Microblaze MCS Tutorial

Jim Duckworth, WPI

Microblaze MCS Tutorial for Xilinx ISE 14.2

Rev 3 (December 1, 2012) — added UART examples

This tutorial shows how to add a Microblaze MCS embedded processor to a project including adding a
simple C program. The design was targeted to a Spartan 6 FPGA (on a Nexys3 board) but the steps

should be general enough to work on other platforms.

Create a new project and then select Project => New Source, and select CoreGen, and then select
Microblaze MCS under Embedded Processing:

SelectIP

Create Coregen or Architecture Wizard IP Core.

View by Function View by Name

===)

Name &

[_:j' A Infrastructure
i)~/ BaselP

|~ Basic Elements

|~ Communication & Networking
l_}__)' Debug & Verification
G| =7 Digital Signal Precessing
E}['{? Embedded Processing
. @7 Al Infrastructure

-7 Processor

8 °% MicroBlaze MCS

|~ FPGA Features and Design
|~ Math Functions
-7 Memories & Storage Elemnents
|~ Standard Bus Interfaces
G#-|=7 Video & Image Processing

Version AXI4 AXH4-Stream AXH-Lite

Status

Preduction

License Vendor Library

Search IP Catalog: |

[cear

All IP versions

Cnly IP compatible with chesen part

Note: the file name you provide in the New Source Dialog box will determine the component name. In
the screen shots below this is ‘microblaze_mcs’. Later in this tutorial you will need the name you

provided.

Microblaze MCS Tutorial Jim Duckworth, WPI

“ MicroBlaze MCS =]]

View Documents

1P Symbal a8 x

logiC-PE MicroBlaze MCS
mcs | uart | P | e [cPo | cr | mterrupts |

Component Name |m|crnh|azefmc5 | Mich’aze

Micro Controller System

xilinx.com:ip:microblaze_mes:1.2

Instance Hierarchical De;

n Name mcs_0 \

Input Clock Frequency [MHz) 100.0
Memory Size [16K8 -
Enable 10 Bus

Enable Debug Support
Enable MicroBlaze Trace Bus

FlanAhead & Project Navigator Information | Software Development Information

After generating the core, there are a few steps necessary in PlanAhead or Project Navigator, mainly to support
software development.

* Before implementing the design, information about the generated BMM file describing the memory of the
MicroBlaze MCS core must be included in the tool. The script microblaze_mcs_setup.tcl is available to
do this, using source ip-directory/microblaze mes_setup.tcl in the Td console.

* Before generating the bitstream, tool options should be updated to include the software program for the
MicroBlaze MCS core. This can be achieved by invoking microblaze mes_data2mem in the Tcl Console,
with the software program ELF file as parameter.

See the datasheet for more information and examples, including how to handle more than one MicroBlaze MCS
core in a project.

[Generate] I Cancel] [Help

e Set the Input Clock Frequency to match your Nexys board (50 or 100MHz)

® Increase the memory size from 8KB to 16KB

* Note the Instance Hierarchical Design Name ‘mcs_0’ (we will need this later)

e Select the UART Tab and enable the receiver and transmitter and select your baud rate:

View Documents

1P Symbol & X

| logiCRE MicroBlaze MCS

| mcs | uarT | Fm | P | cPo | aPr | mterrupts |

xilinx.com:ip:microblaze_mes:1.1

Universal Asynchronous Receiver Transmitter

Enable Receiver
Enable Transmittg
Define Baud Rate
Number of Data Bits
Use Parity

Even or Odd Parity [Even v-‘
Implement Receive Interrupt

Implement Transmit Interrupt
Implement Error Interrupt]

Universal Asynchronous Receiver Transmitter Information

The Universal Asynchronous Receiver Transmitter (UART) provides a standard full duplex serial communication
channel.

* Receiver and transmitter can be individually enabled to save implementation resources.
* The serial protocal is defined using baud rate, number of data bits, and parity.
* Interrupts can be issued to implement interrupt driven serial 1/0.

The UART is automatically connected to stdout and stdin in software by the 10 Module driver, which makes it
possible to use the normal C/C++ standard IO functionality.

Generate | [Cancel | [Help

Microblaze MCS Tutorial Jim Duckworth, WPI

Add an 8-bit GPO:

%] MicroBlaze

View Documents
IP Symbol 8 X

' lagiCiRE MicroBlaze MCS

| mcs | uart | Fr | P | GPo | GPr | mnterrupts |

xilinx.com:ip:microblaze_mes:1.1

General Purpesg Qutput 1

Initial Valve of GPO 000000000

General Purpose Output 2
Use GFO
Number of Bits 32 - |

Initial Value of GPO | 0x00000000

General Purpose Output 3
Use GPO
Number of Bits |32 o |

Initial Value of GPO | 0x00000000

General Purpose Output 4
Use GPO
Number of Bits 32 hd |

Initial Value of GPO | 0x00000000

Generate H Cancel H Help

Add an 8-bit GPI:

%] MicroBlaze MCS 4 L= [

View Documents
IP Symbol & x

| lagiC IPE MicroBlaze MCS

mes [vart | Fr [P | GPo | GPI | nterrupts |

xilinx.com:ip:microblaze_mcs:1.2

General Purpose Inpin

Use GPT

Number of Bits |32 hd

GPI Interrupt []

General Purpose Input 3

Use GPT

Number of Bits |32 ~

GPI Interrupt []

General Purpose Input 4
Use GPI

Humber of Bits |32 Z

GFI Interrupt []

[Generate | [gancel | [belp

Click on Generate — wait a few minutes (approx. 5 minutes) for the core to be created.

Microblaze MCS Tutorial Jim Duckworth, WPI

Select the microblaze core in the Hierarchy Pane then expand the CORE Generator in the Processes pane
and select the “View HDL Instantiation Template”:

r
& ISE Project Navigator (P.28xd) - CAECE3820\mes\mes.xise - [microblaze_mcs.veo] BN
File Edit View Project Source Process Tools Window Layout Help [= =)=
DAL 4DEX|wa| ~frpn ~RIE RETM=LRiPELQ
Design 08 x| T4 =
[} | View: © {5} Implementation 9 Simuiation E 55 // The following must be inserted into your Verilog file for this
H " fram 56 // core to be instantiated. Change the instance name and port connecti
& Leisad 57 // (in parentheses) Co your own signal names.
&l mes w 58
— | B £ xchsixi6-2csg32¢ 58 f/mmmmmmmmmmo Begin Cut here for INSTANTIATION Template —-—// INST_TAG
i3 ~ 4 microblaze_mes microblaze_mesixco) 60 microblaze mcs your_instance name (
= @ 61 .Clk(Clk), // input Clk
g = 62 -Reset (Reset), // input Reset
A &3 .UART_Rx (URRT_Rx), // input UBRT Rx
) | .URRT_TxX (URRT_Tx), // output UART_Tx
¥ &5 .GPO1 (GPO1), // output [7 : 0] GPOl
» (13 .GPI1(GPI1), // input [7 : 0] GBIl
#» | B2 NoProcesses Running % &7 -GPI1_Interrupt (GPI1_Interrupt) // output GPIl_Interrupt
3y, | Processes: microblaze_mes all %2 L
* = (€] 69 // INST_TAG END ——--—- End INSTANTIATION Template —-———-—-— T
| =¥ ., CORE Generator e
— i | Manage Cores = 71 // You must compile the wrapper file microblaze mcs.v when simulating
% e Core 72 // the core, microblaze mcs. When compiling the wrapper file, be sure |5
= pets o Latest Versiol 73 // reference the XilinxCoreLib Verilog simulation library. For detaile
o =] iew HDL Functional Model 74 // instructions, please refer to the "CORE Generator Help"”.
View HDL Instantiation Template 75]
Tm G
|| = sert| e\pesen [Fies [Libranasy E Ct e [<]]
Consale 08 x
Started : "Launching ISE Text Editor to view microblaze mcs.veo".
< i] v
Consale |° Errors |J§ Warnings |:§i Find in Files Results
LnlColl Verilog

Create a new top level with connections to the clock and peripherals on the Nexys board and then
instantiate the microblaze core by using the instantiation template provided.

Note: you may see a GPI1_Interrupt signal (if so you can ignore this port)

Important: Use the component name you used and the instance name ‘mcs_0’ mentioned earlier. In this
example the component name is ‘microblaze_mcs’.

ISE Text Editor (P.28xd) - [mcs_topa] ESEER™

File Edit View Window Layout Help [=]=][x]
E[=2 -
= 22 module mce_top(
— 23 input clk_fpga,

24 input reset,

25 input rx,
= 26 output tx,

27 input [7:0] switch,

28 output [7:0] leds

microblaze mcs mcs O

(

o
A
s
Clkiclk fpga), 7 Clk
A .Reset (reset), Iy ut Reset
4 TOARF—E: input UART Rx
e 35 .UART T=x(tx=), [/ output UART Tx
(€] 36 .GPO1 (leds), // output [7 : 0] GPO1 = ||
O 37 .GPI1 (switch}, /f input [7 : 0] GPI1 I
— 38 .GFI1_Interrupt () /{ output GPFI1 Interrupt
3o):
40
41 endmodule ™ |
42 bl | |

mcs_top.v m

Microblaze MCS Tutorial Jim Duckworth, WPI

Synthesize your project and make sure there are no warnings or errors.

Note: If you are working with the Nexys2 board (with the older Spartan 3E) you will see three warning
messages similar to the following:

Analyzing top module <mcs>.

WARNING:Xst:2211 - "ipcore_dir/microblaze_mcs.v" line 36: Instantiating black
box module <microblaze_mcs>.

Module <mcs> is correct for synthesis.

WARNING:Xst:616 — Invalid property "SYN_BLACK_BOX 1": Did not attach to mcs_0.
WARNING:Xst:616 — Invalid property "SYN_NOPRUNE 1": Did not attach to mcs_0O.

You can ignore these warnings but notice you should still manage to synthesize successfully:

Process "Synthesize - XST" completed successfully

¢ Create Merged BMM and Update Tool to Use BMM:

e |fthe Tcl Console is not visible, select View -> Panels -> Tcl Console in the menu.
® Inthe Tcl Console type the following TCL script command:

source ipcore_dir/microblaze_mcs_setup.tcl

You should see:

Command>source ipcore_dir/microblaze_mcs_setup.tcl

microblaze_mcs_setup: Found 1 MicroBlaze MCS core.

microblaze_mcs_setup: Added "-bm" option for "microblaze.bmm" to ngdbuild
command line options.

microblaze_mcs_setup: Done.

Now Implement your design.

There will be 45 warnings about unconnected Microblaze output pins —ignore these:

WARNING:NgdBuild:440 - FF primitive
'mcs_0/UO0/microblaze_I/MicroBlaze_Core_I/Area.Decode_I/Using_FPGA.Ext_NM_BRK_
FDRSE' has unconnected output pin

Microblaze MCS Tutorial Jim Duckworth, WPI

The next steps are related to the software development using SDK (Software Development Kit)

Start SDK and select the Workspace to match where your design is stored (for example the project is
located in this example at C:\ece3829\mcs3):

Note: when you add the ‘\workspace’ to your project path this new folder will be automatically created.

Select a workspace

Hilinx DK stores your projects in a folder called a workspace,
Choose a workspace folder to use for this session.

ﬂorkjpa =l ecedB 2 mesPworkspace - Browse... l

[] Use this as the default and do not ask again

ok || Cancel

Click OK

SDK Starts:

@ oo e =e)
EEW:::": - Refactor Navigate Search Run Project Xi Window _ He = —
@ Xilinx SDK I

New to SDK?

Select File => New => Xilinx Hardware Platform Specification

Browse to select the xml project created by ISE (will be in ipcore_dir):

Microblaze MCS Tutorial

Jim Duckworth, WPI

MNew Hardware Project

New Hardware Project

Create a new Hardware Project.

Project name: hw_platform_0

Uze default location

Locatiomn:

Chece3829mes3hworkspace\hw_platform_0 Browse...

Choose file systern: | default

Provide the path to the hardware specification file exported from Project Navigator or XPS.
This file usually resides in SDE/SDE_Export/hw folder relative to the XP5S project location.
The specificatiomfite and associated bitstream contentwi ted-into the workspace.

Browse..

< Checed82Pmeshipcore_dirvmicroblaze_mes_sdk.xml

: am and BMM Files

[7] Choose one of the existing templates

Available hardware platform templates;

ZCT02_hw_platform

® Finish] [Cancel

Click Finish

Select File => New => Xilinx Board Support Package to create new Board Support Package (BSP):

Microblaze MCS Tutorial

Jim Duckworth, WPI

-
Mew Board Support Package Project

Xilinx Board Support Package Project
Create a Board Support Package.

Location:

Project name: standalnne_bsp_0|

Use default location
Chece3829mesFworkspace'\standalone_bsp 0

Choose file system: | default

Hardware Platform: | hw_platform_0 -

CPU: | microblaze_mcs

xilkernel

lrStandanne is a simple, low-level software layer. It provides access to basic
|processor features such as caches, interrupts and exceptions as well as the
|basic features of a hosted environment, such as standard input and output,
|profiling, abort and exit.

[Finish] [Cancel

Click Finish

@

r N
Board Support Package Settings [
Board Support Package Settings
Control various settings of your Board Support Package.
“ iahiss standalone_bsp_0
standalone
4 drivers 0S5Type: standalone Standalone is a simple, low-level software layer. It provides access to basic processor features such as
e caches, interrupts and exceptions as well as the basic features of a hosted environment, such as standard
P 05 Version; 305.a «

input and output, profiling, abort and exit.

Hardware Specification: Clece3829\microblaze_example\workspace\labd\system.xml
Processor: microblaze

Check the box next to the libraries you want included in your Board Support Package.You can configure the library in the navigator on the left.

MName Wersion Description
[wip140 1.01.a wiIP TCP/IP Stack library: lwIP v1.4.0, Xilinx adapter v...
[F] xilfatfs 1.00.a Provides read/write routines to access files stored on...
[itflash 301.a Xilinx Flash library for Intel/AMD CFI compliant paral...
[xilisf 2.04.2 Xilinx In-system and Serial Flash Library
[T] xilmfs 1.00.a Xilinx Memery File System

OK] [Cancel

Click OK

You should eventually see in the SDK Console Window:

Microblaze MCS Tutorial Jim Duckworth, WPI

"Compiling iomodule"

"Compiling cpu”

Running execs_generate.
'Finished building libraries'

Now create a new C program:

File => New => Xilinx C Project and select Hello World

Mew Xilinx C Project

Create a managed make application project. Choose from one of the sample applications. @

Project name: hello_world_0

Use default location
Location: | Chece3829\mcs3\workspace\hello_world 0 Browse...

U Choose file systern: | default I

Hardware Platform: | hw_platform_0

Proceszor: microblaze_mcs

Software Platform: @ Standalone () Linux

Dhrystone Description

Empty Application Let's say 'Hello World' in C. -
Hello World

IwIP Echo Server

Memaory Tests

Peripheral Tests

SREC Bootloader

Kilkernel POSIX Threads Demo
Zynq FSBL

@ < Back Next > Finish

Click Next, then Finish

Hello_world_0.elf is produced (Executable and Linkable Format):

ELF file : hello_world_ 0.elf
elfcheck passed.
Finished building: hello_world_0O.elf.elfcheck

Microblaze MCS Tutorial Jim Duckworth, WPI

Back in ISE Project Navigator add a UCF file to match your Nexys board (include a period timing
constraint).

Create a bit file by running the Generate Programming File

Next we need to add another TCL command:

Update Tool to Use Software, Update Bitstream with Software and Generate Simulation Files:
Type the following command in the Tcl Console:

microblaze_mcs_data2mem workspace/sdk-program/Debug/sdk-program.elf
Where the ‘sdk-program’ is replaced by hello_world_0 in this example (two places).

You should see:

Command>microblaze_mcs_data2mem workspace/hello_world_0/debug/hello_world_0.elf
microblaze_mcs_dataZ2mem: Found 1 MicroBlaze MCS core.

microblaze_mcs_data2mem: Using "hello_world_0.elf" for microblaze_mcs
microblaze_mcs_data2mem: Existing bitgen "-bd" options unchanged.
microblaze_mcs_data2mem: Running "dataZmemn" to create simulation files.
microblaze_mcs_data2mem: Running "dataZmem" to update bitstream with software.
microblaze_mcs_dataZmem: Done.

Connect the board to a PC using an RS$232 cable (Nexys2) or a USB cable (Nexys3) .

Using the Digilent Adept tool you can now download the bit file from the main project directory to your
board.

You should see “Hello World” appear on a serial communications link such as Putty or a Hyperterminal
window:

i COM10_115K - HyperTerminal o[|

File Edit Wiew Call Transfer Help
N =3 05

L |

Hello Yorld

I

Connected 0:02:07

Auto detect 115200 8-N-1

10

Microblaze MCS Tutorial

Jim Duckworth, WPI

Extra: Modifying the C Program.

In the Xilinx XDK program, expand the src folder from the C project ,and double-click on the

hello world.c file. You can see the C statements:

Cf+ - hello_world_0/sre

—
File Edit Source Refactor Navigate Search Run Project Xilinx Tools Window Help
i 7 | BN @ d-S8- -0 i /-8 i%-0-%-:® 9~ g i [FE cree]
] v i v %0 (pow o v
[Project Explorer 52 = O ||l systemaml ﬁ_ﬂh system.mss ﬁ-ﬂh system.mss (@ helloworld.c £ = Mw»l T H|Owex~_ =0
=] % = g Tttt o e i - = s AT AT
=% hello_world 0 i T -
. F
3z, Binaries ; E'S T Q
Tl . €Xilinx
= Debug * helloworld.c: simple test application o stdioh
p == * o platform
= src 2 ++ print{che
@
{ [6 helloworld.c R — B fﬂain(]' Xilinx SDK is based ¢
- #include "platform.h"
le| platform.c E New to SDK?
L5 plat.form.h void print (char *str):
T Iscript.d You can get started b
[hello_world_bsp_0 int main(} Or watch a 5 minute |
2] systemn_bd.bmm init_platform{):
|53 systemaml =
@ standalone_bsp_0 print ("Hello World\n\r"}; Documentatior
i BSP Documentation
(= microblaze_mcs cleanup_platform(): = Getting Starte
2] libgen.log » EDK Concept
[libgen.options return 0; + Migrating from
[Makefile i B « Frequently as
|y system.mss = —
9! il | «Lm] ' | Known Issues
[Z! Problems | ¥ Tasks | El Console £3 =] Propaﬁieq@Tarminan &4 | LH BA i:.-"|| B~ 0 | 4
| remge g e =« Known issue:
C-Build [hello_world_0] 2
Command Line: elfcheck -hw ../../hw_platform 0/system.xml -pe microblaze mcs ~ * Kilinx Answer.
hello world 0.elf .
Questions, Co
ELF file : hello_world 0.elf
‘elfcheck passed. # Xilinx Forums
Finished building: hello_world 0.elf.elfcheck » Xilinx Technic
o L s
~||l | +
e
n}

Modify the statements as required (for example change the “Hello World” to add your name) and then

press save. A new ELF file is automatically generated.

Back in ISE, Rerun the Generate Programming File process to create an updated bit file with the new C

program added (you do not need to redo any of the previous synthesis or implementation steps).

Download the new bit file to the board and verify the new changes.

11

Microblaze MCS Tutorial

Jim Duckworth, WPI

Extra: Accessing the GPIO.

To access GPI/GPO use XIOModule DiscreteRead and XIOModule DiscreteWrite with channel

1-4 for GPI1-4 and GPO1-4. For example:

#include <stdio.h>

#include "platform.h"

#include "xparameters.h" // add
#include "xiomodule.h" // add

void print (char *str);

int main ()

{
init_platform();

u32 data;
XIOModule gpi;
XIOModule gpo;

print ("Reading switches and writing to LED port\n\r");

data = XIOModule_Initialize (&gpi,
data = XIOModule_Start (&gpi);
data = XIOModule_Initialize (&gpo,
data = XIOModule_Start (&gpo);
while (1)
{

data = XIOModule_DiscreteRead (

XIOModule_DiscreteWrite (&gpo,
}

cleanup_platform();

return 0;

XPAR_IOMODULE_O_DEVICE_ID) ;

XPAR_IOMODULE_O_DEVICE_ID) ;

// read switches
// turn on LEDs

(channel 1)
(channel 1)

&gpi, 1);
1, data);

You can find the APl documentation in the SDK Project Explorer, under <BSP Name>/BSP

Documentation/iomodule_v1_00_a. Click on "Files

, "xiomodule.h" for a list of functions.

12

Microblaze MCS Tutorial Jim Duckworth, WPI

Extra: Modifying the C Program to use xil_printf

The usual printf function is too large to fit into the small memory of the Microblaze but you can use the
Xilinx light-weight version of printf called xil_printf.

Here is an example of its use in my C program:

counter = 1234,
xil_printf("The counter value is %d in decimal and %x in hex.", counter, counter);

And this is what is displayed in hyperterminal:
The counter value is 1234 in decimal and 4D2 in hex.

xil_printf is defined in 'stdio.h'.

However | just found out that in Xilinx version 14.1 the declaration was missing in this header file and
you will see an 'implicit function declaration' warning. It did seem to link without errors and run OK.
(This seems to be corrected in Version 14.2)

But if you see the warning and want to fix it on your own system, right click on the stdio.h at the top of
your C program (#include <stdio.h>) and select 'Open Declaration’

Add this to line 230

void _EXFUN(xil_printf, (const char*, ...));

so the nearby lines look like:

int _EXFUN(remove, (const char *));

int _EXFUN(rename, (const char *, const char *));
void _EXFUN(xil_printf, (const char*, ...));

#endif

Assembler instructions:

If you want to see the assembler instructions that are created from your C program look in the
hello_world => Debug => Src folder (top left pane in the Xilinx SDK application) and double-click on the
hello_world_0.elf file.

If you scroll down this file until you find 'int main()' you will see your C instructions and the
corresponding assembler and machine code values. Interesting stuff!

13

Microblaze MCS Tutorial Jim Duckworth, WPI

Extra: Accessing the GPIO, using xil_printf, and using the UART.

#include <stdio.h>

#include "platform.h"

#include "xparameters.h" // add
#include "xiomodule.h" // add

void print (char *str);

int

{

main ()
init_platform();

u32 data;
XIOModule iomodule; // iomodule variable for gpi, gpo, and uart

u8 msg[1l5] = "This is a test";// buffer for sending message using XIOModule_Send
u8 rx_buf[10]; // receive buffer using XIOModule_Recv

u32 counter;
// example using xil_printf

counter = 1234;
x1l_printf ("The counter value is %d in decimal and %x in hex\n\r", counter,

counter) ;

print ("Read switches, write to LED port, and UART send and receive chars\n\r");

// Initialize module to obtain base address
data = XIOModule_Initialize(&iomodule, XPAR_IOMODULE_O_DEVICE_ID);
data = XIOModule_Start (&iomodule) ;

// Need to call CfgInitialize to use UART Send and Recv functions
// int XIOModule_CfgInitialize (XIOModule *InstancePtr, XIOModule_Config *Config,

u32 EffectiveAddr);

// note config and effective address arguments are not used

data = XIOModule_CfgInitialize(&iomodule, NULL, 1);

x1l_printf ("CFInitialize returned (0 = success) %d\n\r", data);

// Send 12 characters using Send

// Send is non-blocking so must be called in a loop, may return without sending a
character

// unsigned int XIOModule_Send (XIOModule *InstancePtr, u8 *DataBufferPtr, unsigned
int NumBytes);

const int count = 14;

int index = 0;

while (index < count) {

data = XIOModule_Send(&iomodule, &msg[index], count - index);
index += data;

}

xil_printf ("\n\rThe number of bytes sent was %d\n\r", index);

// Another way to send individual characters

outbyte ('X");

outbyte (0x37); // number '7'

outbyte ('Z2");

outbyte('\n'); // line feed

// Receive a character and store in rx_buf

// unsigned int XIOModule_Recv (XIOModule *InstancePtr, u8 *DataBufferPtr, unsigned
int NumBytes);

while

((data = XIOModule_Recv (&iomodule, rx_buf, 1)) == 0);

14

Microblaze MCS Tutorial Jim Duckworth, WPI

x1l_printf ("The number of bytes received was %d\n\r", data);
x1l_printf ("Recv: The received char was %c\n\r", rx_buf[0]);

// Another way to receive a single character
rx_buf[0] = inbyte();
x1il_printf ("inbyte: The received char was %$c\n\r", rx_buf[0]);

while (1)
{
//data = XIOModule_DiscreteRead (&iomodule, 1); // read switches (channel

data = XIOModule_DiscreteRead (&iomodule, 2); // read push (channel 2)
XIOModule_DiscreteWrite (&iomodule, 1, data); // turn on LEDs (channel 1)
}

cleanup_platform();

return 0;

£ COM3 - PuTTY = | B |t

15

