ovl _next_state

Class; event-bounded assertion

[#(severity_level, next_count, width, nmin_hold, max_hold, disallow,
property type, nsg, coverage_level, clock_edge, reset_polarity,

gating_type)]
i nstance_nane (clock, reset, enable, test_expr, curr_state, next_state,

fire);

Parameters/Generics

severity_l evel

wi dt h

next _count

m n_hol d

mex_hol d

di sal | ow

property_type

Severity of the failure. Default: OVL_SEVERITY_DEFAULT
(OVL_ERROR).

Width of test_expr. Default: 1

Number of next state values. The next_state portisa
concatenated list of next state values. Default: 1.

Minimum number of cyclestest_expr must not change value
when it matches the value of curr_state. Must be > 0. Default: 1

Maximum number of cyclestest expr can remain unchanged
when it matches the value of curr_state. A value of 0 turns off
checking for a maximum hold time. Must be 0 or > min_hold.
Default: 1

Sense of the comparison of test_expr with next_state.

disal l ow = 0 (Default)
Next value of test_expr should match one of the valuesin
next_state.

disallow =1
Next value of test_expr should not match one of the valuesin
next_state.

Property type. Default: OVL_PROPERTY DEFAULT
(OVL_ASSERT).

Accellera Standard OVL V2, Library Reference Manual, 2.6 201

December 2011

OVL Checker Data Sheets
ovl_next_state

nmsg
coverage_| evel
cl ock_edge

reset _polarity

gating_type

Ports

cl ock
reset

enabl e

test _expr[w dth-1:0]

curr_state[w dth-1:0]

next _state
[next _count *wi dt h- 1: 0]

fire
[OVL_FI RE_W DTH- 1: 0]

Description

Error message printed when assertion fails. Default:
OVL_MSG DEFAULT (“VIOLATION").

Coverage level. Default: OVL_COVER _DEFAULT
(OVL_COVER BASIC).

Active edge of the clock input. Default:
OVL_CLOCK_EDGE _DEFAULT (OVL_POSEDGE).

Polarity (active level) of the reset input. Default:
OVL_RESET _POLARITY_DEFAULT
(OVL_ACTIVE_LOW).

Gating behavior of the checker when enable is FALSE. Default:
OVL_GATING_TYPE_DEFAULT (OVL_GATE_CLOCK).

Clock event for the assertion.
Synchronous reset signal indicating completed initialization.

Enable signal for clock, if gating_type=OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_typeis OVL_NONE.

State variable or expression to check.

Vaueto comparewith test_expr. If no event window is open and
the value of test_expr matches the value curr_state, an event
window opens.

Concatenated list of next values.

disallow =0
Next values are valid values for test_expr when an event
window closes.

disallow =1
Next values are not valid values for test_expr when an event
window closes.

Fire output. Assertion failure when fire[0] is TRUE. X/Z check
faillurewhenfirg[1] is TRUE. Cover event when fire[2] is TRUE.

The ovl_next_state assertion checker evaluates test_expr and curr_state at each active edge of
clock. If the value of test_expr matches the value of curr_state, the checker verifies that the
value of test_expr behaves as follows:

e If min_hold > 0 and test_expr changes value before min_hold cycles (including the
match cycle) transpire, a next_state violation occurs.

202

Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets
ovl_next_state

» Otherwise, whentest_expr transitions, the checker evaluates next_state. If the new value
of test_expr isnot avaluein next_state, a next_state violation occurs.

* However, if max_hold > 0 and test_expr does not change value before max_hold cycles
(including the match cycle) transpire, a next_state violation occurs.

A next_state check isinitiated each cycletest_expr and curr_state match.

Setting the disallow parameter to 1, changes the sense of the matching of test_expr and
next_state values. A next_state violation occurs if test_expr transitions to avalue in next_state.

Uses. FSM, state machine, controller, coverage, line coverage, path coverage, branch coverage,
state coverage, arc coverage.

Assertion Checks

NEXT_STATE Mat ch occurred but expression value was not a next
val ue, or expression changed too soon.

disallow = 0 and nax_hold = 0

After matching curr_state, test_expr changed value before
min_hold cycles (including the match cycle) or transitioned to
avalue not in next_state when it transitioned.

Mat ch occurred but expression value was not a next
val ue, or expression did not change in event w ndow.
disallow = 0 and nax_hold > 0
After matching curr_state, test_expr changed value before
min_hold cycles (including the match cycle), transitioned to a
value not in next_state when it transitioned, or did not change
value for max_hold cycles (including the match cycle).

Mat ch occurred but expression value was a next
val ue, or expression changed too soon.
disallow = 1 and max_hold = 0

After matching curr_state, test_expr changed value before
min_hold cycles (including the match cycle) or transitioned to
avaluein next_state when it transitioned.

Mat ch occurred but expression value was a next
val ue, or expression did not change in event w ndow.

disallow = 1 and max_hold > 0

After matching curr_state, test_expr changed value before
min_hold cycles (including the match cycle), transitioned to a
valuein next_state when it transitioned, or did not change
value for max_hold cycles (including the match cycle).

Accellera Standard OVL V2, Library Reference Manual, 2.6 203
December 2011

OVL Checker Data Sheets
ovl_next_state

Implicit X/Z Checks

test_expr contains X or Z
curr_state contains X or Z
next_state contains X or Z

Cover Points

cover_next _state_
transitions

cover _all transitions

cover _cycl es_checked

observed transition

Cover Groups

next _state_cor ner

next _state_statistic

Expression contained X or Z hits.
Current state expression contained X or Z bits.
Next state expression contained X or Z bits.

SANITY — Number of timestest_expr matched curr_state and
then transitioned correctly to avalue in next_state (disallow=0)
or not in next_state (disallow=1).

CORNER — Non-zero if test_expr transitioned to every next
value found in the sampled next_state. Not meaningful if
disallowis 1.

STATISTIC — Number of cyclestest expr matched curr_state.

STATISTIC — Reportswhich valuesin next_state that test_expr
transitioned to at least once. Not meaningful if disallowis1.

Whether or not the specified corner case occurred. Binis:
« all_transitions_covered — Thetest_expr hastransitioned to
every next value found in the sampled next_state. Not
meaningful if disallowis 1.

Coverage statistics. Bins are:
* number_of transitions_covered — number of transitions
made.
* cycles_checked — number of cyclestest_expr and curr_state
matched.

204

Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets
ovl_no_contention

ovl_no_contention

Checksthat a bus is driven according to specified contention rules.

fire [OVL_FIRE_WIDTH-1.0] | P2 @meters'Generics: property_type
severity level

—»|test_expr[width-1:0] width cover age_l evel

ovl_no_contention num_drivers clock _edge
—»|driver_enables[num_drivers-1:0] min_quiet I’eS_etJZ)O| arity

max_quiet gating_type

lock b .
coo e o Class. event-bounded assertion

T T T

Syntax

ovl _no_contention
[#(severity level, mn_quiet, max_quiet, numdrivers, wdth,
property_type, nsg, coverage_level, clock_edge, reset_polarity,
gating_type)]
i nstance_nane (clock, reset, enable, test_expr, driver_enables, fire);

Parameters/Generics

severity_l evel Severity of the failure. Default: OVL_SEVERITY_DEFAULT
(OVL_ERROR).

wi dt h Width of test_expr. Default: 2.

numdrivers Width of driver_enables. Default: 2.

m n_qui et Minimum number of cycles the bus must be quiet (i.e., when all

driver_enables bits are 0) between transactions. Default: O (quiet
periods between transactions are not necessary).

max_qui et Maximum number of cycles the bus can be quiet (i.e., when all
driver_enables bits are 0). The min_quiet parameter must be <
max_quiet. Default: O (quiet periods between transactions should

not occur).

property_type Property type. Default: OVL_PROPERTY_DEFAULT
(OVL_ASSERT).

nmsg Error message printed when assertion fails. Default:
OVL_MSG DEFAULT (“VIOLATION").

cover age_| evel Coverage level. Default: OVL_COVER _DEFAULT
(OVL_COVER _BASIC).

cl ock_edge Active edge of the clock input. Default:

OVL_CLOCK_EDGE_DEFAULT (OVL_POSEDGE).

Accellera Standard OVL V2, Library Reference Manual, 2.6 205
December 2011

OVL Checker Data Sheets
ovl_no_contention

reset_polarity

gating_type

Ports

cl ock
r eset

enabl e

test _expr[w dt h-1:0]

dri ver_enabl es
[numdrivers-1:0]

fire
[OVL_FI RE_W DTH- 1: 0]

Description

Polarity (active level) of the reset input. Default:
OVL_RESET POLARITY DEFAULT
(OVL_ACTIVE_LOW).

Gating behavior of the checker when enableis FALSE. Default:
OVL_GATING_TYPE_DEFAULT (OVL_GATE_CLOCK).

Clock event for the assertion.
Synchronous reset signal indicating completed initialization.

Enable signal for clock, if gating_type= OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_typeis OVL_NONE.

Bus to be checked.
Enable bits for the drivers of test_expr.

Fire output. Assertion failure when fire[0] is TRUE. X/Z check
faillurewhenfirg[1] is TRUE. Cover event when fire[2] is TRUE.

The ovl_no_contention assertion checker checks the bus (test_expr) and the driver enable
signals (driver_enables) at each active edge of clock. An implicit X/Z check violation occurs if
any driver_enablesbitis X or Z.. Otherwise:

* Number of TRUE driver_enables bitsis > 1:

A single_driver violation occurs and if test_expr containsan X or Z bit, ano_xz

violation occurs.

* Number of TRUE driver_enables bitsis 1:

If test_expr contains an X or Z bit, ano_xz violation occurs.

In addition, the checker performs quiet-time checks. A quiet time consists of consecutive cycles
or bus inactivity where no bus transactions are occurring (i.e., driver_enables = 0). The checker
verifies the specified configuration as follows:

e 0 = mn_quiet

max_qui et (default)

A quiet violation occurs each cycle driver_enables=0.

e 0 =mn_quiet < nmax_qui et

A quiet violation occurs if driver_enables = 0 for max_quiet+1 consecutive cycles.

206

Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets
ovl_no_contention

0 < nmn_quiet < max_qui et
A quiet violation occurs if either of the following occur:

» Thedriver_enables expression transitions to 0 and then transitions from O less than
min_quiet cycles later.

» Thedriver_enables expression = 0 for max_quiet+1 cycles.
0 = max_qui et < min_quiet

A quiet violation occurs if driver_enables transitions to 0 and then transitions from 0
less than min_quiet cycles later.

Assertion Checks

SI NGLE_DRI VER Bus has nultiple drivers.

NO_XZ

QUI ET

Number of TRUE bitsin driver_enablesis> 1.

Bus is driven, but has X or Z bits.
Number of TRUE bitsin driver_enablesis> 0, but test_expr

has one or more X or Z hits.

Bus was qui et.
0 = min_quiet = max_qui et
Driver_enableswas 0.

Bus was quiet for too many cycl es.
0 = min_quiet < max_qui et
Driver_enables was O for more than max_quiet consecutive
cycles.

Bus was quiet for too few or too many cycles.
0 < mn_quiet < max_qui et
Driver_enableswas not held O for at least min_quiet
consecutive cycles or was O for more than max_quiet cycles.

Bus was quiet for too few cycles.
0 = max_qui et < mn_quiet
Driver_enables was not held O for at least min_quiet
consecutive cycles.

Implicit X/Z Checks

driver_enablescontains X Drivers enabled expression contained X or Z bits.

orZ

Accellera Standard OVL V2, Library Reference Manual, 2.6 207
December 2011

OVL Checker Data Sheets
ovl_no_contention

Cover Points

cover _driver_bitmp

cover _qui et_equal s_
m n_qui et

cover _qui et _equal s_
max_qui et

observed_qui et _cycl es

Cover Groups

observed_qui et _cycl es

BASIC — Bit map of the driver_enables signals that have been
TRUE at least once.

CORNER — Number of quiet periods that were exactly
min_quiet cycleslong (min_quiet > 0) or number of times bus
control transferred from one driver to another (min_quiet = 0).

CORNER — Number of quiet periods that were exactly
max_quiet cycleslong. Not meaningful if max_quiet = 0.

STATISTIC — Reports the quiet periods (in cycles) that have
occurred at least once.

Number of times the bus (test_expr) was quiet (driver_enables =
0) for the specified number of quiet cycles. Bins are:

» observed quiet_cycles good[min_quiet+1:maximum] — bin
index isthe observed quiet timein clock cycles. The value of
maximumiis:
* O (if min_quiet = max_quiet = 0),
e min_quiet + 4095 (if min_quiet > max_quiet = 0), or
* max_quiet (if max_quiet > 0).

e oObserved hold time bad — default.

208

Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets
ovl_no_overflow

ovl_no_overflow

Checks that the value of an expression does not overflow.

Parameter s/Generics.
fire[OVL_FIRE_WIDTH-1:0] }— severity_level

width coverage level
ovl_no_overflow min clock_edge

_ max reset_polarity
—test_expr[width-1:0] property_type g atin g_type

clock reset enable
[} [} [}

Class. n-cycle assertion

Syntax

ovl _no_overfl ow
[#(severity_level, width, min, nax, property_type, nsg,
coverage_ | evel, clock _edge, reset_polarity, gating_type)]
i nstance_nane (cl ock, reset, enable, test_expr, fire);

Parameters/Generics

severity_|l evel Severity of the failure. Default: OVL_SEVERITY_DEFAULT
(OVL_ERROR).

wi dt h Width of the test_expr argument. Width must be less than or
equal to 32. Default: 1.

mn Minimum value in the test range of test_expr. Default: O.

max Maximum value in the test range of test_expr. Default: 2**width
-1

property_type Property type. Default: OVL_PROPERTY_DEFAULT
(OVL_ASSERT).

msg Error message printed when assertion fails. Default:
OVL_MSG_DEFAULT (“VIOLATION").

cover age_| evel Coverage level. Default: OVL_COVER _DEFAULT
(OVL_COVER_BASIC).

cl ock_edge Active edge of the clock input. Default:
OVL_CLOCK_EDGE _DEFAULT (OVL_POSEDGE).

reset _polarity Polarity (active level) of the reset input. Default:

OVL_RESET POLARITY DEFAULT
(OVL_ACTIVE_LOW).

gating_type Gating behavior of the checker when enable is FALSE. Default:
OVL_GATING TYPE DEFAULT (OVL_GATE_CLOCK).

Accellera Standard OVL V2, Library Reference Manual, 2.6 209
December 2011

OVL Checker Data Sheets
ovl_no_overflow

Ports

cl ock
reset
enabl e

test _expr[w dth-1:0]

fire
[OVL_FI RE_W DTH- 1: 0]

Description

Clock event for the assertion.
Synchronous reset signal indicating completed initialization.

Enable signal for clock, if gating_type= OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_typeis OVL_NONE.

Expression that should not change from avalue of max to avalue
out of the test range or to a value equal to min.

Fire output. Assertion failure when fire[0] is TRUE. X/Z check
failurewhen fire[1] is TRUE. Cover event when firg[2] is TRUE.

The ovl_no_overflow assertion checker checks the expression test_expr at each active edge of
clock to determine if its value has changed from a value (at the previous active edge of clock)
that was equal to max. If so, the checker verifies that the new value has not overflowed max.
That is, it verifies the value of test_expr is not greater than max or less than or equal to min (in
which case, the assertion fails).

The checker isuseful for verifying counters, where it can ensure the counter does not wrap from
the highest value to the lowest value in a specified range. For example, it can be used to check
that memory structure pointers do not wrap around. For a more general test for overflow, use

ovl_deltaor ovl_fifo_index.

Assertion Checks

NO_OVERFLOW

Implicit X/Z Checks

test_expr contains X or Z

Cover Points

cover _test _expr_at _mn

cover _test_expr_at_nmax

Cover Groups

none

Errors

Expression changed value from max to a value not in the range
min+ 1tomax - 1.

Expression value contained X or Z hits.

CORNER — Expression evaluated to min.
BASIC — Expression evaluated to max.

210

Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets
ovl_no_overflow

The parameters/generics min and max must be specified such that min isless than or equal to
max. Otherwise, the assertion fails on each tested clock cycle for which test_expr changed from
max.

Notes

1. The assertion check compares the current value of test_expr with its previous value.
Therefore, checking does not start until the second rising edge of clock after reset

deasserts.
See also
ovl_delta ovl_increment
ovl_fifo_index ovl_no_overflow
Examples

ovl _no_overfl ow #(

* OVL_ERROR, /'l severity_|evel
3, /1 width

0, /1 mn

4, /1 max

* OVL_ASSERT, /'l property_type
“Error: addr overflow', /'l nsg

‘ OVL_COVER DEFAULT, /1 coverage_| evel
* OVL_POSEDGE, /'l cl ock_edge

“ OVL_ACTI VE_LOW /1l reset _polarity
* OVL_GATE_CLOCK) /] gating_type

addr _wi t h_overfl ow (

cl ock, /1 clock
reset, /Il reset
enabl e, /!l enable
addr, /] test_expr
fire_addr_wi th_overflow); Il fire

Checks that addr does not overflow (i.e., change from avalue of 4 at the rising edge of clock to
avaue of 0 or avalue greater than 4 at the next rising edge of clock).

clock
reset ' '
1 1 1 1 m 1 m 1 1
addr X [o T 1 T2 T 3 1T 4 17T o [3 T 4 1T 5 T 0 T 1
NO_OVERFLOW Error: addr overflow <—J |
NO_OVERFLOW Error: addr overflow
Accellera Standard OVL V2, Library Reference Manual, 2.6 211

December 2011

OVL Checker Data Sheets
ovl_no_transition

ovl _no_transition

Checks that the value of an expression does not transition from a start state to the specified next
State.

Parameter Generics:

fire [OVL_FIRE_WIDTH-1:0] | SEverity_level coverage_|evel
—|test_expr[width-1:0] width cl ock_edge.
ovl_no_transition property_type reset_polarity
o msg gating_type

—»|start_state[width-1:0]
—»|next_state[width-1:0] Class. 2-cycle assertion

clock reset enable
¥ ¥ ¥

Syntax

ovl _no_transition
[#(severity level, width, property type, nsg, coverage_ |l evel,
cl ock_edge, reset _polarity, gating type)]
i nstance_nane (clock, reset, enable, test_expr, start_state,
next _state, fire);

Parameters/Generics

severity_ | evel Severity of the failure. Default: OVL_SEVERITY _DEFAULT
(OVL_ERROR).

wi dt h Width of the test_expr argument. Default: 1.

property_type Property type. Default: OVL_PROPERTY_DEFAULT
(OVL_ASSERT).

msg Error message printed when assertion fails. Default:
OVL_MSG _DEFAULT (“VIOLATION").

cover age_| evel Coverage level. Default: OVL_COVER _DEFAULT
(OVL_COVER_BASIC).

cl ock_edge Active edge of the clock input. Default:
OVL_CLOCK_EDGE_DEFAULT (OVL_POSEDGE).

reset _polarity Polarity (active level) of the reset input. Default:

OVL_RESET_POLARITY_DEFAULT
(OVL_ACTIVE_LOW).

gating_type Gating behavior of the checker when enableis FALSE. Default:
OVL_GATING_TYPE_DEFAULT (OVL_GATE_CLOCK).

212 Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets
ovl_no_transition

Ports

cl ock
reset

enabl e

test _expr[w dth-1:0]

start_state[w dth-1: 0]

next state[w dth-1:0]

fire
[OVL_FI RE_W DTH- 1: 0]

Description

Clock event for the assertion.
Synchronous reset signal indicating completed initialization.

Enable signal for clock, if gating_type= OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_typeis OVL_NONE.

Expression that should not transition to next_state on the active
edge of clock if its value at the previous active edge of clockis
the same as the current value of start_state.

Expression that indicates the start state for the assertion check. If
the start state matches the value of test_expr on the previous
active edge of clock, the check is performed.

Expression that indicates the invalid next state for the assertion
check. If the value of test_expr was start_state at the previous
active edge of clock, then the value of test_expr should not equal
next_state on the current active edge of clock.

Fire output. Assertion failure when fire[0] is TRUE. X/Z check
failurewhen fire[1] is TRUE. Cover event when fire[2] is TRUE.

Theovl_no_transition assertion checker checks the expression test_expr and start_state at each
active edge of clock to see if they are the same. If so, the checker evaluates and stores the
current value of next_state. At the next active edge of clock, the checker re-evaluates test_expr
to seeif its value equals the stored value of next_state. If so, the assertion fails. The checker
returns to checking start_state in the current cycle (unless afatal failure occurred)

The start_state and next_state expressions are verification events that can change. In particular,
the same assertion checker can be coded to verify multiple types of transitions of test_expr.

The checker is useful for ensuring certain control structure values (such as counters and finite-
state machine values) do not transition to invalid values.

Assertion Checks

NO_TRANSI TI ON

Expression transitioned from start_state to avalue equal to
next_state.

Accellera Standard OVL V2, Library Reference Manual, 2.6 213

December 2011

OVL Checker Data Sheets
ovl_no_transition

Implicit X/Z Checks

test_expr contains X or Z
start_state contains X or Z
next_state contains X or Z

Cover Points

cover_start_state

Cover Groups

none

Notes

Expression value contained X or Z hits.
Start state value contained X or Z hits.
Next state value contained X or Z bits.

BASIC — Expression assumed a start state value.

1. The assertion check compares the current value of test_expr with its previous value.
Therefore, checking does not start until the second rising edge of clock after reset

deasserts.

See also

ovl_transition

Examples

ovl _no_transition #(

* OVL_ERROR,
3!
* OVL_ASSERT,

“Error: bad state transition”

* OVL_COVER DEFAULT,
* OVL_POSEDGE,

* OVL_ACTI VE_LOW

* OVL_GATE_CLOCK)

valid_transition (

cl ock,
reset,
enabl e,
current _state,

requests > 2 ? ‘FULL :

* EMPTY,

“ONE_IN.Q

fire valid_ transition);

/1
/1
/1
/11
11
11
/1
I

11
/1
I
11

/1
/1
11

severity_ | evel
wi dt h
property_type
nmsg

cover age_| evel
cl ock_edge
reset _polarity
gating_type

cl ock

reset
enabl e

t est _expr
start_state

next state
fire

214

Accellera Standard OVL V2, Library Reference Manual, 2.6

December 2011

OVL Checker Data Sheets
ovl_no_transition

Checksthat current_state does not transition to ‘EMPTY improperly. If requestsis greater than
2 and the current_stateis‘FULL, current_state should not transition to ‘EMPTY in the next
cycle. If requestsis not greater than 2 and current_stateis*ONE_IN_Q, current_state should
not transition to ‘EMPTY in the next cycle.

cock —__ [L [oI oI > rrrrt v/

reset ' . ' , . . . , . : X .
current_state DLE_ | ONE IN Q| EMPTY | FULL EMPTY | "ONE N Q|
requests 0 | 2 | 1 | 3 | 1 | 2 [1
NO_TRANSITION Error: bad state transition /
Accellera Standard OVL V2, Library Reference Manual, 2.6 215

December 2011

OVL Checker Data Sheets

ovl_no_underflow

ovl_no_underflow

Checks that the value of an expression does not underflow.

Syntax

Parameter s/Generics:
fire[OVL_FIRE WIDTH-1:0] |— SEverity_level
width coverage level
ovl_no_underflow min clock_edge
_ max reset_polarity
—test_expr[width-1:0] property_type g atin g_type
clock reset enable .
T T T Class. 2-cycle assertion
ovl _no_underfl ow
[#(severity_level, width, min, nax, property_type, nsg,

coverage_| evel ,
i nst ance_nane (cl ock,

cl ock_edge, reset_polarity, gating type)]
reset, enable, test_expr, fire);

Parameters/Generics

severity_| evel

wi dt h

mn

property_type

msg

cover age_| evel

cl ock_edge

reset _polarity

Severity of the failure. Default: OVL_SEVERITY_DEFAULT
(OVL_ERROR).

Width of the test_expr argument. Width must be less than or
equal to 32. Default: 1.

Minimum value in the test range of test_expr. Default: O.

Maximum value in the test range of test_expr. Default: 2**width
-1

Property type. Default: OVL_PROPERTY DEFAULT
(OVL_ASSERT).

Error message printed when assertion fails. Default:
OVL_MSG_DEFAULT (“VIOLATION").

Coverage level. Default: OVL_COVER_DEFAULT
(OVL_COVER_BASIC).

Active edge of the clock input. Default:
OVL_CLOCK_EDGE_DEFAULT (OVL_POSEDGE).

Polarity (active level) of the reset input. Default:
OVL_RESET_POLARITY_DEFAULT
(OVL_ACTIVE_LOW).

gating_type Gating behavior of the checker when enable is FALSE. Default:
OVL_GATING TYPE_DEFAULT (OVL_GATE_CLOCK).
216 Accellera Standard OVL V2, Library Reference Manual, 2.6

December 2011

OVL Checker Data Sheets
ovl_no_underflow

Ports

cl ock
reset
enabl e

test _expr[w dth-1:0]

fire
[OVL_FI RE_W DTH- 1: 0]

Description

Clock event for the assertion.
Synchronous reset signal indicating completed initialization.

Enable signal for clock, if gating_type= OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_typeis OVL_NONE.

Expression that should not change from avalue of minto avalue
out of range or to avalue equal to max.

Fire output. Assertion failure when fire[0] is TRUE. X/Z check
failurewhen fire[1] is TRUE. Cover event when firg[2] is TRUE.

The ovl_no_underflow assertion checker checks the expression test_expr at each active edge of
clock to determine if its value has changed from a value (at the previous active edge of clock)
that was equal to min. If so, the checker verifies that the new value has not underflowed min.
That is, it verifies the value of test_expr is not less than min or greater than or equal to max (in
which case, the assertion fails).

The checker isuseful for verifying counters, where it can ensure the counter does not wrap from
the lowest value to the highest value in a specified range. For example, it can be used to check
that memory structure pointers do not wrap around. For a more general test for underflow, use

ovl_deltaor ovl_fifo_index.

Assertion Checks

NO_UNDERFLOW

Implicit X/Z Checks

test_expr contains X or Z

Cover Points
cover _test _expr_at _mn

cover _test_expr_at_nmax

Cover Groups

none

Expression changed value from min to avalue not in the range
min+1 tomax- 1.

Expression value contained X or Z hits.

BASIC — Expression evaluated to min.
CORNER — Expression evaluated to max.

Accellera Standard OVL V2, Library Reference Manual, 2.6 217

December 2011

OVL Checker Data Sheets
ovl_no_underflow

Errors

The parameters/generics min and max must be specified such that min isless than or equal to
max. Otherwise, the assertion fails on each tested clock cycle for which test_expr changed from
max.

Notes

1. The assertion check compares the current value of test_expr with its previous value.
Therefore, checking does not start until the second rising edge of clock after reset

deasserts.
See also
ovl_delta ovl_fifo_index
ovl_decrement ovl_no_overflow
Examples

ovl _no_underfl ow #(

“ OVL_ERRCR, /] severity_level
3, /1 width

3, /Il mn

7, /1 max

* OVL_ASSERT, /1 property type
“Error: addr underflow’, /'l msg

‘ OVL_COVER DEFAULT, /'l coverage_| evel
* OVL_POSEDGE, /'l cl ock_edge

“ OVL_ACTI VE_LOW /'l reset _polarity
* OVL_GATE_CLOCK) /1 gating_type

addr _wi t h_underfl ow (

cl ock, /1 clock
reset, /]l reset
enabl e, !/ enabl e
addr, Il test_expr
fire_addr_wi th_underflow); Il fire

Checksthat addr does not underflow (i.e., change from avalue of 3 at therising edge of clock to
avalue of 7 or avalue lessthan 3 at the next rising edge of clock).

clock
reset ' '
1 1 1 1 1 hl 1 h 1 1
addr X [7 T 6 5 T4 T 3 T 2 T 1 T 3 T 7 T 6 1 5
NO_UNDERFLOW Error: addr underflow |
NO_UNDERFLOW Error: addr underflow
218 Accellera Standard OVL V2, Library Reference Manual, 2.6

December 2011

OVL Checker Data Sheets
ovl_odd_parity

ovl _odd_parity

Checks that the value of an expression has odd parity.

Parameter Generics:

|, severity level coverage level

fire[OVL_FIRE_WIDTH-1:0]

width clock _edge
ovl_odd_parity property_type reset_polarity
msg gating_type

—test_expr[width-1:0]

clock reset enable Class. 1_CyC|e tion

T

Syntax

T T

ovl _odd parity

[#(severity_|level,
cl ock_edge,
i nst ance_nane (cl ock,

wi dth, property type, nsg,
reset_polarity, gating type)]
reset, enable, test_expr,

coverage_| evel ,

fire);

Parameters/Generics

severity_| evel

wi dt h
property_type

neg

cover age_| evel

cl ock_edge

reset _polarity

gating_type

Ports

cl ock

reset

Severity of the failure. Default: OVL_SEVERITY_DEFAULT
(OVL_ERROR).

Width of the test_expr argument. Default: 1.

Property type. Default: OVL_PROPERTY DEFAULT
(OVL_ASSERT).

Error message printed when assertion fails. Default:
OVL_MSG_DEFAULT (“VIOLATION").

Coverage level. Default: OVL_COVER_DEFAULT
(OVL_COVER_BASIC).

Active edge of the clock input. Default:
OVL_CLOCK_EDGE_DEFAULT (OVL_POSEDGE).

Polarity (active level) of the reset input. Default:
OVL_RESET_POLARITY_DEFAULT
(OVL_ACTIVE_LOW).

Gating behavior of the checker when enable is FALSE. Default:
OVL_GATING_TYPE_DEFAULT (OVL_GATE_CLOCK).

Clock event for the assertion.
Synchronous reset signal indicating completed initialization.

Accellera Standard OVL V2, Library Reference Manual, 2.6

December 2011

219

OVL Checker Data Sheets
ovl_odd_parity

enabl e

test _expr[w dt h-1:0]

fire
[OVL_FI RE_W DTH- 1: 0]

Description

Enable signal for clock, if gating_type = OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_typeis OVL_NONE.

Expression that should evaluate to avalue with odd parity on the
active clock edge.

Fire output. Assertion failure when fire[0] is TRUE. X/Z check
failurewhenfire[1] is TRUE. Cover event when firg[2] is TRUE.

The ovl_odd_parity assertion checker checks the expression test_expr at each active edge of
clock to verify the expression evaluates to a value that has odd parity. A value has odd parity if
the number of bits set to 1 isodd.

The checker is useful for verifying control circuits, for example, it can be used to verify afinite-
state machine with error detection. In a datapath circuit the checker can perform parity error
checking of address and data buses.

Assertion Checks

ODD_PARI TY
Implicit X/Z Checks

test_expr contains X or Z

Cover Points

cover _t est _expr_change

Cover Groups

none

See also

ovl_even parity

Expression evaluated to a value whose parity is not odd.

Expression value contained X or Z hits.

SANITY — Expression has changed value.

220

Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets
ovl_odd_parity

Examples

ovl _odd_parity #(

* OVL_ERROR, /'l severity_|evel
8, /1 width

* OVL_ASSERT, /1 property type
“Error: data has even parity”, /'l msg

‘ OVL_COVER DEFAULT, /'l coverage_| evel
* OVL_POSEDGE, /'l cl ock_edge

“ OVL_ACTI VE_LOW /'l reset _polarity
* OVL_GATE_CLOCK) Il gating_type

valid_data_odd_parity (

cl ock, /'l clock
reset, Il reset
enabl e, /'l enable
dat a, Il test_expr
fire_valid_data_odd_parity); Il fire

Checks that data has odd parity at each rising edge of clock.
cock — L LI oI o7 77— rr i

reset __|
data B 1 4 1 7 [E [9 1T B 1) T 1 1T D
|§> ODD_PARITY
Error: data has even parity
Accellera Standard OVL V2, Library Reference Manual, 2.6 221

December 2011

OVL Checker Data Sheets
ovl_one_cold

ovl one cold

Checks that the value of an expression is one-cold (or equals an inactive state value, if
specified).

Parameter s/Generics. msg

fire[OVL_FIRE_WIDTH-1:0] | SEverity_level coverage_|evel
width clock _edge

ovl_one_cold inactive reset_polarity
property_type gating_type

—{test_expr[width-1:0]
Class. 1-cycle assertion

clock reset enable
A A A

Syntax

ovl _one_cold
[#(severity level, width, inactive, property type, nsg,
coverage | evel, clock edge, reset _polarity, gating type)]
i nstance_nane (clock, reset, enable, test_expr, fire);

Parameters/Generics

severity_ | evel Severity of the failure. Default: OVL_SEVERITY _DEFAULT
(OVL_ERROR).

wi dt h Width of the test_expr argument. Default: 32.

i nactive Inactive state of test_expr: OVL_ALL_ZEROS,

OVL_ALL_ONESor OVL_ONE_COLD. Defaullt:
OVL_ONE_COLD.

property_type Property type. Default: OVL_PROPERTY_DEFAULT
(OVL_ASSERT).

msg Error message printed when assertion fails. Default:
OVL_MSG_DEFAULT (“VIOLATION").

cover age_| evel Coverage level. Default: OVL_COVER _DEFAULT
(OVL_COVER_BASIC).

cl ock_edge Active edge of the clock input. Default:
OVL_CLOCK_EDGE _DEFAULT (OVL_POSEDGE).

reset _polarity Polarity (active level) of the reset input. Default:

OVL_RESET POLARITY DEFAULT
(OVL_ACTIVE_LOW).

gating_type Gating behavior of the checker when enable is FALSE. Default:
OVL_GATING TYPE DEFAULT (OVL_GATE_CLOCK).

222 Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets
ovl_one_cold

Ports

cl ock
reset
enabl e

test _expr[w dth-1:0]

fire
[OVL_FI RE_W DTH- 1: 0]

Description

Clock event for the assertion.
Synchronous reset signal indicating completed initialization.

Enable signal for clock, if gating_type= OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_typeis OVL_NONE.

Expression that should evaluate to aone-cold or inactive value on
the active clock edge.

Fire output. Assertion failure when fire[0] is TRUE. X/Z check
failurewhen fire[1] is TRUE. Cover event when firg[2] is TRUE.

Theovl_one_cold assertion checker checksthe expression test_expr at each active edge of clock
to verify the expression evaluates to a one-cold or inactive state value. A one-cold value has
exactly one bit set to 0. The inactive state value for the checker is set by the inactive parameter.
Choicesare: OVL_ALL_ZEROS (e.g., 4 b0000), OVL_ALL_ONES (e.g.,4'b1111) or
OVL_ONE_COLD. The default inactive parameter valueis OVL_ONE_COLD, which
indicates test_expr has no inactive state (so only aone-cold value is valid for each check).

The checker is useful for verifying control circuits, for example, it can ensure that a finite-state
machine with one-cold encoding operates properly and has exactly one bit asserted low. In a
datapath circuit the checker can ensure that the enabling conditions for abus do not result in bus

contention.

Assertion Checks

ONE_COLD
Implicit X/Z Checks

test_expr contains X or Z

Cover Points

cover _test_expr_change

cover _all _one_col ds_
checked

cover test _expr_all _
zeros

cover_test_expr_all _
ones

Expression assumed an active state with multiple bits set to 0.

Expression value contained X or Z hits.

SANITY — Expression has changed value.

CORNER — Expression evaluated to all possible combinations
of one-cold values.

CORNER — Expression evaluated to the inactive state and the
Inactive parameter was set to OVL_ALL_ZEROS.

CORNER — Expression evaluated to the inactive state and the
inactive parameter was set to OVL_ALL_ONES.

Accellera Standard OVL V2, Library Reference Manual, 2.6 223

December 2011

OVL Checker Data Sheets
ovl_one_cold

Cover Groups

none

Notes

1. By default, the ovl_one _cold assertion is pessimistic and the assertion fails if test_expr
is active and multiple bitsare not 1 (i.e.equals 0, X, Z, etc.). However, if
OVL_XCHECK_OFF is set, the assertion fails if and only if test_expr is active and
multiple bits are 0.

See also

ovl_one_hot ovl_zero_one_hot

Examples

Example 1

ovl _one_cold #(

* OVL_ERROR, /1 severity |leve

4, /1 wdth

“ OVL_ONE_COLD, /1 inactive (no inactive state)
* OVL_ASSERT, /] property_type

“Error: sel_n not one-cold”, /1 nmsg

‘ OVL_COVER DEFAULT, /1 coverage_ | eve

* OVL_POSEDGE, /1 cl ock_edge

* OVL_ACTI VE_LOW /1 reset_polarity

“ OVL_GATE_CLOCK) /'l gating_type

valid _sel _n_one _cold (

cl ock, /1 clock
reset, /] reset
enabl e, /1l enabl e
sel _n, /'l test_expr
fire_valid_sel _n_one_cold); Il fire

Checksthat sel_nisone-cold at each rising edge of clock.
cock — LI L oL/ rerererer—

reset __|
sel_n XXXX | 1101] 1011 [1101] 0111] 1110 [1111 T 0111 [1011
test_expr contains X/Z value
ONE_COLD Error: sel_n not one-cold
224 Accellera Standard OVL V2, Library Reference Manual, 2.6

December 2011

OVL Checker Data Sheets
ovl_one_cold

Example 2

ovl _one_col d #(

* OVL_ERROR, /'l severity_level
4, /1 width

“ OVL_ALL_ONES, /1l inactive

* OVL_ASSERT, /'l property_type
“Error: sel_n not one-cold or inactive”, /'l msg

‘ OVL_COVER DEFAULT, /1 coverage_| evel
* OVL_POSEDGE, /'l cl ock_edge

“ OVL_ACTI VE_LOW /1l reset _polarity
* OVL_GATE_CLOCK) /'l gating_type

valid_sel _n_one_cold (

cl ock, /1 clock
reset, /Il reset
enabl e, /!l enable
sel n, /] test_expr
fire_valid_sel _n_one_cold); Il fire

Checksthat sel_nisone-cold or inactive (4'b1111) at each rising edge of clock.
cock — LI LI oI o7 77—t rr i

reset __[I I I l I I l I Z Z .
sel n TXXXX [IIIL] 1011 [1101 T 1100 | 1110] —III1 “ToIIiT 10iI
test_expr contains X/Z value ONE_COLD
Error: sel_n not one-cold or inactive
Example 3

ovl _one_col d #(

“ OVL_ERROR, Il severity_|evel
4, /1 width
“OVL_ALL_ZERGCS, /'l inactive

* OVL_ASSERT, /1 property type
“Error: sel_n not one-cold”, /'l nsg

* OVL_COVER DEFAULT, /'l coverage_|l eve
* OVL_PCOSEDCGE, /'l cl ock_edge

“ OVL_ACTI VE_LOW /'l reset_polarity
* OVL_GATE_CLOCK) /'l gating_type

valid sel _n_one_cold (

cl ock, /'l clock
reset, /'l reset
enabl e, /1 enable
sel n, /] test_expr
fire_valid_sel _n_one_cold); Il fire
Accellera Standard OVL V2, Library Reference Manual, 2.6 225

December 2011

OVL Checker Data Sheets
ovl_one_cold

Checks that sel_n isone-cold or inactive (4 b0000) at each rising edge of clock.
cock ~— L[L[L[LI rr—rrrrr

reset [I I I l I I l I l l .
sel_n TXXXX] 0000 1011 [1101 [0113 [1110 | 11T T o1if [7011
test_expr contains X/Z value
ONE_COLD Error: sel_n not one-cold or inactive
226 Accellera Standard OVL V2, Library Reference Manual, 2.6

December 2011

OVL Checker Data Sheets
ovl_one_hot

ovl _one hot

Checks that the value of an expression is one-hot.

—test_expr[width-1:0]

clock reset enable

Parameter Generics:

|, severity level coverage level

fire[OVL_FIRE_WIDTH-1:0]

width clock _edge
ovl_one_hot property_type reset_polarity
msg gating_type

Class: 1-cycle assertion

T

Syntax

ovl _one_hot

[#(severity_|level,
cl ock_edge,
i nst ance_nane (cl ock,

T T

wi dth, property type, nsg,
reset_polarity, gating type)]
reset, enable, test_expr,

coverage_| evel ,

fire);

Parameters/Generics

severity_| evel

wi dt h
property_type

neg

cover age_| evel

cl ock_edge

reset _polarity

gating_type

Ports

cl ock

reset

Severity of the failure. Default: OVL_SEVERITY_DEFAULT
(OVL_ERROR).

Width of the test_expr argument. Default: 32.

Property type. Default: OVL_PROPERTY DEFAULT
(OVL_ASSERT).

Error message printed when assertion fails. Default:
OVL_MSG_DEFAULT (“VIOLATION").

Coverage level. Default: OVL_COVER_DEFAULT
(OVL_COVER_BASIC).

Active edge of the clock input. Default:
OVL_CLOCK_EDGE_DEFAULT (OVL_POSEDGE).

Polarity (active level) of the reset input. Default:
OVL_RESET_POLARITY_DEFAULT
(OVL_ACTIVE_LOW).

Gating behavior of the checker when enable is FALSE. Default:
OVL_GATING_TYPE_DEFAULT (OVL_GATE_CLOCK).

Clock event for the assertion.
Synchronous reset signal indicating completed initialization.

Accellera Standard OVL V2, Library Reference Manual, 2.6

December 2011

227

OVL Checker Data Sheets
ovl_one_hot

enabl e

test _expr[w dt h-1:0]

fire
[OVL_FI RE_W DTH- 1: 0]

Description

Enable signal for clock, if gating_type = OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_typeis OVL_NONE.

Expression that should evaluate to a one-hot value on the active
clock edge.

Fire output. Assertion failure when fire[0] is TRUE. X/Z check
failurewhenfire[1] is TRUE. Cover event when firg[2] is TRUE.

The ovl_one_hot assertion checker checks the expression test_expr at each active edge of clock
to verify the expression evaluates to a one-hot value. A one-hot value has exactly one bit set to

1

The checker is useful for verifying control circuits, for example, it can ensure that afinite-state
machine with one-hot encoding operates properly and has exactly one bit asserted high. In a
datapath circuit the checker can ensure that the enabling conditions for abus do not result in bus

contention.

Assertion Checks

ONE_HOT

Implicit X/Z Checks

test_expr contains X or Z

Cover Points

cover _test _expr_change

cover _all _one_hots_
checked

Cover Groups

none

Notes

Expression evaluated to zero or to a value with multiple bits set
to 1.

Expression value contained X or Z hits.

SANITY — Expression has changed value.

CORNER — Expression evaluated to all possible combinations
of one-hot values.

1. By default, the ovl_one hot assertion is optimistic and the assertion failsif test_expr is
zero or has multiple bits not set to O (i.e.equals 1, X, Z, etc.). However, if
OVL_XCHECK_OFF is set, the ONE_HOT assertion failsif and only if test_expr is
zero or has multiple bits that are 1.

228

Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets
ovl_one_hot

See also

ovl_one cold ovl_zero_one_hot

Examples

ovl _one_hot #(

* OVL_ERROR, /'l severity_level
4, /1 width

* OVL_ASSERT, /] property_type
“Error: sel not one-hot”, /'l nsg

‘ OVL_COVER _DEFAULT, /'l coverage_| evel
* OVL_POSEDGE, /'l cl ock_edge

“ OVL_ACTI VE_LOW /1l reset _polarity
* OVL_GATE_CLOCK) /1 gating_type

val i d_sel one_hot (

cl ock, /1 clock
reset, [/l reset
enabl e, /!l enable
sel, /] test_expr
fire_valid_sel _one_hot); Il fire

Checksthat sel is one-hot at each rising edge of clock.
cock — LI LI oI o7 77—t rr i

reset [[[[[[[[[[[

sel —XXXX [1000 0100 [0010 [0011 [0001 [0100] 0000 | 0100 _

I—» test_expr contains X/Z value ONE_HOT 4——J

Error: sel not one-hot

Accellera Standard OVL V2, Library Reference Manual, 2.6 229
December 2011

OVL Checker Data Sheets

ovl_proposition

ovl_proposition

Checks that the value of an expression is always combinationally TRUE.

—>|test_expr

reset enable

Parameters/Generics. coverage level

fire[OVL_FIRE WIDTH-1:0] |— SEverity_level clock_edge
property_type reset_polarity
ovl_proposition msg gating_type

Class: combinational assertion

Syntax

ovl _proposition

[#(severity level, property_ type, mnmsg, coverage_l evel, clock_edge,
reset_polarity, gating type)]
i nstance_nane (reset, enable, test_expr, fire);

Parameters/Generics

severity_| evel

property_type

neg

coverage_| evel

cl ock_edge

reset _polarity

Severity of the failure. Default: OVL_SEVERITY_DEFAULT
(OVL_ERROR).

Property type. Cannot be OVL_ASSUME for SVA and PSL
implementations. Default: OVL_PROPERTY _DEFAULT
(OVL_ASSERT).

Error message printed when assertion fails. Default:
OVL_MSG_DEFAULT (“VIOLATION").

Coverage level. Default: OVL_COVER_DEFAULT
(OVL_COVER_BASIC).

Ignored parameter.

Polarity (active level) of the reset input. Default:
OVL_RESET _POLARITY_DEFAULT
(OVL_ACTIVE_LOW).

gating_type Gating behavior of the checker when enable is FALSE. Default:
OVL_GATING_TYPE_DEFAULT (OVL_GATE_CLOCK).
Ports
reset Synchronous reset signal indicating completed initialization.
enabl e Enable signal for clock, if gating_type= OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_typeisOVL_NONE.
230 Accellera Standard OVL V2, Library Reference Manual, 2.6

December 2011

OVL Checker Data Sheets
ovl_proposition

test _expr Expression that should always evaluate to TRUE.

fire Fire output. Assertion failure when fire[0] is TRUE. X/Z check

[OVL_FI RE_WDTH- 1: 0] failure when fire[1] is TRUE. Cover event when fire[2] is TRUE.
Description

The ovl_proposition assertion checker checks the single-bit expression test_expr when it
changes value to verify the expression evaluatesto TRUE.

Assertion Checks

PROPOSI Tl ON Expression evaluated to FALSE.
Implicit X/Z Checks

test_expr contains X or Z Expression valuewas X or Z.

Cover Points

none

Cover Groups

none

Notes

1. Formal verification tools and hardware emulation/accel eration systems might ignore this
checker. To verify propositional properties with these tools, consider using ovl_aways.

2. TheVerilog-95 version of this asynchronous checker handles‘OVL_ASSERT,
‘OVL_ASSUME and ‘OVL_IGNORE. The SVA and PSL versions of this checker do
not implement property_type ‘OVL_ASSUME. The SVA version uses immediate
assertions and in |EEE 1800-2005 SystemV erilog immediate assertions cannot be
assumptions. Assume is only available in a concurrent (clocked) form of an assertion
statement. The SVA version treats‘OVL_ASSUME asan ‘OVL_ASSERT. The PSL
version generates an error if property_typeis‘OVL_ASSUME.

See also
ovl_aways ovl_implication
ovl_aways on_edge ovl_never
Accellera Standard OVL V2, Library Reference Manual, 2.6 231

December 2011

OVL Checker Data Sheets
ovl_proposition

Examples

ovl _proposition #(

* OVL_ERROR, /'l severity_|evel
* OVL_ASSERT, /1 property type
“Error: current_addr changed while bus /'l nsg

grant ed”, /1l coverage_| evel
‘ OVL_COVER DEFAULT, /'l cl ock_edge

* OVL_POSEDCGE, /'l reset_polarity

“* OVL_ACTI VE_LOW
‘ OVL_GATE_CLOCK)

valid_current _addr (

bus_gnt,
enable,
current _addr == addr,

fire_valid_current_addr);

/1 gating_type

/'l reset

/] enabl e
/'l test_expr
Il fire

Checks that current_addr equals addr while bus_gnt is TRUE.

bus_gnt Bl
addr FFFF | AAOQ0
current_addr FEFF [AA00 AAFO

PROPOQOSITION Error: current_addr changed while bus granted

232

Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets
ovl_quiescent_state

ovl_quiescent_state

Checksthat the value of a specified state expression equals a corresponding check valueif a
specified sample event has transitioned to TRUE.

—|sample_event

fire [OVL_FIRE_WIDTH-1:0]

ovl_quiescent_state

—»|state_expr[width-1:0]
—| check_value[width-1:0]

clock reset enable

Parameter Generics:

|, severity level coverage level
width clock edge
property type reset_polarity
msg gating_type

Class. 2-cycle assertion

L)

Syntax

T T

ovl _qui escent _state
[#(severity level, width

cl ock_edge,

i nstance_nane (cl ock, reset,
sampl e_event, fire);

Parameters/Generics

severity_ | evel

wi dt h

property_type

nmsg

cover age_| evel

cl ock_edge

reset _polarity

property type, nsg, coverage_ | evel

reset _polarity, gating type)]

enabl e, state_expr, check_val ue,

Severity of the failure. Default: OVL_SEVERITY _DEFAULT
(OVL_ERROR).

Width of the state_expr and check value arguments. Default: 1.

Property type. Default: OVL_PROPERTY DEFAULT
(OVL_ASSERT).

Error message printed when assertion fails. Default:
OVL_MSG _DEFAULT (“VIOLATION").

Coverage level. Default: OVL_COVER _DEFAULT
(OVL_COVER BASIC).

Active edge of the clock input. Default:
OVL_CLOCK_EDGE_DEFAULT (OVL_POSEDGE).

Polarity (active level) of the reset input. Default:
OVL_RESET_POLARITY_DEFAULT
(OVL_ACTIVE_LOW).

gating_type Gating behavior of the checker when enableis FALSE. Default:
OVL_GATING TYPE_DEFAULT (OVL_GATE_CLOCK).
Accellera Standard OVL V2, Library Reference Manual, 2.6 233

December 2011

OVL Checker Data Sheets
ovl_quiescent_state

Ports

cl ock
reset

enabl e

state_expr[w dt h-1:0]

check_val ue[wi dt h-1: 0]

sanpl e_event

fire
[OVL_FI RE_W DTH- 1: 0]

Description

Clock event for the assertion.
Synchronous reset signal indicating completed initialization.

Enable signal for clock, if gating_type= OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_typeis OVL_NONE.

Expression that should have the same value as check value on
therising edge of clock if sample_event has just transitioned to
TRUE (rising edge).

Expression that indicates the value state_expr should have on the
active edge of clock if sample_event hasjust transitioned to
TRUE (rising edge).

Expression that initiates the quiescent state check when its value
transitionsto TRUE.

Fire output. Assertion failure when fire[0] is TRUE. X/Z check
failurewhenfire[1] is TRUE. Cover event when firg[2] is TRUE.

The ovl_quiescent_state assertion checker checks the expression sample_event at each active
edge of clock to seeif its value hastransitioned to TRUE (i.e,, its current value is TRUE and its
value on the previous active edge of clock is not TRUE). If so, the checker verifiesthat the
current value of state_expr equals the current value of check value. The assertion fails if
state_expr isnot equal to check value.

The state_expr and check value expressions are verification events that can change. In
particular, the same assertion checker can be coded to compare different check values (if they
are checked in different cycles).

The checker is useful for verifying the states of state machines when transactions complete.

Assertion Checks

QUI ESCENT_STATE

The sample_event expression transitioned to TRUE, but the
values of state_expr and check value were not the same.

234

Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets
ovl_quiescent_state

Implicit X/Z Checks

st atze_eXpr contains X State expression value contained X or Z hits.
or

chegk_val ue contains X Check vale expression value contained X or Z bits.
or

sanpl e_event contains Sample event valuewas X or Z.

Xor Z
OVL_END_OF_SI MULATI ON State expression value contained X or Z bits at the end of
contains X or Z simulation (OVL_END_OF SIMULATION asserted).

Cover Points

none

Cover Groups

none

Notes

1. Theassertion check compares the current value of sample_event with its previous value.
Therefore, checking does not start until the second rising edge of clock after reset
deasserts.

2. Checker recognizesthe Verilog macro OVL_END_OF SIMULATION=eos signal. If
set, the quiescent state check is also performed at the end of simulation, when
eos _signal asserts (regardless of the value of sample_event).

3. Formal verification tools and hardware emulation/accel eration systems might ignore this
checker.

See also

ovl_no_transition ovl_transition

Accellera Standard OVL V2, Library Reference Manual, 2.6 235
December 2011

OVL Checker Data Sheets
ovl_quiescent_state

Examples

ovl _qui escent _state #(

* OVL_ERROR

4,

* OVL_ASSERT,

“Error: illegal end of transaction”
* OVL_COVER _DEFAULT,

* OVL_POSEDCE

“ OVL_ACTI VE_LOW
“ OVL_GATE_CLOCK)

valid_end_of transaction_state (

cl ock,
reset,
enabl e,
transaction_state,

prev_tr == ‘TR READ ? * TR_IDLE :* TR WAI T,

end_of transaction,

fire valid end of transaction_state);

11
/11
11
11
11
11

11
/11

severity_| evel
wi dt h
property_type
neg
coverage_| evel
cl ock_edge
reset _polarity
gating_type

cl ock

reset

enabl e

st at e_expr
check_val ue
sanpl e_event
fire

Checks that whenever end_of transaction asserts at the completion of each transaction, the
value of transaction_stateis‘TR_IDLE (if prev_tris‘TR_READ) or ‘TR_WAIT (otherwise).
cock /L 1L [LI LI’

reset _ [' : g :
. I

end_of_transaction : . . : : :
check_value I‘TR WAllT | ‘TR |DLEI | i i ! ‘TRIWA|T i
transaction_state X] ‘TR_READ [TR IDLE | TR WRITE [‘TR IDLE]| ‘TR_READ

QUIESCENT_STATE Error: illegal end of transaction

236

Accellera Standard OVL V2, Library Reference Manual, 2.6

December 2011

OVL Checker Data Sheets

ovl_range
ovl _range
Checks that the value of an expression isin a specified range.
Parameter s’Generics:
fire[OVL_FIRE WIDTH-1:0] |— SEverity_level
width coverage level
ovl_range min clock_edge
o max reset_polarity
—test_expr[width-1:0] property_type gati ng_type
clock reset enable . .
T T T Class: 1-cycle assertion
Syntax
ovl range

[#(severity level, width, mn, nmax, property type, nsg,
coverage_l evel, clock_edge, reset_polarity, gating_type)]
i nstance_nane (cl ock, reset, enable, test_expr, fire);

Parameters/Generics

severity_|l evel Severity of the failure. Default: OVL_SEVERITY_DEFAULT
(OVL_ERROR).

wi dt h Width of the test_expr argument. Default: 1.

mn Minimum value allowed for test_expr. Default: O.

max Maximum value allowed for test_expr. Default: 2**width - 1.

property_type Property type. Default: OVL_PROPERTY _DEFAULT
(OVL_ASSERT).

nmsg Error message printed when assertion fails. Default:
OVL_MSG_DEFAULT (“VIOLATION").

cover age_| evel Coverage level. Default: OVL_COVER_DEFAULT
(OVL_COVER_BASIC).

cl ock_edge Active edge of the clock input. Default:
OVL_CLOCK_EDGE _DEFAULT (OVL_POSEDGE).

reset_polarity Polarity (active level) of the reset input. Default:

OVL_RESET _POLARITY DEFAULT
(OVL_ACTIVE_LOW).

gating_type Gating behavior of the checker when enable is FALSE. Default:
OVL_GATING _TYPE DEFAULT (OVL_GATE_CLOCK).

Accellera Standard OVL V2, Library Reference Manual, 2.6 237
December 2011

OVL Checker Data Sheets
ovl_range

Ports

cl ock
reset
enabl e

test _expr[w dth-1:0]

fire
[OVL_FI RE_W DTH- 1: 0]

Description

Clock event for the assertion.
Synchronous reset signal indicating completed initialization.

Enable signal for clock, if gating_type= OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_typeis OVL_NONE.

Expression that should evaluate to a value in the range from min
to max (inclusive) on the active clock edge.

Fire output. Assertion failure when fire[0] is TRUE. X/Z check
failurewhen fire[1] is TRUE. Cover event when firg[2] is TRUE.

The ovl_range assertion checker checks the expression test_expr at each active edge of clock to
verify the expression fallsin the range from min to max, inclusive. The assertion failsif
test_expr < min or max < test_expr.

The checker is useful for ensuring certain control structure values (such as counters and finite-
state machine values) are within their proper ranges. The checker is also useful for ensuring
datapath variables and expressions are in legal ranges.

Assertion Checks

RANGE
Implicit X/Z Checks

test_expr contains X or Z

Cover Points

cover _test _expr_change
cover _test_expr_at_mn

cover _test_expr_at _max

Cover Groups

none

Expression evaluated outside the range min to max.

Expression value contained X or Z bits.

BASIC — Expression changed value.
CORNER — Expression evaluated to min.
CORNER — Expression evaluated to max.

238

Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets
ovl_range

Errors

The parameters/generics min and max must be specified such that min isless than or equal to
max. Otherwise, the assertion fails on each tested clock cycle.

See also
ovl_aways ovl_never
ovl_implication ovl_proposition
Examples

ovl _range #(

“ OVL_ERRCR, /] severity_level
3, /1 wdth

2, /1l mn

5, /'l max

* OVL_ASSERT, /1 property type
“Error: sel _high - sel lownot within 2 to 5", /'l nsg

* OVL_COVER _DEFAULT, /| coverage_| evel
* OVL_POSEDCGE, /'l cl ock_edge

“ OVL_ACTI VE_LOW /'l reset_polarity
* OVL_GATE_CLOCK) /'l gating_type

valid_sel (

cl ock, !/ clock
reset, /'l reset
enabl e, /] enabl e
sel _high - sel _| ow, Il test_expr
fire_valid_sel); /Il fire

Checks that (sel_high - sel_low) isin therange 2 to 5 at each rising edge of clock.
cock L 1L L LI
reset _| I I : : : : :

sel_high - sel_low X1 2 | 4 7 1 5 [2

RANGE Error: sel_high - sel_low not within 2 to 5

Accellera Standard OVL V2, Library Reference Manual, 2.6 239
December 2011

OVL Checker Data Sh
ovl_reg_loaded

eets

ovl reg_lo

aded

Checks that aregister isloaded with source data within a specified time window.

—|start_event
——>lend_event

—|src_expr[width-1:0]

fire [OVL_FIRE_WIDTH-1:0]

ovl_reg_loaded

—>{dest_expr[width-1:0]

clock

reset enable

Parameters/Generics:. msg

L~ severity level coverage level
width clock_edge
start_count reset_polarity
end_count gating_type

property type

Class: event-bounded assertion

A

Syntax

ovl _reg_ | oad
[#(sev

neg

i nstance_
dest _e

Parameters/Gen

severity_l evel

wi dt h

start_count

end_count

property_type
neg

cover age_| evel
cl ock_edge

reset _polarity

A A

ed
erity level, wdth,

start_count, end_count, property_type,

, coverage_ |l evel, clock_edge, reset _polarity, gating_type)]

name (clock, reset,
xpr, fire);
erics

enabl e, start_event, end_event, src_expr

Severity of the failure. Default: OVL_SEVERITY_DEFAULT
(OVL_ERROR).

Width of the src_expr and dest_expr registers. Default: 4.

Number of cycles after start_event asserts that the time window
opens. Default: 1.

Number of cycles after start_event asserts that the time window
closes (if it is till open). If end_count is 0, only the end_event
signal is used to define the time windows. Default: 10.

Property type. Default: OVL_PROPERTY DEFAULT
(OVL_ASSERT).

Error message printed when assertion fails. Default:
OVL_MSG_DEFAULT (“VIOLATION").

Coverage level. Default: OVL_COVER_DEFAULT
(OVL_COVER_BASIC).

Active edge of the clock input. Default:
OVL_CLOCK_EDGE_DEFAULT (OVL_POSEDGE).

Polarity (active level) of the reset input. Default:
OVL_RESET_POLARITY_DEFAULT
(OVL_ACTIVE_LOW).

gating_type Gating behavior of the checker when enable is FALSE. Default:
OVL_GATING TYPE_DEFAULT (OVL_GATE_CLOCK).
240 Accellera Standard OVL V2, Library Reference Manual, 2.6

December 2011

OVL Checker Data Sheets
ovl_reg_loaded

Ports
cl ock Clock event for the assertion.
reset Synchronous reset signal indicating completed initialization.
enabl e Enable signal for clock, if gating_type= OVL_GATE_CLOCK

(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_typeis OVL_NONE.

start_event Start event signal for thereg_loaded check. If the time window is
closed (or closing), the rising edge of start_event initiates a new
check. The time window opens start_count cycles later.

end_event End event sgnal for the reg_| loaded check. If the timewindow is
open (or opening), the rlsmg edge of end_event terminates the
current check, closes the window and issues areg_loaded
violation (if dest_expr loaded the value of src_expr in that cycle,
the time window would be closing).

src_expr[w dth-1:0] Source register containing the values that load the dest_expr
register. For each reg_|loaded check, the source valuein src_expr
Issampled in the same cycle that start_event asserts.

dest _expr[w dt h-1: 0] Destination register for the valuesin src_expr.

fire Fire output. Assertion failure when fire[0] is TRUE. X/Z check
[OVL_FI RE_WDTH- 1: 0] failurewhen fire[1] is TRUE. Cover event when fire[2] is TRUE.

Description

The ovl_reg loaded assertion checker checks start_event at each active edge of clock. If
start_event has just transitioned to TRUE, the checker evaluates the source register (src_expr)
and initiates areg_loaded check to verify that this value gets loaded into the destination register
(dest_expr) in the specified time window.

If start_count is 0, the time window opens immediately. Otherwise, the time window opens
start_count cycles after the current cycle. The values of dest_expr in the cycles between the
start of the reg_loaded check and the time window opening are not relevant. When the time
window opens, the checker evaluates dest_expr and re-evaluates dest_expr each subsequent
cycle. Oncethevalue of dest_expr equalsthe captured value of src_expr, the current reg_loaded
check terminates successfully. The time window closes when one of the following occur:

» Thecurrent cycleisend_count cycles after start_event asserted (end_count > 0).
 Theend event signal is TRUE.

If dest_expr has not loaded the src_expr value by the cycle the time window closes, a
reg_loaded violation occurs.

Accellera Standard OVL V2, Library Reference Manual, 2.6 241
December 2011

OVL Checker Data Sheets
ovl_reg_loaded

Assertion Checks

REG_LOADED

Implicit X/Z Checks

start_event contains X or Z
end_event contains X or Z
src_expr contains X or Z
dest_expr contains X or Z

Cover Points

cover _val ues_checked

cover _reg_| oaded

cover_end_event _in_
wi ndow

cover_no_end_event _in_
w ndow

cover | oad at_start_
count

cover load at_end_
count

Test expression did not equal the value of the source
register in the specified tine wi ndow.

end _count > 0

Either end_event became TRUE or end_count cycles passed
after therising edge of start_event and dest_expr was still not
equal to the captured value of src_expr (ignoring values of
dest_expr in the start_count cycles after start_event asserted).

Test expression did not equal the value of the source
expression in the tinme wi ndow that ended when
‘end_event’ asserted.

end count = 0

End_event became TRUE after the rising edge of start_event
and dest_expr was still not equal to the captured value of
src_expr (ignoring values of dest_expr in the start_count
cycles after start_event asserted).

Start event signal was X or Z.

End event signal was X or Z.

Source expression contained X or Z hits.
Test expression contained X or Z hits.

SANITY — Number of timesareg_loaded check was initiated
(i.e.,, number of cycles start_event transitioned to TRUE).

BASIC — Number of timesareg_loaded check was terminated
successfully (i.e, dest_expr was loaded with src_expr in thetime
window).

BASIC — Number of timewindowsinwhich end event asserted
(whether or not dest_expr loaded src_expr in the window). Not
meaningful if end_count = 0.

BASIC — Number of time windows in which end_event did not
assert (whether or not dest_expr loaded src_expr in the window).
Not meaningful if end_count = 0.

CORNER — Number of timesdest_expr loaded src_expr exactly
start_count cycles after start_event asserted.

CORNER — Number of times dest_expr loaded the src_expr
value exactly end_count cycles after start_event asserted. Not
meaningful if end_count = 0.

242

Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets
ovl_reg_loaded

cover | oad_tinmes

Cover Groups

observed_dest _expr _

reg _load tinme

STATISTIC — Reports the load times (in cycles from asserting

start_event to loading src_expr into dest_expr) that occurred at
least once.

Number of times dest_expr was loaded in the specified number
of cycles. Bins are:

» observed load time_good[start _count+1:maximum] — bin
index is the observed load timein clock cycles. The value of
maximumiis:
 gtart_count + 4095 (if end_count = 0) or
» end_count (if end_count > 0).

» Observed load time bad — default.

Accellera Standard OVL V2, Library Reference Manual, 2.6 243

December 2011

OVL Checker Data Sheets
ovl_req_ack_unique

ovl reqg_ack_unique

Checks that every request receives a corresponding acknowledge in a specified time window.

fire [OVL_FIRE_WIDTH-1:0] — Par ameter SGenerics: J

severity_level coverage level

—{req min_cks clock_edge
ovl_req_ack_unique max_cks reset_polarity

—>|ack method gating_type

property_type
Class. n-cycle assertion

clock reset enable
A A A

Syntax

ovl _req_ack_uni que
[#(severity_level, mn_cks, max_cks, method, property_type, nsg,
coverage_ | evel, clock _edge, reset_polarity, gating_type)]
i nstance_nane (clock, reset, enable, req, ack, fire);

Parameters/Generics

severity_|l evel Severity of the failure. Default: OVL_SEVERITY_DEFAULT
(OVL_ERROR).
m n_cks Minimum number of clock cycles after req asserts that its

corresponding acknowledge can occur. Default: 1

max_cks Maximum number of clock cycles after req asserts that its
corresponding acknowledge can occur. Default: 15.

met hod Method used to track and correlate request/acknowledge pairs.

met hod = 0 (Default)
Method suitable for a short time window (max_cks < 15).
Usesinternal IDsfor requests. For each request, generates
max_cks properties.

net hod =
Method swtable for along time window (max_cks > 15).
Uses time stamps (computed mod 2 max_cks) to identify
requests. To process an acknowledge, the time stamp for the
request at the front of the queue is used to verify that the
acknowledge meets timing requirements.

property_type Property type. Default: OVL_PROPERTY_DEFAULT
(OVL_ASSERT).

nmsg Error message printed when assertion fails. Default:
OVL_MSG_DEFAULT (“VIOLATION”).

cover age_| evel Coverage level. Default: OVL_COVER _DEFAULT

(OVL_COVER_BASIC).

244 Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets
ovl_req_ack_unique

cl ock_edge Active edge of the clock input. Default:
OVL_CLOCK_EDGE DEFAULT (OVL_POSEDGE).
reset_polarity Polarity (active level) of the reset input. Default:

OVL_RESET_POLARITY DEFAULT
(OVL_ACTIVE_LOW).

gating_type Gating behavior of the checker when enable is FALSE. Default:
OVL_GATING_TYPE DEFAULT (OVL_GATE_CLOCK).

Ports
cl ock Clock event for the assertion.
reset Synchronous reset signal indicating completed initialization.
enabl e Enable signal for clock, if gating_type= OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_typeis OVL_NONE.
req Request signal.
ack Acknowledgment signal.
fire Fire output. Assertion failure when fire[0] is TRUE. X/Z check
[OVL_FI RE_W DTH- 1: 0] failurewhen fire[1] is TRUE. Cover event when fire[2] is TRUE.
Description

Theovl_req_ack_unique assertion checker checks req and ack at each active edge of clock. If
reg is TRUE, arequest becomes outstanding immediately. The checker tracks outstanding
requests on afirst-in first-out basis to verify the specified request/acknowledge handshake
protocol is obeyed.

The protocol ensures each request has an acknowledgement that occursin the time window that
opens min_cks after the request (i.e., when the request becomes outstanding) and closes
max_cks after the request. When ack is TRUE, the oldest outstanding request is checked. If this
request has not been outstanding for at least min_cks cycles, the ack isignored. Otherwise, the
request is removed from the outstanding requests FIFO and “matched” with the current
acknowledge. The checker detects the following violations:

» |If ackis TRUE and no requests are outstanding, ano_extraneous_ack violation occurs.
» If arequest is not acknowledged in its time window, an ack _timeout violation occurs.

» If max_cksrequests are outstanding, additional requests cannot become outstanding. If a
request occurs (without a simultaneous acknowledge), amax_outstanding_req violation
occurs and the request is ignored.

To help collect coverage data, the checker tracks individual requests and their
acknowledgements (up to the maximum outstanding requests limit, which is max_cks requests).

Accellera Standard OVL V2, Library Reference Manual, 2.6 245
December 2011

OVL Checker Data Sheets
ovl_req_ack_unique

But the larger max_cks s, the greater the decrease in performance. To resolve this problem, the
checker can be configured to a second method of tracking request/acknowledge pairs by setting
the method parameter to 1. However with this method, the checker does not collect some

coverage data.

Assertion Checks

NO_EXTRANEOUS_ACK

ACK_TI MEQUT

MAX_OUTSTANDI NG_REQ

Implicit X/Z Checks

req contains X or Z
ack contains X or Z

Cover Points

cover _requests
cover _acknow edgenent s

cover _ack_at _min_cks

cover _ack_at max_cks

observed_ack_tines

observed_out st andi ng_
requests

Acknowl edge recei ved when no requests were

out st andi ng.
No requests were outstanding and ack was TRUE (and if
min_cks =0, req was FALSE).

Acknowl edge not received in tinme w ndow.
A request was pending for max_cks cyclesand did not receive
its acknowledge in the last cycle of its time window.

Maxi mum nunber of requests were outstandi ng when an
addi ti onal request was issued.
Regq was TRUE and ack was FAL SE, but max_cks requests
were outstanding.

Request signal was X or Z.
Acknowledge signal was X or Z.

SANITY — Number of cyclesreq asserted.
SANITY — Number of cycles ack asserted.

CORNER — Number of times acknowledge was received
min_cks cycles after its request was issued. Not meaningful if
method = 1.

CORNER — Number of times acknowledge was received
max_cks cycles after its request was issued. Not meaningful if
method = 1.

STATISTIC — Reports the request-to-acknowledge times (in
cycles) that occurred at least once. Not meaningful if method = 1.

STATISTIC — Reports the number of cyclesin which exactly
Index requests become outstanding, for each index in the range
[0: max_cks] (except for index = 0, which counts all cycles that
no request was outstanding). Not meaningful if method = 1.

246

Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets
ovl_req_ack_unique

Cover Groups

observed_| at ency

observed_out st andi ng_
requests

Number of acknowledgements with the specified reg-to-ack
latency. Bins are:
» oObserved latency good[min_cks:max cks|] — binindex is
the observed latency in clock cycles.
» observed latency bad — default.

Number of cycles with the specified number of outstanding
requests. Bins are:
» oObserved outstanding requests1:max_cks] — binindex is
the number of outstanding requests.

Accellera Standard OVL V2, Library Reference Manual, 2.6 247

December 2011

OVL Checker Data Sheets
ovl_req_requires

ovl _req_requires

Checksthat every request event initiates avalid request-response event sequence that finishes
within a specified time window.

Parameter s/Generics. msg

— »{req_trigger fire [OVL_FIRE_WIDTH-1.0] I saverity |evel coverage level

—>|req_follower min_cks clock _edge
ovl_req_requires max_cks reset_polarity

—>resp_leader property_type gating_type

—>{resp_trigger

clock reset enable Class. n-cycle assertion

T T T

Syntax

ovl _req_requires
[#(severity level, min_cks, max_cks, property type, nsg,
coverage_l evel, clock_edge, reset_polarity, gating_type)]
i nstance_nane (cl ock, reset, enable, reqg_trigger, reqg_follower,
resp_|l eader, resp_trigger, fire);

Parameters/Generics

severity_|l evel Severity of the failure. Default: OVL_SEVERITY_DEFAULT
(OVL_ERROR).

m n_cks Minimum number of clock cycles after req_trigger is TRUE that
the event sequence can finish. Value of min_cks must be > 0.
Default: 1.

max_cks Maximum number of clock cyclesafter req trigger is TRUE that

the event sequence should finish. The specia value 0 selects no
upper bound. If max_cks # 0, then max_cks must be min_cks.

Default: O.

property_type Property type. Default: OVL_PROPERTY_DEFAULT
(OVL_ASSERT).

msg Error message printed when assertion fails. Default:
OVL_MSG _DEFAULT (“VIOLATION").

cover age_| evel Coverage level. Default: OVL_COVER_DEFAULT
(OVL_COVER_BASIC).

cl ock_edge Active edge of the clock input. Default:
OVL_CLOCK_EDGE DEFAULT (OVL_POSEDGE).

reset_polarity Polarity (active level) of the reset input. Default:

OVL_RESET POLARITY DEFAULT
(OVL_ACTIVE_LOW).

248 Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets
ovl_req_requires

gating_type

Ports

cl ock
reset

enabl e

req_trigger

req_foll oner

resp_| eader

resp_trigger

fire
[OVL_FI RE_W DTH- 1: 0]

Description

Gating behavior of the checker when enable is FALSE. Default:
OVL_GATING_TYPE_DEFAULT (OVL_GATE_CLOCK).

Clock event for the assertion.
Synchronous reset signal indicating completed initialization.

Enable signal for clock, if gating_type= OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_typeisOVL_NONE.

Request trigger signal. If req_trigger is TRUE, the checker
initiates a new check and its corresponding time window opens
min_cks cycles|ater.

Request follower signal. A request event finishes at the first
rising edge of req_follower in the same or subsequent cycle as
therising edge of req_trigger.

Response leader signal. The first rising edge of resp_leader ina
cycle after the request event initiates the response event.

Response trigger signal. The response event finishes at the first
rising edge of resp_trigger in the same or subsequent cycle asthe
rising edge of resp_leader. This event must be in the time
window from min_cksto max_cks cycles after req_trigger was
TRUE.

Fire output. Assertion failure when fire[0] is TRUE. X/Z check
failurewhenfire[1] is TRUE. Cover event when fire[2] is TRUE.

The ovl_req requires assertion checker checksreq_trigger at each active edge of clock. If
req_trigger is TRUE, areq_requires check isinitiated. The checker verifies that a semaphore
reguest-response event sequence transpires with the last event occurring within the time
window specified by [max_cks:min_cks]. The event sequence must have the following

characteristics:

* Whenreq trigger is TRUE: req_follower, resp_leader, resp _trigger are TRUE in

sequence.

» Each event happens at the active clock edge at which the first occurrence of itssignal is
TRUE following the previous event in the sequence.

» The sequence has the following timing relations:

t reqg_trigger

reqg_f ol | ower

<t <t

resp_l eader = ‘resp_trigger

Accellera Standard OVL V2, Library Reference Manual, 2.6 249

December 2011

OVL Checker Data Sheets
ovl_req_requires

That is, thereq_trigger and req_follower events can occur in the same cycle and the
resp_leader and resp_trigger events can occur in the same cycle, but the resp_leader
event must be after the req_follower event.

A req_requires check violation occurs if one of the following cases arises:

» The semaphore event sequence finishes before the [min_cks:max_cks] time window
opens.

» A cycleisreached at which the checker determines the semaphore event sequence
cannot finish within the [min_cks:max_cks] time window.

* The[min_cks:max_cks] time window closes, but the semaphore event sequence did not
finish.
The default value of max_cksis 0, which sets no upper bound for the time windows. In this case,
areq_requires violation occurs only when a sequence finishes before min_cks cycles after the

req_trigger event. The default value of min_cksis1, soif both min_cksand max_cksare left set
to their defaults, the req_requires check cannot be violated.

Assertion Checks

REQ REQUI RES A request-response event sequence started, but did
not finish when the specified tinme w ndow was open.
max_cks > 0
Req_trigger was TRUE, so a request-response event
sequence started. But, either the sequence finished before
min_cks cycles, or it could not finish by max_cks cycles.

A request-response event sequence started, but it
finished before the specified tine wi ndow opened.
max_cks = 0
Req_trigger was TRUE, so arequest-response event
sequence started, but the sequence finished before min_cks
cycles.

Implicit X/Z Checks

req_trigger contains X or Z Request trigger was X or Z.

req_follower contains X or Request follower was X or Z.
Z

resp_leader contains X or Z Response leader was X or Z.

resp_trigger contains X or Response trigger was X or Z.
Z

250 Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets
ovl_req_requires

Cover Points

If overlapping request-response sequences are triggered, the coverage data might be inaccurate
because the cover group vectors do not reflect which responses belong to which requests.

cover _requests

cover _request _
foll oners

cover _response_| eaders

cover _req_requires

cover_resp_trigger_at_
nm n_cks

cover _resp_trigger_at_
max_cks

cover_req_trigger_to_
resp_trigger

cover _req_trigger_to_
req_foll oner

cover _req_follower_to_
resp_I| eader

cover _resp_ |l eader _to_
resp_trigger

Cover Groups

observed_| atency_btw_
req_trigger_and_
resp_trigger

SANITY — Number of cyclesreq_trigger was TRUE.

BASIC — Number of timesreq_trigger was TRUE and
req_follower was TRUE in the same or subsequent cycle.

BASIC — Number of timesreq_trigger was TRUE;
req_follower was TRUE in the same or subsequent cycle; and
then resp_leader was TRUE in a subsequent cycle.

BASIC — Number of valid request-response event sequences.

CORNER — Number of valid request-response event sequences
that finished in min_cks cycles.

CORNER — Number of valid request-response event sequences
that finished in max_cks cycles.

STATISTIC — Reports the request-trigger to response-trigger
times (in cycles) that occurred at least once.

STATISTIC — Reports the request-trigger to request-follower
times (in cycles) that occurred at |east once.

STATISTIC — Reports the request-follower to response-leader
times (in cycles) that occurred at |east once.

STATISTIC — Reports the response-leader to response-trigger
times (in cycles) that occurred at |east once.

Number of requests with the specified request-trigger to
response-trigger latency. Bins are:

» oObserved req trigger_resp_trigger_latency good
[min_cks:maximum] — bin index is the observed latency in
clock cycles from the request trigger to the response trigger.
The value of maximumis:

* 4095 (if max_cks=0) or
» max_cks (if max_cks> 0).
» oObserved req trigger_resp trigger latency bad — default.

Accellera Standard OVL V2, Library Reference Manual, 2.6

December 2011

251

OVL Checker Data Sheets
ovl_req_requires

observed_l atency_btw_ Number of requests with the specified request-trigger to
r 225‘ rigger_and_ response-follower latency. Bins are:

- » observed req trigger_resp follower latency good
[0:maximum] — bin index is the observed latency in clock
cycles from the request trigger to the response follower. The
value of maximumis:

* 4095 (if max_cks=0) or
» max_cks (if max_cks> 0).
» observed req trigger_resp follower latency bad — default.

observed_l atency_btw_ Number of requests with the specified request-follower to
r ggﬁf ol | aver_and._ response-leader latency. Bins are:

- » observed req follower_resp_leader_latency good
[1:maximum] — bin index is the observed latency in clock
cycles from the request follower to the response leader. The
value of maximumis:

e 4095 (if max_cks=0) or
* max_cks (if max_cks> 0).
» observed req _follower_resp leader_latency bad — default.

observed_l atency_btw_ Number of requests with the specified response-leader to
{ 22 B—'t f?ggrer—a”d— response-trigger latency. Bins are:

- » oObserved resp leader resp trigger latency good
[0:maximum] — bin index is the observed latency in clock
cycles from the response |eader to the response trigger. The
value of maximumis:

* 4095 (if max_cks=0) or
» max_cks (if max_cks > 0).
» Observed resp leader resp trigger latency bad — default.

252 Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets
ovl_stack

ovl stack

Checks the data integrity of a stack and checks that the stack does not overflow or underflow.

—»|push Parameter S/Generics:

: fuolf fire [OVL_FIRE_WIDTH-1:0] }— ﬁé?ﬂty—l evel property_type

—|empty ovl_stack depth coverage |evel

—|push_data[width-1:0] push_latency clock edge

—|pop_data[width-1:0] pop_latency reset_polarity
C":C" refet e”":b'e high_water_mark gating_type

Class. n-cycle assertion

Syntax

ovl stack
[#(severity_level, depth, wi dth, high_water_mark, push_| atency,
pop_| atency, property_type, nsg, coverage_l evel, clock_edge,
reset_polarity, gating type)]
i nstance_nane (cl ock, reset, enable, push, push_data, pop, pop_data,
full, enpty, fire);

Parameters/Generics

severity_|l evel Severity of the failure. Default: OVL_SEVERITY_DEFAULT
(OVL_ERROR).

wi dt h Width of adataitem. Default: 1.

depth Stack depth. The depth must be > 0. Default: 2.

push_| at ency Latency for push operation.

push_l atency = 0 (Default)
Vaue of push_data isvalid and the push operation is
performed in the same cycle push asserts.

push_l atency > 0
Vaue of push_data isvalid and the push operation is
performed push_latency cycles after push asserts.

pop_| at ency Latency for pop operation.
pop_l atency = 0 (Default)
Value of pop_data isvalid and the pop operation is
performed in the same cycle pop asserts.
pop_l atency > 0
Vaue of pop_data isvalid and the pop operation is
performed pop_latency cycles after pop asserts.

hi gh_wat er _mar k Stack high-water mark. Must be < depth. A value of 0 disables
the cover_high_water_mark cover point. Default: O.

Accellera Standard OVL V2, Library Reference Manual, 2.6 253
December 2011

OVL Checker Data Sheets
ovl_stack

property_type

neg

cover age_| evel

cl ock_edge

reset_polarity

gating_type

Ports

cl ock
r eset

enabl e

push

push_dat a[wi dt h-1: 0]

pop

pop_dat a[wi dt h- 1: 0]

Property type. Default: OVL_PROPERTY_ _DEFAULT
(OVL_ASSERT).

Error message printed when assertion fails. Default:
OVL_MSG _DEFAULT (“VIOLATION").

Coverage level. Default: OVL_COVER_DEFAULT
(OVL_COVER_BASIC).

Active edge of the clock input. Default:
OVL_CLOCK_EDGE_DEFAULT (OVL_POSEDGE).

Polarity (active level) of the reset input. Default:
OVL_RESET POLARITY DEFAULT
(OVL_ACTIVE_LOW).

Gating behavior of the checker when enableis FALSE. Default:
OVL_GATING_TYPE_DEFAULT (OVL_GATE_CLOCK).

Clock event for the assertion.
Synchronous reset signal indicating completed initialization.

Enable signal for clock, if gating_type= OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_typeis OVL_NONE.

Stack push input. When push asserts, the stack performs a push
operation. A dataitem is pushed onto the stack and the stack
counter increments by 1. If push_latency is O, the pushis
performed in the same cycle push asserts. Otherwise
push_latency cycleslater, push_data islatched, the push
operation occurs, and the stack counter increments.

Push data input to the stack. Contains the data item to push onto
the stack.

Stack pop input. When pop asserts, the stack performs a pop
operation. A dataitem is popped from the stack and the stack
counter decrements by 1. If deq latency isO, thepop is
performed in the same cycle pop asserts. Otherwise enq_latency
cycleslater, the pop operation occurs, the stack counter
decrements, and pop_data is valid.

Pop data output from the stack. Contains the data item popped
from the stack.

254

Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets
ovl_stack

full Output status flag from the stack.
full =0
Stack not full.
full =1
Stack full.

enpty Output status flag from the stack.
enpty = 0
Stack not empty.
enmpty =1
Stack empty.
fire Fire output. Assertion failure when fire[0] is TRUE. X/Z check
[OVL_FI RE_W DTH- 1: 0] failurewhen fire[1] is TRUE. Cover event when fire[2] is TRUE.

Description

The ovl_stack checker checks push and pop at the active edge of clock. If pushis TRUE, the
checker assumes a push operation occurs push_latency cycleslater (or in the same cycleiif
push_latency is0). In that cycle, the checker does the following:

» If apop operation is scheduled for this cycle, a simultaneous push pop check violation
OCCUrS.

» Otherwise, if the stack is already full, an overflow check violation occurs. The checker
assumesthe dataitem in push_data was latched in the current cycle and replaced the top
entry.

» Otherwise, the checker assumes the dataitem in push_data was latched in the current
cycle and pushed on the top of the stack. The checker increments the stack counter by 1
in the next cycle.

Similarly, if pop is TRUE, the checker assumes a pop operation occurs pop_latency cycles later
(or in the same cycle if pop_latency is 0). In that cycle, unless a simultaneous_push_pop
violation has occurred, the checker does the following:

» If the stack is already empty, an underflow check violation occurs.

» Otherwise, the checker assumes the data item on the top of the stack was popped and
compares the value of pop_data with the expected value of the popped dataitem. If they
do not match, a value check violation occurs. The checker decrements the stack counter
by 1 in the next cycle.

The ovl_stack checker also checks full and empty at the active edge of clock. After the stack
pointer is adjusted to reflect a push or pop performed in the previous cycle:

o |f thestack isfull and full is FALSE or if the stack is not full and full is TRUE, afull
check violation occurs.

Accellera Standard OVL V2, Library Reference Manual, 2.6 255
December 2011

OVL Checker Data Sheets
ovl_stack

» If the stack is empty and empty is FALSE or if the stack is not empty and empty is
TRUE, an empty check violation occurs.

Assertion Checks

OVERFLOW Data pushed onto stack when the stack was full.
Stack had depth dataitems push_latency cycles after push

was sampled TRUE.

UNDERFLOW Dat a popped from stack when the stack was enpty.
Stack was empty pop_latency cycles after pop was sampled

TRUE.

SI MULTANEQUS PUSH_POP Push and pop operations occurred together.
A push operation and a pop operation were both scheduled

for the same cycle.

VALUE Dat a val ue popped fromthe stack did not match the
correspondi ng data val ue pushed onto the stack.
Pop was sampled TRUE, but pop_latency cycles later the
value of pop_data did not equal the expected value pushed
onto the stack in a previous cycle.

FULL Stack was enpty, but ‘enpty’ was deassert ed.
Empty was sampled FAL SE when the stack was empty.
Stack was not enpty, but ‘enpty’ was asserted.
Empty was sampled TRUE when the stack was not empty.

EMPTY Stack was full, but ‘full’ was deasserted.
Full was sampled FAL SE when the stack was full.
Stack was not full, but ‘full’ was asserted.
Full was sampled TRUE when the stack was not full.

Implicit X/Z Checks

push contains X or Z Push signal was X or Z.

pop contains X or Z Pop signal was X or Z.
push_datacontains X or Z Push data contained X or Z hits.
pop_data contains X or Z Pop data contained X or Z bhits.

full contains X or Z Full signal was X or Z.
empty contains X or Z Empty signal was X or Z.
256 Accellera Standard OVL V2, Library Reference Manual, 2.6

December 2011

OVL Checker Data Sheets
ovl_stack

Cover Points

cover _pushes

cover _pops

cover _nax_entries
cover _push_t hen_pop
cover _ful
cover_enpty

cover _hi gh water_nark

Cover Groups

none

SANITY — Number of cycles push was asserted.
SANITY — Number of cycles pop was asserted.

BASIC — Number of cyclesfor which the number of dataitems
in the stack was the same as the maximum number of dataitems
the stack had held up to and including that cycle.

BASIC — Number of times a push was followed by a pop
without an intervening push (or pop).

CORNER — Number of times a push incremented the stack
pointer to depth dataitems.

CORNER — Number of times a pop decremented the stack
pointer to O dataitems.

CORNER — Number of times the stack had more data items
than the specified high_water _mark. Not meaningful if
high water markisO.

Accellera Standard OVL V2, Library Reference Manual, 2.6 257

December 2011

OVL Checker Data Sheets
ovl_time

ovl time

Checks that the value of an expression remains TRUE for a specified number of cycles after a
Start event.

Parameter s/Generics. msg

fire[OVL_FIRE_WIDTH-1:0] }— Severity level coverage level
—>|start_event num_cks clock _edge
ovl_time action_on_new_start reset_polarity
—»|test_expr property_type gating_type
clock reset enable Class. n-cycle assertion
T T T
Syntax
ovl tinme

[#(severity level, numcks, action_on_new start, property type,
nmsg, coverage_level, clock _edge, reset_polarity, gating type)]
i nstance_nane (cl ock, reset, enable, start_event, test_expr, fire);

Parameters/Generics

severity_ | evel Severity of the failure. Default: OVL_SEVERITY _DEFAULT
(OVL_ERROR).

num cks Number of cycles after start_event is TRUE that test_expr must
be held TRUE. Default: 1.

action_on_new start Method for handling a new start event that occurs while a check

ispending. Vauesare: OVL_IGNORE_NEW_START,
OVL_RESET_ON_NEW_START and
OVL_ERROR_ON_NEW_START. Default:
OVL_IGNORE_NEW_START.

property_type Property type. Default: OVL_PROPERTY_DEFAULT
(OVL_ASSERT).

msg Error message printed when assertion fails. Default:
OVL_MSG _DEFAULT (“VIOLATION").

cover age_| evel Coverage level. Default: OVL_COVER _DEFAULT
(OVL_COVER_BASIC).

cl ock_edge Active edge of the clock input. Default:
OVL_CLOCK_EDGE DEFAULT (OVL_POSEDGE).

reset_polarity Polarity (active level) of the reset input. Default:

OVL_RESET_POLARITY_DEFAULT
(OVL_ACTIVE_LOW).

258 Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets
ovl_time

gating_type

Ports

cl ock

reset
enabl e
start _event

test _expr

fire
[OVL_FI RE_W DTH- 1: 0]

Description

Gating behavior of the checker when enable is FALSE. Default:
OVL_GATING_TYPE_DEFAULT (OVL_GATE_CLOCK).

Clock event for the assertion.
Synchronous reset signal indicating completed initialization.

Enable signal for clock, if gating_type= OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_typeisOVL_NONE.

Expression that (along with num_cks) identifies when to check
test_expr.

Expression that should evaluate to TRUE for num_cks cycles
after start_event initiates a check.

Fire output. Assertion failure when fire[0] is TRUE. X/Z check
failurewhen fire[1] is TRUE. Cover event when fire[2] is TRUE.

Theovl_time assertion checker checks the expression start_event at each active edge of clock to
determine whether or not to initiate a check. Once initiated, the check evaluates test_expr each
subsequent active edge of clock for num_cks cycles to verify that the value of test_expr is
TRUE. During that time, the assertion fails the first cycle a sampled value of test_expr is not

TRUE.

The method used to determine what constitutes a start event for initiating a check is controlled
by the action_on_new_start parameter. If no check isin progress when start_event is sampled
TRUE, anew check isinitiated. But, if acheck isin progress when start_event is sampled
TRUE, the checker has the following actions:

« OVL_IGNORE _NEW_START

The checker does not sample start_event for the next num_cks cycles after a start event.

« OVL_RESET ON_NEW_START

The checker samples start_event every cycle. If acheck is pending and the value of
start_event is TRUE, the checker terminates the check (no violation occurs even if
test_expr has changed to FALSE) and initiates a new check starting in the next cycle.

« OVL_ERROR ON_NEW_START

The checker samples start_event every cycle. If acheck is pending and the value of
start_event is TRUE, the assertion failswith anillegal start event violation. In this case,

Accellera Standard OVL V2, Library Reference Manual, 2.6 259

December 2011

OVL Checker Data Sheets
ovl_time

the checker does not initiate a new check, does not terminate a pending check and
reports an additional assertion violation if test_expr is FALSE.

Assertion Checks

TI ME

illegal start event

Implicit X/Z Checks

test_expr contains X or Z

start_event contains X or Z

Cover Points

cover _wi ndow_open
cover _w ndow _cl ose

cover_wi ndow_resets

Cover Groups

none

See also

ovl_change
ovl_next
ovl_frame
ovl_unchange

The value of test_expr was not TRUE within num_cks cycles
after start_event was sampled TRUE.

The action_on_new_start parameter is set to
OVL_ERROR_ON_NEW_START and start_event expression
evaluated to TRUE while the checker was monitoring test_expr.

Expression valuewas X or Z.
Start event valuewas X or Z.

BASIC — A time check was initiated.
BASIC — A time check lasted the full num_cks cycles.

CORNER — The action_on_new_start parameter is
OVL_RESET _ON_NEW_START, and start_event was sampled
TRUE while the checker was monitoring test_expr.

ovl_win_change
ovl_win_unchange
ovl_window

260

Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets

ovl_time
Examples
Examplel
ovl _tinme #(
* OVL_ERROR, /'l severity_level
3, /1 num cks
“ OVL_I| GNORE_NEW START, /] action_on_new start
* OVL_ASSERT, /'l property_type
“BError: invalid transaction”, /'l msg
* OVL_COVER_DEFAULT, /'l coverage_| evel
* OVL_POSEDGE, /'l cl ock_edge
“ OVL_ACTI VE_LOW /1l reset _polarity
* OVL_GATE_CLCOCK) /] gating_type

val i d_transaction (

cl ock, /1 clock
reset, /] reset

enabl e, /1 enabl e

req == 1, /1 start_event
ptr >= 1 & ptr <= 3, /1 tgst_expr
fire valid transaction); Il fire

Checks that ptr is sampled in the range 1 to 3 for three cycles after req is sampled equal to 1 at
therising edge of clock. If req issampled equal to 1 when the checker samples ptr, a new check
isnot initiated (i.e., the new start isignored).

clock
reset : :
ptr _XT 0 [3 1T 2 1T 1T 1 0 [2 1T 1 1T 0
. . « « « . . « « . . .
==t Iy v T \1 ,
ptr >= 1 && ptr <= 3) ' : : - ' . N S
TIME Error: invalid transaction X start events ignored
Accellera Standard OVL V2, Library Reference Manual, 2.6 261

December 2011

OVL Checker Data Sheets
ovl_time

Example 2

ovl _tinme #(

* OVL_ERROR

3,

‘ OVL_RESET_ ON_NEW START,

‘ OVL_ASSERT,

“Error: invalid transaction”
* OVL_COVER DEFAULT,

* OVL_POSEDCGE,

“ OVL_ACTI VE_LOW

* OVL_GATE_CLCOCK)

val i d_transaction (

cl ock,

reset,

enabl e,

req == 1,

ptr >= 1 & ptr <= 3,
fire_valid_transaction);

/'l severity_level

/1 num cks

/] action_on_new start
/'l property_type

/'l nsg

/'l coverage_| evel

/'l cl ock_edge

/1l reset _polarity

/'l gating_type

/1 clock

/] reset

/1 enable

/] start_event
/'l test_expr
[l fire

Checks that ptr is sampled in the range 1 to 3 for three cycles after req is sampled equal to 1 at
therising edge of clock. If req issampled equal to 1 when the checker samples ptr, a new check
isinitiated (i.e., the new start restarts a check).

reset . | .

ptr _X] 0 [3

ptr>=1&& ptr<=3

X start events reset time check

TIME Error: invalid transaction)

262

Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets

ovl_time

Example 3
ovl _tinme #(

* OVL_ERROR, /'l severity_level

3, /1 num cks

“ OVL_ERROR_ON_NEW START, /] action_on_new start

* OVL_ASSERT, /'l property_type

“BError: invalid transaction”, /'l msg

* OVL_COVER_DEFAULT, /'l coverage_| evel

* OVL_POSEDGE, /'l cl ock_edge

“ OVL_ACTI VE_LOW /1l reset _polarity

* OVL_GATE_CLCOCK) /] gating_type

val i d_transaction (

cl ock, /1 clock
reset | /'l reset

/1 enabl e
enabtﬁ, /1 start_event
req == 1, /'l test_expr
ptr >= 1 && ptr <= 3, Il fire

fire_valid_transaction);

Checks that ptr is sampled in the range 1 to 3 for three cycles after req is sampled equal to 1 at
the rising edge of clock. If req is sampled equal to 1 when the checker samples ptr, the checker
issues anillegal start event violation and does not start a new check.

cock /1L [L[[L[LI’ ’rrit]

reset . I . I I I I I I I I I
ptr —X] 0 [3 1 7] i 3 1 2 [T 1 ©

ptr>=1&& ptr <=3 : I

illegal start event I
no violation

Accellera Standard OVL V2, Library Reference Manual, 2.6 263

December 2011

OVL Checker Data Sheets
ovl_transition

ovl transition

Checks that the value of an expression transitions properly from a start state to the specified
next state.

Parameter Generics:

fire [OVL_FIRE_WIDTH-1:0] | SEverity_level coverage_|evel
—|test_expr[width-1:0] width cl ock_edge.
ovl_transition property_type reset_polarity
0 msg gating_type

—»|start_state[width-1:0]
—»|next_state[width-1:0] Class. 2-cycle assertion

clock reset enable
¥ ¥ ¥

Syntax

ovl transition
[#(severity level, width, property type, nsg, coverage_ |l evel,
cl ock_edge, reset _polarity, gating type)]
i nstance_nane (clock, reset, enable, test_expr, start_state,
next _state, fire);

Parameters/Generics

severity_ | evel Severity of the failure. Default: OVL_SEVERITY _DEFAULT
(OVL_ERROR).

wi dt h Width of the test_expr argument. Default: 1.

property_type Property type. Default: OVL_PROPERTY_DEFAULT
(OVL_ASSERT).

msg Error message printed when assertion fails. Default:
OVL_MSG _DEFAULT (“VIOLATION").

cover age_| evel Coverage level. Default: OVL_COVER _DEFAULT
(OVL_COVER_BASIC).

cl ock_edge Active edge of the clock input. Default:
OVL_CLOCK_EDGE_DEFAULT (OVL_POSEDGE).

reset _polarity Polarity (active level) of the reset input. Default:

OVL_RESET_POLARITY_DEFAULT
(OVL_ACTIVE_LOW).

gating_type Gating behavior of the checker when enableis FALSE. Default:
OVL_GATING_TYPE_DEFAULT (OVL_GATE_CLOCK).

264 Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets
ovl_transition

Ports

cl ock
reset

enabl e

test _expr[w dth-1:0]

start_state[w dth-1: 0]

next state[w dth-1:0]

fire
[OVL_FI RE_W DTH- 1: 0]

Description

Clock event for the assertion.
Synchronous reset signal indicating completed initialization.

Enable signal for clock, if gating_type= OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_typeis OVL_NONE.

Expression that should transition to next_state on the active edge
of clock if its value at the previous active edge of clock isthe
same as the current value of start_state.

Expression that indicates the start state for the assertion check. If
the start state matches the value of test_expr on the previous
active edge of clock, the check is performed.

Expression that indicates the only valid next state for the
assertion check. If the value of test_expr was start_state at the
previous active edge of clock, then the value of test_expr should
equal next_state on the current active edge of clock.

Fire output. Assertion failure when fire[0] is TRUE. X/Z check
failurewhen fire[1] is TRUE. Cover event when fire[2] is TRUE.

The ovl_transition assertion checker checks the expression test_expr and start_state at each
active edge of clock to see if they are the same. If so, the checker evaluates and stores the
current value of next_state. At the next active edge of clock, the checker re-evaluates test_expr
to seeif its value equals the stored value of next_state. If not, the assertion fails. The checker
returns to checking start_state in the current cycle (unless afatal failure occurred)

The start_state and next_state expressions are verification events that can change. In particular,
the same assertion checker can be coded to verify multiple types of transitions of test_expr.

The checker is useful for ensuring certain control structure values (such as counters and finite-
state machine values) transition properly.

Assertion Checks

TRANSI TI ON Expression transitioned from start_state to avalue different from
next_state.
Accellera Standard OVL V2, Library Reference Manual, 2.6 265

December 2011

OVL Checker Data Sheets
ovl_transition

Implicit X/Z Checks

test_expr contains X or Z
start_state contains X or Z
next_state contains X or Z

Cover Points

cover_start_state

Cover Groups

none

Notes

Expression value contained X or Z hits.
Start state value contained X or Z hits.
Next state value contained X or Z bits.

BASIC — Expression assumed a start state value.

1. The assertion check compares the current value of test_expr with its previous value.
Therefore, checking does not start until the second rising edge of clock after reset

deasserts.

See also

ovl_no_transition

Examples

ovl _transition #(

* OVL_ERROR,
3!
* OVL_ASSERT,

“Error: bad count transition”

* OVL_COVER DEFAULT,
* OVL_POSEDGE,

* OVL_ACTI VE_LOW

* OVL_GATE_CLOCK)

val i d_count (

cl ock,
reset,
enabl e,
count ,
3’ d3,

(sel _8 == 1"b0) ? 3'd0 : 3’ d4,
fire_valid_count);

/1
/1
/1
/11
11
11
/1
I

11
/1
I
11

/1
/1
11

severity_ | evel
wi dt h
property_type
nmsg

cover age_| evel
cl ock_edge
reset _polarity
gating_type

cl ock

reset
enabl e

t est _expr
start_state

next state
fire

266

Accellera Standard OVL V2, Library Reference Manual, 2.6

December 2011

OVL Checker Data Sheets

ovl_transition

Checksthat count transitions from 3'd3 properly. If sel_8is0, count should have transitioned to

3'd0. Otherwise, count should have transitioned to 3' d4.

clock

reset :
Sel_8 1 1 1 1 1 1 1 : | : : : :
(sel_8 == 1'b0) ? 3'd0 : 3'd4 0 1
' ' ' ' ' ' ' | ' ' '
count X0 1 T 2 1T 3 1. 0 1 1T T 2 3 1 0O 1 2 3
TRANSITION Error: bad count transition /
Accellera Standard OVL V2, Library Reference Manual, 2.6 267

December 2011

OVL Checker Data Sheets
ovl_unchange

ovl_unchange

Checks that the value of an expression does not change for a specified number of cycles after a
start event initiates checking.

Parameter Generics:

fire[OVL_FIRE_WIDTH-1:0] }— Severity level msg
— start_event width coverage level
ovl_unchange num_cks clock _edge
— . test_expr[width-1:0] action_on_new_start reset_polarity

property_type gating_type
Class. n-cycle assertion

clock reset enable
A A A

Syntax

ovl _unchange
[#(severity level, width, numcks, action_on _new start,
property type, nsg, coverage_level, clock edge, reset _polarity,
gating_type)]
i nstance_nane (cl ock, reset, enable, start_event, test_expr, fire);

Parameters/Generics

severity_|l evel Severity of the failure. Default: OVL_SEVERITY_DEFAULT
(OVL_ERROR).

wi dt h Width of the test_expr argument. Default: 1.

num cks Number of cyclestest_expr should remain unchanged after a start

event. Default; 1.

action_on_new start Method for handling a new start event that occurs before
num_cks clock cycles transpire without a change in the value of
test_expr. Valuesare: OVL_IGNORE_NEW_START,
OVL_RESET_ON_NEW_START and
OVL_ERROR_ON_NEW_START. Default:
OVL_IGNORE_NEW_START.

property_type Property type. Default: OVL_PROPERTY _DEFAULT
(OVL_ASSERT).

nmsg Error message printed when assertion fails. Default:
OVL_MSG_DEFAULT (“VIOLATION").

cover age_| evel Coverage level. Default: OVL_COVER_DEFAULT
(OVL_COVER_BASIC).

cl ock_edge Active edge of the clock input. Default:

OVL_CLOCK_EDGE_DEFAULT (OVL_POSEDGE).

268 Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets
ovl_unchange

reset_polarity

gating_type

Ports

cl ock
r eset

enabl e

start_event

test _expr[w dth-1:0]

fire
[OVL_FI RE_W DTH- 1: 0]

Description

Polarity (active level) of the reset input. Default:
OVL_RESET POLARITY DEFAULT
(OVL_ACTIVE_LOW).

Gating behavior of the checker when enableis FALSE. Default:
OVL_GATING_TYPE_DEFAULT (OVL_GATE_CLOCK).

Clock event for the assertion.
Synchronous reset signal indicating completed initialization.

Enable signal for clock, if gating_type= OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_typeis OVL_NONE.

Expression that (along with action_on_new_start) identifies
when to start checking test_expr.
Expression that should not change value for num_cks cyclesfrom

the start event unless the check isinterrupted by avalid new start
event.

Fire output. Assertion failure when fire[0] is TRUE. X/Z check
failurewhenfire[1] is TRUE. Cover event when fire[2] is TRUE.

The ovl_unchange assertion checker checks the expression start_event at each active edge of
clock to determine if it should check for a change in the value of test_expr. If start_event is
sampled TRUE, the checker evaluates test_expr and re-evaluates test_expr at each of the
subsequent num_cks active edges of clock. Each time the checker re-evaluates test_expr, if its
value has changed from its value in the previous cycle, the assertion fails.

The method used to determine how to handle a new start event, when the checker isin the state
of checking for achangeintest_expr, is controlled by the action_on new_start parameter. The
checker has the following actions:

« OVL_IGNORE_NEW_START

The checker does not sample start_event for the next num_cks cycles after a start event.
e OVL_RESET ON_NEW_START

The checker samples start_event every cycle. If acheck is pending and the value of
start_event is TRUE, the checker terminates the pending check (no violation occurs
even if test_expr has changed in the current cycle) and initiates a new check with the
current value of test_expr.

Accellera Standard OVL V2, Library Reference Manual, 2.6 269

December 2011

OVL Checker Data Sheets
ovl_unchange

« OVL_ERROR ON_NEW_START

The checker samples start_event every cycle. If acheck is pending and the value of
start_event is TRUE, the assertion failswith anillegal start event violation. In this case,
the checker does not initiate a new check and does not terminate a pending check.

The checker is useful for ensuring proper changes in structures after various events. For
example, it can be used to check that multiple-cycle operations with enabling conditions
function properly with the same data. It can be used to check that single-cycle operations
function correctly with data loaded at different cycles. It a'so can be used to verify
synchronizing conditions that require date to be stable after an initial triggering event.

Assertion Checks

UNCHANCE

illegal start event

Implicit X/Z Checks

test_expr contains X or Z
start_event contains X or Z

Cover Points

cover _wi ndow_open
cover _wi ndow cl ose

cover_wi ndow_resets

Cover Groups

none
See also
ovl_change

ovl_time
ovl_win_change

Thetest_expr expression changed value within num_cks cycles
after start_event was sampled TRUE.

The action_on_new_start parameter is set to
OVL_ERROR_ON_NEW_START and start_event expression
evaluated to TRUE while the checker wasin the state of checking
for achangein the value of test_expr.

Expression value contained X or Z bits.
Start event valuewas X or Z.

BASIC — A change check was initiated.
BASIC — A change check lasted the full num_cks cycles.

CORNER — The action_on_new_start parameter is
OVL_RESET _ON_NEW_START, and start_event was sampled
TRUE while the checker was monitoring test_expr without
detecting a changed value.

ovl_win_unchange
ovl_window

270

Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets
ovl_unchange

Examples

Examplel

ovl _unchange #(

* OVL_ERROR,
8,
8,

“ OVL_| GNORE_NEW START,
* OVL_ASSERT,

“Error: a changed during

* OVL_COVER_DEFAULT,
* OVL_POSEDGE,

“ OVL_ACTI VE_LOW

* OVL_GATE_CLOCK)

val id_di v_unchange_a (

cl ock,
reset,
enabl e,
start == 1,
a,

di vi de”,

fire_valid _div_unchange a);

/1
/1
/1
/11
11
11
/1
/1
/1
/1

/1
/1
/1
/1
/1
/1

severity_ | evel

wi dt h

num cks
action_on_new start
property_type

nmsg

coverage_| evel

cl ock_edge
reset_polarity
gating_type

cl ock

reset
enabl e
start_event
test _expr
fire

Checksthat a remains unchanged while a divide operation is performed (8 cycles). Restarts

during divide operations are ignored.
cock [L [oI o[L7 757’511

reset X : X . ' ' 3 4 5 6 '
start==1 : : : :< d : : : : : :
a 0 | 17 1 31

x ignored start events UNCHANGE Error: a changed during divide/

Accellera Standard OVL V2, Library Reference Manual, 2.6

December 2011

271

OVL Checker Data Sheets
ovl_unchange

Example 2

ovl _unchange #(

* OVL_ERROR, /'l severity_level

8, /1 width

8, /'l num cks

“ OVL_RESET_ON_NEW START, /1 action_on_new start
* OVL_ASSERT, /] property_type
“Error: a changed during divide”, /'l msg

‘ OVL_COVER DEFAULT, /'l coverage_| evel

* OVL_POSEDGE, /1 cl ock_edge

“ OVL_ACTI VE_LOW /] reset_polarity

‘ OVL_GATE_CLOCK) /1 gating_ type

val id_di v_unchange_a (

cl ock, /1 clock
reset, /] reset

enabl e, /] enabl e
start == 1, /] start_event
a, /'l test_expr
fire_valid_div_unchange_a); Il fire

Checks that a remains unchanged while a divide operation is performed (8 cycles). A restart
during a divide operation starts the check over.

clock]

reset [:
\ ,) ,) 1. 2, 3. 4, 5. 6,
start == 1 ' ' ' ' |—h b ' ' ' . ' X
T T T T 1 1 T—— T T T T T
a 0 [17 [| 31

x start events reset unchange check UNCHANGE Error: a changed during divide/

272 Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets
ovl_unchange

Example 3

ovl _unchange #(

* OVL_ERROR, /1
8, /1
8, /1
“ OVL_ERROR_ON_NEW START, /1
* OVL_ASSERT, /1
“Error: a changed during divide”, 11
* OVL_COVER_DEFAULT, /1
" OVL_POSEDGE, /1
“ OVL_ACTI VE_LOW /1
* OVL_GATE_CLOCK) /1
val id_di v_unchange_a (
cl ock, /1
reset, I/
enabl e, Il
start == 1, Il
a, /1
fire valid_div_unchange a); I

severity_ | evel

wi dt h

num cks
action_on_new start
property_type

nmsg

coverage_| evel

cl ock_edge
reset_polarity
gating_type

cl ock

reset
enabl e
start_event
test _expr
fire

Checks that a remains unchanged while a divide operation is performed (8 cycles). A restart
during a divide operation is aviolation.
cock /1 [L LI o L7 77’5’1

reset ! .

start==1 ' :

a

illegal start event e

UNCHANGE Error: a changed during divide/

Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

273

OVL Checker Data Sheets
ovl_valid_id

ovl valid id

Checks that each issued ID is returned within a specified time window; that returned 1Ds match
issued IDs; and that the issued and outstanding 1Ds do not exceed specified limits.

—»|issued Parameter S/Generics:
—»|issued_count[instance_count_width-1:0] severity level instance _count_width
—~|returned fire [OVL_FIRE_WIDTH-1:0] }— Width property_type
—»|flush L min_cks msgy

- o O\.II—Va“d—'d max_cks coverage level
—|issued_id[width-1:0] .
| returned_id[width-1:0] max_id_instances clock_edge
— | flush_id[width-1:0] max_ids ~ reset_polarity

clock reset enable max_instances per_id gating_type

T T

Syntax

ovl valid_.id

Class: n-cycle assertion

[#(severity_level, mn_cks, max_cks, w dth, max_id_instances

max_ids,

max_i nstances_per _id, instance_count_w dth,

property type, nsg, coverage_ |level, clock edge, reset polarity,

gating_type)]
i nstance_nane (clock, reset, enable, issued, issued_id, returned,

returned_id,

Parameters/Generics

severity_| evel

wi dt h

nm n_cks

max_cks

max_i d_i nst ances

max_ids

max_i nstances_per _id

i nstance_count_wi dth

property_type

flush, flush_id, issued_count, fire);

Severity of the failure. Default: OVL_SEVERITY _DEFAULT
(OVL_ERROR).

Width of theissued id, returned_id and flush_id. Default: 2.

Minimum number of clock cycles an ID instance must be
outstanding. Must be > 0. Default: 1

Maximum number of clock cycles an ID instance can be
outstanding. Must be > min_cks. Default: 1.

Maximum number of ID instances that can be outstanding at any
time. Default: 2.

Maximum number of different IDs that can be outstanding at any
time. Default: 1.

Maximum number of instances of asingle ID that can be
outstanding at any time. Default: 1.

Width of issued _count. Default: 2.

Property type. Default: OVL_PROPERTY DEFAULT
(OVL_ASSERT).

274

Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets
ovl_valid_id

neg

coverage_| evel

cl ock_edge

reset _polarity

gating_type

Ports

cl ock
reset

enabl e

i ssued

i ssued_i d[wi dt h-1: 0]

returned

returned_id[wi dth-1: 0]

flush

f1 ush_i d[wi dt h- 1: 0]

i ssued_count

[nstance_count _w dt h-

1: 0]

fire
[OVL_FI RE_W DTH- 1: 0]

Error message printed when assertion fails. Default:
OVL_MSG DEFAULT (“VIOLATION").

Coverage level. Default: OVL_COVER _DEFAULT
(OVL_COVER BASIC).

Active edge of the clock input. Default:
OVL_CLOCK_EDGE _DEFAULT (OVL_POSEDGE).

Polarity (active level) of the reset input. Default:
OVL_RESET _POLARITY_DEFAULT
(OVL_ACTIVE_LOW).

Gating behavior of the checker when enable is FALSE. Default:
OVL_GATING_TYPE_DEFAULT (OVL_GATE_CLOCK).

Clock event for the assertion.
Synchronous reset signal indicating completed initialization.

Enable signal for clock, if gating_type=OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_typeis OVL_NONE.

Issued IDs signal indicating the ID inissued_id is added to the
outstanding IDs list. Theissued_count port specifies the number
of instances of the ID to make outstanding.

Expression or variable containing the ID to add to the
outstanding IDs list if issued is TRUE.

Returned ID signal indicating an instance of the ID in
returned_id is removed from the outstanding IDs list.

Expression or variable containing the ID of an instance returned
and removed from the outstanding IDs list if returned is TRUE.

Flush ID signal indicating all instances of the ID in flush_id are
removed from the outstanding IDs list.

Expression or variable containing the ID to flush if flushis
TRUE. All instances of the ID are removed from the outstanding
IDslist.

Number of instances of the issued ID to make outstanding when
Issued asserts.

Fire output. Assertion failure when fire[0] is TRUE. X/Z check
failurewhenfire[1] is TRUE. Cover event when firg[2] is TRUE.

Accellera Standard OVL V2, Library Reference Manual, 2.6 275

December 2011

OVL Checker Data Sheets
ovl_valid_id

Description

Theovl_valid_id assertion checker checks flush, returned and issued at each active edge of
clock and performs the following sequence of operations using an internal scratch pad of
outstanding IDs:

1

If flushis TRUE, the ID specified in flush_id is compared to the outstanding IDs. All
instances (if any) of the flush ID are removed from the list of outstanding IDs. If
returned is TRUE and flush_id = returned_id, the returned instanceisignored (even if it
was not previously outstanding or was outstanding longer that max_cks). If issued is
TRUE and flush_id = issued_id, theissued ID instances are flushed as well (even if one
of the outstanding I Ds, instances or instances-per-1D limits for the issued ID instance
were reached).

If returned isTRUE and the ID inreturned ID is not being flushed:

a. If aninstance of the returned ID is outstanding, the longest-outstanding instance of
the returned ID isremoved from the list of outstanding ID instances. If that 1D
instance was outstanding for fewer than min_cks cycles, amin_cks violation occurs.

b. If noinstance of the returned ID is outstanding, areturned_id violation occurs. Even
if an instance of the returned ID were issued in the same cycle, al ID instances must
be outstanding for min_cks cycles (and min_cks must be 1). In particular, the same
ID instance cannot be issued and returned in the same cycle.

If issued is TRUE and issued count is0, anissued_count violation occurs.
If issued is TRUE and issued_count > 0, then:

a. If the current number of unique outstanding IDsismax_idsand issued id is not one
of them, amax_instances violation occurs.

b. If the current number of outstanding ID instances plusissued_count exceeds
max_id_instances, amax_ids violation occurs.

c. If the current number of outstanding instances of the issued ID plusissued count
exceeds max_instances per_id, amax_instances per_id violation occurs.

d. If the none of these violations occur, issued_count instances of the ID inissued id
are added to the list of outstanding ID instances.

After flushing and returning IDs, if any 1Ds have been outstanding for max_ckscycles, a
max_cks violation occurs in the next cycle.

Assertion Checks

RETURNED | D Ret urned |1 D not outstanding.

Returned is TRUE, but the list of outstanding ID instances
does not contain an instance of returned _ID.

276

Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets
ovl_valid_id

MAX_CKS

M N_CKS

MAX_| DS

MAX_| NSTANCES_PER | D

| SSUED_COUNT

Implicit X/Z Checks

issued contains X or Z
returned contains X or Z
flush contains X or Z

issued id contains X or Z
when issued is asserted

ret_id contains X or Z
when returned is asserted

flush_id contains X or Z
when flush is asserted

I D instance outstanding for too many cycl es.
An ID instance was outstanding longer than max_cks cycles.

IDinstance returned in too few cycles.
Returned is TRUE and an instance of the ID inreturned_id is
outstanding, but the longest-outstanding instance of the ID
has been outstanding for fewer than min_cks cycles.

Maximum number of outstanding IDs or ID instances exceeded.
Issued is TRUE, but the number of outstanding instances plus
issued_count (minus 1 if an instance of issued id isreturned
without error) exceeds max_id_instances or the number of
unique outstanding IDs plusissued _count (minus 1 if an
instance of issued id is returned without error) exceeds
max_ids.

Maximum number of outstanding ID instances for the issued 1D
exceeded.
Issued is TRUE, but the number of outstanding instances of
issued _id plusissued_count (minus 1 if an instance of
issued_id isreturned without error) exceeds
max_instances per_id.

IDissued with count O.
Issued is TRUE, but issued count is 0.

Issued signal was X or Z.
Returned signal was X or Z.
Flush signal was X or Z.

Issued ID contained X or Z bits.

Returned ID contained X or Z bhits.

Flush ID contained X or Z hits.

Accellera Standard OVL V2, Library Reference Manual, 2.6 277

December 2011

OVL Checker Data Sheets
ovl_valid_id

Cover Points

cover i ssued_asserted

cover _returned_
asserted

cover _flush_asserted

turnaround_ti nes

out st andi ng_i ds

cover _returned at _mn_

cks

cover _returned_at_max_

cks

cover _max_ids

cover _nmax_i nstances_
per_id

Cover Groups

observed_I at ency

out st andi ng_i ds

SANITY — Number of cyclesissued was TRUE.
SANITY — Number of cyclesreturned was TRUE.

SANITY — Number of cycles flush was TRUE.

BASIC — Reports the turnaround times (i.e., number of cycles
after an ID instance isissued that the instance is returned) that
occurred at least once.

BASIC — Reports the numbers of outstanding ID instances that
occurred at |east once.

CORNER — Number of times the returned ID instance was
outstanding for min_cks cycles.

CORNER — Number of timesthe returned ID instance was
outstanding for max_cks cycles.

CORNER — Number of cycles the outstanding I Ds reached the
max_ids limit or the max_id_instances limit.

CORNER — Number of cycles the outstanding instances of an
ID reached the max_instances per_id limit.

Number of returned 1Ds with the specified turnaround time. Bins
are:
» observed latency good[min_cks:max_cks] — binindex is
the observed turnaround timein clock cycles.
» Observed latency bad — default.

Number of cycles with the specified number of outstanding ids.
Binsare:
 observed outstanding_ids[O:max_id_instances] — bin index
iIstheinstance ID.

278

Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets
ovl_value

ovl _value

Checks that the value of an expression either matches a value in a specified list or does not
match any value in the list (as determined by a mode signal).

fire [OVL_FIRE_WIDTH-1:0] |— Parameters/Generics: msg

—»|test_expr{width-1:0] severity_level coverage |evel

—»|disallow width clock_edge
ovl value num_values reset_polarity

—»|vals[num_values*width-1:0] property_type gating_type

clock reset enable

Class. 1-cycle assertion

T

Syntax

ovl val ue

T T

[#(severity level, numyvalues, width, property type, nsg,
coverage | evel, clock edge, reset _polarity, gating type)]
i nstance_nane (cl ock, reset, enable, test_expr, vals, disallow, fire);

Parameters/Generics

severity_ | evel

num val ues
wi dt h

property_type

msg

coverage_| evel

cl ock_edge

reset _polarity

Severity of the failure. Default: OVL_SEVERITY _DEFAULT
(OVL_ERROR).

Number of valuesin vals. Must be > 1. Default: 1.
Width of test_expr. Default: 1.

Property type. Default: OVL_PROPERTY_DEFAULT
(OVL_ASSERT).

Error message printed when assertion fails. Default:
OVL_MSG DEFAULT (“VIOLATION").

Coverage level. Default: OVL_COVER _DEFAULT
(OVL_COVER BASIC).

Active edge of the clock input. Default:
OVL_CLOCK_EDGE DEFAULT (OVL_POSEDGE).

Polarity (active level) of the reset input. Default:
OVL_RESET _POLARITY_DEFAULT
(OVL_ACTIVE_LOW).

gating_type Gating behavior of the checker when enable is FALSE. Default:
OVL_GATING_TYPE DEFAULT (OVL_GATE_CLOCK).
Accellera Standard OVL V2, Library Reference Manual, 2.6 279

December 2011

OVL Checker Data Sheets

ovl_value
Ports
cl ock Clock event for the assertion.
reset Synchronous reset signal indicating completed initialization.
enabl e Enable signal for clock, if gating_type= OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_typeis OVL_NONE.
t est _expr[w dt h- 1: 0] Variable or expression to check.
val s Concatenated list of values for test_expr.

[num val ues*wi dt h- 1: 0]

di sal | ow Sense of the comparison of test_expr with vals.
disallow =0
Vaue of test_expr should match one of the valuesin vals.
disallow = 1
Vaue of test_expr should not match one of the valuesin vals.

fire Fire output. Assertion failure when fire[0] is TRUE. X/Z check
[OVL_FI RE_WDTH 1: 0] failurewhen fire[1] is TRUE. Cover event when fire[2] is TRUE.
Description

The ovl_value assertion checker checkstest_expr, vals and disallow at each active edge of clock
(except for the first cycle after achecker reset). The value of test_expr is compared with the list
of valuesinvals. If disallow is FALSE and the value of test_expr isnot avauein vals, avalue
check violation occurs. Similarly, if disallow is TRUE and the value of test_expr is one of the
valuesinvals, anis_not check violation occurs. The check occurs at the active clock edge, .

Assertion Checks

VALUE Expression value did not equal one of the specified
val ues.
Vaue of thetest_expr did not match avalue in vals, but
disallow was FALSE.

| S_NOT Expr essi on val ue wasequal to one of the specified values.
Vaue of the test_expr matched one of the values in vals, but
disallow was TRUE.

280 Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets
ovl_value

Implicit X/Z Checks

test_expr contains X or Z
valscontains X or Z
disallow contains X or Z

Cover Points

cover _val ues_checked

cover_in_vals
cover_not _in_val s

cover val ues_covered

Cover Groups

none

Expression contained X or Z hits.
Values contained X or Z hits.
Disallow signal was X or Z.

SANITY — Number of cyclestest_expr loaded a new value.

BASIC — Number of cycles disallow was FAL SE and the value
of test_expr matched avaluein vals.

BASIC — Number of cycles disallow was TRUE and the value
of test_expr did not match avaluein vals.

BASIC — Reportsthe valuesin vals that were covered at |east
once. Not applicable for cycles where disallow = 1.

Accellera Standard OVL V2, Library Reference Manual, 2.6 281

December 2011

OVL Checker Data Sheets
ovl_value_coverage

ovl value coverage

Ensures that values of a specified expression are covered during simulation.

fire[OVL_FIRE_WIDTH-1:0]
— test_expr{width-1:0]
ovl_value_coverage
—{is_not[total_is_not_width-1:0]

clock reset enable

Parameter s/Generics:
L~ severity level

width

is_not_width

is_not_count

value _coverage

property_type

coverage level
clock _edge
reset_polarity
gating_type

Class. 2-cycle assertion

T T

total is not width = (is not _count*is not width) ? is not _count*is not width : 1

Syntax

ovl val ue_coverage

[#(severity | evel
val ue_cover age,
reset_polarity,

i nstance_nane (cl ock

Parameters/Generics

severity_| evel

wi dt h
is_not_width
i s_not_count

val ue_cover age

property_type

nmsg

cover age_| evel

cl ock_edge

width, is _not_width, is_not_count,

property _type, nsg, coverage_level, clock_edge,
gating_type)]
reset, enable, test_expr, is_not, fire);

Severity of the failure. Default: OVL_SEVERITY _DEFAULT
(OVL_ERROR).

Width of test_expr. Default: 1.
Maximum width of anis_not value. Default: 1.
Number of is_not values. Default: O.

Whether or not to perform value_coverage checks.
val ue_coverage = 0 (Default)

Turns off the value_coverage check.
val ue_coverage = 1

Turns on the value_coverage check.

Property type. Default: OVL_PROPERTY DEFAULT
(OVL_ASSERT).

Error message printed when assertion fails. Default:
OVL_MSG _DEFAULT (“VIOLATION").

Coverage level. Default: OVL_COVER _DEFAULT
(OVL_COVER BASIC).

Active edge of the clock input. Default:
OVL_CLOCK_EDGE_DEFAULT (OVL_POSEDGE).

282

Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets
ovl_value_coverage

reset_polarity

gating_type

Ports

cl ock

reset
enabl e
test _expr[w dth-1:0]

i s_not
[total _is_not_width
- 1:.0]

fire
[OVL_FI RE_W DTH- 1: 0]

Description

Polarity (active level) of the reset input. Default:
OVL_RESET POLARITY DEFAULT
(OVL_ACTIVE_LOW).

Gating behavior of the checker when enableis FALSE. Default:
OVL_GATING_TYPE_DEFAULT (OVL_GATE_CLOCK).

Clock event for the checker. The checker samples on therising
edge of the clock.

Synchronous reset signal indicating completed initialization.
Expression that indicates whether or not to check the inputs.
Variable or expression to check.

Concatenated list of is_not_count variables containing ‘is-not’
values for test_expr. The variables values are latched at reset
and are then used as values of test_expr to exclude from cover
point data.

If is_not = 1'b0 and both is_not_width and is_not_count are
undefined, then is-not values are not used. The test_expr variable
Is covered when all possible values have been covered.

Fire output. Assertion failure when fire[0] is TRUE. X/Z check
failurewhen fire[1] is TRUE. Cover event when firg[2] is TRUE.

The ovl_value_coverage checker ensures the value of test_expr does not change when the
checker is active. The checker checks the multiple-bit expression test_expr at each rising edge
of clock whenever enableis TRUE. If test_expr has changed value, the assertion fails and msg
is printed. This checker is used to determine coverage of test_expr and to gather coverpoint
data. As such, the sense of the assertion is reversed. Unlike most other OVL checkers (which
verify assertions that are not expected to fail), ovl_coverage checkers assertion isintended to
fail, therefore the value_coverage check typically isturned off (value_coverage = 0).

Assertion Checks

VALUE_COVERAGE

The val ue of the variabl e was covered.

property_type = * OVL_ASSERT)
The value of test_expr should not change. This check occurs

at every active clock edge and firesif the value of test_expr
has changed from the value at the previous active clock edge.

Accellera Standard OVL V2, Library Reference Manual, 2.6 283

December 2011

OVL Checker Data Sheets
ovl_value_coverage

Implicit X/Z Checks

test_expr contains X or Z

IS_not contains X or Z

Cover Points

cover _val ues_checked

cover _conputations_
checked
cover_val ues_covered

cover _val ues_uncovered

cover _all val ues_
covered

See also

ovl_coverage

Examples

ovl _val ue_coverage #(

Expression contained X or Z hits.
Expression contained X or Z bits.

SANITY — Number of cyclestest _expr changed value.
STATISTIC — Number of times the cover value was checked.

STATISTIC — Number of values (including is-not values) that
test_expr has covered

STATISTIC — Number of values (except is-not values) that
test_expr has not covered.

CORNER — Non-zero if all values of test_expr (except is_not
values) have been covered. Otherwiseit isset to 0.

.severity_level (‘ O/L_ERROR),

Wi dth(2))

. property_type(* OVL_ASSERT)
.coverage_| evel (‘ OVL_COVER ALL))
ovl _coverage_rnux_sel ect (

.cl ock(cl ock),
.reset(reset),
.enabl e(1’ bl),

.test_expr(nux_sel),

.is_not(1' b0),

fire(fire));

All Values Covered corner case asserts when mux_sel has covered all encodings. Is_not_count
by default isO; is_not_width by default is 1 and the is_not port istied to 1’ b0, so no is-not

values are included.

cl ock |

reset |

mux_sel 7 B00[Z BI0] 2 bIT | 2 bI0 2 HUI][Z BO0]

Cor nercases for Val ue Coverage Checker
Al'l Val ues Covered

284

Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets
ovl_width

ovl width

Checks that when value of an expression is TRUE, it remains TRUE for a minimum number of
clock cycles and transitions from TRUE no later than a maximum number of clock cycles.

Parameter s/Generics. msg

fire[OVL_FIRE_WIDTH-1:0] | Severity_level coverage_|evel
min_cks clock _edge

—ltest_expr ovl_width max_cks reset _polarity
property_type gating_type

Class. n-cycle assertion

clock reset enable
A A A

Syntax

ovl _width
[#(severity level, mn_cks, nmax_cks, property type, nsg,
coverage | evel, clock edge, reset _polarity, gating type)]
i nstance_nane (clock, reset, enable, test_expr, fire);

Parameters/Generics

severity_ | evel Severity of the failure. Default: OVL_SEVERITY _DEFAULT
(OVL_ERROR).
m n_cks Minimum number of clock edgestest_expr must remain TRUE

onceit is sampled TRUE. The special case where min_cksisO
turns off minimum checking (i.e., test_expr can transition from
TRUE in the next clock cycle). Default: 1 (i.e., same as 0).

max_cks Maximum number of clock edgestest _expr can remain TRUE
onceit issampled TRUE. The special case where max_cksisO
turns off maximum checking (i.e., test_expr can remain TRUE
for any number of cycles). Default: 1 (i.e., test_expr must
transition from TRUE in the next clock cycle).

property_type Property type. Default: OVL_PROPERTY _DEFAULT
(OVL_ASSERT).

nmsg Error message printed when assertion fails. Default:
OVL_MSG_DEFAULT (“VIOLATION").

cover age_| evel Coverage level. Default: OVL_COVER_DEFAULT
(OVL_COVER_BASIC).

cl ock_edge Active edge of the clock input. Default:

OVL_CLOCK_EDGE_DEFAULT (OVL_POSEDGE).

Accellera Standard OVL V2, Library Reference Manual, 2.6 285
December 2011

OVL Checker Data Sheets
ovl_width

reset_polarity

gating_type

Ports

cl ock
r eset
enabl e

test _expr

fire
[OVL_FI RE_W DTH- 1: 0]

Description

Polarity (active level) of the reset input. Default:
OVL_RESET POLARITY DEFAULT
(OVL_ACTIVE_LOW).

Gating behavior of the checker when enableis FALSE. Default:
OVL_GATING_TYPE_DEFAULT (OVL_GATE_CLOCK).

Clock event for the assertion.
Synchronous reset signal indicating completed initialization.

Enable signal for clock, if gating_type= OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_typeis OVL_NONE.

Expression that should evaluate to TRUE for at least min_cks
cycles and at most max_cks cycles after it is sampled TRUE.

Fire output. Assertion failure when fire[0] is TRUE. X/Z check
failurewhenfire[1] is TRUE. Cover event when firg[2] is TRUE.

The ovl_width assertion checker checks the single-bit expression test_expr at each active edge
of clock. If the value of test_expr is TRUE, the checker performs the following steps:

1. Unlessitisdisabled by setting min_cksto 0, aminimum check isinitiated. The check
evaluatestest_expr at each subsequent active edge of clock. If itsvalueisnot TRUE, the
minimum check fails. Otherwise, after min_cks -1 cycles transpire, the minimum check

terminates.

2. Unlessitisdisabled by setting max_cks to 0, a maximum check is initiated. The check
evaluates test_expr at each subsequent active edge of clock. If its value does not
transition from TRUE by the time max_cks cycles transpire (from the start of checking),
the maximum check fails.

3. The checker returns to checking test_expr in the next cycle. In particular if test_expr is
TRUE, anew set of checksisinitiated.

Assertion Checks

M N_CHECK The value of test_expr was held TRUE for less than min_cks
cycles.
MAX_CHECK The value of test_expr was held TRUE for more than max_cks
cycles.
286 Accellera Standard OVL V2, Library Reference Manual, 2.6

December 2011

OVL Checker Data Sheets
ovl_width

m n_cks > max_cks

Implicit X/Z Checks

test_expr contains X or Z

Cover Points

cover _test_expr_
asserts

cover _test_expr_
asserted_for_m n_cks

cover _test_expr_
asserted for_nmax_cks

Cover Groups

none

See also

ovl_change
ovl_time

Examples

ovl _width #(

“ OVL_ERRCR
2,

3,

* OVL_ASSERT,
“Error:
‘ OVL_COVER DEFAULT,
* OVL_POSEDCGE,

‘ OVL_ACTI VE_LOW

‘ OVL_GATE_CLQOCK)

val i d_request (

cl ock,
reset,
enabl e,
req == 1,

The min_cks parameter is greater than the max_cks parameter
(and max_cks >0). Unless the violation is fatal, either the
minimum or maximum check will fail.

Expression valuewas X or Z.

BASIC — A check wasinitiated (i.e., test_expr was sampled

TRUE).

CORNER — The expression test_expr was held TRUE for
exactly min_cks cycles (min_cks > 0).

CORNER — The expression test_expr was held TRUE for
exactly max_cks cycles (max_cks > 0).

ovl_unchange

11
11
/1
/1

invalid request”, /1

/11
11

11
/11

11
11
/11
11

fire_valid_request); x

severity_| evel
m n_cks
max_cks
property_type
neg
coverage_| evel
cl ock_edge
reset _polarity
gating_type

cl ock
reset
enabl e

t est _expr
fire

Accellera Standard OVL V2, Library Reference Manual, 2.6

December 2011

287

OVL Checker Data Sheets
ovl_width

Checks that req assertsfor 2 or 3 cycles.

dock —_ [1|_| 2|_I i |_|1|_|2|_|3|_|4|_I =
reset ! I I I I I I I I I I I
req . [] N N I U B I l L.

MIN_CHECK Error: invalid request MAX_CHECK Error: invalid request

288 Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets
ovl_win_change

ovl_win_change

Checksthat the value of an expression changes in a specified window between a start event and
an end event.

Parameter Generics:

— .} start_event fire [OVL_FIRE_WIDTH-1:0] }— severity level coverage |evel
—lend_event width clock edge
ovl_win_change property type reset _polarity
msg gating_type

— test_expr[width-1:0]

Class: event-bounded assertion
clock reset enable

T 1 T

Syntax

ovl _wi n_change
[#(severity level, width, property type, nsg, coverage_ |l evel,
cl ock_edge, reset _polarity, gating type)]
i nstance_nane (clock, reset, enable, start_event, test_expr, end_event,
fire);

Parameters/Generics

severity_|l evel Severity of the failure. Default: OVL_SEVERITY_DEFAULT
(OVL_ERROR).

wi dt h Width of the test_expr argument. Default: 1.

property_type Property type. Default: OVL_PROPERTY_DEFAULT
(OVL_ASSERT).

msg Error message printed when assertion fails. Default:
OVL_MSG _DEFAULT (“VIOLATION").

cover age_| evel Coverage level. Default: OVL_COVER_DEFAULT
(OVL_COVER_BASIC).

cl ock_edge Active edge of the clock input. Default:
OVL_CLOCK_EDGE _DEFAULT (OVL_POSEDGE).

reset_polarity Polarity (active level) of the reset input. Default:

OVL_RESET POLARITY DEFAULT
(OVL_ACTIVE_LOW).

gating_type Gating behavior of the checker when enableis FALSE. Default:
OVL_GATING TYPE DEFAULT (OVL_GATE_CLOCK).

Accellera Standard OVL V2, Library Reference Manual, 2.6 289
December 2011

OVL Checker Data Sheets
ovl_win_change

Ports
cl ock Clock event for the assertion.
reset Synchronous reset signal indicating completed initialization.
enabl e Enable signal for clock, if gating_type= OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_typeis OVL_NONE.
start_event Expression that opens an event window.
test _expr[w dt h-1: 0] Expression that should change value in the event window
end_event Expression that closes an event window.
fire Fire output. Assertion failure when fire[0] is TRUE. X/Z check
[OVL_FI RE_W DTH- 1: 0] failurewhen fire[1] is TRUE. Cover event when fire[2] is TRUE.
Description

The ovl_win_change assertion checker checks the expression start_event at each active edge of
clock to determineif it should open an event window at the start of the next cycle. If start_event
issampled TRUE, the checker evaluatestest_expr. At each subsequent active edge of clock, the
checker evaluates end_event and re-evaluatestest_expr. If end_event is TRUE, the checker
closes the event window and if all sampled values of test_expr equal its value at the start of the
window, then the assertion fails. The checker returns to the state of monitoring start_event at
the next active edge of clock after the event window is closed.

The checker is useful for ensuring proper changes in structures in various event windows. A
typical useisto verify that synchronization logic responds after a stimulus (for example, bus
transactions occurs without interrupts or write commands are not issued during read cycles).
Anocther typical useis verifying afinite-state machine responds correctly in event windows.

Assertion Checks

W N_CHANGE Thetest_expr expression did not change value during an open
event window.

Implicit X/Z Checks

test_expr contains X or Z Expression value contained X or Z hits.
start_event contains X or Z Start event valuewas X or Z.
end_event contains X or Z End event value was X or Z.

Cover Points

cover _w ndow_open BASIC — An event window opened (start_event was TRUE).

290 Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets
ovl_win_change

cover_wi ndow_cl ose

Cover Groups

BASIC — An event window closed (end_event was TRUE in an

open event window).

none
See also
ovl_change ovl_win_unchange
ovl_time ovl_window
ovl_unchange
Examples
ovl _w n_change #(
“ OVL_ERRCR, /'l severity_level
32, /] width
* OVL_ASSERT, /] property_type
“Error: read not synchronized”, /'l msg
‘ OVL_COVER DEFAULT, /'l coverage_| evel
* OVL_POSEDGE, /'l cl ock_edge
* OVL_ACTI VE_LOW /] reset_polarity
“ OVL_GATE_CLOCK) /'l gating_type
val i d_sync_data_bus_rd (
cl ock, /'l clock
reset, /'l reset
enabl e, /'l enabl e
rd, /'l start_event
dat a, /'l test_expr
rd ack, /'l end_event
T /Il fire

fire_valid_sync_data bus_rd);

Checks that data changes value in every dataread window.

cock —/1_ [L [L [LI oo LI I 5 il
oset —
rd : ' \ : : A
rd_ack : \ I_I_| : : \ |_I_|
data X] FF :\\| ' SA: N I C7E
window_open ' \‘[— ' \I—

WIN_CHANGE Error: read not synchronized

Accellera Standard OVL V2, Library Reference Manual, 2.6

December 2011

201

OVL Checker Data Sheets
ovl_win_unchange

ovl_win_unchange

Checks that the value of an expression does not change in a specified window between a start
event and an end event.

Parameter s/Generics:

— .} start_event fire [OVL_FIRE_WIDTH-1:0] }— Severity level coverage level
—lend_event width clock edge
ovl_win_unchange property_type reset_polarity
msg gating_type

Class; event-bounded assertion

— test_expr[width-1:0]

clock reset enable
A A A

Syntax

ovl _w n_unchange
[#(severity level, width, property type, nsg, coverage_ | evel
cl ock_edge, reset _polarity, gating type)]
i nstance_nane (clock, reset, enable, start_event, test_expr, end_event,
fire);

Parameters/Generics

severity_| evel

wi dt h

property_type

msg

cover age_| evel

cl ock_edge

reset_polarity

gating_type

Severity of the failure. Default: OVL_SEVERITY _DEFAULT
(OVL_ERROR).

Width of the test_expr argument. Default: 1.

Property type. Default: OVL_PROPERTY _DEFAULT
(OVL_ASSERT).

Error message printed when assertion fails. Default:
OVL_MSG _DEFAULT (“VIOLATION").

Coverage level. Default: OVL_COVER_DEFAULT
(OVL_COVER_BASIC).

Active edge of the clock input. Default:
OVL_CLOCK_EDGE_DEFAULT (OVL_POSEDGE).

Polarity (active level) of the reset input. Default:
OVL_RESET POLARITY DEFAULT
(OVL_ACTIVE_LOW).

Gating behavior of the checker when enableis FALSE. Default:
OVL_GATING_TYPE_DEFAULT (OVL_GATE_CLOCK).

292

Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets
ovl_win_unchange

Ports
cl ock Clock event for the assertion.
reset Synchronous reset signal indicating completed initialization.
enabl e Enable signal for clock, if gating_type= OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_typeis OVL_NONE.
start_event Expression that opens an event window.
test _expr[w dt h-1: 0] Expression that should not change value in the event window
end_event Expression that closes an event window.
fire Fire output. Assertion failure when fire[0] is TRUE. X/Z check
[OVL_FI RE_W DTH- 1: 0] failurewhen fire[1] is TRUE. Cover event when fire[2] is TRUE.
Description

The ovl_win_unchange assertion checker checks the expression start_event at each active edge
of clock to determineif it should open an event window at the start of the next cycle. If
start_event is sampled TRUE, the checker evaluates test_expr. At each subsequent active edge
of clock, the checker evaluates end_event and re-evaluates test_expr. If a sampled value of
test_expr ischanged from its value in the previous cycle, then the assertion fails. If end_event is
TRUE, the checker closes the event window (after reporting aviolation if test_expr has
changed) and returns to the state of monitoring start_event at the next active edge of clock.

The checker is useful for ensuring certain variables and expressions do not change in various
event windows. A typical useisto verify that synchronization logic responds after a stimulus
(for example, bus transactions occurs without interrupts or write commands are not issued
during read cycles). Another typical useisto verify that non-deterministic multiple-cycle
operations with enabling conditions function properly with the same data.

Assertion Checks

W N_UNCHANGE Thetest_expr expression changed value during an open event
window.

Implicit X/Z Checks

test_expr contains X or Z Expression value contained X or Z bits.
start_event contains X or Z Start event valuewas X or Z.
end event contains X or Z End event valuewas X or Z.

Cover Points

cover _wi ndow_open BASIC — An event window opened (start_event was TRUE).

Accellera Standard OVL V2, Library Reference Manual, 2.6 293
December 2011

OVL Checker Data Sheets
ovl_win_unchange

cover_wi ndow_cl ose

Cover Groups

BASIC — An event window closed (end_event was TRUE in an

open event window).

none
See also
ovl_change ovl_win_change
ovl_time ovl_window
ovl_unchange
Examples
ovl _wi n_unchange #(
“ OVL_ERRCR, /'l severity_level
8, /] width
* OVL_ASSERT, /] property_type
“Error: a changed during divide”, /'l msg
‘ OVL_COVER DEFAULT, /'l coverage_| evel
* OVL_POSEDGE, /'l cl ock_edge
* OVL_ACTI VE_LOW /] reset_polarity
“ OVL_GATE_CLOCK) /'l gating_type
valid_div_wi n_unchange_a (
cl ock, /'l clock
reset, /'l reset
enabl e, /'l enabl e
start, /'l start_event
a, /'l test_expr
done, /'l end_event
/Il fire

fire_valid_div_w n_unchange_a);

Checks that the a input to the divider remains unchanged while a divide operation is performed
(i.e., in the window from start to done).

clock

et L — —

start ' T : W—F :

done - A B W e I

a 0] '\\ 17] '\\ ' 3T —T1 87 .
window_open ! : ’r—'— ‘ S : : :

WIN_UNCHANGE Error: a changed during divide

294

Accellera Standard OVL V2, Library Reference Manual, 2.6

December 2011

OVL Checker Data Sheets
ovl_window

ovl_window

Checksthat the value of an expression is TRUE in a specified window between a start event and

an end event.
Parameter s/Generics:
— .} start_event fire [OVL_FIRE_WIDTH-1:0]}— Severity level coverage |evel
—lend_event property_type clock edge
ovl_window msg reset_polarity
coverage level gating_type

—! test_expr

clock reset enable

Class; event-bounded assertion

T 1 T

Syntax

ovl _wi ndow

[#(severity level, property type, nsg, coverage | evel, clock edge,
reset _polarity, gating type)]
i nstance_nane (clock, reset, enable, start_event, test_expr, end_event,

fire);

Parameters/Generics

severity_| evel

property_type

neg

coverage_| evel

cl ock_edge

reset _polarity

Severity of the failure. Default: OVL_SEVERITY _DEFAULT
(OVL_ERROR).

Property type. Default: OVL_PROPERTY _DEFAULT
(OVL_ASSERT).

Error message printed when assertion fails. Default:
OVL_MSG_DEFAULT (“VIOLATION").

Coverage level. Default: OVL_COVER_DEFAULT
(OVL_COVER_BASIC).

Active edge of the clock input. Default:
OVL_CLOCK_EDGE_DEFAULT (OVL_POSEDGE).

Polarity (active level) of the reset input. Default:
OVL_RESET_POLARITY_DEFAULT
(OVL_ACTIVE_LOW).

gating_type Gating behavior of the checker when enable is FALSE. Default:
OVL_GATING _TYPE DEFAULT (OVL_GATE_CLOCK).
Ports
cl ock Clock event for the assertion.
reset Synchronous reset signal indicating completed initialization.
Accellera Standard OVL V2, Library Reference Manual, 2.6 295

December 2011

OVL Checker Data Sheets
ovl_window

enabl e Enable signal for clock, if gating_type= OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =

OVL_GATE_RESET). Ignored if gating_typeis OVL_NONE.

start_event Expression that opens an event window.

test _expr Expression that should be TRUE in the event window
end_event Expression that closes an event window.

fire
[OVL_FI RE_W DTH- 1: 0]

Fire output. Assertion failure when fire[0] is TRUE. X/Z check
failurewhenfire[1] is TRUE. Cover event when firg[2] is TRUE.

Description

The ovl_window assertion checker checks the expression start_event at each active edge of
clock to determineif it should open an event window at the start of the next cycle. If start_event
issampled TRUE, at each subsequent active edge of clock, the checker evaluates end_event and
test_expr. If asampled value of test_expr is not TRUE, then the assertion fails. If end_event is
TRUE, the checker closes the event window and returnsto the state of monitoring start_event at
the next active edge of clock.

The checker is useful for ensuring proper changes in structures after various events. For
example, it can be used to check that multiple-cycle operations with enabling conditions
function properly with the same data. It can be used to check that single-cycle operations
function correctly with data loaded at different cycles. It a'so can be used to verify
synchronizing conditions that require date to be stable after an initial triggering event.

Assertion Checks

W NDOW

Implicit X/Z Checks

test_expr contains X or Z
start_event contains X or Z
end_event contains X or Z

Cover Points
cover _wi ndow_open

cover _wi ndow cl ose

Cover Groups

none

The test_expr expression changed value during an open event
window.

Expression valuewas X or Z.
Start event value was X or Z.
End event valuewas X or Z.

BASIC — A change check was initiated.
BASIC — A change check lasted the full num_cks cycles.

296

Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets
ovl_window

See also

ovl_change
ovl_time
ovl_unchange

Examples

ovl _wi ndow #(

“ OVL_ERROR,
* OVL_ASSERT,

“BError: wite without grant”,

* OVL_COVER DEFAULT,
* OVL_POSEDGE,

“ OVL_ACTI VE_LOW

* OVL_GATE_CLOCK)

valid_sync_data bus wite (

cl ock,
reset,
enabl e,
wite,
bus_gnt,
write ack,

fire_valid_sync_data bus_wite);

Checks that the bus grant is not deasserted during a write cycle.

clock

ovl_win_change
ovl_win_unchange

/1
/1

/1
I
11

11
/1

/1
/1
/1
/1

/1
/1
/1

severity_| evel
property_type
neg
coverage_| evel
cl ock_edge
reset_polarity
gating_type

cl ock

reset
enabl e
start_event

t est _expr
end_event
fire

reset

write : :

write_ack

bus_gnt]]

window_open

WINDOW Error: write without grant

Accellera Standard OVL V2, Library Reference Manual, 2.6

December 2011

297

OVL Checker Data Sheets
ovl_xproduct_bit_coverage

ovl _xproduct_bit _coverage

Ensures functional cross product bit coverage of two vectors.

Parameters/Generics. property_type
fire[OVL_FIRE_WIDTH-1:0] }— Severity level

—»{test_expri[width1-1:0] widthl coverage level
ovl_xproduct_bit_coverage width2 clock_edge
—test_expr2jwidth2-1:0] test_expr2_enable reset _polarity
coverage _check gating_type

clock reset enable
[} [} [}

Class: event-bounded assertion

Syntax

ovl _xproduct _bit_coverage
[#(severity_level, widthl, w dth2, test_expr2_enable,
coverage_check, property_type, msg, coverage_l evel, clock_edge,
reset _polarity, gating_type)]
i nstance_nane (clock, reset, enable, test_exprl, test _expr2, fire);

Parameters/Generics

severity_l evel Severity of the failure. Default: OVL_SEVERITY_DEFAULT
(OVL_ERROR).

wi dt h1l Width of the test_exprl. Default: 1.

wi dt h2 Width of the test_expr2. Default: 1.

test _expr2_enabl e Whether or not to use test_expr2 as the second vector.

test _expr2_enable = 0 (Default)

Usetest_exprl asthe second vector (t est _expr 2 isignored).
test _expr2_enable =1

Usetest_exprl asthe second vector.

cover age_check Whether or not to perform coverage checks.
coverage_check = 0 (Default)
Turns off the coverage check.
coverage check =1
Turns on the coverage check.

property_type Property type. Default: OVL_PROPERTY_DEFAULT
(OVL_ASSERT).

msg Error message printed when assertion fails. Default:
OVL_MSG _DEFAULT (“VIOLATION").

cover age_| evel Coverage level. Default: OVL_COVER_DEFAULT
(OVL_COVER_BASIC).

cl ock_edge Active edge of the clock input. Default:

OVL_CLOCK_EDGE_DEFAULT (OVL_POSEDGE).

298 Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets
ovl_xproduct_bit_coverage

reset_polarity

gating_type
Ports
cl ock

reset
enabl e

test _exprl[wi dt hl-1: 0]
test_expr2[w dt h2-1: 0]

fire
[OVL_FI RE_W DTH- 1: 0]

Description

Polarity (active level) of the reset input. Default:
OVL_RESET POLARITY DEFAULT
(OVL_ACTIVE_LOW).

Gating behavior of the checker when enableis FALSE. Default:
OVL_GATING_TYPE_DEFAULT (OVL_GATE_CLOCK).

Clock event for the checker. The checker samples on therising
edge of the clock.

Synchronous reset signal indicating completed initialization.
Expression that indicates whether or not to check the inputs.

First vector, specified asasignal, vector or concatenation of
signas.

Second vector (if test_expr2_enableis 1), specified asasignal,
vector or concatenation of signals (or 1’ b0).

Fire output. Assertion failure when fire[0] is TRUE. X/Z check
faillurewhenfirg[1] is TRUE. Cover event when fire[2] is TRUE.

The ovl_xproduct_bhit_coverage checker determines cross-product coverage of the bits of one or
two variables and gathers coverpoint data. By default, the checker performs no assertion checks.
If test_expr2_enableis 1, the checker checks the expressionstest_exprl and test_expr2 at each
rising edge of clk whenever enableis TRUE. If test_exprlor test_expr2 has changed value, the
checker updates its cross-product coverage matrix based on the values of test_expr1 and

test_expr2.

The checker’ s cross-product coverage matrix is abit matrix whose rows correspond to the
descending bits of test_expr1 and whose columns correspond to the descending bits of
test_expr2. Elementsin the matrix are the corresponding bits of test_exprland test_expr2
ANDed together. For example, if:

test _exprl is a[9:6]

and

test _expr2 is b[5:3]

then the cross-product coverage matrix is:

a[9] & b[5] a[9] & b[4] a[9] & b[3]
a[8] & b[5] a[8] & b[4] a[8] & b[3]
Accellera Standard OVL V2, Library Reference Manual, 2.6 299

December 2011

OVL Checker Data Sheets
ovl_xproduct_bit_coverage

a[7] & b[5] a[7] & b[4] a[7] & b[3]
a[6] & b[5] a[6] & b[4] a[6] & b[3]

At reset, the matrix isinitialized to all 0's. Each cycletest_exprl or test_expr2 changes, the
checker calculates atemporary matrix for the current values of test_expr1 and test_expr2. Then,
the cross-coverage matrix is updated by setting all elementsto 1 whose corresponding elements
in the temporary matrix are 1. That is, the bits of the cross-product coverage matrix are “sticky”:
once set to 1, they remain set to 1. The matrix is considered covered when all bits are 1.

To help analyze partia coverage, the Coverage Matrix Bitmap statistic coverpoint isa
concatenated list of the bits of the cross-product coverage matrix arranged by rows.

By default, the value of test_expr2_enableis 0, which disablesthe test_expr2 port. Thisisthe
specia case where the checker maintains a cross-product coverage matrix for a vector with
itself. However, the Coverage Matrix Bitmap value reported is not the same as one for a matrix
wheretest_expr2 =test_exprl. Inthis special case, diagonal elements are extraneous (for
example, a[3]==1 & & a[3]==1) and the elements of the lower-half matrix are redundant. So, the
matrix reported by the Coverage Matrix Bitmap is formed by removing the diagona elements
and setting al lower-half matrix elementsto 1. For example, if:

test _expr2_enable is O
test _exprl is a[9:6]
test _expr2 is 1" b0

then the cross-product coverage matrix reported by Coverage Matrix Bitmap is.

a[9] & a[8] a[9] & a[7] a[9] & a[6]
1 a[8] & a[7] a[8] & a[6]
1 1 a[7] & a[6]

Assertion Checks
COVERAGE Al'l bits of the coverage matri x were cover ed.

Every bit of the cross product coverage matrix is 1.
Implicit X/Z Checks

test_exprl contains X or Z Expression contained X or Z bits.
test expr2 contains X or Z Expression contained X or Z bits.

Cover Points

cover _test_expril_ SANITY — Number of cyclestest_exprl changed value.
checked
300 Accellera Standard OVL V2, Library Reference Manual, 2.6

December 2011

OVL Checker Data Sheets
ovl_xproduct_bit_coverage

cover _test_expr2_
checked

cover val ue_checked

cover_matri x_covered

SANITY — Number of cyclestest_expr2 changed value if
parameter test_expr2_enableissetto 1

STATISTIC — Number of times the cover value was checked.
CORNER — Number of times all bits of the matrix is 1.

Cover Groups

None

See also

ovl_coverage ovl_value coverage

ovl_xproduct_value coverage

Examples

Examplel

ovl _xproduct _bit_coverage #(
.severity_ level (* OVL_ERROR),
.wi dt h1(5),
. property type(‘ OVL_ASSERT),
.msg(‘ OVL_VIOLATION : "),
.coverage_| evel (* OVL_COVER_NONE))
XPD1 (
.cl ock(cl ock),
.reset(1'bl),
.enabl e(1' bl),
.test_exprl(a[4:0]),
.test_expr2(1 b0))
fire(fire));

Maintains the following bit coverage matrix:

a[4] & a[3] a4] & a[2] a4] & a[1] a[4] & a[q]

1 a[3] & a[2] a[3] & a[1] a[3] & a[(]

1 1 a2] & a[1] 2] & a[(]

1 1 1 a1] & 0]
Example 2

ovl _xproduct bit_coverage #(
.severity level (‘ OVL_ERROR),
.widthil(4),
. coverage_check(1 bl),
. property_type(* OVL_ASSERT),
.meg(‘ OVL_VIOLATION : "),
.coverage_| evel (* OVL_COVER_NONE))

Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

301

OVL Checker Data Sheets
ovl_xproduct_bit_coverage

XPD2 (
.cl ock(cl ock),
.reset(1'bl),
.enabl e(1' bl),

.test_exprl({sig3, sig2, sigl, sig0}))

fire(fire));

Maintains the following bit coverage matrix:

sig3 & sig2 sig3& sigl

1 Sig2 & sigl
1 1

Example 3

ovl _xproduct _bit_coverage #(
.severity_level (* O/L_ERROR),
.wi dth1(5),
.wi dth2(4),
.test_expr2_enable(l),
. coverage_check(1 bl),
. property_type(‘ OVL_ASSERT)
.meg(‘ OVL_VIOLATION : "),
.coverage_| evel (* OVL_COVER_NONE))

XPD3 (
. cl ock(cl ock),
.reset(1'bl),
.enabl e(1' bl),
.test_exprl(a[4:0]),
.test_expr2(b[3:0]),
fire(fire));

Maintains the following bit coverage matrix:

a[4] & b[3]
a[3] & b[3]
a[2] & b[3]
a[1] & b[3]
a[0] & b[3]

a[4] & b[2]
a[3] & b[2]
a[2] & b[2]
a[1] & b[2]
a[0] & b[2]

a[4] & b[1]
a[3] & b[1]
a[2] & b[1]
a[1] & b[1]
a[0] & b[1]

Example 4

ovl _xproduct bit_coverage #(
.severity level (‘ OVL_ERROR),
.widthil(4),
.width2(1),
.test_expr2_enable(l),
. property_type(* OVL_ASSERT),

sig3 & sigo
sig2 & sig0
sigl & sig0

a[4] & b[0]
a[3] & b[0]
a[2] & b[0]
a[1] & b[0]
a[0] & b[0]

302 Accellera Standard OVL V2, Library Reference Manual, 2.6

December 2011

OVL Checker Data Sheets
ovl_xproduct_bit_coverage

.meg(‘ OVL_VIQLATION : "),
.coverage_| evel (* OVL_COVER_NONE))

XPD4 (
.cl ock(cl ock),
.reset (1’ bl),
.active(l bl),
.test_exprl(a[3:0]),
.test_expr2(sig));

Maintains the following bit coverage matrix:

a3] & sig
2] & sig
1] & sig
a0] & sig

Accellera Standard OVL V2, Library Reference Manual, 2.6 303
December 2011

OVL Checker Data Sheets
ovl_xproduct_value_coverage

ovl_xproduct_value_coverage

Ensures functional cross product value coverage of two variables.

fire [OVL_FIRE_WIDTH-1:0] }— Parameters/Generics:
—>|test_expri[width1-1:0] severity level max1
—>lvall[vall_width-1:0]* widthl max2
ovl_xproduct_value_coverage width2 coverage check
—>|test_expr2[width2-1:0] vall width property_type
—>lval2[val2_width-1:0]** val2_width msg
clock reset enable vall count coverage level
X X X val2_count clock_edge

minl reset_polarity
min2 gating_type

*vall_width =
**val2_width =

Syntax

Class: event-bounded assertion

val1_count > 0 ? vall_count * vall width : 1
val 2_count > 0 ? val2_count * val2_width : 1

ovl xproduct _val ue_cover age

[#(severity_|level,

val

property_type,

wi dt hl, wi dt h2, val 1_wi dth, val 2_wi dth,
val 2_count, minl, mn2, nmaxl, max2, coverage_check,
nmsg, coverage_level, clock _edge, reset_polarity,

1 count,

gating_type)]

i nstance_

val 2);

nane (clock, reset, enable, test _exprl, test_expr2, vall,

Parameters/Generics

severity_l evel

Severity of the failure. Default: OVL_SEVERITY _DEFAULT
(OVL_ERROR).

wi dt hl Width of the test_exprl. Default: 1.
wi dt h2 Width of the test_expr2. Default: 1.
val 1_width Width of each item invall. Default: 1.
val 2_width Width of each item in val2. Default: 1.
val 1_count Number of itemsin val1l. Default: O.

val 2_count

Number of itemsin val2. Default: 0.

mnl Minimum value of the range of test_expr1. Ignored unless
vall count = 0. Default : 0
m n2 Minimum value of the range of test_expr2. Ignored unless
val2_count = 0. Default : 0
304 Accellera Standard OVL V2, Library Reference Manual, 2.6

December 2011

OVL Checker Data Sheets
ovl_xproduct_value_coverage

max1

max2

coverage_check

property_type

neg

cover age_| evel

cl ock_edge

reset _polarity

gating_type

Ports

cl ock

reset

enabl e

test _exprl[wi dt hl-1: 0]
test _expr2[w dt h2-1: 0]

Maximum value of the range of test_expr1. Ignored unless
vall count =0.
max1l = 0 (Default)
Maximum value is the largest possible value of test_exprl.
maxl > 0
Maximum value is max1.

Maximum value of the range of test_expr2. Ignored unless
val2_count = 0.
max2 = 0 (Default)

Maximum value is the largest possible value of test_expr2.
max2 > 0

Maximum value is max2.

Whether or not to perform coverage checks.
coverage_check = 0 (Default)

Turns off the coverage check.
coverage check =1

Turns on the coverage check.

Property type. Default: OVL_PROPERTY DEFAULT
(OVL_ASSERT).

Error message printed when assertion fails. Default:
OVL_MSG_DEFAULT (“VIOLATION").

Coverage level. Default: OVL_COVER_DEFAULT
(OVL_COVER_BASIC).

Active edge of the clock input. Default:
OVL_CLOCK_EDGE_DEFAULT (OVL_POSEDGE).

Polarity (active level) of the reset input. Default:
OVL_RESET_POLARITY_DEFAULT
(OVL_ACTIVE_LOW).

Gating behavior of the checker when enable is FALSE. Default:
OVL_GATING_TYPE_DEFAULT (OVL_GATE_CLOCK).

Clock event for the checker. The checker samples on therising
edge of the clock.

Synchronous reset signal indicating completed initialization.
Expression that indicates whether or not to check the inputs.
First variable or expression.

Second variable or expression.

Accellera Standard OVL V2, Library Reference Manual, 2.6 305

December 2011

OVL Checker Data Sheets
ovl_xproduct_value_coverage

val 1[val 1_wi dt h- 1: 0] val1l_count =0
Connect to 1 b0.
vall count > O
Concatenated list of vall_count elements that define the

range of test_exprl. Each elementisavall width wide
variable or expression.

val 2[val 2_wi dt h- 1: 0] val 2_count = 0
Connect to 1' b0.
val 2 _count > 0
Concatenated list of val2 count elements that define the

range of test_expr2. Each element is aval2_width wide
variable or expression.

fire Fire output. Assertion failure when fire[0] is TRUE. X/Z check
[OVL_FI RE_WDTH-1: 0] failurewhen fire[1] is TRUE. Cover event when fire[2] is TRUE.
Description

The ovl_xproduct_value_coverage checker determines cross-product coverage of the ranges of
two variables and gathers coverpoint data. By default, the checker performs no assertion checks.
The checker checks the expressionstest_exprl and test_expr?2 at each rising edge of clock
whenever enableis TRUE. If test_exprlor test_expr2 has changed value, the checker updatesits
cross-product coverage matrix based on the values of test_expr1 and test_expr2.

The checker’ s cross-product coverage matrix isabit matrix whose rows correspond to the range
of values of test_expr1 and whose columns correspond to the range of values of test_expr2. At
reset, the matrix isinitialized to all 0’'s. In acyclein which both test_exprl and test_expr2 have
valuesin their respective ranges, the matrix element corresponding to that event isset to 1. The
bits of the cross-product coverage matrix are “sticky”: once set to 1, they remain set to 1. The
matrix is considered covered when all bitsare 1. To help analyze partial coverage, the Coverage
Matrix Bitmap statistic coverpoint is a concatenated list of the bits of the cross-product
coverage matrix arranged by rows.

The ranges of test_expr1 and test_expr2 can be specified in two ways: as contiguous value
ranges and as discrete value ranges.

Contiguous Value Range

By default, the ranges of test_exprl and test_expr2 are from O to their largest possible value.
Setting minl and max1 restricts the range of test_expr1to minl, minl+1, ..., max1l. Similarly,
setting min2 and max2 restricts the range of test_expr2 to min2, min2+1, ... , max2. The default
value of minl and min2 is 0. The default value of max1 and max2 is 0, which sets the top range
values to the maximum values of test_exprl and test_expr2.

306 Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets
ovl_xproduct_value_coverage

For example, if:

test _exprl is a
mnl = 6 and naxl

1
©

and

test _expr2 is b
mn2 = 3 and max2 = 5

then the cross-product coverage matrix is:

(a==9) &&(b==5) (a==9)&&(b==4) (a==9) && b==3)
(a==8) &&(b==5) (a==8) &&(b==4) (a==8) && b==3)
(a==7) &&(b==5) (a==7)&&(b==4) (a==7)&& b==3)
(a==6) &&(b==5) (a==6)&&(b==4) (a==6) && b==3)

Discrete Value Range

Setting val1 _count > 1 enables discrete values for the range of test_exprl. The vall port
contains these values as a concatenated list of val1l count values, each value having width

vall width. The valuesof minl and maxl areignored. Similarly, setting val2_count > 1 enables
discrete valuesfor the range of test_expr2. The val 2 port contains these val ues as a concatenated
list of val2_count values, each value having width val2_width. The values of min2 and max2 are
ignored.

For example, if:

test _exprl is a
vall count = 4, vall width

16 and val2 = {1'h9, 1‘hB, 1'hF, 1'h4}
and

test _expr2 is b
vall count = 3, vall width = 12 and vall = {1'h3, 1'h8, 1 h7}

then the cross-product coverage matrix is:

(a==4) &&(b==7) (a==4) &&(b==8) (a==4) &&(b==3)
(a==F) &&(b==7) (a==F)&&(b==8) (a==F) && b==3)
(a==B) &&(b==7) (a==B)&&(b==8) (a==B) &&(b==3)
(a==9) &&(b==7) (a==9)&&(b==8) (a==9) && b==3)

Accellera Standard OVL V2, Library Reference Manual, 2.6 307
December 2011

OVL Checker Data Sheets
ovl_xproduct_value_coverage

Discrete value ranges have the following characteristics:

» Onetest expression can have a contiguous range while the other test expression has a
discrete range.

» Discrete ranges can be dynamic. Typically, the val1 and val2 ports should remain
constant, so the coverage matrix makes sense. However, the checker does not check this
restriction. If the value of vall or val2 has changed, a new set of range values are used
for the current cycle. The same cross-product coverage matrix is updated, but the
updated elements correspond to the new ranges.

» Discrete ranges can have duplicate values. Although thisisnot atypical usage, if avalue
with duplicatesis covered, al corresponding matrix bits are set.

Assertion Checks
COVERAGE Al'l bits of the coverage matri x were cover ed.
Every bit of the cross-product coverage matrix is 1.

Implicit X/Z Checks

test_exprl contains X or Z Expression contained X or Z bits.
test expr2 contains X or Z Expression contained X or Z bits.

vall contains X or Z Expression contained X or Z hits.
val2 contains X or Z Expression contained X or Z bits.

Cover Points

cover _test_expril_ SANITY — Number of cyclestest_exprl changed value.
checked
cover_test_expr2_ SANITY — Number of cyclestest_expr2 changed value.
checked
cover _val ue_checked STATISTIC — Number of cyclesin which test_exprl or

test_expr2 loaded a value.

cover_matrix_cover ed CORNER — If non-zero, al bits of the cross-product coverage
matrix are covered.

Cover Groups

None

308 Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets

ovl_xproduct_value_coverage

See also

ovl_coverage
ovl_xproduct_bit_coverage

Examples

Examplel

ovl _xproduct _val ue_cover age #(
.severity_ level (‘ O/L_ERROR),
.wi dt h1(3),
.wi dth2(2),
. coverage_check(1' b0),
.property type(‘ OVL_ASSERT),
.meg(“OVL_VIOLATION : "),
.coverage_| evel (* OVL_COVER_NONE))
XVCL (
.cl ock(cl ock),
.reset(1'bl),
.enabl e(1' bl),
.test_expri(a),
.test_expr2(b),
.val 1(1’ b0),
.val 2(1’ b0),
fire(fire));

Maintains the following cross-product coverage

(a==7) &&(b==3)
(a==6) &&(b==3)
(a==5) &&(b==3)
(a==4) &&(b==3)
(a==3) &&(b==3)
(a==2) &&(b==3)
(a==1) &&(b==3)
(a==0) &&(b==3)

Example 2

(a==7) && b==2)
(a==6) &&(b==2)
(a==5) &&(b==2)
(a==4) 8&(b==2)
(a==3) &&(b==2)
(a==2) &&(b==2)
(a==1) &&(b==2)
(a==0) &&(b==2)

ovl xproduct val ue_cover age #(
.severity level (‘ OVL_ERROR),
.wi dt h1(3),
.wi dth2(2),
.mnl(3),
.mn2(1),
.max1(4),
. coverage_check(1 bl),
.property _type(‘ OVL_ASSERT),
.meg(“OVL_VIOLATION : "

coverage| evel (* OVL_COVER NONE))

ovl_value coverage

matrix:

(a==7) &&(b==1)
(a==6) &&(b==1)
(a==5) &&(b==1)
(a==4) &&(b==1)
(a==3) &&(b==1)
(a==2) &&(b==1)
(a==1) &&(b==1)
(a==0) &&(b==1)

(a==7) &&(b==0)
(a==6) &&(b==0)
(a==5) &&(b==0)
(a==4) &&(b==0)
(a==3) &&(b==0)
(a==2) &&(b==0)
(a==1) &&(b==0)
(a==0) &&(b==0)

Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

309

OVL Checker Data Sheets
ovl_xproduct_value_coverage

Xvez2 (
. cl ock(cl ock),
.reset(1'bl),
.enabl e(1' bl),
.test_expril(a),
.test_expr2(b),
.val 1(1’ b0),
.val 2(1' b0),
fire(fire));

Maintains the following cross-product coverage matrix:

(a==4) &&(b==3)
(a==3) &&(b==3)

(a==4) &&(b==2)
(a==3) &&(b==2)

(a==4) &&(b==1)
(a==3) &&(b==1)

If the Coverage Matrix Bitmap is 111100, the cross-product coverage matrix is:

1

1

Here, al combinations were covered except (a==3)& & (b==2) and (&==3)& & (b==1).

Example 3

ovl _xproduct _val ue_cover age #(
.severity_ level (* OVL_ERROR),
. Wi dt h1(8),
Wi dth2(4),
.val 1_wi dt h(8),
.val 1_count (3),
.val 2_w dth(4),
.val 2_count (4),
.coverage_check(1 bl),
. property_type(‘ OVL_ASSERT)
.meg(“OVL_VIOLATION : "),

.coverage_| evel (‘' OVL_COVER_NONE))

XVC3 (
.clock(cl ock),
.reset(1'bl),
.enabl e(1' bl),
.test_expri(a),
.test _expr2(b),

.val 1(24’ b111111110111111100000001),

.val 2(16’ b0111000001010010),
fire(fire));

Maintains the following coverage matrix:

(a==225) &&(b==7)
(a==127) &&(b==7)
(a==1) &&(b==7)

(a==225) &&(b==0)
(a==127) && b==0)
(a==1) &&(b==0)

(a==225) &&(b==5)
(a==127) &&(b==5)
(a==1) &&(b==5)

(a==225) &&(b==2)
(a==127) &&(b==2)
(a==1) &&(b==2)

310

Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

OVL Checker Data Sheets
ovl_xproduct_value_coverage

If the Coverage Matrix Bitmap is 101111111110, the cross-product coverage matrix is:

1 0 1 1
1 1 1 1
1 1 1 0

Here, all combinations were covered except (a==225)& & (b==0) and (a==1)& & (b==2).

Accellera Standard OVL V2, Library Reference Manual, 2.6 311
December 2011

OVL Checker Data Sheets

ovl_zero_one_hot

ovl zero _one_hot

Checks that the value of an expression is zero or one-hot.

—test_expr[width-1:0]

clock reset enable

Parameter Generics:

|, severity level coverage level

fire[OVL_FIRE_WIDTH-1:0]

width clock _edge
ovl _zero_one_hot property_type reset_polarity
msg gating_type

Class: 1-cycle assertion

T

Syntax

T T

ovl _zero_one_hot

[#(severity_|level,
cl ock_edge,
i nst ance_nane (cl ock,

wi dth, property type, nsg,
reset_polarity, gating type)]
reset, enable, test_expr,

coverage_| evel ,

fire);

Parameters/Generics

severity_| evel

wi dt h
property_type

neg

cover age_| evel

cl ock_edge

reset _polarity

Severity of the failure. Default: OVL_SEVERITY_DEFAULT
(OVL_ERROR).

Width of the test_expr argument. Default: 32.

Property type. Default: OVL_PROPERTY DEFAULT
(OVL_ASSERT).

Error message printed when assertion fails. Default:
OVL_MSG_DEFAULT (“VIOLATION").

Coverage level. Default: OVL_COVER_DEFAULT
(OVL_COVER_BASIC).

Active edge of the clock input. Default:
OVL_CLOCK_EDGE_DEFAULT (OVL_POSEDGE).

Polarity (active level) of the reset input. Default:
OVL_RESET_POLARITY_DEFAULT
(OVL_ACTIVE_LOW).

gating_type Gating behavior of the checker when enable is FALSE. Default:
OVL_GATING TYPE DEFAULT (OVL_GATE_CLOCK).
Ports
cl ock Clock event for the assertion.
reset Synchronous reset signal indicating completed initialization.
312 Accellera Standard OVL V2, Library Reference Manual, 2.6

December 2011

OVL Checker Data Sheets
ovl_zero_one_hot

enabl e

test _expr[w dt h-1:0]

fire
[OVL_FI RE_W DTH- 1: 0]

Description

Enable signal for clock, if gating_type = OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_typeis OVL_NONE.

Expression that should evaluate to either O or a one-hot value on
the active clock edge.

Fire output. Assertion failure when fire[0] is TRUE. X/Z check
failurewhenfire[1] is TRUE. Cover event when firg[2] is TRUE.

The ovl_zero_one_hot assertion checker checks the expression test_expr at each active edge of
clock to verify the expression evaluates to a one-hot value or is zero. A one-hot value has

exactly one bit set to 1.

The checker is useful for verifying control circuits, circuit enabling logic and arbitration logic.
For example, it can ensure that a finite-state machine with zero-one-cold encoding operates
properly and has exactly one bit asserted high—or else is zero. In adatapath circuit the checker
can ensure that the enabling conditions for a bus do not result in bus contention.

Assertion Checks
ZERO_ONE_HOT
Implicit X/Z Checks

test_expr contains X or Z

Cover Points

cover _test _expr_change

cover _all _one_hots_
checked

cover_test_expr_all _
zeros

Cover Groups

none

Expression evaluated to a value with multiple bits set to 1.

Expression value contained X or Z bits.

SANITY — Expression has changed value.

CORNER — Expression evaluated to al possible combinations
of one-hot values.

CORNER — Expression evaluated to 0.

Accellera Standard OVL V2, Library Reference Manual, 2.6

December 2011

313

OVL Checker Data Sheets
ovl_zero_one_hot

Notes

1. By default, the ovl_zero_one_hot assertion is optimistic and the assertion failsif
test_expr has multiple bits not set to O (i.e.equals 1, X, Z, etc.). However, if
OVL_XCHECK_OFF is set, the assertion failsif and only if test_expr has multiple bits

that are 1.
See also
ovl_one cold ovl_one_hot
Examples
ovl _zero_one_hot #(
“* OVL_ERROR, /1
4, /1
* OVL_ASSERT, x
“Error: sel not zero or one-hot”, Il
* OVL_COVER_DEFAULT, %
* OVL_POSEDGE, /1
* OVL_ACTI VE_LOW I
* OVL_GATE_CLOCK) I
valid_sel zero_one_hot (
cl ock, /1
reset, /1
enabl e, /1
sel I
fire valid_sel zero_one_hot): I

Checksthat sel is zero or one-hot at each rising edge of clock.

severity_| evel
wi dt h
property_type
neg
coverage_| evel
cl ock_edge
reset_polarity

gating_type

cl ock
reset
enabl e
test _expr
fire

clock

reset '
0100

[0010 [0011 [0001 |

0100

[1000 [0100

sel XXXX T 1000 |

test_expr contains X/Z value

ZERO_ONE_HOT

Error: sel not zero or one-hot

314

Accellera Standard OVL V2, Library Reference Manual, 2.6

December 2011

Chapter 4
OVL Macros

Global Macros

Type Macro Description
Language OVL_VERI LOG (default) Creates assertion checkers defined
in Verilog.
OVL_SVA Creates assertion checkers defined in System

OVL_SVA | NTERFACE

OVL_PSL

Synthesizable ~ OVL_SYNTHESI S

Logic

Function OVL_ASSERT_ON
OVL_COVER _ON
OVL_COVERGROUP_COFF

Default OVL_SEVERI TY_DEFAULT

Parameter

Values

OVL_PROPERTY_DEFAULT

OVL_MSG_DEFAULT

OVL_COVER DEFAULT

Verilog.

Ensures OV L assertion checkers can be
instantiated in an SV A interface construct.
Default: not defined.

Creates assertion checkers defined in PSL.
Default: not defined.

Removes initialization logic from checkers.
Default: not defined.

Activates assertion logic. Default: not defined.
Activates coverage logic. Default: not defined.

Excludes cover group monitoring logic from
coverage logic. Default: not defined.

Vaue of severity level to use when the
parameter is unspecified. Default:
OVL_ERROR.

Value of property typeto use when the
parameter is unspecified. Default:
OVL_ASSERT.

Vaue of msg to use when the parameter is
unspecified. Default: “VIOLATION”.

Value of coverage level to use when the
parameter is unspecified. Default:
OVL_COVER BASIC.

Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

315

OVL Macros
Global Macros

Type Macro Description

OVL_CLOCK_EDGE Vaue of clock edge to use when the

DEFAULT parameter is unspecified. Default:
OVL_POSEDGE.

OVL_RESET_POLARI TY_ Vaue of reset_polarity to use when the

DEFAULT parameter is unspecified. Default:
OVL_ACTIVE_LOW.

OVL_GATI NG_TYPE_ Value of gating_type to use when the

DEFAULT parameter is unspecified. Default:
OVL_GATE_CLOCK.

Clock/Reset OVL_GATI NG_OFF Removes all gating logic and creates checkers

Gating with gating_type OVL_GATE_NONE.
Default: each checker gated according to its
gating_type parameter value..

Global Reset OVL_GLOBAL_RESET= Overrides the reset port assignments of all

reset _si gnal assertion checkers with the specified active

low global reset signal. Default: each
checker’sreset is specified by the reset port.

Reporting OVL_NMAX_REPORT_ERROR Discontinues reporting a checker’ s assertion
violationsif the number of times the checker
has reported one or more violations reaches
thislimit. Default: unlimited reporting.

OVL_MAX_REPORT_COVER Discontinues reporting a checker’s cover

PO NT points if the number of timesthe checker has
reported one or more cover points reachesthis
limit.Default: unlimited reporting.

OVL_I NI T_MSG Reports configuration information for each
checker when it is instantiated at the start of
simulation. Default: no initialization messages
reported.

OVL_END_OF_SI MULATION Performs quiescent state checking at end of

=eos_si gnal simulation when the eos_signal asserts.
Default: not defined.

Fatal Error OVL_RUNTI ME_AFTER _ Number of time units from afatal error to end
Runtime FATAL of simulation. Default: 100.
316 Accellera Standard OVL V2, Library Reference Manual, 2.6

December 2011

OVL Macros
Global Macros

Type Macro Description

X/Z Values OVL_I MPLI CI T_XCHECK_ Turns off implicit X/Z checks. Default: not
OFF defined.
OVL_XCHECK_OFF Turns off al X/Z checks. Default: not defined.

Internal Global Macros

The following global variables are for internal use and the user should not redefine them:

‘ endnodul e

‘ modul e

OVL_FI RE_W DTH
OVL_RESET_SI GNAL
OVL_SHARED CODE
OVL_STD DEFI NES H
OVL_VERSI ON

Accellera Standard OVL V2, Library Reference Manual, 2.6 317
December 2011

OVL Macros

Macros Common to All Assertions

Macros Common to All Assertions

Parameter Macro Description
severity_ OVL_FATAL Runtime fatal error.
| evel
OVL_ERROR Runtime error.
OVL_WARNI NG Runtime Warning.
OVL_I NFO Assertion failure has no specific severity.
property _type OVL_ASSERT Assertion checks and X/Z checks are asserts.
OVL_ASSUMVE Assertion checks and X/Z checks are assumes.

cover age_
| evel

OVL_ASSERT_2STATE

OVL_ASSUME_2STATE

OVL_I| GNORE

OVL_COVER ALL

OVL_COVER _NONE

OVL_COVER_SANI TY

OVL_COVER BASI C

Assertion checks are asserts. X/Z checks are
disabled.

Assertion checks are assumes. X/Z checks are
disabled.

Assertion checks and X/Z checks are disabled.

Includes coverage logic for all of the
checker’s cover pointsif OVL_COVER_ON
is defined.

Excludes coverage logic for al of the
checker’s cover points.

Includes coverage logic for the checker’s
SANITY cover pointsif OVL_COVER_ON
Is defined. Can be bitwise-ORed with
OVL_COVER_BASIC,
OVL_COVER_CORNER and
OVL_COVER STATISTIC.

(default) Includes coverage logic for the
checker’s BASIC cover points if
OVL_COVER_ON isdefined. Can be
bitwise-ORed with OVL_COVER_SANITY,
OVL_COVER_CORNER and
OVL_COVER_STATISTIC.

318

Accellera Standard OVL V2, Library Reference Manual, 2.6

December 2011

OVL Macros
Macros Common to All Assertions

Parameter

Macro

Description

cl ock_edge

reset _
polarity
gating_type

OVL_COVER _CORNER

OVL_COVER_STATI STI C

OVL_POSEDGE
OVL_NEGEDGE

OVL_ACTI VE_LOW

OVL_ACTI VE_HI GH

OVL_GATE_NONE
OVL_GATE_CLOCK

OVL_GATE_RESET

Includes coverage logic for the checker’s
CORNER cover pointsif OVL_COVER_ON
Is defined. Can be bitwise-ORed with
OVL_COVER _SANITY,

OVL_COVER BASIC and

OVL_COVER STATISTIC.

Includes coverage logic for the checker’s
STATISTIC cover pointsif
OVL_COVER_ON isdefined. Can be
bitwise-ORed with OVL_COVER_SANITY,
OVL_COVER BASIC and
OVL_COVER_CORNER.

Rising edges are active clock edges.
Falling edges are active clock edges.

Reset is active when FALSE.

Reset is active when TRUE.

Checker ignores the enable input.

Checker pauses when enableis FALSE. The
checker treats the current cycle asa NOP.
Checks, counters and internal values remain
unchanged.

Checker resets (asif the reset input became
active) when enableis FALSE.

Accellera Standard OVL V2, Library Reference Manual, 2.6

December 2011

319

OVL Macros

Macros for Specific Assertions

Macros for Specific Assertions

Parameter Checkers Macro Description
action_on_ ovl_change OVL_| GNORE_NEW START Ignore new start events.
new start ovl_frame
gx:—ﬂrr:; ange OVL_RESET_ON_NEW. Restart check on new start
- START events.
OVL_ERROR_ON_NEW. Assert fail on new start
START events.
OVL_ACTI ON_ON_NEW. Vaue of action_on new_
START_DEFAULT start to use when the
parameter is unspecified.
Default: OVL_
IGNORE_NEW _START.
edge_t ype ovl_always OVL_NOEDGE Always initiate check.
on_edge
OVL_POSEDGE Initiate check on rising
edge of sampling event.
OVL_NEGEDGE Initiate check on falling
edge of sampling event.
OVL_ ANYEDGE Initiate check on both
edges of sampling event.
OVL_EDGE_TYPE_DEFAULT Valueof edge_typeto use
when the parameter is
unspecified. Default:
OVL_NOEDGE.
necessary_ ovl_cycle OVL_TRI GGER_ON_MOST _ Necessary condition is
condi tion sequence Pl PE full sequence. Pipelining
enabled.
OVL_TRI GGER ON_FIRST_ Necessary conditionis
Pl PE first in sequence.
Pipelining enabled.
OVL_TRI GGER_ON _FIRST_ Necessary condition is
NOPI PE first in sequence.
Pipelining disabled.
320 Accellera Standard OVL V2, Library Reference Manual, 2.6

December 2011

OVL Macros

Macros for Specific Assertions

Parameter Checkers Macro Description
OVL_NECESSARY_ Vaue of
CONDI TI ON_DEFAULT necessary_condition to
use when the parameter is
unspecified. Default:
OVL_TRIGGER_ON_
MOST_PIPE.
i nactive ovl_one cold OVL_ALL_ZERCS Inactive stateisall 0's.

OVL_ALL_ONES
OVL_ONE_COLD

OVL_| NACTI VE_DEFAULT

Inactive stateisall 1's.

(default) No inactive
State.

Vaue of inactive to use
when the parameter is
unspecified. Default:
OVL_ONE_COLD.

Accellera Standard OVL V2, Library Reference Manual, 2.6

December 2011

321

OVL Macros
Macros for Specific Assertions

322 Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

Chapter 5

OVL Backward Compatibility

V2.3

The V2.3 version of OVL iscompatible withthe V1.8 version. That is, EDA toolsthat analyzed
designs with V1.8 checkers will work seamlessly with the V2.3 OVL implementation. These

checkers are identified by the prefix assert_ (see Table 5-1).

Table 5-1. assert_* Checker Types

assert_always
assert_always on_edge
assert_change
assert_cycle _sequence
assert_decrement
assert_delta
assert_even_parity
assert_fifo_index
assert_frame
assert_handshake
assert_implication

assert i ncrenent
assert_never
assert_never_unknown

assert _never _unknown_async

assert _next
assert_no_overfl ow
assert_no_transition
assert _no_underfl ow
assert_odd_parity
assert _one_cold
assert_one_hot

assert_proposition
assert_quiescent_state
assert_range
assert_time
assert_transition
assert_unchange
assert_width
assert_win_change
assert_win_unchange
assert_ window
assert_zero_one_hot

Theassert_* checkers have the same parameters and ports as the V1.x versions of the checkers,
so their instance specifications have not changed. However, these checkers do not have the
extended parameters (clock _edge, reset_polarity and gating_type) and ports (enable and fire)
added to the new V2 OVL implementations. For this reason, they are deprecated.

Accellera Standard OVL V2, Library Reference Manual, 2.6

December 2011

323

OVL Backward Compatibility

The new V2 OVL checkers are identified by the prefix ovl_ (see Table 5-2).

Table 5-2. ovl_* Checker Types

ovl_aways ovl_memory_async ovl_quiescent_state
ovl_aways on_edge ovl_memory_sync ovl_range
ovl_arbiter ovl_multiport_fifo ovl_reg_loaded
ovl_hits ovl_mutex ovl_req_ack_unique
ovl_change ovl_never ovl_req requires
ovl_code distance ovl_never_unknown ovl_stack

ovl_cycle sequence ovl_never_unknown_async ovl_time
ovl_decrement ovl_next ovl_transition
ovl_delta ovl_next_state ovl_unchange
ovl_even parity ovl_no_contention ovl_valid id
ovl_fifo ovl_no_overflow ovl_value
ovl_fifo_index ovl_no_transition ovl_width
ovl_frame ovl_no_underflow ovl_win_change
ovl_handshake ovl_odd_parity ovl_win_unchange
ovl_hold_value ovl_one cold ovl_window
ovl_implication ovl_one_hot ovl_zero_one_hot
ovl_increment ovl_proposition

These include 33 checkers that are extended versions of their assert_* counterparts. Plus
completely new checkers.

assert_fifo_index and ovl_fifo_index

The V1 assert_fifo_index checker is compatible with the V2 implementation. But the
ovl_fifo_index implementation has a change in the parameter order. The
simultaneous_push_pop parameter was moved to before the property_type parameter. So, the
assert_fifo_index checker has the following syntax:

assert _fifo_index
[#(severity_l evel, depth, push_w dth, pop_w dth, property_type, nsg,
coverage | evel, sinultaneous_push_pop)]
i nstance_nane (clock, reset, push, pop);

Whereas the ovl_fifo_index checker has the following syntax:

ovl _fifo_index
[#(severity level, depth, push_wi dth, pop_w dth,
si mul t aneous_push_pop, property type, nsg, coverage_level,
cl ock_edge, reset_polarity, gating type)]
i nstance_nane (cl ock, reset, enable, push, pop, fire);

324 Accellera Standard OVL V2, Library Reference Manual, 2.6
December 2011

	Table of Contents
	Chapter 1 Introduction
	About this Manual
	Notational Conventions
	Assertion Syntax Format

	References

	Chapter 2 OVL Basics
	OVL Assertion Checkers
	HDL Implementations
	OVL V1-Style Checkers

	OVL Checker Characteristics
	Checker Class
	Checker Parameters/Generics
	severity_level
	property_type
	msg
	coverage_level
	clock_edge
	reset_polarity
	gating_type

	Checker Ports
	clock
	reset
	enable
	fire

	Assertion Checks
	X/Z Checks
	Explicit X/Z Checks
	Implicit X/Z Checks

	Cover Points
	Cover Groups

	Verilog OVL
	Library Directory Structure
	Use Model
	Setting the Verilog Implementation Language
	Instantiation in an SVA Interface Construct
	Limitations for Verilog-flavor PSL

	Generating Synthesizable Logic
	Enabling Assertion and Coverage Logic
	Asserting, Assuming and Ignoring Properties
	Monitoring Coverage

	Setting Checker Parameter Defaults
	Disabling Clock/Reset Gating
	Using a Global Reset
	Checking X and Z Values
	Reporting Assertion Information
	Limiting a Checker’s Reporting
	Reporting Initialization Messages
	End-of-simulation Signal to ovl_quiescent_state Checkers

	Fatal Error Processing

	Header Files
	std_ovl_defines.h
	std_ovl_init.h
	std_ovl_clock.h
	std_ovl_reset.h
	std_ovl_count.h
	std_ovl_cover.h
	std_ovl_task.h

	VHDL OVL
	Library Directory Structure
	Use Model
	Compiling the VHDL OVL
	VHDL OVL Compile Order
	VHDL OVL Compile Order with Verilog OVL

	Configuring the Library
	ovl_ctrl_record Record

	std_ulogic Wrappers
	Number of Checkers in a Simulation
	“2-state” and “X/Z-check” Assertions in VHDL
	Synthesizing the VHDL OVL Library

	Primary VHDL Packages
	std_ovl.vhd
	std_ovl_procs.vhd

	Chapter 3 OVL Checker Data Sheets
	ovl_always
	Syntax
	Description
	See also
	Example

	ovl_always_on_edge
	Syntax
	Description
	See also
	Examples

	ovl_arbiter
	Syntax
	Description

	ovl_bits
	Syntax
	Description
	See also
	Examples

	ovl_change
	Syntax
	Description
	See also
	Examples

	ovl_code_distance
	Syntax
	Description

	ovl_coverage
	Syntax
	Description
	See also
	Examples

	ovl_crc
	Syntax
	Description
	See also
	Examples

	ovl_cycle_sequence
	Syntax
	Description
	See also
	Examples

	ovl_decrement
	Syntax
	Description
	Notes
	See also
	Examples

	ovl_delta
	Syntax
	Description
	Notes
	See also
	Examples

	ovl_even_parity
	Syntax
	Description
	See also
	Examples

	ovl_fifo
	Syntax
	Description
	See also

	ovl_fifo_index
	Syntax
	Description
	Notes
	See also
	Examples

	ovl_frame
	Syntax
	Description
	Notes
	See also
	Examples

	ovl_handshake
	Syntax
	Description
	See also
	Examples

	ovl_hold_value
	Syntax
	Description

	ovl_implication
	Syntax
	Description
	Notes
	See also
	Examples

	ovl_increment
	Syntax
	Description
	Notes
	See also
	Examples

	ovl_memory_async
	Syntax
	Description

	ovl_memory_sync
	Syntax
	Description

	ovl_multiport_fifo
	Syntax
	Description

	ovl_mutex
	Syntax
	Description

	ovl_never
	Syntax
	Description
	Notes
	See also
	Examples

	ovl_never_unknown
	Syntax
	Description
	Notes
	See also
	Examples

	ovl_never_unknown_async
	Syntax
	Description
	Notes
	See also
	Examples

	ovl_next
	Syntax
	Description
	See also
	Examples

	ovl_next_state
	Syntax
	Description

	ovl_no_contention
	Syntax
	Description

	ovl_no_overflow
	Syntax
	Description
	Notes
	See also
	Examples

	ovl_no_transition
	Syntax
	Description
	Notes
	See also
	Examples

	ovl_no_underflow
	Syntax
	Description
	Notes
	See also
	Examples

	ovl_odd_parity
	Syntax
	Description
	See also
	Examples

	ovl_one_cold
	Syntax
	Description
	Notes
	See also
	Examples

	ovl_one_hot
	Syntax
	Description
	Notes
	See also
	Examples

	ovl_proposition
	Syntax
	Description
	Notes
	See also
	Examples

	ovl_quiescent_state
	Syntax
	Description
	Notes
	See also
	Examples

	ovl_range
	Syntax
	Description
	See also
	Examples

	ovl_reg_loaded
	Syntax
	Description

	ovl_req_ack_unique
	Syntax
	Description

	ovl_req_requires
	Syntax
	Description

	ovl_stack
	Syntax
	Description

	ovl_time
	Syntax
	Description
	See also
	Examples

	ovl_transition
	Syntax
	Description
	Notes
	See also
	Examples

	ovl_unchange
	Syntax
	Description
	See also
	Examples

	ovl_valid_id
	Syntax
	Description

	ovl_value
	Syntax
	Description

	ovl_value_coverage
	Syntax
	Description
	See also
	Examples

	ovl_width
	Syntax
	Description
	See also
	Examples

	ovl_win_change
	Syntax
	Description
	See also
	Examples

	ovl_win_unchange
	Syntax
	Description
	See also
	Examples

	ovl_window
	Syntax
	Description
	See also
	Examples

	ovl_xproduct_bit_coverage
	Syntax
	Description
	See also
	Examples

	ovl_xproduct_value_coverage
	Syntax
	Description
	Examples

	ovl_zero_one_hot
	Syntax
	Description
	Notes
	See also
	Examples

	Chapter 4 OVL Macros
	Global Macros
	Internal Global Macros

	Macros Common to All Assertions
	Macros for Specific Assertions

	Chapter 5 OVL Backward Compatibility
	V2.3
	assert_fifo_index and ovl_fifo_index

