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Abstract—This paper presents the implementation of an induc-
tion machine dynamic simulation on a field-programmable gate
array (FPGA) board. Using FPGAs as computational engines can
lead to significant simulation speed gains when compared to a
typical PC computer, especially when operations can be efficiently
parallelized on the board. The textbook example of a free accel-
eration followed by a step load change is used to outline the basic
steps of designing an explicit Runge–Kutta numerical ordinary
differential equation (ODE) solver on the FPGA platform. The
FPGA simulation results and speed improvement are validated
versus a Matlab/Simulink simulation.

I. INTRODUCTION

A field-programmable gate array (FPGA) is a reconfig-
urable digital logic platform, which allows for the parallel
execution of millions of bit-level operations in a spatially
programmed environment. Research has been under way on the
modeling and real-time simulation of various electrical power
components using FPGAs as computational [1]–[6] and non-
computational [7], [8] devices. Herein, the goal is to implement
an entire dynamic simulation of an induction machine on a
single FPGA board, as fast as possible (i.e., without being
constrained by the requirement of real-time simulation). Even
though an induction machine has been selected, a similar pro-
cess can be used to simulate other types of electric machinery.
The textbook example of a free acceleration followed by a step
load change is used to outline the basic steps of implementing
an explicit fourth-order Runge–Kutta (RK4) numerical ordinary
differential equation (ODE) solver on the FPGA platform.

The individual mathematical operations required by numer-
ical integration algorithms are generally simple in terms of
required logic (additions and multiplications). Hence, hardware
implementations can be used to increase efficiency by reducing
the overhead introduced by software, thus leading to simulation
speed gains of two orders of magnitude when compared to PCs.
Moreover, complex systems requiring the simultaneous solution
of numerous differential equations for simulation are inherently
conducive to a parallel mapping to physical computational
resources. Therefore, an FPGA becomes an attractive choice
for simulating complex electrical power and energy systems.
This paper presents initial work towards an “ultimate” goal of
a fully functional FPGA-based simulation platform, as shown
in Fig. 1. Herein, an induction machine model is designed
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Fig. 1. Conceptual approach for FPGA-based simulation

using Very High Speed Integrated Circuit Hardware Descrip-
tion Language (VHDL), synthesized and verified using Xilinx
Integrated Software Environment (ISE), and implemented on
the FPGA development board using Xilinx Embedded Devel-
opment Kit (EDK).

II. INDUCTION MACHINE MODEL

The equations of a fifth-order squirrel-cage induction ma-
chine model in the stationary reference frame are given by [9]:
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where p = d
dt is the differentiation operator; Rs and R′

r are
the stator and rotor resistances; Ls and L′r are the stator and
rotor inductances; Lm is the magnetizing inductance; vs

qs and
vs

ds are the qd-axes stator voltages; isqs and isds are the qd-axes
stator currents; i′sqr and i′sdr are the qd-axes rotor currents; Te

is the electromagnetic torque; TL is the load torque; ωr is the
rotor angular electrical speed; P is the number of poles; and J
is the total rotor inertia.

These equations are used to simulate an induction machine
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Fig. 2. FPGA implementation of induction machine simulation

free acceleration (where TL = 0) followed by a step load
change (where TL is stepped to its rated value). The machine is
excited by a balanced sinusoidal three-phase voltage set, which
is expressed in qd-axes variables asvs
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Note that the zero-axis voltage is zero, and can be neglected in
this case.

III. FPGA IMPLEMENTATION

A. Simulation Architecture

The transient response of the electric machine is obtained by
the RK4 numerical integration algorithm [10]. This is a fixed-
step explicit integration algorithm, which is based on simple
numerical calculations (additions and multiplications), and is
thus straightforward to implement on the FPGA. The RK4
method for the initial value problem (px = f(t,x),x(t0) = x0)
is described by:

xn = xn−1 + h
6 (k1 + 2k2 + 2k3 + k4) (8)

tn = tn−1 + h (9)

where xn is the RK4 approximation of x(tn) (i.e., the exact
solution), h is the time step, and

k1 = f (tn−1,xn−1) (10)

k2 = f (tn−1 + 0.5h,xn−1 + 0.5hk1) (11)
k3 = f (tn−1 + 0.5h,xn−1 + 0.5hk2) (12)
k4 = f (tn−1 + h,xn−1 + hk3) . (13)

From (1)–(6), the system of ODEs can be expressed in the form
px = f(t,x) by
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and σ = 1−L2
m/LsL

′
r. The state variables are isqs, isds, i′sqr, i′sdr,

and ωr. The input variables are vs
qs, vs

ds, and TL. The output
variable is Te given by (6). Herein, this output is only selected
as an example to highlight the computational step of calculating
outputs that depend on the model states.

As shown in Fig. 2, four functional modules are used to es-
tablish the induction machine model. The ‘Stator Voltage Input’



module is responsible for the generation of vs
qs and vs

ds. The
‘ODE Function’ and ‘Vector Update’ modules constitute the
RK4 solver. The ‘Torque’ module implements the calculation
of the ‘output’ (6). These modules have been developed using
VHDL in ModelSim [11], which is a verification and simulation
tool for VHDL designs. All variables and parameters are repre-
sented as signed fixed-point numbers with 24 bits representing
the integral part, and 32 bits representing the fractional part.
This provides a numerical range that can accommodate every
variable involved in the simulation, with a resolution of 2−32.

Every RK4 iteration shown in Fig. 3 consists of six steps.
The ‘ODE Function’ module executes the evaluation of (14)
and (15). The ‘Vector Update’ module is responsible for the
alteration of x in f(t,x) during step 2, 3 and 4, as well
as the calculation of (8) in step 5. Since vs

qs and vs
ds in

(14) are dependent on the time t, the ‘Stator Voltage Input’
module should generate the appropriate vs

qs and vs
ds for the

‘ODE Function’ module. Specifically, vs
qs(tn−1 + 0.5h) and

vs
ds(tn−1 +0.5h) are generated during step 1 and stored for the

usage of the ‘ODE Function’ module in step 2 and step 3, while
vs

qs(tn−1 + h) and vs
ds(tn−1 + h) are generated during step 3

and stored for the usage of the ‘ODE Function’ module in step
4 and step 1 of the next iteration. Note that the ‘Stator Voltage
Input’ module and the ‘ODE Function’ module are executed in
parallel in step 1. A similar parallel execution is also performed
in step 3. On the other hand, the ‘ODE Function’ module and
the ‘Vector Update’ module have to be executed in serial pattern
because the inputs of one strictly depend on the outputs of the
other.

To design a sinusoidal function involved in the ‘Stator
Voltage Input’ module, a look-up table approach is followed.
The value of sin(x) is obtained from a 1000-element long look-
up table, while cos(x) is obtained from the same table using
an offset of π/2, which corresponds to a searching index offset
of 250 in the look-up table. As shown in Fig. 4, the START
signal (active high) starts the sin–cos function block, and the
DONE signal (active high) signifies the end of operations. The
operations are allocated in six clock cycles, as follows:

1. calculate x 1
2π (a multiplication operation);

2. obtain the fractional part of |x 1
2π |: xf ;

3. calculate Nxf , where N = 1000;
4. obtain sin(|x|) from the look-up table, where the searching

index is the integer part of Nxf : xi;
5. obtain cos(x) from the look-up table, where the searching

index is xi+250; meanwhile, determine the value of sin(x)
according to sin(|x|) and the sign of x;

6. write the values of sin(x) and cos(x) to the output ports.

The ‘ODE Function’ module shown in Fig. 5 includes three
blocks. The ‘Matrix Calculation’ block which yields the ma-
trix A (=[aij ]4×4) in (14) is implemented using one multiplier
and one subtracter. The elements (a21, a23, a32, a34) in A,
which involve multiplications with ωr, are obtained from the
multiplier. The other four elements (a12, a14, a41, a43) also
associated with ωr are easily obtained from the subtracter
since each one is the opposite of a former multiplication
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result. The remaining elements are stored in advance because
they are constants. The evaluation of (14) is executed by the
‘Equation Group’ block, which is implemented using a 5-stage
tree-shaped pipelined multiplier and adder structure, shown in
Fig. 6 [12], [13]. The evaluation of (15) is executed by the ‘5th



Equation
Group

(8 Clock Cycles)

5th Equation
(6 Clock Cycles)

1 2 3 4, , ,f f f f
f

5f
}

DONE_M

START_G

Matrix
Calculation

(6 Clock Cycles)
rω

DONE_G

CLK

LT

START_E

DONE_E

i

START_M

START

DONE

Ts s s s
qs ds qr dri i i i′ ′⎡ ⎤= ⎣ ⎦i

s
qdsv

i

i

A

Fig. 5. ODE function module

START_G

CLK

DONE_G

1,  1
s
qs

i k
v v
= =
=
2,  1

s
ds

i k
v v
= =
=
3,  2

s
qs

i k
v v
= =
=

4,  2
s
ds

i k
v v
= =
=

5 x 2 + 1 + 1 + store

5 x 2 + 1 + 1 + store

5 x 2 + 1 + 1 + store

5 x 2 + 1 + 1 + store

4 4ija
×

⎡ ⎤⎣ ⎦A =stage 1 (5 x)

stage 2 (2 +)

stage 3 (1 +)

stage 4 (1 +)

stage 5 (store)

1ia s
qsi 2ia s

dsi 3ia s
qri′ 4ia s

dri′kb v

store

1

1

2

2

0
0

0
0

b
b

b
b

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

B =

1

2

1

s

m

s r

b
L

Lb
L L

σ

σ

=

= −
′

Fig. 6. 5-stage pipeline structure and operation

Equation’ block, which is implemented using one multiplier
and one subtracter.

A finite state machine (FSM) [14], shown in Fig. 7, is
designed to coordinate the behaviors of these three blocks. The
START and DONE signals (also shown in Fig. 5) correspond to
the main ‘ODE Function’ module. Each internal block has its
own operation-start signal (START x) and operation-end signal
(DONE x), where ‘x’ can be either ‘M’ (‘Matrix Calculation’
block), ‘G’ (‘Equation Group’ block), or ‘E’ (‘5th Equation’
block). For example, START M is activated (START M = 1)
as soon as START is active. After completing the matrix calcu-
lation, the ‘Equation Group’ block and the ‘5th Equation’ block
are executed in a parallel pattern (START G and START E
are activated at the same time) because these two blocks are
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Fig. 7. State diagram of FSM for ODE function module

TABLE I
XILINX VIRTEX–5 XC5VLX110T RESOURCES USAGE SUMMARY

Logic Utilization Used Available
Number of 7722 69120

Slice Registers
Number of Slice 27503 69120

LUTs (Look Up Tables)
Number of 28927 69120

LUT-FF (Flip Flop) pairs
Number of DSP48Es 55 64

completely independent. Note that the number of clock cycles
required for the ‘ODE Function’ module is not 14 = 6 + 8
(as implied by Fig. 5) but 17 = 6 + 8 + 3 (as shown in
Fig. 3), because the FSM introduces 3 extra clock cycles. A
similar FSM is also used to coordinate the behaviors of the four
modules in Fig. 2, and adds an overhead of 12 clock cycles per
iteration, so that the total number of clock cycles per iteration
is 121 = 17 + 9 + · · · + 9 + 5 + 12 (see Fig. 3).

B. Synthesis and Implementation

After the functionality and results of all modules designed
using VHDL were validated in the ModelSim environment,
the Xilinx ISE was used to develop, synthesize and verify
the substantial top-level wrapper module together with the
machine model. The target FPGA device was Xilinx Virtex-5
XC5VLX110T [15]. The post-place and route report presented
the FPGA hardware resources usage as shown in Table I, and
that the maximum frequency of the clock signal that can be
applied is 89.735 MHz. Generally, the consumption of FPGA
hardware resources increases with model complexity. Note that
the entire design for the machine model must fit within the
resource limitation of the target FPGA device. Otherwise, an
FPGA device with more hardware resources should be chosen
or the machine model should be redesigned in order to meet
the requirement of the FPGA device.

The final system was integrated on a XUPV5-LX110T devel-
opment board [16], which features the XC5VLX110T device.



MPMC Module Interface
MPMC

DDR2 SDRAMDDR2 SDRAM

MicroBlaze

SPLB

plb_machine

DPLB DPLB

mb_plb

SPLB

Xilinx Virtex‐5  XC5VLX110T

Bus Master Bus Slave

MPMC:  Multi‐Port Memory Controller

SPLB: Slave Processor Local Bus

DPLB: Data Processor Local Bus

Fig. 8. Implementation architecture

Besides FPGA logic blocks, this device has the embedded
MicroBlaze soft processor whose software is written in C. The
Xilinx EDK was used to co-design the software and hardware of
the device. The architecture of this embedded system is shown
in Fig. 8. The machine model was implemented in the FPGA
hardware denoted by ‘plb machine.’ The software exchanges
data with ‘plb machine’ through the CoreConnect Processor
Local Bus (PLB) denoted by ‘mb plb.’ The MicroBlaze is
the ‘master’ device on the ‘mb plb,’ while other devices are
considered ‘slaves.’ The MicroBlaze generates the clock signal,
and is responsible for coordinating data exchanges between the
FPGA hardware and software.

When the system starts up, the MicroBlaze sends an ini-
tialization signal and initial state values to the ‘plb machine.’
Then it launches the simulation, and begins controlling the
execution of iterations, sending/updating the input data (i.e.,
TL) to the ‘plb machine’ at the beginning of each time step
calculation. The simulation output data (i.e., xn and Te) are
stored in the registers of ‘plb machine’ as soon as each iteration
is completed. While the next iteration proceeds in the FPGA,
the MicroBlaze reads the data from the registers, and writes
it on the DDR2 memory embedded on the development board
through ‘mb plb.’ In other words, the execution of iteration
n + 1 in ‘plb machine’ takes place in parallel with the action
of sending the data of iteration n to memory.

IV. SIMULATION RESULTS

The parameters of the induction machine and voltage source
used for simulation are shown in Table II. Based on the options
provided by the Xilinx EDK, the Processor-Bus clock frequency
was set to 66.67 MHz, a value less than the maximum clock
frequency (89.735 MHz) in the post-place and route report of
the Xilinx ISE. The simulation time-step h was 10−4 s. In
this simple implementation, the simulation data were retrieved

TABLE II
INDUCTION MACHINE AND VOLTAGE SOURCE PARAMETERS

Rs 0.087 Ω P 4
R′

r 0.228 Ω J 1.662 Kg·m2

Ls 35.5 mH ωe 2π60 rad/s
L′r 35.5 mH Vs 460

√
2/3 V

Lm 34.7 mH Prated 50 HP

from the memory at the end of each simulation using the Xilinx
Microprocessor Debugger.

The exact same machine model was also implemented in
Matlab/Simulink. The verification of the results coming from
the FPGA implementation was performed versus a Simulink
simulation using the ODE23tb solver with a maximum time
step of 10−5 s. Fig. 9 shows the transient response of all
five state variables and the electromagnetic torque during free
acceleration followed by a step load change (at t = 1 s) from
both FPGA board and Simulink. The results from the FPGA
are superimposed on the Simulink waveforms, but they are so
close that differences cannot be distinguished.

To compare simulation speed, we ran the simulation using
the ODE45 and ODE23 integration algorithms of Simulink
with maximum step size of 10−4 s (typically the two “sim-
plest” available solvers), because they are implementations of
the explicit Runge–Kutta algorithm, albeit of a variable-step
nature. The simulation speed was further increased by using
the ‘Accelerator’ mode of Simulink, which replaces normal
interpreted code with compiled code. The simulation times on
an Intel Core2 Duo 2.2 GHz computer were 2.7 s for ODE45,
and 2.0 s for ODE23. The FPGA simulation time was 36.6 ms,
which represents a speed-up of two orders of magnitude. The
simulation time will be further decreased if the clock frequency
can be set to a higher value, if the simulation time step h is
increased, or if a lower order integration algorithm (e.g., the
trapezoidal algorithm) is used.

V. CONCLUSION

This paper presented the FPGA implementation of an induc-
tion machine dynamic simulation, using the RK4 numerical
integration algorithm. The entire machine model has been
developed using VHDL, synthesized, and implemented on an
FPGA board. An optimal VHDL design should be sought
for the purpose of economizing FPGA hardware resources,
especially when the model has high complexity. A compari-
son between the simulation results from FPGA and Simulink
demonstrates the validity of this implementation. Simulation
speed gains of two orders of magnitude demonstrate the perfor-
mance advantage of FPGAs compared to PC-based simulations.
FPGAs represent an interesting possibility for simulating more
complex electrical power and power electronics-based systems
because of their flexibility, high processing rates and possibility
to parallelize numerical integration computations.
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Fig. 9. Free acceleration characteristics of induction machine
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