
Making Qsys Components

For Quartus II 13.1

1 Introduction

The Altera Qsys tool allows a digital system to be designed by interconnecting selected Qsys components, such as
processors, memory controllers, parallel and serial ports, and the like. The Qsys tool includes many pre-designed
components that may be selected for inclusion in a designed system, and it is also possible for users to create
their own custom Qsys components. This tutorial provides an introduction to the process of creating custom Qsys
components. The discussion is based on the assumption that the reader is familiar with the Verilog or VHDL
hardware description language and is also familiar with the material in the tutorial Introduction to the Altera Qsys
System Integration Tool.

The screen captures in this tutorial were obtained using the Quartus II version 13.1 software; if other versions are
used, some of the images may be slightly different.

Contents:

• Introduction to Qsys

• What is a Qsys component?

• Avalon Memory-Mapped Interface details

• Adding a new component to Qsys

• Instantiating the new component

Altera Corporation - University Program
April 2014

1

http://www.altera.com/education/univ/

MAKING QSYS COMPONENTS For Quartus II 13.1

2 Introduction to Qsys

The Qsys tool allows users to put together a system using pre-made and/or custom components. Such systems
usually comprise one or more processors, memory interfaces, I/O ports and other custom hardware. The Qsys-
created system can be included as part of a larger circuit and implemented on an FPGA board, such as the Altera
DE-series boards. An example of such a system is depicted in Figure 1, where the part of the system created by the
Qsys tool is highlighted in a blue color.

Serial port

Slider

Nios II processorJTAG port

LEDs7-Segment

On-chip
memory

Expansion
connectors

System

Host computer
(USB connection)

RS-232
chip

USB
Blaster

Altera DE-series Board

ID

timer
Interval

Reset

KEY

FPGA chip

Parallel
ports

Parallel
port

Parallel
ports

Parallel
port

Pushbuttons

Parallel
port

SRAM
chip

SDRAM
chip

SRAM
controller

SDRAM
controller

Avalon Interconnect

displaysswitches

Figure 1. Block diagram of an example Qsys system implemented on an FPGA board.

Each component in the system, referred to as a Qsys component, adheres to at least one of the Avalon Interfaces
supported by Qsys. With the interface defined for the component, Qsys is able to construct an interconnect structure,
called the Avalon Interconnect, which enables components to exchange data. The Qsys tool can generate a system
based on the selected set of components and user parameters. The generated system contains Verilog or VHDL code
for each component and the interconnect structure, allowing it to be synthesized, placed and routed for an FPGA
device.

2 Altera Corporation - University Program
April 2014

http://www.altera.com/education/univ/

MAKING QSYS COMPONENTS For Quartus II 13.1

In this tutorial we explain what we mean by a Qsys component, describe the Avalon Interfaces in more detail, and
show how to create a custom component that can be included in the Qsys list of available components.

3 What is a Qsys Component?

A Qsys component is a hardware subcircuit that is available as a library component for use in the Qsys tool. Typically,
the contains two parts: the internal hardware modules, and the external Avalon Interfaces. The internal modules are
the circuits that implement the desired functionality of the Qsys component, while the Avalon Interfaces are used by
the component to communicate with hardware modules that are external to the component.

There are many types of Avalon Interfaces; the most commonly used types are:

• Avalon Clock Interface – an interface that drives or receives clocks

• Avalon Reset Interface – an interface that provides reset capability

• Avalon Memory-Mapped Interface (Avalon MM) – an address-based read/write interface which is typical of
master-slave connections

• Avalon Streaming Interface (Avalon-ST) – an interface that supports unidirectional flow of data

• Avalon Conduit Interface – an interface that accommodates individual signals or groups of signals that do
not fit into any of the other Avalon Interface types. You can export the conduit signals to make connections
external to the Qsys system.

A single component can use as many of these interface types as it requires. For example, a component might provide
an Avalon-ST port for high-throughput data, in addition to an Avalon MM slave port for control. All components
must include the Avalon Clock and Reset Interfaces. Readers interested in more complete information about the
Avalon Interfaces may consult the Avalon Interface Specifications document that can be found on the Altera website.

In this tutorial we will show how to develop a Qsys component that has an Avalon Memory-Mapped Interface and
an Avalon Conduit Interface. The component is a 32-bit register that can be read or written as a memory-mapped
slave device via the Avalon Interconnect and can be visible outside the system through a conduit signal. The purpose
of the conduit is to allow the register contents to displayed on external components such as LEDs or 7-segment
displays. Thus, this register is similar to the output parallel ports shown in Figure 1.

If the register is to be used in a system such as the one depicted in Figure 1, then it should respond correctly to
Nios II instructions that store data into the register, or load data from it. Let D be the 32-bit input data for the
register, byteenable be the two-bit control input that indicates which byte(s) will be loaded with new data, and Q be
the 32-bit output of the register. In addition, it is necessary to provide clock and reset signals. Figures 2 and 4 show
a suitable specification for the desired register, called reg32, in Verilog and VHDL, respectively.

Our register will be instantiated in a top-level module that provides the necessary signals for connecting to an Avalon
MM Interconnect. Let this module be called reg32_avalon_interface. The Avalon MM Interface signals used in this
module are:

Altera Corporation - University Program
April 2014

3

http://www.altera.com/education/univ/

MAKING QSYS COMPONENTS For Quartus II 13.1

• clock

• resetn – active-low reset signal

• readdata – 32-bit data read from the register

• writedata – 32-bit data to be stored in the register

• read – active when a read (load) transaction is to be performed

• write – active when a write (store) transaction is to be performed

• byteenable – two-bit signal that identifies which bytes are being used

• chipselect – active when the register is being read or written

The reg32_avalon_interface module also provides a 32-bit Avalon Conduit Interface signal called Q_export. Fig-
ures 3 and 5 show how this module can be specified in Verilog and VHDL code, respectively.

module reg32 (clock, resetn, D, byteenable, Q);
input clock, resetn;
input [3:0] byteenable;
input [31:0] D;
output reg [31:0] Q;

always@(posedge clock)
if (!resetn)

Q <= 32'b0;
else
begin

// Enable writing to each byte separately
if (byteenable[0]) Q[7:0] <= D[7:0];
if (byteenable[1]) Q[15:8] <= D[15:8];
if (byteenable[2]) Q[23:16] <= D[23:16];
if (byteenable[3]) Q[31:24] <= D[31:24];

end
endmodule

Figure 2. Verilog code for the 32-bit register.

4 Avalon Memory-Mapped Interface Details

The Avalon Memory-Mapped Interface is a bus-like protocol that allows two components to exchange data. One
component implements a master interface that allows it to request and send data to slave components. A slave com-
ponent can only receive and process requests, either receiving data from the master, or providing the data requested
by the master.

4 Altera Corporation - University Program
April 2014

http://www.altera.com/education/univ/

MAKING QSYS COMPONENTS For Quartus II 13.1

module reg32_avalon_interface (clock, resetn, writedata, readdata, write, read,
byteenable, chipselect, Q_export);

// signals for connecting to the Avalon fabric
input clock, resetn, read, write, chipselect;
input [3:0] byteenable;
input [31:0] writedata;
output [31:0] readdata;

// signal for exporting register contents outside of the embedded system
output [31:0] Q_export;

wire [3:0] local_byteenable;
wire [31:0] to_reg, from_reg;

assign to_reg = writedata;

assign local_byteenable = (chipselect & write) ? byteenable : 4'd0;

reg32 U1 (.clock(clock), .resetn(resetn), .D(to_reg), .byteenable(local_byteenable),
.Q(from_reg));

assign readdata = from_reg;
assign Q_export = from_reg;

endmodule

Figure 3. Verilog code for the Avalon MM Interface.

Each slave device includes one or more registers that can be accessed for read or write transaction by a master
device. Figures 6 and 7 illustrate the signals that are used by master and slave interfaces. The direction of each
signal is indicated by arrows beside it, with ← indicating an output and → indicating an input to a device. All
transactions are synchronized to the positive edge of the Avalon clk signal. At time t0 in the figures, the master
begins a read transaction by placing a valid address on its address outputs and asserting its read control signal. The
slave recognizes the request because its chipselect input is asserted. It responds by placing valid data on its readdata
outputs; the master captures this data on its readdata inputs and the read transaction ends at time t1. A second read
transaction is shown in the figure starting at time t2. In this case, the slave device asserts the waitrequest input of the
master, which can be used to extend a read transaction by any number of clock cycles. The slave device deasserts
the waitrequest signal and provides the requested data at time t3, and the read transaction ends at time t4.

A write transaction is illustrated starting at time t5 in Figures 6 and 7. The master places a valid address and data on
its address and datawrite outputs, and asserts the write control signal. The slave captures the data on its datawrite
inputs and the write transaction ends at time t6. Although not shown in this example, a slave device can assert the
waitrequest input of the master to extend a write transaction over multiple clock cycles if needed.

Addresses used by master devices are aligned to 32-bit word boundaries. For example, Figure 8 illustrates four

Altera Corporation - University Program
April 2014

5

http://www.altera.com/education/univ/

MAKING QSYS COMPONENTS For Quartus II 13.1

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY reg32 IS
PORT (clock, resetn : IN STD_LOGIC;

D : IN STD_LOGIC_VECTOR(31 DOWNTO 0);
byteenable : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
Q : OUT STD_LOGIC_VECTOR(31 DOWNTO 0));

END reg32;

ARCHITECTURE Behavior OF reg32 IS
BEGIN

PROCESS
BEGIN

WAIT UNTIL clock'EVENT AND clock = '1';
IF resetn = '0'THEN

Q <= "00000000000000000000000000000000";
ELSE

IF byteenable(0) = '1'THEN
Q(7 DOWNTO 0) <= D(7 DOWNTO 0); END IF;

IF byteenable(1) = '1'THEN
Q(15 DOWNTO 8) <= D(15 DOWNTO 8); END IF;

IF byteenable(2) = '1'THEN
Q(23 DOWNTO 16) <= D(23 DOWNTO 16); END IF;

IF byteenable(3) = '1'THEN
Q(31 DOWNTO 24) <= D(31 DOWNTO 24); END IF;

END IF;
END PROCESS;

END Behavior;

Figure 4. VHDL code for the new register.

32-bit addresses that could be used to select four registers in a slave device. The address of the first register is
0x10000000, the address of the second register is 0x10000004, and so on. In this example, the slave would have
a two-bit address input for selecting one of its four registers in any read or write transaction. Since addresses are
word-aligned, the lower two address bits from the master are not seen in the slave. The master provides a four-bit
byteenable signal, which is used by the slave to control a write transaction for individual bytes. For example, if
the master performs a write transaction to only the most-significant byte of the second register in Figure 8 then the
master would write to address 0x10000007 with its byteenable output signal set to the value 0x1000. The slave
device would see its two-bit address input set to 0x01 and would use its byteenable inputs to ensure that the write
transaction is performed only for the selected byte of the second register. Although the byteenable signals are not
shown in Figures 6 and 7, they have the same timing as the address signals.

The above examples show the basic transactions between a master and a slave. More advanced transactions can be

6 Altera Corporation - University Program
April 2014

http://www.altera.com/education/univ/

MAKING QSYS COMPONENTS For Quartus II 13.1

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY reg32_avalon_interface IS
PORT (clock, resetn : IN STD_LOGIC;

read, write, chipselect : IN STD_LOGIC;
writedata : IN STD_LOGIC_VECTOR(31 DOWNTO 0);
byteenable : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
readdata : OUT STD_LOGIC_VECTOR(31 DOWNTO 0);
Q_export : OUT STD_LOGIC_VECTOR(31 DOWNTO 0));

END reg32_avalon_interface;

ARCHITECTURE Structure OF reg32_avalon_interface IS
SIGNAL local_byteenable : STD_LOGIC_VECTOR(3 DOWNTO 0);
SIGNAL to_reg, from_reg : STD_LOGIC_VECTOR(31 DOWNTO 0);

COMPONENT reg32
PORT (clock, resetn : IN STD_LOGIC;

D : IN STD_LOGIC_VECTOR(31 DOWNTO 0);
byteenable : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
Q : OUT STD_LOGIC_VECTOR(31 DOWNTO 0));

END COMPONENT;
BEGIN

to_reg <= writedata;
WITH (chipselect AND write) SELECT

local_byteenable <= byteenable WHEN '1', "0000" WHEN OTHERS;
reg_instance: reg32 PORT MAP (clock, resetn, to_reg, local_byteenable, from_reg);
readdata <= from_reg;
Q_export <= from_reg;

END Structure;

Figure 5. VHDL code for the memory-mapped new-register interface.

performed, the procedure for which is described in the Avalon Interconnect Specifications document.

Altera Corporation - University Program
April 2014

7

http://www.altera.com/education/univ/

MAKING QSYS COMPONENTS For Quartus II 13.1

clk
address

writedata
readdata

chipselect
write

read
waitrequest

data
data

 address address

clk
address

writedata
readdata

write
read

waitrequest

 data
data

 address address

data

address

t0 t1 t2 t4 t5 t6t3

data

address

t0 t1 t2 t4 t5 t6t3

Figure 6. Timing diagram for read/write transactions from the master’s point of view.

clk
address

writedata
readdata

chipselect
write

read
waitrequest

data
data

 address address

clk
address

writedata
readdata

write
read

waitrequest

 data
data

 address address

data

address

t0 t1 t2 t4 t5 t6t3

data

address

t0 t1 t2 t4 t5 t6t3

Figure 7. Timing diagram for read/write transactions from the slave’s point of view.

1

31 32 …… 1 0

First Register

Second Register

Third Register

Fourth Register

00

01

10

11

0x10000000

0x10000004

0x10000008

0x1000000C

Master
Address

Slave
Address[1..0]

Figure 8. Example for registers in an Avalon MM Interface.

8 Altera Corporation - University Program
April 2014

http://www.altera.com/education/univ/

MAKING QSYS COMPONENTS For Quartus II 13.1

5 Adding a New Component to the Qsys Component Library

In this section we show how to create a new Qsys component for our 32-bit register defined in Figures 2 to 5.
As a first step, start the Quartus II software and make a new project for use with this tutorial. Name the project
component_tutorial, and choose the settings that are needed for your DE-series board, including the specific FPGA
chip.

Later, we will create a top-level HDL file for the component_tutorial project, but first we will use the Qsys tool
to generate an embedded system. Open the Qsys tool to get to the window depicted in Figure 9. The Qsys tool
automatically includes a clock component in the system, as shown in the figure. Since we will use an active-low
reset signal for our system, click on the name of the reset signal on the clock component and change it to resetn.

Figure 9. Qsys window.

Altera Corporation - University Program
April 2014

9

http://www.altera.com/education/univ/

MAKING QSYS COMPONENTS For Quartus II 13.1

Before creating the new Qsys component for our 32-bit register, we will first instantiate some other components that
will be needed in our system. In the Component Library area of the Qsys window expand the Embedded Pro-
cessors item and add a Nios II Processor to the system. In the Nios II Processor dialog window that opens, select
Nios II/e as the type of processor, and then click Finish. Next, in the Component Library, open the Memories
and Memory Controllers item, then open the On-Chip subitem, and add the component called On-Chip Memory
(RAM or ROM). Click Finish to return to the main Qsys window. In the Connections area of the Qsys window,
make the connections illustrated in Figure 10 between the clock component, Nios II processor, and on-chip memory
module.

Figure 10. Connections needed between components.

10 Altera Corporation - University Program
April 2014

http://www.altera.com/education/univ/

MAKING QSYS COMPONENTS For Quartus II 13.1

Errors will be displayed in the Qsys Messages window about the Reset and Exception vectors memories that are
needed for the Nios II Processor. To fix these errors, re-open the Nios II processor component that has already been
added to the system. In the window shown in Figure 11 use the provided drop-down menus to set both the Reset
vector memory and Exception vector memory to the on-chip memory component. Click Finish to return to the main
Qsys window.

Figure 11. Setting the reset and exception vector memories.

Altera Corporation - University Program
April 2014

11

http://www.altera.com/education/univ/

MAKING QSYS COMPONENTS For Quartus II 13.1

The Qsys window may now show an error related to overlapping addresses assigned to the components in the sys-
tem. To fix this error click on the System menu in the Qsys window and then click on Assign Base Addresses.
The Qsys window should now appear as illustrated in Figure 12.

Figure 12. The base Qsys system.

12 Altera Corporation - University Program
April 2014

http://www.altera.com/education/univ/

MAKING QSYS COMPONENTS For Quartus II 13.1

Now, we will create the new Qsys component for our 32-bit register, and make this component available in the Qsys
Component Library. To create a new component, click the New... button in the Component Library area of the
Qsys window. The Component Editor tool, shown in Figure 13, will appear. It has five tabs.

The first step in creating a component is to specify where in the Component Library our new component will
appear. In the current tab, Component Type, change the Name to reg32_avalon_interface, the Display name to
reg32_component, and provide a name for the Group setting, such as My Own IP Cores.

Figure 13. Component Editor window.

Altera Corporation - University Program
April 2014

13

http://www.altera.com/education/univ/

MAKING QSYS COMPONENTS For Quartus II 13.1

Next, we add the files that describe the component. Go to the Files tab, depicted in Figure 14, and then click on the
+ button under Synthesis Files to browse and select the top-level file reg32_avalon_interface.v. Qsys analyses this
file to determine the types of interfaces that are used by the component. Optionally, you can click on the + button
again and add the file reg32.v. Then click the Copy from Synthesis Files button under Verilog Simulation Files
to add the files for simulation. To run the anaylsis of the top-level file, click on the Analyze Synthesis Files button.
If the Component Editor finds any errors when analyzing the top-level file, then they will need to be fixed and the
code re-analysed. Once no syntax errors are present, then the next step is to specify the types of interfaces that are
used by the component.

Figure 14. Adding HDL files that define the new component.

14 Altera Corporation - University Program
April 2014

http://www.altera.com/education/univ/

MAKING QSYS COMPONENTS For Quartus II 13.1

Click on the Signals tab to specify the meaning of each interface port in the top-level entity. This leads to the
window in Figure 15.

Figure 15. Initial settings for component signals.

Altera Corporation - University Program
April 2014

15

http://www.altera.com/education/univ/

MAKING QSYS COMPONENTS For Quartus II 13.1

To define correctly the meaning of each signal, it is necessary to specify the entries in the Interface and Signal Type
columns. For the clock signal, select new Clock Input... as its interface kind and clk as its signal type, as indicated in
Figures 16 and 17. Observe that the interface is now labeled clock_sink, because it receives the clock input signal.
For the resetn signal, select new Reset Input... as its interface and reset_n as its signal type, as indicated in Figures 18
and 19.

Figure 16. Specifying the clock interface.

16 Altera Corporation - University Program
April 2014

http://www.altera.com/education/univ/

MAKING QSYS COMPONENTS For Quartus II 13.1

Figure 17. Specifying the signal type for clock.

Altera Corporation - University Program
April 2014

17

http://www.altera.com/education/univ/

MAKING QSYS COMPONENTS For Quartus II 13.1

Figure 18. Specifying the resetn interface.

18 Altera Corporation - University Program
April 2014

http://www.altera.com/education/univ/

MAKING QSYS COMPONENTS For Quartus II 13.1

Figure 19. Specifying the signal type for resetn.

Altera Corporation - University Program
April 2014

19

http://www.altera.com/education/univ/

MAKING QSYS COMPONENTS For Quartus II 13.1

Finally, the Q_export signal must be visible outside the Qsys-generated system; it requires a new interface which is
not a part of the Avalon Memory-Mapped Interface. Click on the Interface column for this signal and select new
Conduit... as the desired kind of interface, as shown in Figure 20. Then choose export as its signal type. The rest of
the signals shown in the Component Editor already have correct interface types, as their names are recognizable as
specific Avalon signals. The Component Editor window should now appear as shown in Figure 21.

Figure 20. Creating an external interface for Q_export.

20 Altera Corporation - University Program
April 2014

http://www.altera.com/education/univ/

MAKING QSYS COMPONENTS For Quartus II 13.1

Note that there are still some error messages. Click on the Interfaces tab to Observe that the Qsys tool assumed that
there would be an interface named clock_reset. But, we chose a different interface for the clock, by selecting a new
Clock Input in Figure 16, which resulted in the interface named clock_sink. Click on the Remove Interfaces With
No Signals button. Observe that the unwanted clock_reset interface is removed, as well as the two error messages
pertinent to this interface.

The next error message states that the avalon_slave_0 interface must have an Associated Clock and an Associated
Reset. Select clock_sink as this clock and reset_sink as the reset, as indicated in Figure 22. Also note in Figure 22
that under the Timing heading we have changed the parameter called Read wait for the avalon_slave_0 interface
from its default value, which was 1, to the value 0. This parameter represents the number of Avalon clock signals
that the component requires in order to respond to a read request. Our register can respond immediately, so we do
not need to use the default of 1 wait cycle.

Altera Corporation - University Program
April 2014

21

http://www.altera.com/education/univ/

MAKING QSYS COMPONENTS For Quartus II 13.1

Figure 21. Final settings for component signals.

22 Altera Corporation - University Program
April 2014

http://www.altera.com/education/univ/

MAKING QSYS COMPONENTS For Quartus II 13.1

The remaining error messages state that the reset_sink interface must have an associated clock. Set this clock to
clock_sink, as depicted in Figure 23. Now, there should be no error messages left. Click Finish to complete the
creation of the Qsys component, and save the component when prompted to do so.

Figure 22. Specifying the clock and reset associated with the Avalon Slave interface.

Altera Corporation - University Program
April 2014

23

http://www.altera.com/education/univ/

MAKING QSYS COMPONENTS For Quartus II 13.1

Figure 23. Specifying the clock associated with the reset interface.

6 Instantiating the New Component

In the Qsys Component Library, expand the newly-created item My Own IP Cores. Add an instance of the
reg32_component, to open the window shown in Figure 24. Click Finish to return to the main Qsys window. Next,
make the connections shown in Figure 25 to attach the register component to the required clock and reset signals, as
well as to the data master port of the Nios II processor. Finally, as indicated in the Export column in Figure 25, click
on Double-click to export for the Conduit and specify the name to_hex. Notice in the Base address column in
Figure 25 that the assigned address of the new register component is 00000000. This address can be directly edited
by the user, or it can be assigned automatically by using the Assign Base Addresses command in the System
menu. In this tutorial, we will leave the address as 00000000.

24 Altera Corporation - University Program
April 2014

http://www.altera.com/education/univ/

MAKING QSYS COMPONENTS For Quartus II 13.1

Figure 24. Adding the reg32_component to the base system.

Figure 25. Required connections for the new component.

Altera Corporation - University Program
April 2014

25

http://www.altera.com/education/univ/

MAKING QSYS COMPONENTS For Quartus II 13.1

Use the Save command in the File menu to save the defined Qsys system using the name embedded_system. Next,
in the Qsys window select Generate > HDL Example..., the window in Figure 26 will show up. This window gives
an example of how the embedded system defined in the Qsys tool can be instantiated in HDL code. Note that the
clock input of our embedded system is called clk_clk, the reset input is called resetn_reset_n, and the conduit output
is named to_hex_export.

Figure 26. The HDL Example tab.

26 Altera Corporation - University Program
April 2014

http://www.altera.com/education/univ/

MAKING QSYS COMPONENTS For Quartus II 13.1

Finally, open the Generation window in the Qsys tool, shown in Figure 27 by selecting Generate > Generate...,
and then click the Generate button. This action causes the Qsys tool to generate HDL code that specifies the
contents of the embedded system, including all of the selected components and the Avalon interconnection fabric.

Figure 27. The Generation tab.

Altera Corporation - University Program
April 2014

27

http://www.altera.com/education/univ/

MAKING QSYS COMPONENTS For Quartus II 13.1

Close the Qsys tool to return to the main Quatus II window. Next, select the command Add/Remove Files in
Project... in the Project menu, and then browse on the button to open the window in Figure 28. Browse to the
folder called embedded_system\synthesis. Change the filter for file types to Other Source Files and then select the
file named embedded_system.qip. This file provides the information needed by the Quartus II software to locate the
HDL code generated by the Qsys tool. In Figure 28 click Open to return to the Settings window and then click
Add to add the file to the project. Click OK to return to the main Quartus II window.

Figure 28. Adding the .qip file to the Quartus II project.

28 Altera Corporation - University Program
April 2014

http://www.altera.com/education/univ/

MAKING QSYS COMPONENTS For Quartus II 13.1

7 Implementing the Embedded System in an FPGA Chip

To implement the Qsys-generated embedded system in an FPGA chip, we need to create a top-level HDL module
which instantiates the embedded system and has the appropriate input and output signals. A suitable HDL module is
given in Figures 29 and 30, in Verilog and VHDL. The module connects the 50 MHz clock signal, CLOCK_50, on
the DE-series board to the clock input of the embedded system, and connects KEY0 to the reset input. The external
conduit from the embedded system is connected to the seven segment displays HEX0, . . ., HEX3. The HDL code for
the 7-segment display code converter, called hex7seg, is provided in Appendix A, in Figures 35 and 36.

Store the code for the top-level module in a file called component_tutorial.v (or .vhd), and store the code for the
seven-segment code converter in a file called hex7seg.v (or .vhd). Include appropriate pin assignments in the Quar-
tus II project for the CLOCK_50, KEY0, and HEX0, . . ., HEX3 signals on the DE-series board.

Compile the project. After successful compilation, download the circuit onto the DE-series board by using the
Quartus II Programmer tool.

module component_tutorial (CLOCK_50, KEY, HEX0, HEX1, HEX2, HEX3, HEX4, HEX5, HEX6, HEX7);
input CLOCK_50;
input [0:0] KEY;
output [0:6] HEX0, HEX1, HEX2, HEX3, HEX4, HEX5, HEX6, HEX7;

wire [31:0] to_HEX;

embedded_system U0 (
.clk_clk(CLOCK_50), .resetn_reset_n(KEY[0]), .to_hex_export(to_HEX));

hex7seg h0(to_HEX[3:0], HEX0);
hex7seg h1(to_HEX[7:4], HEX1);
hex7seg h2(to_HEX[11:8], HEX2);
hex7seg h3(to_HEX[15:12], HEX3);
hex7seg h4(to_HEX[19:16], HEX4);
hex7seg h5(to_HEX[23:20], HEX5);
hex7seg h6(to_HEX[27:24], HEX6);
hex7seg h7(to_HEX[31:28], HEX7);

endmodule

Figure 29. Verilog code for the top-level module.

Altera Corporation - University Program
April 2014

29

http://www.altera.com/education/univ/

MAKING QSYS COMPONENTS For Quartus II 13.1

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY component_tutorial IS
PORT (CLOCK_50 : IN STD_LOGIC;

KEY : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
HEX0 : OUT STD_LOGIC_VECTOR(0 TO 6);
HEX1 : OUT STD_LOGIC_VECTOR(0 TO 6);
HEX2 : OUT STD_LOGIC_VECTOR(0 TO 6);
HEX3 : OUT STD_LOGIC_VECTOR(0 TO 6);
HEX4 : OUT STD_LOGIC_VECTOR(0 TO 6);
HEX5 : OUT STD_LOGIC_VECTOR(0 TO 6);
HEX6 : OUT STD_LOGIC_VECTOR(0 TO 6);
HEX7 : OUT STD_LOGIC_VECTOR(0 TO 6));

END component_tutorial;

ARCHITECTURE Structure OF component_tutorial IS
SIGNAL to_HEX : STD_LOGIC_VECTOR(31 DOWNTO 0);
COMPONENT embedded_system IS

PORT (clk_clk : IN STD_LOGIC;
resetn_reset_n : IN STD_LOGIC;
to_hex_export : OUT STD_LOGIC_VECTOR (31 DOWNTO 0));

END COMPONENT embedded_system;

COMPONENT hex7seg IS
PORT (hex : IN STD_LOGIC_VECTOR(3 DOWNTO 0);

display : OUT STD_LOGIC_VECTOR(0 TO 6));
END COMPONENT hex7seg;

BEGIN
U0: embedded_system PORT MAP (

clk_clk => CLOCK_50,
resetn_reset_n => KEY(0),
to_hex_export => to_HEX);

h0: hex7seg PORT MAP (to_HEX(3 DOWNTO 0), HEX0);
h1: hex7seg PORT MAP (to_HEX(7 DOWNTO 4), HEX1);
h2: hex7seg PORT MAP (to_HEX(11 DOWNTO 8), HEX2);
h3: hex7seg PORT MAP (to_HEX(15 DOWNTO 12), HEX3);
h4: hex7seg PORT MAP (to_HEX(19 DOWNTO 16), HEX4);
h5: hex7seg PORT MAP (to_HEX(23 DOWNTO 20), HEX5);
h6: hex7seg PORT MAP (to_HEX(27 DOWNTO 24), HEX6);
h7: hex7seg PORT MAP (to_HEX(31 DOWNTO 28), HEX7);

END Structure;

Figure 30. VHDL code for the top-level module.

30 Altera Corporation - University Program
April 2014

http://www.altera.com/education/univ/

MAKING QSYS COMPONENTS For Quartus II 13.1

8 Testing the Embedded System

One way to test the ciruit is to use the Altera Monitor Program. Open the Monitor Program and create a new
project called component_tutorial. In the New Project Wizard, for the Specify a system screen choose <Custom
System>, as indicated in Figure 31. As shown in the figure, under System details browse to select the system
description file called embedded_system.sopcinfo. Also, browse to select the Quartus II programming file called
component_tutorial.sof, as illustrated in Figure 32. For the screen titled Specify a program type in the New
Project Wizard, choose No Program.

Figure 31. Specifying the system description file.

Altera Corporation - University Program
April 2014

31

http://www.altera.com/education/univ/

MAKING QSYS COMPONENTS For Quartus II 13.1

Figure 32. Specifying the Quartus II programming file.

After successfully creating the Monitor Program project, click on the command Connect to System in the Actions
menu. Open the Memory tab in the Monitor Program, and click the setting Query Memory Mapped Devices,
as indicated in Figure 33. Now, click the Refresh button to see that the content of address 0x00000000, which
represents the 32-bit register component, has the value 00000000. Edit the value stored in the register, as illustrated
in Figure 34, and observe the changes on the seven-segment displays on the DE-series board.

32 Altera Corporation - University Program
April 2014

http://www.altera.com/education/univ/

MAKING QSYS COMPONENTS For Quartus II 13.1

Figure 33. Using the Memory tab in the Momitor Program.

Figure 34. Changing the value stored in the 32-bit register.

9 Concluding Remarks

In this tutorial we showed how to create a component for use in a system designed by using the Qsys tool. Although
the example is for a slave interface, the same procedure is used to create a master interface, with the only difference
being in the type of an interface that is created for the component.

Altera Corporation - University Program
April 2014

33

http://www.altera.com/education/univ/

MAKING QSYS COMPONENTS For Quartus II 13.1

10 Appendix A

The HDL code for the seven-segment code converter that is instantiated in Figures 29 and 30 is shown in Figures 35
and 36.

module hex7seg (hex, display);
input [3:0] hex;
output [0:6] display;

reg [0:6] display;
/*
* – 0 –
* 5 | | 1
* – 6 –
* 4 | | 2
* – 3 –
*/

always @ (hex)
case (hex)

4'h0: display = 7'b0000001;
4'h1: display = 7'b1001111;
4'h2: display = 7'b0010010;
4'h3: display = 7'b0000110;
4'h4: display = 7'b1001100;
4'h5: display = 7'b0100100;
4'h6: display = 7'b0100000;
4'h7: display = 7'b0001111;
4'h8: display = 7'b0000000;
4'h9: display = 7'b0001100;
4'hA: display = 7'b0001000;
4'hb: display = 7'b1100000;
4'hC: display = 7'b0110001;
4'hd: display = 7'b1000010;
4'hE: display = 7'b0110000;
4'hF: display = 7'b0111000;

endcase
endmodule

Figure 35. Verilog code for the seven-segment display code converter.

34 Altera Corporation - University Program
April 2014

http://www.altera.com/education/univ/

MAKING QSYS COMPONENTS For Quartus II 13.1

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY hex7seg IS
PORT (hex : IN STD_LOGIC_VECTOR(3 DOWNTO 0);

display : OUT STD_LOGIC_VECTOR(0 TO 6));
END hex7seg;

ARCHITECTURE Behavior OF hex7seg IS
BEGIN

-- – 0 –
-- 5 | | 1
-- – 6 –
-- 4 | | 2
-- – 3 –

PROCESS (hex)
BEGIN

CASE hex IS
WHEN "0000" => display <= "0000001";
WHEN "0001" => display <= "1001111";
WHEN "0010" => display <= "0010010";
WHEN "0011" => display <= "0000110";
WHEN "0100" => display <= "1001100";
WHEN "0101" => display <= "0100100";
WHEN "0110" => display <= "0100000";
WHEN "0111" => display <= "0001111";
WHEN "1000" => display <= "0000000";
WHEN "1001" => display <= "0001100";
WHEN "1010" => display <= "0001000";
WHEN "1011" => display <= "1100000";
WHEN "1100" => display <= "0110001";
WHEN "1101" => display <= "1000010";
WHEN "1110" => display <= "0110000";
WHEN "1111" => display <= "0111000";

END CASE;
END PROCESS;

END Behavior;

Figure 36. VHDL code for the seven-segment display code converter.

Altera Corporation - University Program
April 2014

35

http://www.altera.com/education/univ/

MAKING QSYS COMPONENTS For Quartus II 13.1

Copyright © 2013 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the
stylized Altera logo, specific device designations, and all other words and logos that are identified as trademarks
and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the
U.S. and other countries. All other product or service names are the property of their respective holders. Altera
products are protected under numerous U.S. and foreign patents and pending applications, mask work rights, and
copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with
Altera’s standard warranty, but reserves the right to make changes to any products and services at any time without
notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product,
or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are
advised to obtain the latest version of device specifications before relying on any published information and before
placing orders for products or services.

This document is being provided on an “as-is” basis and as an accommodation and therefore all warranties, repre-
sentations or guarantees of any kind (whether express, implied or statutory) including, without limitation, warranties
of merchantability, non-infringement, or fitness for a particular purpose, are specifically disclaimed.

36 Altera Corporation - University Program
April 2014

http://www.altera.com/education/univ/

	1 Introduction
	2 Introduction to Qsys
	3 What is a Qsys Component?
	4 Avalon Memory-Mapped Interface Details
	5 Adding a New Component to the Qsys Component Library
	6 Instantiating the New Component
	7 Implementing the Embedded System in an FPGA Chip
	8 Testing the Embedded System
	9 Concluding Remarks
	10 Appendix A

