search % Login & Registrarse «§ Shar

RocketBoards.org

Go to... v

Cyclone V SoC Secure Boot Example

B8 27 Jan 2022 - 09:57 | M Version 18 | & KrisChaplin | @ ecdsa secure boot aes

Board: DE10-Nano Development Board

State: running

Miembros: KrisChaplin

Introduction

This document describes mechanisms and implementation techniques to perform an authenticated software
boot with encrypted hardware design on Intel Cyclone V SoC and Arria V SoC devices. The files for the
hardware and software implementation are hardware-13-10-17.tar.gz and software-13-10-17b.tar.gz

Background

In order to securely boot a processor, it is required that each step of the boot process be trusted. This means
that mechanisms are needed in order to ensure that from reset up to the running of the final application, only
authorized software is able to be run.

Intel 28nm SoC FPGA devices do not have direct authentication support in the processor Boot ROM - this
feature is available in later SoC FPGA families. However, with the implemetation of three features of the
Cyclone V SoC and Arria V SoC devices, it is possible to control the boot process in such a way as to only
allow authorized software to run.

Securing the boot flow

There are four steps that are required in Cyclone V SoC and Arria V SoC in order to harden the device against
unauthorized software being run.

Step 1: Forcing FPGA images to be encrypted

A feature of the 28nm FPGA and SoC devices is that they can be programmed via one-time-programmable
fuses to accept and decrypt FPGA configuration bitstreams using a shared secret. An additional fuse can
restrict the FPGA to only accept encrypted bitstreams and fail to load plain text programming files. These
mechanisms aim to allow the hardware developer to protect their design from being cloned into unauthorized
hardware as well as optionally prevent unauthorized images from being run. Details on how to encrypt and
program the fuses for 28nm FPGAs can be found in Application Note AN556.

By programming the FPGA to only accept encrypted bitstreams, the user can mandate that only
programming files they have encrypted can used. By configuring the HPS to boot from the FPGA with the
BSEL pins, the user can cause the Boot ROM to jump to preloader code within the FPGA on startup. Initialized
FPGA memory connected to the HPS2FPGA bridge can only be executed if part of an FPGA image encrypted
with the correct key, hence the preloader code is secured against plaintext programming files overriding the
code to be executed. This preloader software, when protected forms the basis of trust of the running
software.

Step 2: Authenticating next stage boot

In a standard SoC boot environment, the preloader has the task of enabling HPS 1/0 pins, calibrating external
DDR memory and then loading the next stage payload into DDR. This payload is usually defined as the boot
loader. In a secure boot system, the preloader has an additional task - namely to authenticate the next stage
of boot, and ensure that only code that is deemed as authenticated is allowed to run. This authentication
technique should only rely on keys, or key hashes stored and initialized within the FPGA, as only this region of
code has been protected by the FPGA bitstream encryption.

Step 3: Authenticating and decrypting Operating System and applications

The final stage of the boot flow once a trusted, authenticated boot loader is run is to authenticate and
optionally decrypt payload for the Operating system, device tree and ramdisk images. The flow for this is not
specific to 28nm SoC FPGA devices, and so is not covered in this application note. The key or key hash for
authentication and decryption algorithms as well as the algorithm used for the crypto functions must all be
contained within the application payload that is authenticated by the preloader.

Step 4: Hardening the SoC FPGA from board-level tampering

It should be noted that it is not possible with 28nm SoC FPGAs to 100% safeguard against unauthorised
software being run if physically attacked by a user with unlimited resources at their disposal. It is however
possible to harden the device against two specific vectors that may be deemed as potential entry points.

Step 4a: Disabling access to the processor JTAG interface

It is possible for the preloader early in the boot process to physically disable the JTAG interface of the
processor system. In doing so, it will not be possible for a user to attach a JTAG debugger to the target and
use it to interfere with the program flow or bypass the authentication mechanisms. Disabling JTAG access
can be achieved from the processor with a trivial register write to a configuration register. This mechanism
can be reversed by trusted software at runtime if needed.

Step 4b: Force the processor to execute trusted code from FPGA on-chip memory
The Boot ROM software embedded into 28nm SOC FPGA devices will typically sample the BSEL external pins
in order to determine which boot media to load the next stage boot from. This next stage boot software is

commonly called the "preloader” as it is code that is executed prior to the boot loader. The preloader code can =
be located in the following devices, which is selected using the BSEL pins:

FPGA - Via the HPS2FPGA Bridge

NAND Flash

SD/MMC

QSPI Flash

For this application, the BSEL pins would be set to "FPGA - Via the HPS2FPGA Bridge". However, the BSEL
pins on the SoC FPGA could potentially be changed by a malicious user with physical board access. This
could be achieved by removing resistors or overdriving the voltage of the BSEL pins on the PCB. This would
allow the attacker to prevent the correct booting of the processor system, thus potentially allowing access to
the device via JTAG. Mechanisms exist within the FPGA to override the BSEL external pins and for the
processor to ignore them in favour of FPGA-driven signals. Once the FPGA is configured, the processor can
be forced to boot from the FPGA on-chip memory, regardless of external PCB settings for the BSEL pins.

Example system — Extending the minimal preloader to
authenticate next stage payload

In this example application, the Minimal Preloader (MPL) has been extended to include support for
authentication using the ECDSA Algorithm. This is achieved by using libraries from mbed TLS, which are
available under open source or commercial licenses.

Hardware Architecture

From a hardware perspective there are three IP blocks that need to be included in any Cyclone V SoC or Arria
V SoC Qsys project in order to support an authenticated boot.

1. On-chip FPGA memory of at least 64KB

The basis of the secure boot flow is to trust the executable code that is running on the target, right from the
first stages of the preloader. As determined earlier in this document, the mechanism to achieve this is to
initialize FPGA RAM contents with the preloader code and force the FPGA to only accept correctly encrypted
bit streams. The on-chip memory should be placed at the base address of the HPS2FPGA bridge, giving an
effective processor base address of 0xC0000000.

2. Memory controller for access to off-chip non-volatile memory

The payload for the next stage of boot will likely be held off-chip. A memory controller is required in order for
the preloader with authentication to copy the data into DDR memory for authentication and boot. In the
example application, an Altera Serial Flash Controller IP is used to interface to an EPCS or EPCQ flash
configuration device.

3. Powerup reset IP

On configuration of the FPGA, it is important to reset the processor system, to ensure that the forced BSEL
values that are configured are sampled by the Boot ROM. This is achieved with an IP that provides a power
up reset. This IP is available in the example system, and is called "Powerup delayed reset”.

Additional considerations

At time of publishing, it is not possible to force the BSEL signals internally within the Qsys tool. The Qsys tool
generates a top level HDL wrapper file, and it is this file that needs to be changed in order to force the BSEL

values. In the example project, this is automated using a TCL script file that is run prior to implementation.

Generation of the hardware project

This example has been built for the Terasic de10-nano board, and was generated in the Quartus 16.1.2 Build
203 tool. It has been tested on Quartus Prime 16.1.2 Build 203 and Quartus Prime 17.0.2.Build 602

1. Extract the hardware zip file hardware-13-10-17.tar.gz to a working directory. This will result in a root
folder "hardware” that contains all the required hardware project files.

2. Open the Quartus QPF project file "atlas_secureboot.qpf” in the Quartus I1 16.1.2 GUI.

3. Open Tools—Qsys to open the Qsys GUI, and select "processor_system.qsys" in order to open the
processor project.

4. After reviewing the sample hardware system, click on "Generate HDL..." and the "Generate” in order to
build the hardware Qsys subsystem.

5. After generation has been completed successfully, close the Qsys GUI and return to the main Quartus
Il window.

6. In an embedded command shell, navigate to the hardware root directory and run the following
command to force the BSEL signals as needed:
patch -p0 < csel_bsel.patch
The command should respond "Hunk #1 succeeded"”

7. Implement the hardware design in Quartus Prime by selecting Processing—Start Compilation

Generation of the software application files

1. Generation of the secure boot application

1. Extract the software zipfile software-13-10-17b.tar.gz into the same directory that the hardware was
extracted.
After extraction of the software zip file, you will have the following folders:
o software/bin2hex
This software is used to make a correctly formatted hex file for initialisation of the secure boot
bootloader into Qsys on-chip memory.
o software/keys
This is the location where your private and public keys are held. On the first run of Make, the
keys are generated here, and a library is made with the public key in it for inclusion into the
secure boot software executable.

o software/mbedssl-library
This makefile compiles the mbedssl source code and makes a library of the functions required
for the secure boot library.

o software/secure_boot
This directory contains the main minimal preloader application along with the extensions to

authenticate the next stage of boot.

o software/spl_bsp
This empty directory will contain the output from the BSP generation flow.

o software/uboot_payload
This directory will contain the payload for signed next-stage boot loader images to store in
external flash.

2. In an embedded command shell, change to the software/bin2hex directory and execute "make” to build
the bin2hex tool.

3. In an embedded command shell, change to the software/keys directory and execute "make” to
generate private/public keys for signing the final software images.

4. In an embedded command shell, change to the software/mbedssl-library directory and exeute "make”
to build a library of crypto functions that are used to build the main secure boot executable.
In the case that running make on mbedssl-library fails, it may be that wget cannot access the internet
directly. To resolve this issue, manually download the required mbedssl source file from the link in the
error and place it in the mbedssl-library directory. For example, if the error message showed as follows:

—-2017-10-05 13:27:29- (try:20) https://tls.mbed.org/download/mbedtls-2.4.0-apache.tgz
Connecting to tls.mbed.org (tls.mbed.org)|79.170.91.36|:443... failed: Connection timed out.
Giving up.

make: * [mbedtls-2.4.0-apache.tgz] Error 4

Then manually download https://tls.mbed.org/download/mbedtls-2.4.0-apache.tgz with an internet-
connected machine/browser and place in the mbedssl-library directory. Once copied, run make to
continue the build flow.

5. Generate the board-specific initialization files. The minimal preloader sources need to be configured to
correctly configure the pin multiplexing and DDR interfaces. This is achieved by generating preloader
sources from the BSP generator.

1. From an embedded command shell, execute "bsp-editor” to launch the preloader generator.

2. Open "File—New HPS BSP" and point the preloader settings directory at
../hardware/hps_isw_handoff/processor_system_hps_0 directory. Please note that this
directory will only exist after hardware generation has been completed successfully.

3. Uncheck "use default locations” and select the BSP target directory to be the software/spl_bsp
directory that was created when you extracted the software source. When completed click on
ok, and acknowledge that the directory will be overwritten.

= Mew BSP

Hardware
Preloader settings directory: | (C:'backup'sb_appnotethardwarehps_isw_handoff\processor_system_hps_0

Software
Operating system: | U-Boot 5PL Preloader {Cydone V/... Version: :::::Iefault e
[] Use default locations
BSP target directory; 1C:__'nj?a_d_cup_‘n,s_b__qppnnte‘!,su:_nftware‘_l,spl__lqsp E::
BSP Settings File name: -;C_: backup 'lsb__ap_lpnnte 'ls_n_f_t_l.-\'a_re_'!spl__l:_us"p\setﬁrjg_s_. b_5|:_|

Enable Settings File relative paths

[] Enable Additional Td script

Additional Td script:

ok || cancl

4. In the spl.boot section, disable BOOT_FROM_SDMMC and enable BOOT_FROM_RAM.
spl.boot

[| BOOT_FROM_QSFI

[] BOOT_FROM_SDMMC
[| BOOT_FROM_NAND
BOOT_FROM_RAM

5. In the advanced section, disable spl.boot WATCHDOG_ENABLE
spl.boot

[] WATCHDOG_ENABLE

6. Click generate, and then exit the preloader generator GUL.
6. Now that the keys, TLS library, and preloader settings have been generated, the secure boot executable
can be built. Do this by changing to the software/secure_boot directory and running "make”". This
completes generation of the secure boot authentication software.

2. Generation and signing of the next stage boot loader

1. Generate the payload executable. In our case this will be u-boot, so that will be generated next. In an
embedded command shell, move to the software/spl_bsp directory and execute "make uboot” to

generate a u-boot executable file.
2. Sign and package the payload executable ready for storing in flash memory by changing to the
software/uboot_payload directory and executing "./encrypt_payload.sh”

3. Preparing the system for boot

The on-chip memory of the FPGA needs to be initialized with the secure boot executable code. To do this,

perform the following steps:

1. With the hardware project open in Quartus Prime, select Processing—Update Memory initialization file =
to update the Quartus database with the new memory file contents

2. In Quartus Prime, select Processing—Start—Start Assembler to create a new programming file
including the preloader in the on-chip RAM.

After following the steps listed, you should have all the files needed to execute a secure boot environment.
The next and final process is to package these files for your specific flash device and program it.

4. Preparing files for flash programming

The quartus_cpf convert programming files executable will package a programming file and multiple data
files ready for programming.

1. From an embedded command shell, move into the hardware directory, and run the following command
to build the jic file ready for programming into the EPCS flash device:
quartus_cpf --convert output_files/convert.cof

When completed, this command will create a file "secure_boot_flash_image.jic" containing
® The programming file for the FPGA including initialized on-chip memory

* A header that contains the size and signature of the payload
e The payload boot loader image

U-boot payload

Ox71000000

U-boot authentication header
signed with private key

o _

FPGA 50F programming file
including secure boot preloader
and public key

Ox 00000000
EPCO Memaory Layout

5. Programming the flash memory on the DE-10 Nano board

1. Ensure that the SW10 Dipswitches are set to 0,1,0,0,1,1 to select the Active serial mode to be selected.

2. Power the board, and with the JTAG USB Cable connected to J13, open the Quartus Prime programmer
from Quartus Prime, by clicking on tools—programmer.
3. In Quartus Prime programmer, click on Hardware Setup, and select the DE-SOC usb cable as the

currently selected hardware, before clicking on close
4. In the main Quartus Prime programmer window, click on Auto Detect to auto-detect the JTAG chain,

which should contain two devices - the SOCVHPS and the 5CSEBAG6 device

TDI

"

SOCVHPS SCSEBAG
TDO

r 3

5. In the top list of devices, double-click on the file column next to the 5CSEBAG6 device. In the resulting
file selection gui, select "secure_boot_flash_image.jic" from the hardware directory of the project.
6. An EPCS128 device will appear in the list. Select this device, and check the box to Program/Configure

the device.
File Device Checksum Usercode Prograrn
Configure
<nones SOCVHPS 00000000 <nonex
Factory default enhanc... S5CSEBAG 00C645585 DOCE4585

C:fbackup/sb app.. EPC5128 S4FCCT0B

| EPCs1ZB i
i i
|_INESEEEEEN ,
EEEEEEREERN AEEEEEEEN
| L] L] L]
| L] u| L]
O] - C
—F: s —p B o
L | L]] L]
| [] | L]
L] L] | [}
EEENEENEEDR EEEEEEEEDR
SOCVHPS SCSEBAB
TDO
4

7. Click Start to start programming the flash device.

6. Running the secure boot demonstration

Now that the flash is programmed, it should be possible to re-boot the board and see the authentication
output from the secure boot program.

1. Connect a USB cable to the J4 RS232 port on the board

2. Configure a terminal program, such as Putty, and configure it to receive at 115200 baud, no parity, 8
Data Bits, 1 Stop bit, no flow control.

3. Power up the board to observe the terminal output. Output should be similar to the following

INIT: MPL build: Jul 24 2017 14:17:51
INIT: Initializing board.

INIT: MPU clock = 800 MHz

INIT: DDR clock = 400 MHz

INIT: Initializing successful.

SBOOT: Sig

SBOOT: Read

SBOOT: Auth

SBOOT: Boot

U-Boot 2013.01.01 (Jul 24 2017 - 14:52:54)

CPU : Altera SOCFPGA Platform

BOARD : Altera SOCFPGA Cyclone V Board

12C: ready

DRAM: 1 GiB

MMC: ALTERA DWMMC: 0

QSPI: QSPlI is still busy after poll for 10000 times.

SF: Calibration failed (read)

*** Warning - spi_flash_probe() failed, using default environment

Attachments (10)

#* Show options

Previous 1 Next

= 2017-10-05_15-00-06.jpg (48.75 KB)
05 Oct 2017 - 14:04 | Version 1 | Kris Chaplin

' hardware-13-10-17.tar.gz (156.00 KB)
‘U’ 13 Oct 2017 -11:53 | Version 1 | Kris Chaplin

secure_boot_flash_image.jic (16.00 MB)
13 Oct 2017 - 11:53 | Version 1 | Kris Chaplin

' software-13-10-17b.tar.gz (61.45 KB)
Y 13 0ct 2017 -11:53 | Version 1 | Kris Chaplin

=

Previous 1 Next

More actions v 10 attachment(s)

@ Borrar todo @ Select all

© 1999-2022 RocketBoards.org by the contributing authors. All material on this
collaboration platform is the property of the contributing authors. Privacy.

