Jivan S. Parab
Rajendra S. Gad
G.M. Naik

Hands-on Experience
with Altera FPGA
Development Boards

Hands-on Experience with Altera FPGA
Development Boards

Jivan S. Parab - Rajendra S. Gad
G.M. Naik

Hands-on Experience
with Altera FPGA
Development Boards

@ Springer

Jivan S. Parab
Department of Electronics
Goa University

G.M. Naik
Department of Electronics
Goa University

Taleigao Taleigéo

India India

Rajendra S. Gad

Department of Electronics

Goa University

Taleigdo

India

ISBN 978-81-322-3767-9 ISBN 978-81-322-3769-3 (eBook)

https://doi.org/10.1007/978-81-322-3769-3
Library of Congress Control Number: 2017956335

© Springer (India) Private Ltd. 2018

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper
This Springer imprint is published by Springer Nature

The registered company is Springer (India) Pvt. Ltd.
The registered company address is: 7th Floor, Vijaya Building, 17 Barakhamba Road, New Delhi 110 001, India

Foreword

The traditional teacher-centered classroom teaching is transforming into the newer
student-centered approach to learning. During this transition, the teachers and
students need to go through familiarization and training in the new pedagogy. This
book entitled “Hands-on Experience with Altera FPGA Development Boards™ is an
effort by the authors to meet this challenge. The technology space is ever
expanding, and it is not possible to teach all of it in the classroom teaching cur-
riculum. It is true that students now have access to vast resources at their fingertips.
However, a book of this kind, developed based on the experience of the authors in
teaching this to their students, is more suited since it has been improved based on
the feedback from the students who have used it in its early form. The authors and
their peer group in their department have put in extra efforts to make it
student-friendly. This is a third book in the series of books brought out by the
group, specifically on the “hands-on-approach” to skill development.

Embedded systems are all-pervading and offer limitless possibilities in the use of
FPGAs in systems of diverse nature. This book offers an in-depth, yet practical,
explanation of the various elements that make up the subject matter. Understanding
the contents of this book does not require high level of prior preparation. The case
studies on signal processing and control application are very important for a
beginner to put a practical system to work. The students and researchers who wish
to explore this area will find it highly useful, shortening their learning time and get
them onboard quickly. Authors have extensive experience in this field. They are in
academia and understand the needs of students. Also, they have strong connection
with industries and thereby have a good grasp of the present status. They have
worked themselves on these systems, and hence, the book has a greater authenticity.

I recommend this book for intermediate programmers, electronics, electrical,
instrumentation engineers, or any individual who is strongly inclined to take up his
or her career in embedded C programming. I am sure the reader will experience

vi Foreword

learning embedded programming by example and learning by doing. Last but not
the least, this book will certainly be a value addition to the field of reconfigurable
embedded programming platform.

Professor Raghurama
Director, BITS Pilani, Goa

Preface

Microprocessor and microcontrollers have revitalized the instrumentation world
and now become ubiquitous. However, due to their niche role, when a particular
microcontroller is discontinued, the entire product based on it has to be revamped,
and the evolution of the technology means that the newer upgraded versions cannot
be used in its place due to binary and socket incompatibility. Another issue which
arises is of redundant hardware in microcontrollers posing a basic bottleneck in
system optimization—many resources remain unutilized for routine applications.

In order to achieve portability, power efficiency, higher throughput, and less
latency, the only alternative is to use the soft processor cores with FPGAs for small-
and medium-scale production as they become more economic as compared to
ASICs. Many vendors have come out with readymade cores such as NIOSII from
Altera, Picoblaze and Microblaze from Xilinx. Building the system on FPGAs with
these cores will not only facilitate earlier and easier market opportunities but will
also give the advantage of using readymade full proof design alternatives, reducing
the inconvenience of committing mistakes and debugging. The present book will
explore the “know-how” for synthesizing chips for every embedded needs.

Methodologies in digital design have undergone tremendous changes over the
past three decades. The use of FPGA and HDL for implementing digital logic has
become widespread in the recent past, and use of FPGA in embedded systems is
increasing almost day by day. A sign of the increasing importance of this area is
that most of the technical institutes and engineering colleges have incorporated
FPGA as the core subjects.

The domain of embedded systems is quite large and is centered around
general-purpose processors and microcontrollers. The Altera FPGA forum receives
numerous posts by newcomers to the technology asking questions on configuring
FPGA, interfacing SRAM, building NIOS II system—this book is for those users as
it essentially addresses most of these questions. The motivation behind writing this
book was to ease out the difficulties faced by the students and researchers, so that
they are not dependent on their supervisors to understand the field of reconfigurable
embedded platform. To this end, it has many worked-out case studies in different
areas of electronics like basic digital designs, sensors and measurement, biomedical

vii

viii Preface

instrumentation. It is intended for graduate, postgraduate, and research students
from the electrical, electronics, computer and instrumentation engineering back-
grounds as a ready reference during their work.

We promise potential readers that this book will reduce the steep learning curve
and will help them quickly develop their embedded systems application in the
shortest possible time frame. We recommend that the readers begin by reading
through the summary paragraphs of each chapter, which will introduce each section
and provide an overall picture of how the book is organized and how it will help
them in creating their own design.

We would like to thank our student community and friends—their work in
various industries helped identify the problems used in the case studies.

Though this book is intended for beginners in the area wherein the students
aspire to learn skills building FPGA platform, a prerequisite knowledge in C/C++
and HDL will greatly help in understanding the complexities more easily. Since
these two languages are now part of regular curriculum, we feel the students can
directly start working on case studies.

Taleigdo, India Dr. Jivan S. Parab
Dr. Rajendra S. Gad
Prof. G.M. Naik

Contents

1 Genesis of PLD’s, Market Players, and Tools.

3

1.1

1.2

1
Brief Insight of Microprocessor, Microcontroller and PLD’s 2
1.1.1 Selection of Technology Based on Application 3
Family Tree of PLDs, .. 4
1.2.1 When to Choose a PLD? 6

7

7

1.3 Major Players in the Market and Their Product Specialties
1.3.1 Overview of Xilinx Products (www.Xilinx.com)
1.3.2 Overview of Altera Products (www.altera.com) 8
1.3.3 Overview of Lattice (http://www.latticesemi.com/). 10
1.3.4 Overview of QuickLogic (www.Quicklogic.com). 10
1.4 Overview of Software Tools 10
1.4.1 Programming Aspects of VHDL. 11
1.4.2 Programming Aspects of Verilog 14
1.4.3 Programming Aspects of ABEL 16
Getting Hands on Altera® Quartus® II Software 19
2.1 Installation of Software. 20
22 Setting Upof License 21
2.3 Creation of First Embedded System Project 22
2.4 Project Building and Compilation 28
2.5 Programming and Configuring the FPGA Device 35
Building Simple Applications with FPGA 39
3.1 Implementation of 8:1 Multiplexer. 39
3.2 Implementation of Encoder/Decoder and Priority Encoder. 50
3.3 Universal Shift Register 58
34 4-BitCounter. 62
3.5 Implementation of Memory., 65
3.6 Traffic Light Controller. 67

ix

X Contents
4 Building Embedded Systems Using Soft IP Cores. 73
4.1 Conceptof Soft IPs 74
4.2 Soft Core Processors for Embedded Systems 74
4.3 A Survey of Soft Core Processors 75
4.3.1 Commercial Cores and Tools 75
4.3.2 Open-Source COresuuuuuuuunnnnnnn. 76
4.3.3 Comparison of Soft Core Processors. 76
4.4 Soft Processor Cores of Altera 76
4.5 Design Flow 78
5 How to Build First Nios I System 79
5.1 Creating the Advanced Quartus II Project 81
5.2 Creation and Generation of NIOS II System by Using SOPC
Builder 81
5.3 Nios IT System Integration into a Quartus II Project 87
5.4 Programming and Configuration Cyclone II Device
onthe DE2 Board 92
5.5 Creating C/C++ Program Using Nios I IDE 94
5.5.1 Imtroduction.............. 94
5.6 Running and Testing It on Target Board 99
6 Case Studies Using Altera Nios IT. 103
6.1 Blinking of LEDs in Different Patterns 104
6.2 Display of Scrolling Texton LCD. 106
6.3 Interfacing of Digital Camera 110
6.4 Multiprocessor Communication for Parallel Processing 116
6.5 Robotic ARM Controlled Over Ethernet 120
6.6 Multivariate System Implementation 133
6.7 Matrix Crunching on Altera DE2 Board. 140
6.8 Reading from the Flash (Web Application) 146

About the Authors

Dr. Jivan S. Parab is Assistant Professor in the
Department of Electronics at Goa University, India. He
completed his Ph.D. from the same university with the
thesis titled “Development of Novel Embedded DSP
Architecture for Non-Invasive Glucose Analysis.” He
received his M.Sc. (2005) and B.Sc. (2003) in
Electronics from Goa University. He has co-authored
two books, published by Springer. The details of the
books are ‘“Practical aspects of embedded system
design using microcontrollers” and “Exploring C for
Microcontrollers: A hands on Approach.” He has
published several papers in national and international
level journals and conferences.

Dr. Rajendra S. Gad is Associate Professor in the
Department of Electronics at Goa University. He
received B.Sc. (Physics) and M.Sc. (Electronics)
degrees from Goa University in 1995 and 1997,
respectively. He completed his Ph.D. in Electronics in
2009 from the same institute. He has several papers
published in journal and conference proceedings to his
credit. His areas of interest are biomedical sensors,
DSP digital repositories and networks. He has been
f into teaching and taught courses such as VLSI system
design, HDL system design, digital signal processing,
computer programming, operating system, mecha-
tronics, and electronics practical.

xi

Xii

About the Authors

Dr. G.M. Naik is Professor and Head of Department of
Electrics at Goa University. Dr. Naik’s areas of interest
are fiber optics and sensors, opto-electronics, renewable
energy sources, and biomedical instrumentation. He
completed his Ph.D. (Opto-electronics) from Indian
Institute of Science, Bangalore, in 1987. He received
B.Sc. (Physics, Chemistry, and Maths) and M.Sc.
(Applied Electronics) degrees from Karnatak University
in 1978 and 1980, respectively. Dr. Naik has
co-authored two books entitled “Practical aspects of
embedded system design using microcontrollers” and
“Exploring C for Microcontrollers: A hands on
Approach” published by Springer. He has several papers
published in journal and conference proceedings.

Chapter 1
Genesis of PLD’s, Market Players,
and Tools

Contents

1.1 Brief Insight of Microprocessor, Microcontroller and PLD’s.........cccccccvvivniniiccnene. 2
1.1.1 Selection of Technology Based on Application e 3

1.2 Family Tree Of PLIDS ..cc.couiiiiiiiiiiiiieeeeccee ettt 4
1.2.1 When to Choose a PLD?c.ccccooviiiiiiiiiiiiicccc 6

1.3 Major Players in the Market and Their Product Specialties 7
1.3.1 Overview of Xilinx Products (www.Xilinx.com).. 7
1.3.2 Overview of Altera Products (www.altera.com)....... e 8
1.3.3 Overview of Lattice (http://www.latticesemi.com/).........ccccoceevuererruenerseenenneenenns 10
1.3.4 Overview of QuickLogic (Www.Quicklogic.cOm).......c.cccveveirininenienieincicnecnes 10

1.4 Overview of Software Tools .. 10
1.4.1 Programming Aspects of VHDL.........ccccoeoiiiiinininiiiiinnecceeseseeeeeeieee 11
1.4.2 Programming ASpects Of VeriloZ........cocceviriiniriininiieniiienceieieeeieetee e 14
1.4.3 Programming Aspects of ABELcccocooiiiiiiiiniiiiicccccce, 16

Abstract “Genesis of PLD’s, market players, and tools” discuss the micropro-
cessor, microcontroller, and PLD devices and also talk about how to select these
devices for desired application. This chapter gives the family tree of PLD devices
and helps designer to select best PLD devices based on application. The chapter
also gives the overview of major PLD market players and programming aspect of
VHDI, Verilog, and ABEL. There are several separate books available in the market
which discusses in detail about VHDL, Verilog, and ABEL programming. Here, we
simply focused more on the basic part of hardware descriptive programming
language.

Keywords PLD - VHDL - Verilog - ABEL

© Springer (India) Private Ltd. 2018 1
J.S. Parab et al., Hands-on Experience with Altera FPGA Development Boards,
https://doi.org/10.1007/978-81-322-3769-3_1

2 1 Genesis of PLD’s, Market Players, and Tools

1.1 Brief Insight of Microprocessor, Microcontroller
and PLD’s

Microprocessor

Microprocessor in any embedded system design is like a human brain, which
provides computational control and decision-making capabilities. Microprocessors
find use in advanced electronic design systems such as printers, automobiles,
defense. In general, microprocessors have ALU, control logic to generate various
control signals, and registers to store data required for processing unit.

Classification of Microprocessors

Microprocessor classification is based on function handling and features supported.
The several companies manufacture many variants of microprocessors currently
available in market but most frequently used microprocessors are as follows:

Intel microprocessors

4-bit processors: 4004, 4040

8-bit processors: 8008, 8080, 8085

16-bit processor: 8086, 8088, 80186, 80188, 80286
32-bit Processor: 80386, 80486,

64-bit processor: Itanium, Dual core, i3, i5, etc.

Zilog microprocessor:

8 bit processor: Z80, Z180
Motorola Microprocessor:
8 bit processor: 6800
PLD’s

A programmable logic device (PLD) is the device in which the designed logic is
implemented and easily reconfigured by the programmer on the fly. These devices
are called as field programmable logic devices since the designer has flexibility of
device programming in same field. The PLD gives designers the flexibility to
implement different complex designs for various applications. Programmable
read-only memory (PROM) is the most commonly used PLDs. There are two
categories of devices: (a) devices are programmed by the vendor using a mask, and
interconnects are one-time programmable, (b) devices that are programmed by the
user are called field programmable. PLDs are very much inexpensive and flexible
which are the biggest advantages.

1.1 Brief Insight of Microprocessor, Microcontroller and PLD’s 3

1.1.1 Selection of Technology Based on Application

In embedded system design, the processor plays an important role on the designed
system’s success or failure.

Selection of the proper device for right application is therefore extremely
important. Embedded application devices are broadly divided into microcontrollers
and microprocessors. MPUs come in an extensive range of different types, models,
and sizes.

Choosing between a microprocessor, microcontroller, or PLD’s is a complex and
rather daunting task. Several device selection criteria are discussed below. Selecting
the proper device on which to base your new design can be daunting. The need to
make the correct balance of price, performance, and power consumption has many
implications.

Processing Power

The initial selection criterion is performance; microprocessor unit (MPU) offers
more processing power than microcontroller unit (MCU). A broad comparison
between devices can be made by comparing the quoted Dhrystone MIPS—millions
of instructions per second.

For advanced mathematical applications, required processing power will be
more; hence, MPU is selected in such situation. If the application is real time in
nature, then MCU will be the ultimate choice; MCUs with timing deterministic
processor core and flash memory make them suitable for applications that need
functional safety.

Memory

The next criterion for selection of MCUs and MPUs is based on memory avail-
ability on chip or external memory. To store and execute the program, MCUs
usually have on-chip flash memory. This memory is embedded on the chip; it is
difficult to add more memory if the code size exceeds. Flash memory’s advantage is
faster access time. If the on-chip memory is not sufficient, one can swap the device
in same family with more memory.

For program and data storage, MPUs use external memory which offers lot of
flexibility. External NAND or serial flash is often used to store the program, then it
is loaded into external DRAM; hence, the start-up process takes longer time than
MCUs which have embedded on-chip memory.

Power and Price

MCUs are clear winners over MPU as far as power consumption is concern. They
have various modules available inside it, and if you are not using them in your
application, those modules just go in idle mode and save lot of power. Designing
application by keeping power consumption to the lowest value with an MPU is
difficult and tricky. There are some MPUs which come with modes consuming low
power, but these are few and are complicated to achieve.

4 1 Genesis of PLD’s, Market Players, and Tools

A very important aspect in the performance—power trade-off is price. Obviously,
the price of an MCU or MPU will have a big role to play in whether it is selected or
not. Here, MCU is the more cost-optimized solution, and also the low-power
option. But, does it have the performance required? An MPU is generally used for
high-performance applications, but can you afford it? Designer must find answer for
all these questions in order to make the choice.

Time to Market

To sustain in the competitive market, tight time-to-market deadlines with simplicity
of design are very important. MCU needs only one power rail section, whereas an
MPU core needs several different voltage rails, the DDR, and other blocks, so
additional power converters are required, which further adds complexity and cost of
the design.

Last but not least, sometimes it is required to modify the existing product, and
planning for the future use is important. In these cases, selecting a vendor with an
extensive range of MCU and MPU products that are compatible will help maximize
software reuse when the time comes.

So, the solution to this is programmable logic devices (PLDs) which offer the
flexibility of redesigning and upgrade the entire designed product without changing
the platform.

1.2 Family Tree of PLDs

PLDs are categorized as: simple programmable logic devices (SPLDs) and
high-density programmable logic devices (HDPLDs). SPLDs are further divided in
the programmable array logic (PAL) and programable logic array (PLA) architecture,
while high-density PLDs (HDPLDs) include complex programable logic device
(CPLD) and field programable gate array (FPGA). Figure 1.1 gives the PLD tree
diagram which is self explanatory.

Simple Programmable Logic Devices

Devices under SPLD are PALs and PLA. PLAs and PALs have packing density up
to several hundred gates. The basic PALs architecture of AND/OR is implemented
in sum-of-product form (SOP) using Boolean equations. PLDs’ advantage is that in
order to get higher packaging density, it replaces small- to medium-scale integrated
(SSUMSI) circuits. Single PLD device replaces IC with hundreds of equivalent
gate. Another advantage of SPLD is that they consume very less power, fast per-
formance; turn-around time is faster because of very few interconnects between the
chips; and they are also highly reliable in nature. SPLDs are categorized under
bipolar and CMOS technology. CPLD devices are higher in density, but SPLDs still
have the best performance and easy to use.

1.2 Family Tree of PLDs 5

Programmable
Legic
Devices (PLDs)

Simple High-Density

Programmable Programmable
Leogic Logic Devices
Devices (SPLDs) (HDPLDs)
| I
1
Complex Field
Prlfrc?riz;mAr:\r:lble Prcgramma_ble Programmable Programmable
?PLA] Y Array Logic Logic Devices Logic Devices
(PAL) (CPLDs) (FPGAS)
Bipolar CMOS
Technology Technology
EEPROM-CMOS UWVEPROM-CMOS
Technology Technology
[
SRAM Antifuse
Programming Programming

Fig. 1.1 Family tree diagram of PLD

New advancements in technology help SPLD to include programmable output
logic, macrocells which can be configured in lower voltage and low power. This
feature of SPLD allows more flexibility in design applications such as low power,
high frequency, and low voltage which are most important.

High-Density Programmable Logic Devices

HDPLD has two high-performance devices namely CPLDs and FPGAs. The main
drawback of SPLD is that it has limitation of architectural design such as only few
logic structures that can be configured in a design and that to in a fixed defined way.
HDPLDs on the other hand overcome the silicon scarcity by adding more blocks of
flexible structures and interconnects. The two main components of CPLDs and
FPGAs are the block interconnect and logic block elements. The other names for
logic elements are logic cells/macrocells/logic blocks. The interconnects are noth-
ing but how those logic elements are connected together to a desired design for a
given application.

Both CPLDs and FPGAs are available in SRAM-based programming configu-
ration, but only CPLD devices are EPROM or EEPROM programmed which means
CPLDs’ logic is not volatile. When FPGAs programming technology are
antifuse-based which means one-time programmable (OTP) devices and
SRAM-based means it can be programmed multiple times as and when required.
This means that CPLDs can be up and running when power is applied and are
nonvolatile.

6 1 Genesis of PLD’s, Market Players, and Tools

Antifuse versus SRAM

The following is a list of advantages and disadvantages for the two technologies:

K SRAM programming technology is much slower than Antifuse programming technology thh
is due to interconnect RC.

» Silicon area per gate in Antifuse technology is more and routing becomes easier than in
SRAM technology.

» Antifuse FPGA has disadvantage that they require many process layers and mask steps and
requires high voltage programming transistors.

» Compared to Antifuse Technology ,SRAM-based technology provides higher capacity .

» SRAM based technology allows in-system programmability and the ability to reconfigure the
design during the debugging stage while Antifuse technology is one-time programmable
(OTP).

QThe Major drawback of SRAM technology is its volatile nature meaning it has to be/

reprogrammed every time when power is turned off and on.

1.2.1 When to Choose a PLD?

1.2.1.1 Tips on Choosing PLA, PAL, CPLD, and FPGAs

There has always been a lot of confusion in programmers’ mind over when to use a
FPGA and when to use a CPLD. Here, we try to give solution based on application.
For control circuits and state machine-based control logic, CPLDs are ideal choice.
They have fast, predictable timing. It is very difficult to predict the data path delays
in a FPGA. The greatest advantage of FPGAs is that it has fine logic blocks and a
flexible architecture for implementation in data path designs, register-rich designs,
control logic designs as well as arithmetic and logic functions.

CPLDs are very small devices with no dedicated internal RAMS or multipliers.
FPGAs have internal RAMS and multipliers. CPLDs are very cheap, and FPGAs
range from cheap to very expensive.

So, if you know it is a very simple design with no need for any serious maths or
storage, stick with a CPLD. Otherwise, you will need an FPGA.

CPLD FPGA
Quick start .
Non-volatile > Setup Time
Reconfigurable » Volatile
Fixed Path Delays > Ref:onﬁgurable .
Low/Medium size Packing . > Slflted for .large deS}gns.
»__High packing Density.

1.3 Major Players in the Market and Their Product Specialties 7

1.3 Major Players in the Market and Their Product
Specialties

There are multiple PLD players in the market, and their market share is dependant
on the customer support provided and integrated development tool interface. To
keep up the customer satisfaction is a big task for the PLD manufacturers; each
manufacturer keeps on updating their products regularly to meet the market
demand. Major players are Xilinx, Altera, Lattice, Quicklogic, etc.

1.3.1 Overview of Xilinx Products (www.Xilinx.com)

The world’s largest provider of programmable FPGAs and SoCs that set industry
standard for the lower cost, highest performance, and minimum power utilization is
Xilinx.

Recent technological innovations have transformed Xilinx to integrate “All”
forms of hardware, software, digital, and analog programmable technologies into its
All Programmable FPGAs and SoCs.

Comparison between various series of Xilinx FPGA is shown in Table 1.1.

Xilinx has also come out with customized soft core processor such as PicoBlaze
and Microblaze.

Table 1.1 Xilinx FPGA comparison

Spartan6 | Artix7 Kintex7 | Virtex7 Kintex Virtex
ultra scale | ultra scale
Logic cells 147,443 | 215,360 |477,760 | 1,954,560 | 1,160,880 | 4,432,680
BlockRAM (Mb) 4.8 13 34 68 76 132.9
DSP slices 180 740 1,920 3,600 5,520 2,880
DSP (symmetric FIR) 140 930 2,845 5,335 8,180 4,268
GMACs |GMACs |GMACs |GMACs | GMACs GMACs
Transceivers count (Gb/s) 8 16 32 96 64 120
Transceivers speed (Gb/s) 3.2 6.60 12.50 28.05 16.3 32.75
Transceiver total bandwidth | 50 211 800 2,784 2,086 5,886
(full duplex) (Gb/s)
Memory interface (DDR3) | 800 1,066 1,866 1,866 2,400 2,400
PCI express x1 Genl | x4 x8 x8 Gen3 | x8 Gen3 x8 Gen3
Gen2 Gen?2
Analog mixed signal - XADC |XADC |XADC System System
monitor monitor
AES configuration Yes Yes Yes Yes Yes Yes
Input/output pins 576 500 500 1,200 832 1,456
Input/output voltage (V) 1.2-3.3 1.2-33 |1.2-33 |1.2-33 1.0-3.3 1.0-3.3

8 1 Genesis of PLD’s, Market Players, and Tools

Xilinx devices find use in number of broad range of applications such as surgery
using robotic arm, Mars probes, wireless and wired network infrastructure, indus-
trial automation, high-definition video, software-defined ratio platform, defense
application.

1.3.2 Overview of Altera Products (www.altera.com)

Altera Corporation is the pioneer of programmable logic solutions, enabling system
and semiconductor companies to rapidly and cost effectively innovate, differentiate,
and win in their markets. Altera offers FPGAs, SoCs with embedded processor
systems (NIOS II), CPLDs in combination with software tools, intellectual prop-
erty, embedded processors, and customer support to provide high-value pro-
grammable solution.

FPGAs offer following design advantages in comparison to ASICs

e Quick Prototyping

e less time to market

e On the fly re-program capability

e Non Recurring Engineering costs is Low

o product life cycle is Long so risk of obsolescence is less

The Altera has developed FPGA Cyclone® series to meet programmers need of
low-power, cost-effective design, reduce time to market. Every new generation of
Cyclone FPGAs’ series meets technical challenges of improved performance,
increased integration, less power consumption, and quick time to market while
meeting cost-effective requirements (Tables 1.2 and 1.3).

Table 1.2 Cyclone series

Series Cyclone | Cyclone II | Cyclone Il | Cyclone IV | Cyclone V
Year of introduction 2002 2004 2007 2009 2011
Process technology (nm) | 130 90 65 60 28

Suited for new designs Yes Yes Yes Yes Yes

Table 1.3 Arria family

Family Arria | Arria Il | Arria Arria V GX, | Arria Arria 10 GX,
GX GX 11 GZ GT, SX V GZ GT, SX

Year of introduction 2007 | 2009 2010 2011 2012 2013

Process technology 90 40 40 28 28 20

dimension (nm)

1.3 Major Players in the Market and Their Product Specialties 9

Lowest system cost and lowest power FPGA solution are provided by
Cyclone V FPGAs for applications in the broadcast, consumer markets, industrial,
and wireless sectors. This Cyclone family has integrated many hard intellectual
property (IP) blocks which help to lower the system cost and also lower the design
cycle time. The Cyclone V series offer customized SoC solutions in which Hard
Processor System (HPS) ARM® Cortex™-A9 MPCore™ is present.

The market’s low-cost, low-power FPGAs are Cyclone IV FPGAs, and now also
they have a transceiver variant. Cyclone IV FPGA family is preferred due to its
high-volume density and large bandwidth, keeping the system cost minimum.

Device family which offers power optimization, high functionality plus low
power all in tandem is Cyclone III FPGAs.

Cyclone II FPGAs are designed to provide a customer-defined feature set and
cost-sensitive applications. Its performance and low-power consumption is
achieved at a cost lower than that of ASICs.

Initially, Altera brought Cyclone FPGAs series that was considered as low-cost
FPGAs. But, today’s designs require advanced features such as very low power and
the higher packing density devices like Cyclone IV and Cyclone III FPGAs.

Altera’s Arria® is midrange family which offers good power efficiency and
optimal performance. ARM®-based hard processor system (HPS) is provided in
Arria V and Arria 10 device families.

e Arria V GZ FPGAs support the maximum bandwidth compared to any 28 nm
midrange FPGA.

e The Arria IT FPGA family is based on a 40 nm, full-featured FPGA.

e Altera’s cost-optimized 90 nm FPGA family with transceivers is Arria GX
FPGA.

Products with high-performance, faster time to market, high productivity can be
achieved by using Stratix® FPGA and SoC family. By using this highly rich feature
set, Stratix FPGAs series (Table 1.4) help to increase system bandwidth and inte-
grate many functions.

e Stratix 10 series FPGAs were introduced in 2013 with HyperFlex architecture
encapsulated on the Intel 14 nm Tri-Gate process. It delivers double core per-
formance and offers highest performance bandwidth and system integration.

e Stratix V and Stratix IV FPGAs provide the highest bandwidth, highest levels of
system integration with 28 and 40 nm technology, respectively.

e Stratix III FPGAs are 65 nm introduced in 2006 for high-end sophisticated
system processing designs for many applications.

Table 1.4 Stratix series

Device family Stratix | Stratix | Stratix | Stratix | Stratix | Stratix | Stratix | Stratix
GX)i nGX |11 v \Y% 10

Year of introduction | 2002 2003 2004 2005 2006 2008 2010 2013

Process technology 130 130 90 90 65 40 28 14

dimension (nm) Tri-Gate

10 1 Genesis of PLD’s, Market Players, and Tools

e Stratix II and Stratix II GX variant has added an adaptive logic module
(ALM) architecture, which helps in achieving high performance.

e Original members of the Altera® Stratix family are Stratix FPGAs and the
Stratix with 130 nm technology.

1.3.3 Overview of Lattice (http://www.latticesemi.com/)

Lattice semiconductor brought their PLDs in market with low power, small form
factor, low cost, customizable solutions for a quickly changing connected world.
They are considered as leader in low-power design. Lattice semiconductor CPLDs
use EECMOS technology which is non-volatile in nature. There are basically six
families of Lattice PLDs such as 1000/1000E, 2000/2000V, 3000, and 6000. The
packing densities of these families range from 1000 to 25,000 PLD gates. A very
important feature of these PLDs is that it supports global routing pool, which helps
to connect all internal structures and I/O’s. Another important feature is the generic
logic blocks (GLB).

Market for Lattice semiconductor FPGA is in the field of consumer appliance,
communication, and industrial area.

1.3.4 Overview of QuickLogic (www.Quicklogic.com)

Initially, QuickLogic Corp. brought few FPGAs in the market, but due to lot of
completion in market, they thought of backing away from the FPGA market, saying
it will instead focus on an application-specific standard product (ASSP) and
customer-specific standard products (CSSPs).

QuickLogic has been selling the PolarPro line of low-power, one-time pro-
grammable FPGAs, which competed against products from rivals Altera, Lattice,
and Xilinx but could not sustain for quite long.

1.4 Overview of Software Tools

There are several books available in the market which explains in detail about an
HDL languages. Here, we have attempted to give the glimpses of VHDL, Verilog,
and ABEL hardware descriptive languages.

http://www.latticesemi.com/

1.4 Overview of Software Tools 11

1.4.1 Programming Aspects of VHDL

What is VHDL?

To abbreviate VHDL, there are two parts V+HDL; V is nothing but
VHSIC HDL. VHSIC is abbreviated as very high-speed integrated circuit. It helps
to describe the functional behavior and structure of electronic design. The VHDL is
regulated by the IEEE standards. VHDL language uses simulation and synthesis
tools to design any system.

Design approach of VHDL is very flexible in nature; it does not constrain the
user to specifically stick to one style of description. VHDL allows designer to
describe the designs using top-down, bottom-up, or middle-out. VHDL even can be
used to describe gate-level hardware. The most important feature of VHDL is that it
helps to simulate the design before being sent for manufacturing, so that designers
can quickly correct the designs and also do the functional simulation.

Design Flow using VHDL

Figure 1.2 shows the high-level design flow for FPGA. Following steps are needed
to be followed for designing any system.

System-Level Verification

First step is system verification. Here, the entire system design having one or more
devices is modeled and simulated using VHDL. Before commencing with detailed
system design, its entire functional description of the system is validated.

Test bench Creation and RTL Design

The actual FPGA design commences once the entire architecture of the system is
ready. This starts after putting the design at the register transfer level in VHDL, and

Fig. 1.2 Design flow of an
VHDL

Simuiate ot

12 1 Genesis of PLD’s, Market Players, and Tools

also capturing VHDL test cases. Both these tasks are exactly opposite and are
sometimes performed by different design teams to ensure that the interpretation of
specification is done correctly. The major task of engineers is to generate precise
test cases to improve the quality of final FPGA/ASIC.

RTL Verification

System design functionality is validated against the specification by performing
RTL VHDL simulation. RTL simulation is considered as faster than gate-level
simulation.

Designer spends 70% of the entire design cycle in writing and simulating the
design at register transfer level, and remaining 30% of the time is for verification
and synthesis.

Look-ahead Synthesis

Before the actual synthesis, some exploratory synthesis will be done on the design
process, which provides accurate speed and area. The main synthesis is not per-
formed until the functional simulation is complete. It is not advisable to put lot of
time and effort in synthesis before the functionality of the design is validated.

70% of design time at RTL! 30% of the time is for verification and syn-
thesis. This is a rule to be followed. You must have heard of 20-80 rule in
RISC, CISC design. Here, what we recommend is 70-30 rule.

A Simple VHDL Design Entity

A entire design entity is divided into two parts. In VHDL, they are called as design
unit. External world interface to the design entity is defined by entity declaration.
The architecture body defines the behavior and structure of the design entity, i.e.,
how inputs and outputs are related.

Here, we will describe a simple AND-OR-Invert (AOI) logic in VHDL as shown
in Fig. 1.3. This design has four inputs and one output; we have taken into con-
sideration the power and ground pins while modeling the design.

Fig. 1.3 Design entity of

AOI gate uz
B —

U1

e e

) Y

1.4 Overview of Software Tools 13

-- AND-OR-INVERT gate VHDL code

library IEEE;
use IEEE.STD LOGIC 1164.all;

Entity AOInv is

port (
A,B,C,D:in STD_LOGIC;
Y :out STD_LOGIC

)

end AOInv;

Architecture V1 of AOInv is
begin
Y <=not ((A and B) or (C and D));
end V1;
-- end of VHDL code

Detailed Line wise explanation of above code is given below.

Every programming language must have comment so that it is easier to understand the logic of
code . Comment section starts with 2 hyphens mark (--) which is ignored by the compiler.

library IEEE;

use [IEEE.STD LOGIC 1164.all;
Library IEEE is always declared above the entity which helps to access the
package STD LOGIC_1164 of library IEEE for the declared name and data types in entity .

Entity AOInv is
Entity and is are the keywords of VHDL . Here AOInv is the name given for the entity by the
user . The entity name is decided by the user.

port (

A, B, C,D:in STD_LOGIC;

Y :out STD_LOGIC
);

Declaring entity means assigning name to the entity and port declarations. A port
is basically input/output of the system. Each port declaration declares the direction
the ports (in, out, or input—output).

The data type STD_LOGIC defines the set of values that may flow through the
port, which is defined in STD_LOGIC_1164 in library IEEE package.

14 1 Genesis of PLD’s, Market Players, and Tools

end AOInv;

keyword end is used to end the entity declaration.

architecture V1 of AOInv is
In the above line architecture, of and is are keywords of VHDL define in the packages. User can
give any name to architecture body here it is given as V1. User can define multiple architecture

bodies for a single entity. Name to the architecture is given to distinguish between multiple
architecture declarations.

begin
begin is a keyword which tells this is the end of architecture declaration region and the start of
statement portion of architecture.

Y <=not ((A and B) or (C and D));
The concurrent signal assignment in architecture describes the design entity function. The

concurrent signal are executed when any one of the of the four ports A, B, C or port D changes
value .

end V1;

The architecture is terminated by end keyword followed by the name of the
architecture.

1.4.2 Programming Aspects of Verilog

Another hardware descriptive language is Verilog which resembles very close to C
language. The IEEE standard 1364 is used to describe Verilog. There are basically
three versions of Verilog; first version was published in 1995 and revision to this
came in 2001 and 2005. Most of user uses Verilog 2005.

A Brief History of Verilog

Gateway Design Automation company way back in 1980s developed a logic
simulator, Verilog-XL. Later in 1989, Cadence Design Systems acquired Gateway
with its full rights to the language and the simulator. In 1990, Cadence put the
language (but not the simulator) into the public domain, with the intention that it
should become a standard, non-proprietary language.

Non-profit making organization, Accellera which was formed from the merger of
Open Verilog International (OVI) and VHDL International maintains the
Verilog HDL. OVI deals with IEEE standardization procedure.

Design Flow using Verilog

Figure 1.4 shows the high-level design flow for an FPGA using Verilog. The FPGA
design flow steps using Verilog are same as that of design using VHDL, which also
follows the 70-30 rule which is the rule of HDL.

1.4 Overview of Software Tools 15

Verilog-Based Simple Design

In Verilog, design is described by using the unit called as module. A module
comprises of two parts, the declarations of port and the body of the module. The
port declarations are same as entity declaration in VHDL which defines external
interface of the module. The body of the module defines the behavior and structure
of the design entity, i.e., how inputs and outputs are related. Let’s us consider a
simple AND-OR-Invert (AOI) logic in Verilog.

// AND-OR-INVERT Gate Verilog code
module AOInv (input A, B, C, D, output Y);
assign Y =~((A & B) | (C & D));

end module

// Verilog code end here

OK, that’s the simple code for the design. Detailed Linewise explanation of
above code is given below.
Comments

/I Verilog code for AND-OR-INVERT gate

In Verilog, comments are entered by putting two forward slash marks (//).
A comment line can be entered on a same line or on a separate line. Also, in
Verilog, comment statements are ignored by the compiler.

Module and Port Declarations

module AOInv (input A, B, C, D, output Y);

Fig. 1.4 Design flow using
Verilog

Verification is
now possible
before gates!

16 1 Genesis of PLD’s, Market Players, and Tools

User can prescribe any arbitrary name to the module. Here, module is a Verilog
keyword. New Verilog module definition is started with this line. Parentheses after
the module name declare the input and output ports of the module. Port names (A, B,
C, D) with their directions, i.e., (input, output, or input—output) are also declared.
End module

End module keyword terminates the module.

Functionality

Job of the module is to handle the interfaces, but how these ports are interrelated is
defined by its functionality.

assign Y =~((A & B) | (C & D));

Here, all the ports used are declared in the header port declarations section of
module. Verilog keyword Assign is used to assign output of computed logic to the
port declared as output. This also defines concurrent signal assignment, i.e., con-
current signal is executed when any one of the four ports A, B, C, or D changes
value.

1.4.3 Programming Aspects of ABEL

The Advanced Boolean Expression Language (ABEL) is another hardware
descriptive language. Data I/O Corporation has developed ABEL in 1983.

ABEL helps to describe any digital designs by equations, truth tables, state
diagrams, or the combinations of all three. The main feature of ABEL is it helps to
optimize and simulate the design without specifying a device or assigning pins. Test
vectors description can also be given by ABEL.

With the advancement in field programmable gate arrays (FPGAs), standard
hardware description languages (HDLs) such as VHDL and Verilog have gained in
popularity PLD due to its large library support and resources. Also, ABEL still
remains in use by thousands of PLD programmers worldwide.

Basic Structure of an ABEL-HDL File
ABEL-HDL follows the below syntax rules and restrictions:

Maximum length of code line may be up to 150 characters.

Code lines are terminated by either line feed character, form feed, or vertical tab.
Keywords and numbers must be separated by at least one space.

Identifiers are separated by commas.

Keywords, numbers, operators, or identifiers cannot have spaces. Spaces are
allowed in strings, explanation comments, and actual arguments.

e Case sensitive keywords and dentifiers in ABEL-HDL.

The syntax rules for identifiers are:

1.4 Overview of Software Tools 17

Identifiers can be maximum up to 31 characters long.

The first letter of identifier must start with an alphabet or with an underscore.
Single names can have character “tilde” (~).

Identifiers can contain upper, lower case characters, digits, and underscores in
between except the first letter.

e Spaces cannot be used in an identifier.

The Source File Structure of ABEL-HDL:

Module is a unit which includes complete functional description of the design.

An ABEL program supports multiple modules to be defined, but at a time, it will

consider only the first module and the other modules will be checked according to

the rules of syntax. One module can only have one PLD device specification.
ABEL programming module consists of the following flow setup:

Header
Declarations
Logic Description
Test Vectors

End

The module structure follows below four rules:

Only one header should be present in a module.

Declarations must immediately follow the header.

Other sections of a source file can come in any order.

Identifier or symbols cannot be referenced before it is being declared.

Chapter 2
Getting Hands on Altera® Quartus® II
Software

Contents

2.1 Installation Of SOFEWAIEcccceviriiriiiiiiiiiiecce e 20
2.2 Setting Up of License 21
2.3 Creation of First Embedded System Project..........ccccocoveveieiiniinininienicinincnceieceeen 22
2.4 Project Building and Compilation............cceririiieiriiiniiieieeeeeee s 28
2.5 Programming and Configuring the FPGA DeViCe..........cccceovviiiiiiiiniiiiiiiiiiiciiieeens 35

Abstract This chapter provides users with overview and capabilities of Altera®
Quartus® II design software in programmable logic design. The book is designed
around the Altera DE2 development platform. The Altera Quartus II software is the
most comprehensive environment available for system-on-a-programmable-chip
(SOPC) design. Here we provide a guide that will help one to install the Quartus
software, setting up the license for installed Quartus. This chapter also gives the
details about the steps involved in creating the first embedded project, building
projects’ steps, and how to port the programming file onto the development board.

Keywords Altera - Quartus II - SOPC - Embedded platform

This chapter provides users with overview and capabilities of Altera® Quartus® II
development software tool in programmable logic design. Quartus II software
platform is more suitable for system-on-a-programmable-chip (SOPC) design in
many applications. This chapter will give simple and easy steps to user about how
to install software setup and the license creating first embedded design and simu-
lation of entire design.

© Springer (India) Private Ltd. 2018 19
J.S. Parab et al., Hands-on Experience with Altera FPGA Development Boards,
https://doi.org/10.1007/978-81-322-3769-3_2

20 2 Getting Hands on Altera® Quartus® II Software

2.1 Installation of Software

This chapter gives the minimum requirements of the system and installing proce-
dures of Quartus II software.

System Requirements

Following minimum system requirements need to be verified before Quartus II
software installation.

Pentium II PC runs at more than 400 MHz with at least 256 MB RAM
Disk space 1 GB where you are installing the Quartus II software
Windows NT version 4.0, Windows 2000, or Windows XP

CD-ROM drive

Following ports availability:

— Parallel port for ByteBlaster™ II or Byte BlasterMV™
— Serial port for Master Blaster™
— USB port for USB-Blaster™

e Internet Browser, i.e., Internet Explorer 5.0 or later
Uninstalling Previous Versions of Quartus II Software

Before starting with the fresh installation of Quartus II, it is recommended by Altera
to uninstall the previously installed version of Quartus II by following below steps.
Sometimes user can install new version without removing the old one by simply
specifying the new installation directory.

Choose Start > All Programs > Altera > Quartus Uninstall, Repair or Modify.

Running the Setup of Quartus II

Following steps need to be followed to install the Quartus on user system:
Quartus software installation is allowed only if user has administrator privileges.

1. Insert CD having Quartus II Software into CD-ROM drive. Immediately, several
installation options pop up and one can click on install option. Setup can also be
started manually by performing the following steps:

a. Start > Run.
b. In the dialog box, type <CD-ROM drive>:\install.
c. Press OK.

2. After clicking on Install Quartus II Software, installation starts automatically
and guides user during installation process.

2.2 Setting Up of License 21

2.2 Setting Up of License

Licence.dat file needs to be obtained before setting up of license for Quartus II.
Steps to Obtain the license file

(1) Browse the portal address www.altera.com/licensing.

(2) Select Get licenses link which is the first blue link on the page.

(3) Press on Get a license for Quartus® II Web Edition software.

(4) One can get one time access if you create an account using you email id.

(5) Once you create username, go back to Step 2.

(6) To get license you have to provide system network interface card number
(NIC).

NIC number is a twelve digit hexadecimal number that recognizes your system,
and one can easily find the NIC of system by typing ipconfig/all at a windows
command prompt.

To obtain NIC number, following command typed on command prompt
window:

Ipconfig/all
Search for following line
Physical Addresscoevvvnnn 00-ED-6C-59-91-4F

Then on licensing tab, user has to enter the above NIC without the (-).

Once you submit the required information, the license file will be emailed to
you.

Once the user receives license file, next step is to do the license setup if the user
has Windows XP system, and then specify the location of the license file by
following the below steps:

i. Choose start > Control Panel.

ii. Click on System in Control Panel window.

iii. Then click on Advanced tab > click Environment Variables.

iv. Click on New tab Under System Variables. Then new system variable dialog
box appears.

v. Specify Variable Name as LM_LICENSE_FILE.

vi. In the value box, type either <drive>:\flexIm\license.dat or server host
name <port>@<host>. If there are more than one license file or server, sep-
arate the port and host specifications with semicolons (;), with no spaces
between the names and numbers.

vii. Click OK.

http://www.altera.com/licensing

22 2 Getting Hands on Altera® Quartus® II Software

2.3 Creation of First Embedded System Project

Here we will briefly introduce the Quartus I CAD for simple system. CAD flow is
used for designing circuits which are implemented in FPGA using Quartus II
software. How to use Quartus II Software for creation of simple embedded project
on FPGA is explained in this section. The tutorial explained here uses VHDL to
create design entry; here user clearly defines the desired circuit in the VHDL. Two
other methods are Verilog description and Block Design file (BDF).

Background

A FPGA CAD flow is illustrated in Fig. 2.1. CAD tools make it easier for designer
to implant the desired logic.

Fig. 2.1 FPGA design CAD ‘
flow

Design Entry

A ‘

Synthesis

/

Functional Simulation

No
- %correct?
Yes
i /
Fitting

'

A Timing Analysis and Simulation

Timing requirements met?

Programming and Configuration

2.3 Creation of First Embedded System Project 23

Following are the steps of CAD design flow:

Design entry—Here user defines the circuit in BDF or HDL, i.e., VHDL or
Verilog.

Synthesis—The entire design is synthesized into a circuit which consists only
logical elements.

Functional simulation—This verifies the functional correctness; Here timing
issues are not taken into consideration.

Fitter—This tool helps to find the exact placement of LEs in FPGA as specified
in the Netlist; it also selects wire routings to make the necessary connections of
specific LEs.

Timing analysis and simulation—Propagation delays along the various paths in
the fitted circuit which are analyzed to provide an indication of the expected
performance of the circuit.

Timing—The fitted circuit is tested to verify both its functional correctness and
timing configuration.

Programming—The designed design is downloaded on the FPGA chip by
programming which configures the various logical elements (LEs).

Embedded project design for three-input AND Gate

Here we consider simple three-input AND Gate, and detail steps to create a project
are given below.

Logic Block Diagram
X
3 input

v AND F

— ¥ GATE
Z >
TRUTH TABLE
SR SR +
. INPUT | OUTPUT
SR SR +
-- XYZ | F |
R tomm +
-- 7, 000 | 0 |
-1 001 } 0
-1 010 | 0o
-- 1 011 | 0 i
-- . 100 | 0 i
-- 1 101 | 0 g
-1 110 | 0!
- 111 1
e tommmmm o +

24 2 Getting Hands on Altera® Quartus® II Software

/ VHDL code

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use [EEE.STD LOGIC ARITH.ALL;

entity and3 is

port (X,Y,Z: in STD_LOGIC;
F: out STD _LOGIC);

end and3;

architecture BEHAVIORAL of and3 is
begin

F <= (X AND Y AND 2);
end BEHAVIORAL;;

~

/

(1) Goto Start > All programs > Altera > Quartus II 7.2 sp3 web edition the
following window appears.

DFUd & LmR|o o Cl s g@S T w0l k|0 B e

Promct Navgator

sy I
iy Complaten Hes iy

*[Type [message

QUART

US I

e e R T C e e T N e L |

2| 3T

2.3 Creation of First Embedded System Project 25

(2) Once the licensing setup is done, you can start working on Quartus by creating
a project. Click on File — Create New Project wizard.

(3) The window shown in Fig. 2.2 pops up and one has to enter the directory to
save project files, then assign name to file and a project, and click Next. (Note:
top-level entity name must be same as file name).

(4) Then click Next in the following popup that comes, and it says directory does
not exist. Do you want to create it? Say yes.

1 } Directory "c:falteraj72sp3/quartusftest” does not exist. Do you want ko create it?

e] ™

(5) Next window appears which will ask you to provide filename, do not assign
any file name at this point just click on next Fig. 2.3 appears which will ask you
to select the FPGA Family and Target on your respective Development Board
(Cyclone I EP2C35F672C6).

(6) Click Next two times, you will get summary of project (Fig. 2.4) which
complete the project creation. Then click finish.

(7) Select File > click on New, the window shown in Fig. 2.5 appears, select
VHDL File, and press OK.

CELg & Be N EHs@ES T rYnBO L BB A0

) L ey e T N BT B LT
J |

Fig. 2.2 Top level entity design name

26 2 Getting Hands on Altera® Quartus® II Software

Mew Project Wizard: Family & Device Settings [page 3 of 5]

Select the family and device you want to target for compilation.

—Show in ‘Avalable device'fist—
Family: |Cyclone |l ~] P [—_IFBGA -
~ Taiget device .
(" Auto device selected by the Filter Pincount 672
% Specific device selected in 'Available devices' list Speed grade: |G 'l
¥ Show advanced devices
I~ Har opy compatible only

b 1 4
EP2C50F672C6 1.2¥ 4
EP2CT70FE72CE 1.2v E8416 422 1152000 300 4
(_ il z

Comparion d
AardCopyll: | =l
¥ Limit DSP & R&M ito HardCopy Il device re
< Back Next > Finish Cancel

Fig. 2.3 Select FPGA device

L e e N C T N T R R LT
= T e |

Fig. 2.4 Summary of project settings

2.3 Creation of First Embedded System Project 27

Fig. 2.5 Choosing VHDL

file New)

Device Design Files | Other Files |

AHDL File

Block Diagram/Schematic File
EDIF File

SOPC Builder System

State Machine File

Verilni HDL File

| OK I Cancel

(8) Then type in your logic code in the editor (Fig. 2.6) then go to file > save as,
assign the file name same as entity name.
(9) Next step is assignment of FPGA pins.

There are two ways of assigning the pins, manual pin assignment and automatic pin
assignment:

¢ Quartus 1| - Cilatoral2spMauartusiiestiiest - test - [tast. vhd]
5 Fla Dt Vew Promct Assgrmerts Procmsng Tock Window el
DF-D & B et M r@eS® T r¥n D RSB a0
Prefect Havigator "X @ tealvhd |
Eriiy [Logc Cob [Dedcater
iy Cootons I EPECIFETECR @ T libeacy ILEE:
= TR] 2 use IEFE.STD_LOGIC_1164.MLL:
= M 3 use IEEE.STD LOGIC_ARITH.ALL:
R 4 use IEEE.STD_LOGIC UNSIGHED.ALL:
5
] 6 Sentity cest im
| 7 @porc (A,B,C1 in STB_LOGICH
. 5 &*] Fi out 3TD_LOGIC
L ——— , 21 g 5 end tests
iy tacty [[5Fi] @ G| el s
= A 11 Sarchitecturs DEHAVIORAL of test is
12 Ebegin
[z T T Sl P T T
- 14 end BEHAVIORAL:
*
L[]
o
2
"
-
I

Fig. 2.6 Three-input adder VHDL code

28 2 Getting Hands on Altera® Quartus® II Software

(1) Manual Pin Assignment:

Here to see the pins in Assignment editor, directly one has to compile the entire
system by clicking the start compilation under the processing toolbar; once the
entire system is compiled without any errors (warnings generated are accepted),
then go to Assignment — Pins.

Assign the respective pins of input to switches and output pins to LEDs.

(2) Automatic Pin Assignment

e Store the DE2 board pin assignment excel file on the computer

e C(Click on Project — Import design partition then select the location of pin
assignment file stored on computer — click OK

e Go to project — generate tcl script for project then click OK.

2.4 Project Building and Compilation

(1) After completing the design, next step is to compile the design for errors.
(2) Click on Processing tab — start compilation This is shown in Fig. 2.7.

. Quartus Il - C:/alteral7 2sp3/quartusitest/test - test - [test.vhd]
¥ Fle Edt Vew Project Assignments [
DeHd & ®

@ESHL T r¥m Hd L SR a0

Projact Naviostor [l =t Compiation |
| Logc C IB7) anaiyze Current Ele
| & Cyclone Il EP2CIFETCE , EE
Litd sem m St ITD_LOGIC_1164.ALL:
o Update Memory Iniiskeation Fie ITD_LOGIC_ARITH.ALL:
& Compdation Report ctisi [TD_LOGIC_UNSIGNED.ALL:

SRart Complation snd Samulstion Chrl+Shiftek | 18

C: in STD_LOGIC;
. Generatbe Furctional Simulation Netkst e sTD LOGIC):
i ¥ Stat Sqpdstion el =
ByHioranchy [B Fies | & Design Urits Senuiation Debug v
@&mmkmt ChrkkShift R

e BEHAVIORAL of test i3

AND B AND C);
ORAL:|

Fittet IR 00 £2) Classic Treming Analyzer Todl
Assembler EEE 00 & povesPlay Power Analyzer Tod
Classac Trming oo [JEIEEERN 00UEreT

L -

(RAR I |

Fig. 2.7 Compilation of project

2.4 Project Building and Compilation 29

(3) After successful analysis and synthesis, compilation report is generated as
shown in Fig. 2.8. If there are errors, then click on that error so that it helps you
for debugging the design.

(4) If you want to see the designed system at Netlist (Gate) level, on the menu bar
select tools > click on Netlist Viewer > RTL Viewer as shown in Fig. 2.9.

Quartus 8 - Cluitesal? fap Mquariusfientiest - fesd - |Compibation Hepert - | low Summary)

Da@E@ & @ o~ st BT oS00
[T | Compsinn Hopmss - Flos Summary |

e e e | T — |
b Croknd EFCEFRTE g iy
& mom o Sy
[
b p—
S T
i
I -
« 3| |+ @zarow
Doty B[Fovgrion] |~ @Dt

o) = Fim St Saccamhl Von Sap 1911 8147 204
CET I T (T Dot B i 7.2 257 EHLI000 5 1 i i
Ful Compiton, CLE] B P -
Bt | b o T Lty it -
frm

o Fay Cpcira

Astentin o Drwca (=t
e Ty St [N 000 Ty Moty Fret
ot g g s o
Totl sty VA1 %]
Totscombraoralbecters 1/ 4216415
Dbt b e O/BIE[OE]
s - []
\J) s comptan e vt) Todsn AN
Nt e]
=1 fota ey 20 rammeax|
DsminE]
ToaPis 0/a10%)

Fig. 2.9 RTL viewer selecting window

30 2 Getting Hands on Altera® Quartus® II Software

P L L SR - L)

SR

Fig. 2.10 RTL schematic of three-input AND Gate

After clicking on RTL, viewer, it will show Gate-level architecture as shown in
Fig. 2.10.

Simulation of designed system

After successful compilation, the designed system can go for simulating the
waveforms.

Select File — then click on New — Other Files — Vector Waveform Files, the
window shown in Fig. 2.11 appears.

JH/GES T r ¥ BO L BB U0
- A et ot

e Wi ijase i v— = -

- e Ty e O o) o

ecceiieieid)

Fig. 2.11 Window for editing waveform

2.4 Project Building and Compilation 31

Time: |10 fus |

Default extension options:

Extension value: [Lasl clock pattern E]

End time extension per signal:

Signal Name | Direction] Radix | Extension value]

| oK I Cancel |
I

Fig. 2.12 Specifying ending time

Save the waveform with .vwf extension in the same project directory.
One can specify ending time for the waveform to be simulated by clicking on
Edit — End time as shown in Fig. 2.12.

e To see the full simulated output waveform, click on View — Fit in Window.
To specify the input/ output nodes, click on Edit — Insert Node or Bus.
Figure 2.13 shows window of node finder.

e Select pins: all under filter and click on list and click on list.

e Clicking on list will give all the used pins in left pane. Select all the pins and
click on > to move the pin to the right pane.

e Now, you get all the pins in your waveform editor window shown in Fig. 2.14.

e Click on overwrite clock to specify time period for input node from the vertical
tool bar as shown in Fig. 2.15.

Let us specify time periods for inputs X, Y, Z as 1, 0.5 and 0.25 microseconds
respectively as shown in Fig. 2.16. After specifying the time periods simulated
inputs signal looks like as shown in Fig. 2.17.

32 2 Getting Hands on Altera® Quartus® II Software

Node Finder ﬁl
Nemed [=] Foer [N -] Cwones. | WIQ |
Look i [rest =l | ¥ include subertiies < Corcel_|
Nodes Found: Selected Nodes:
News |‘M[_T Hame [‘MLT
® Nomatches

=)

=

<l
< L. - 2

A

Fig. 2.13 Node finder window

CEEe & LInE = N HsFSH S r R BOE BB a0

Fig. 2.14 Pin list window

e Quartus II simulator tool supports functional and timing simulation. Simulation
mode is selected by clicking Assignment — Settings — Simulator. The
screen should look like Fig. 2.18.

e Click on Processing tab — click on Generate Functional Simulation Netlist.

2.4 Project Building and Compilation

¥ Quartss | - C:/alieral],

‘Zsp Mquartusiestiiest - fest - [test.vwi®]

33

M Fle ES Vew Promct Adscwents Procmsng Tods Window Hel

DFEd & e -
Fromct Megets

]

AHs@BS C r o D L 88 Q0

LAY | L testvmr
(T R T ()
(& T 3 £ Matn Tma b Wine | | P S - i
| T o em u...|°“ (LTI [ET] £ Huw 1w W= s S
e | g [
n

@] & a0l

| s |l
le 2| A0
" it TIrd e H F AX
Stahus
HIL Vet Progucent oot

TR EmsEmEmESER RS S D P>

Fig. 2.15 Time period specifying using overwrite clock

Fig. 2.16 Period and start

time entry

— Time range
Start time: IIZI]us LI
End time: |10.0 fus |

-Base waveform on-

* Time period:

Period: |1 I :I'
Offset [0.0 ns v
Duty cycle (%) |50 -

0K Cancel

2 Getting Hands on Altera® Quartus® II Software

Pe— s
| —

|t e

Fig. 2.17 Simulated input waveforms

B

iy

Settings - test

Category:

+

55

General

Files

Libraries

Device

Opetating Settings and Conditions
Compdation Process Settings
EDA Tool Settings

Analysis & Synthesis Settings
Fitter Seitings

Timing Analysis Settings
Agzembler

Design Assistant

SignalTap Il Logic Analyzer

Logic Analyzer Interface
Simulator Settings

PoweiPlay Power Analyzer Settings

X
Select simulation options. |
|
Simudation mode: [Functional =

& Run simulation unti all vector stimuii are used [

© Endsmdaonat | |] I

Gltch fiteing options: [Auto ~ '

More Settings... | :

Description:
Specifies the type of simulation to perform for the cument Simulation focus.

] o |

KL

Fig. 2.18 Settings of functional simulation

-

2.4 Project Building and Compilation 35

Fig. 2.19 Simulated waveform

e Then click on Processing tab — select Start Simulation. The final simulated
output of three-input AND Gate is shown in Fig. 2.19.

2.5 Programming and Configuring the FPGA Device

To implement the designed system on FPGA, it is necessary to program the FPGA.
Altera’s DE-series board supports two different configurations, i.e., JTAG and AS
modes. The file containing configuration data is downloaded from host PC to the
board by using USB port. To use port connection, one has to install USB-Blaster
driver.

FPGA devices are programmed directly by using JTAG mode. If the FPGA is
programmed using JTAG mode, then it will retain its configuration as long as the
power remains turned on. The configuration data is automatically erased when there
is no power. The second configuration mode is active serial (AS); here the device is
provided with some memory to load the configuration data file which is later on
loaded on the FPGA device upon power-up. The selection between the two modes
is made done by RUN/PROG switch on the DE-series board. JTAG configuration
mode is selected by RUN position switch, while AS mode is selected by putting
switch in PROG position.

Steps for programming and hardware setup

Click on Tools > programmer, the following window shown in Fig. 2.20 appears and
one should do the hardware setup before downloading the configuration design file.

36 2 Getting Hands on Altera® Quartus® II Software

Fig. 2.20 Programming and configuring FPGA

USB-Blaster Driver Installation

One cannot proceed with programming with FPGA unless USB-blaster drivers are
installed. Follow below steps for USB-Blaster driver on platform having Windows
2000 and Windows XP.

e USB-Blaster driver is present where Quartus is installed, i.e., at
C:\altera\72sp3\Quartus\drivers\usb-blaster.
e Follow the below steps to install the USB-blaster driver:

Connect the USB-Blaster download cable to the USB port of PC.

You will see the Found New Hardware Messages gets pops up, click No.
Select the option, Install from a specific location list and then click Next.
Click on choose the driver and then click Next.

Choose Altera USB-Blaster > click Next to continue.

Click Next to install the driver.

Press Continue Anyway if the warning message appears.

Click Finish in the completing hardware installation.

PN R W=

USB-Blaster Hardware setup
To setup the USB-Blaster hardware, follow the below listed steps:

1. Open Quartus II software.
2. Click on Programmer (Tools menu).
3. After clicking on Hardware Setup the below window appears.

2.5 Programming and Configuring the FPGA Device 37

Hardware Setup ?

Hardwate Semings | JTAG Setting: |

Sdmaawmhumwwlommmmm Thas programmeg
hardware sebup appies anly to the cument programmes window

Currertly selected hardvesrs USB-Blaster [USB-0]
Avalable hacdwate bems: H
Hadware | Serves | Pot [<

Loca useo Add Hardware. . I

4. Select USB-Blaster from the drop-down menu.
5. Then Click on Close.

Following above five steps will complete the USB-Blaster setup.

Next step is to tick mark (v) the Program/Configure option as shown below and
click on start, and this will start the device programming and shows the status of
programming on progress bar.

Dsug A H/FCS T P MO E B B Qe

] oot

= A A S I A

.ﬁ-—-,i Bim| o]

Once the programming is done, then next part is to test the logic onto the DE2
Board.

Chapter 3
Building Simple Applications with FPGA

Contents

3.1 Implementation of 8:1 MUItIPIEXETcc.ccueuiriiriiiiiiiiiiiicicieeeee e 39
3.2 Implementation of Encoder/Decoder and Priority Encodercccooeovinininiencnenne. 50
3.3 Universal Shift Register 58
34 A-Bit COUNLET ...ttt ettt n et enene 62
3.5 Implementation Of MEMOTY......ccoociviiiiiiiiiiiiniiieieiet ettt e 65
3.6 Traffic Light CONIOIETc.coiiiiiiiiiiiieieiiet ettt 67

Abstract This chapter gives the detailed implementation steps of six digital logic
design applications such as multiplexer/demultiplexer, encoder/decoder, shift reg-
ister, counter, memory, and traffic light controller. Here, the detailed steps are
shown right from the creation of project till the simulation and final result on the
development board.

Keywords Digital logic design -« Vector waveform - RTL viewer

3.1 Implementation of 8:1 Multiplexer

Introduction

A combinational circuit which is used for transmitting large numbers of information
to a small number of channels or lines is called multiplexer. This circuit is mostly
used in application based on digital design.

A digital multiplexer is a device which selects one of the input lines out of many
inputs and connects the selected input line to single output line. Input lines are
selected by using select line. The block diagram and logic diagram of 8:1 multi-
plexer are shown in Figs. 3.1 and 3.2, respectively.

© Springer (India) Private Ltd. 2018 39
J.S. Parab et al., Hands-on Experience with Altera FPGA Development Boards,
https://doi.org/10.1007/978-81-322-3769-3_3

40 3 Building Simple Applications with FPGA
Design Description

A n set of select inputs are required to select any one input out of “m” inputs to
connect to the output.

2" =m

(m = number of inputs and n = number of select lines).

17 A

S0 5152
SELECT LINES

Fig. 3.1 8:1 multiplexer block diagram

INo

Iz

I3

N4

il Yi}jq&?ﬁ)l

}
Pt

INS

e

L/
[
L7
D—

TEICE

S2 S1

Fig. 3.2 8:1 MUX logic diagram

3.1 Implementation of 8:1 Multiplexer 41

8:1 Multiplexer Truth Table

Inputs to be selected Output
A B C Y
0 0 0 10
0 0 1 11
0 1 0 2
0 1 1 3
1 0 0 14
1 0 1 I5
1 1 0 16
1 1 1 g

Design Implementation Procedure

Step 1 Double click on Quartus—II 7.2.

Step 2 Go to file — New Project wizard and then click Next, and then, one has to
give the working directory name (e.g., mux), project name, and top-level
entity name as shown in Fig. 3.3.

Step 3 Then click Next 2 times which will ask to specify the device (Cyclone II
EP2C35F672C6) as shown in Fig. 3.4.

Step 4 Type your code for 8:1 multiplexer and save file with the same name as
your entity.

-- Title : 8:1 Multiplexer
-- Design :vhdl_test
-- Author : Dr.J.S.Parab

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

USE IEEE.STD_LOGIC_ARITH.ALL;
USE IEEE.STD_LOGIC_UNSIGNED.ALL;

ENTITY MUXP IS

PORT (SEL: IN STD_LOGIC_VECTOR(2 DOWNTO 0);
A,B,C.D.E,F,G,H :IN STD_LOGIC;

MUXP_OUT: OUT STD_LOGIC);

END MUXP;

ARCHITECTURE BEHAVIORAL OF MUXP IS

BEGIN

42

3 Building Simple Applications with FPGA

PROCESS (SEL,A,B,C,D,E,F,G,H)
BEGIN
CASE SEL IS

WHEN "000" => MUXP_OUT <= A;
WHEN "001" =>MUXP_OUT <= B;
WHEN "010" =>MUXP_OUT <=C;
WHEN "011" =>MUXP_OUT <=D;
WHEN "100" == MUXP_OUT <=E;
WHEN "101" =>MUXP_OUT <=F;
WHEN "110" => MUXP_OUT <=G;

WHEN "111" => MUXP_OUT <=H
WHEN OTHERS => NULL;
END CASE;

END PROCESS;

END BEHAVIORAL;

New Project Wizard: Directory, Name, Top-Level Entity [page 1 of 5]

What i the working directory for this project?
[e\aheraN725p3\quanus\mwae [

What is the name of this project?

o =

Whatlslhehameofmewphveldesmerwmhspiopet?Thsnm&mesenwvemdm
exactly match the entity name in the design file.

= =

Use Existing Project Settings .. |

< Back Neswt > Finish Cancel

Fig. 3.3 Creating new project

3.1 Implementation of 8:1 Multiplexer 43

New Project Wizard: Family & Device Settings [page 3 of 5]

Select the family and device you want to target for compilation.
Show in "Available device' list

Famiy: |C_l,lc|one] lJ Pach FEGA =
Taget device
. - in count: E72 bl
" Auto device selected by the Fitter b
 Specific device selected in ‘Available devices' list Speed grade: |6 =
¥ Show advanced devices
-
Avalable devices:
Name Corev... | LEs User /... | Memor... | Embed.. | PLL !
EP2C35FE72CE I 4
EP2C50FE72CE 1.2y 50528 450 594432 172 4
EP2CTOFE72CE 1.2y EB416 422 1152000 300 4
< >
F
< Back Mext > Finish Cancel

Fig. 3.4 Specifying the device target

Next Step is Assignment of FPGA Pins

There are 2 ways of assigning the pins: manual pin assignment and automatic pin
assignment:

Manual Pin Assignment:

Here to see the pins in assignment editor directly, one has to compile the entire
system by clicking the start compilation under the processing toolbar. Once the
entire system is compiled without any errors (warnings generated are accepted),
then go to Assignment — Pins.

Assign the respective pins of input to switches and output pins to LEDs.

Building and Compilation of Project

1. After completing the design, one can check the design for errors by compiling.
2. Compilation is started by clicking on Processing — start compilation.

After successful analysis and synthesis, compilation report is generated as shown
in Fig. 3.5. If there are errors, click on that particular error to get more information
or press F1. That will help you with debugging process.

44 3 Building Simple Applications with FPGA

€ Guarten || - €-falteral)Inp Mo bonfmusiomus - ez - [Campllatios Rapert - Flow Sumery|

dy Cocora B (PRI

b
=

= e s\ om &0
Sm
&m S 30
&m
s
< @0
le I—— . 2
sy [Fis | G s *
e Wi f D o g
Fime Gt Fuosishd-Thu D 18 142002 2014
Jr— 2Bk 207 U200 5P 35 Wb Eslin
P e -
Top el Evtty e o
Famky fyckore
Deict EFICHFETIS
gt frad
[Pep—— o
[— SmnepeR)
ot oombratona kst 5/ 21811 %)

Decated ioge et B MNE(0%]
Totn pes LT TR
ot iy b o/ a8 0%

Einbaciid Mo 36 shemarts £/ 7085 |
TuPLLs pralex

Fig. 3.5 Compilation report

If you want to see the design system at Netlist (gate) level, select tools > Netlist
Viewer > RTL Viewer. After clicking on RTL Viewer, it will show that gate-level
architecture as shown in Fig. 3.6.

Simulating the Design

1. After successfully compiling the designed system, one can go for simulating the
waveforms.

2. Select File — then click on New — Other Files — Vector Waveform Files,
and the window shown in Fig. 3.7 appears.

Save the waveform with .vwf extension in the same project directory.

3. One can specify ending time for the waveform to be simulated by clicking on
Edit — End time, as shown in Fig. 3.8.

4. To see the full simulated output waveform, click on View — Fit in Window.

5. To specify the input/output nodes, click on Edit — Insert Node or Bus.
Figure 3.9 shows the window of node finder.

Fig. 3.6 RTL of 8:1 Mux0
multiplexer

SEL[2..0) [CpmtsEL 2.0
HED—

El— ouT ———MUX_OUT

bt DATA.]

/

Mux

3.1 Implementation of 8:1 Multiplexer 45

Fig. 3.7 Waveform editor window

Fig. 3.8 Assigning end time |

Time: (10 Ius: -
Default extension oplions:
Extension value: [Last clock pattem |

End time extension per signal

SignalName | Ditection | Radix | Extensionvale [

6. Select pins: all option under filter dialog box and then click on list option as
shown in Fig. 3.9.

7. Clicking on list will give all the used pins in left pane. Select all the pins and
click on > to move the pin to the right pane.

8. Now, you get all the pins in your waveform editor window as shown in
Fig. 3.10.

9. Now assign the values to the input signal and select line of multiplexer as per
the truth table of multiplexer. Assigned waveform window is shown in
Fig. 3.11.

46 3 Building Simple Applications with FPGA

Quastu 0 - Cdalbarad 1 2up Mijusstindmsnhmss - mis - (s, vt

DFID & TR oo s PES /D 70O NSBB8 0

‘: T | e | @ Complan Fopcs - Flom Summmary |
‘ Cyclorn i [PICEFETICE W: Wi MM L Iieredd Ll St
g e 56 L] K i | v;:: 1:~ 40 [ET £ 25w 13w Bt A 51t STfu
*®
€ » Q
DBl P O
== = [roseriower &
RIS Ve Pt woem Nt =] o e o omme | w | [T]
; o B cH Creveresiy b ey
= Mades Fourdd et Nt
h [[Ssrmeres [1 [T tsmgroerts [T
|
e |
i
: |
5
L - » £ - »

Fig. 3.9 Node finder window

Hsd@d T

Fm O s 88 ue

[Y pa— |- i
=i dine - s ane - -
0 I,___ B T T T TR W RS TU T N T N T T W N T T R—T
Al | =] |l
=
L &
e P B
T R w2
n

Fig. 3.10 Node finder with all pins list

3.1 Implementation of 8:1 Multiplexer 47

TR NEHsEBS T ¥R BOE BB L0

e Tr———

[
|

A

Fig. 3.11 Assigned waveform window

10. Quartus II simulator tool supports functional and timing simulation. Simulation
mode is selected by clicking Assignment — Settings — Simulator.

11. Click on Processing tab — click on Generate Functional Simulation
Netlist.

12. Then click on Processing tab — select Start Simulation, and the final sim-
ulated output of 3 inputs and gate is shown in Fig. 3.12.

13. Now, the next step is to download the design on target board and test the
design.

CrenwOE BB L0
B e P T e A B e e e

|

feecieccel

T ey (T o S A Ty R by T T
R b BEL

Fig. 3.12 Simulated waveform

48 3 Building Simple Applications with FPGA

Fig. 3.13 1:8 demultiplexer
logic diagram

Input

o]
S

O

o
(x]

YYIY YYI YYIY

(o]
&

o
o

o
&

vill vl Yy

TYTTITTT

O
=1

Demultiplexer

A device which takes single-input signal and selects one of the many output data
lines that are connected to the single input is called demultiplexer. Sometimes,
demultiplexer is also called as single-input, multiple-output switch. Demultiplexer
transfers the same input data to multiple destinations; hence, it is also called as
“distributor.”

To design general-purpose logic, demultiplexers offer convenient solution.
Demultiplexer is a combinational logic circuit which performs exactly the reverse
operation what is done by multiplexer. It has single input, m select lines, and 2"
outputs. Here, one of the outputs will be selected based on the settings of select line
to take the current state of input line. Figure 3.13 shows the 1:8 demultiplexer logic
diagram.

1:8 Demultiplexer Truth Table

Select inputs Output (Dyyy)

A B C Dout Dout Dout Dout Dout Dout Dout Dout
0 (6) &) (4) (3) 2 (1) 0

0 0 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0 I 0 0

0 1 1 0 0 0 0 I 0 0 0

(continued)

3.1

Implementation of 8:1 Multiplexer 49

(continued)

Select inputs Output (Dyyr)

A B C Dout Dout Dout Dout Dout Dout Dout Dout
) (6) ® (C)) 3)) (1) 0)

1 0 0 0 0 0 1 0 0 0 0

1 0 1 0 0 I 0 0 0 0 0

1 1 0 0 I 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0 0

Procedure for Demux Implementation
Steps for creating the demultiplexer designs are same as that of multiplexer, and the
design code for 1:8 demultiplexers is given below.

-- Title : demultiplexer
-- Design : vhdl test
-- Author : Dr.J.S.Parab

library IEEE;
use IEEE.STD_LOGIC_1164.all;

entity demuxp is
port(
dini : in STD_LOGIC;
sel : in STD_LOGIC_VECTOR(2 downto 0);
dout : out STD_LOGIC_VECTOR(7 downto 0)
);

end demuxp;

architecture behavioral of demuxp is
begin

dout <= (dini & "0000000") when (sel="000") else
('0' & dini & "000000") when (sel="001") else
("00" & dini & "00000") when (sel="010") else
("000" & dini & "0000") when (sel="011") else
("0000" & dini & "000") when (sel="100") else
("00000" & dini & "00") when (sel="101") else
("000000" & dini & '0'") when (sel="110") else
("0000000" & dini) ;

end behavioral;

Once the project is created, entire project is compiled, compilation report is

generated as shown in Fig. 3.14, and the simulated output is shown in Fig. 3.15.

Now, the next step is to download the design of target board (DE2) and to test

the design.

50

Flow Status

Quartus Il Version

Revision Name

Top-level Entity Name

Family

Device

Timing Models

Met timing requirements

Total logic elements
Total combinational functions
Dedicated logic registers

Total registers

Total ping

Total virtual pins

Total memory bits

Embedded Multiplier 3-bit elements

Total PLLs

Fig. 3.14 Compilation report

3 Building Simple Applications with FPGA

Successful - Wed Dec 24 10:52:08 2014
7.2 Build 207 03/18/2008 SP 3 SJ Web Edition
demusx

demux

Cyclone Il

EP2C35F672C6

Final

Yes

8/33216(<1%)

8/33216(<1%)

0/33216(0%)

0

12/7475(3 %)

0

0/483840(0%)

0/70(0%)

0/4(0%)

Fig. 3.15 Simulated output of 1:8 demultiplexers

3.2 Implementation of Encoder/Decoder and Priority
Encoder

Encoder

The device which converts message information from one code format to another is
called an encoder. The use of encoder in any design is to standardize and enhance
speed and high level of security. An encoder has M input lines and N output lines.
At a given time, only one input line is activated out of M input lines and it generates
equivalent code on N output lines.

3.2 Implementation of Encoder/Decoder and Priority Encoder 51

Octal-to-Binary Encoder (8:3)

Octal-to-binary encoder accepts 8 inputs and generates 3 outputs. At any given

time, only one input line is active, i.e., its value is 1. The truth table of 8:3 encoder

is given in Table 3.1. The logic diagram of 8:3 encoder is shown in Fig. 3.16.
For an 8:3 binary encoder having inputs as /0—[7, the outputs’ logic expressions

are as follows:

YO=11+13+15+4+17
Y1=124+13+16417
Y2=I4+I5+16+17

Table 3.1 Truth table of 8:3

0 |n |2 |3 (4 |I5 |16 |I7T |Y, |Y, |Y,
encoder
1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 1 1
0 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 1 0 0 1 0 1
0 0 0 0 0 0 1 0 1 1 0
0 0 0 0 0 0 0 1 1 1 1
Fig. 3.16 8:3 encoder logic 10
diagram
I o
I2 _|
I3 Y1
) —
15 I YO0
[
16

52 3 Building Simple Applications with FPGA

Implementation Procedure in Short

Step 1 Double click on Quartus—II 7.2.

Step 2 Go to file — New Project wizard and then click Next, and then, one has
to give the working directory name, project name, and top-level entity
name.

Step 3 Then click on next 2 times which will ask to specify the device (Cyclone
I EP2C35F672C6).

Type your code for 8:3 encoder and save file with the same name as your

entity.
-- Title : Encoder
-- Design :vhdl test

-- Author : Dr.J.S.Parab

library IEEE;

use IEEE.STD LOGIC 1164.all;

entity encoder8 is

port(

Edin : in STD LOGIC VECTOR(7 downto 0);
Edout : out STD LOGIC_VECTOR(2 downto 0)
);

end encoderS;

architecture encoder8:3 of encoder8 is

begin

Edout <= "000" when (Edin="10000000") else
"001" when (Edin="01000000") else
"010" when (Edin="00100000") else
"011" when (Edin="00010000") else
"100" when (Edin="00001000") else
"101" when (Edin="00000100") else
"110" when (Edin="00000010") else
"1

end encoder8:3;

Step 4 Next step is the assignment of FPGA pins.
Step 5 Building and compilation of project.

Compile it using tab Processing — start compilation.

After successful analysis and synthesis, compilation report is generated as
shown in Fig. 3.17.
If you want to see the design system at Netlist (gate)-level, select tools > Netlist
Viewer > RTL Viewer. After clicking on RTL Viewer, it will show that gate-level
architecture as shown in Fig. 3.18.

Simulating the Design

Next step is to simulate the design. The simulated output is shown in Fig. 3.19.
Now, the next step is to download the design on target board (DE2) and to test

the design.

3.2 Implementation of Encoder/Decoder and Priority Encoder

Flow Status

Quartus Il Version

Revision Mame

Top-evel Entity Names

Family

Device

Timing Models

Met timing requirements

Total logic elements
Total combinational functions
Dedicated logic registers

Total registers

Total pins

Total virtual pins

Tatal memory bitz

Embedded Mulliplier S-bit elements

Taotal PLLs

Fig. 3.17 Compilation report

Successful - Wed Aug 13 11:10:47 2014
7.2 Build 207 03/18/2008 SP 3 5J Web Edition

encoder

encoder

Cyclore Il
EP2C35FE72CE
Final

Yes
9/33216(<1 %)
9/33216(<1 %)
0/33216(0 %)
1]

11/7475(2%)

0
0/483840(0%)
0/70(0%)
0/4(0%)

53

1
i 44

gl BB
_I

n /i

¥

L
LI]

\
\
\

nu,.";!

/

1
54 /

1\

Fig. 3.18 RTL of 8:3 encoder

Decoder

A decoder performs exactly the reverse operation that what is performed by encoder
to recover the original information.

In digital electronics, decoding is required in applications involving multiplexing
of data, interfacing seven-segment display, and addressing decoding for memory
interfaced to microprocessor or microcontroller.

54 3 Building Simple Applications with FPGA

D Fle [e o depmerts feoceimg ke el

DFHS & b@ o - fomceom A s79BH S r¥R DO LG ® 20

i " sttt | @ Compiston Rapin - Fiom ey | 1R s ot | e s
e

iy i TS . e —————

Ty Mosm Tt =i o] an — aa- =

"'r- Whe Mpes Ww e WP @Pm Mpw Wfm Bps M00a Hia e 00w
= Hin

|

T O X

;

rrri

rrrrrrrTh
%
rEZrErrEEEES

rrr2
=

&

(-

5]

|

=

e

23

L. |

pag S82R13%

Fig. 3.19 Simulated output waveform

Procedure

Steps for creating the decoder design are same as that of multiplexer, and the design
code for 3:8 decoder is given below.

-- Title : decoder
-- Design : vhdl test
-- Author : Dr.J.S.Parab

library IEEE;
use IEEE.STD LOGIC 1164.all;

entity decoder8 is
port(
Ddin : in STD LOGIC_VECTOR(2 downto 0);
Ddout : out STD_LOGIC_VECTOR(7 downto 0)
).

end decoder8;

architecture decoder3:8 of decoder8 is
begin

Ddout <= ("10000000") when (Ddin="000") else
("01000000") when (Ddin="001") clse
("00100000") when (Ddin="010") else
("00010000") when (Ddin="011") else
("00001000") when (Ddin="100") ¢ Ise
("00000100") when (Ddin="101") ¢ Ise
("00000010") when (Ddin="110") el se
("00000001") ;

end decoder3:8;

32

Implementation of Encoder/Decoder and Priority Encoder

Compilation Report
Once the project is created, entire project is compiled and compilation report is
generated as shown below.

Flow Status
Quartus I Version
Revizion Name
Toprevel Entity Name
Famiy

Timing Models
Med timing requirements
Total logec elements

Total combmational funchons

Dedicated logic regesters
Total registers
Total pins
Tootal vitusl pine
Total memory bits

Embedded Mulipber 5-bit slements

Total PLLs

Successhd - Thu Jul 31 15:28:24 2014
7.2 Buid 207 03/18/2008 SP 3 5J Web Edition

decoder
decoder
Cyclone Il

EP2CI5FET2CE

Final

Yes
8/126(<1
8/1B218(<1

%)
%)

0/3B216(0%)

(]
11/475(2%)
(]
0/483,840(0
0/70(0%)
0/4[0%)

Decoder Simulated Output

%1

55

DELo & @ | =7« |[oroone MRS T T O LSS S0
"[:“"""’ 21 @ oo | R dncotm vt | @ Complton Brpot Tl
Ay Cyclorm B EPICIFETICE ;"B Leg Mot . i Tt
gy L] Pl Suamenary
Flom Settrgn
R s
Settrgs By Mot Tima e ITSne 1] 4| Pt L frterend
> A T T Bns P n
.I"Mmmcwum % P L] p o P y
£ Maseagns @,
I Y L - BB BT
3l aril]
Py =5 aefll | A 1 I l | 1
= e | Al ™1 M1 M——1__——1
BT @ P N N L —
=L S — | —
B [2E ufF] A 1
il u A T L 1 e
L uft]| An |
a3 ol A
(&0 uz an —
e 11 LIy g - 1
iz [doug] a1 —_—

B &

56 3 Building Simple Applications with FPGA

The RTL schematic of 3:8 decoder is shown below

Now the next step is to download the design on target board (DE2) and to test
the design.

Priority Encoder

A circuit which compresses several binary inputs into a few number of outputs is
called priority encoder. Sometimes, priority encoder is used to manage interrupt
requests by considering the priority of interrupt. If several inputs are active at same
time, the input which has the highest priority will be selected.

--Title : priority encoder
-- Design : vhdl test
-- Author : Dr.J.S.Parab

LIBRARY ieee;
USE ieee.std logic 1164.ALL;
entity prioencd is
port(P : in bit_vector(7 downto 0); --inputs to be prioritized
M : out bit_vector(2 downto 0)); --encoded output
end prioencd;

3.2 Implementation of Encoder/Decoder and Priority Encoder

architecture priority of prioencd is
begin

process(P)

begin

M <="000";

if P(7)="1"then
M<="111";

elseif P(6)="1" then
M<="110";

elseif P(5)="1"then
M <="101";

elseif P(4) ="1' then
M <="100";

elseif P(3)="1"then
M<="011";

elseif P(2) ="1"' then
M <="010";

elseif P(1)="1"then
M <="001";

elseif P(0) ="1"then
M <="000";

end if;

end process;

end priority;

Compilation Report

Flows Status Successhul - Wed Aug 13 122207 2014
Quarus Il Version 7.2 Buid 207 03/18/2008 SF 3 5J Wb Edaion
Flewision Masme Eioryened
T op-evel Enbty Hame paioryencd
Famity Exclonms I
Deviea EF2CISFETICE
Timing Models
et g reausements Tes
Total loge slamants S0 x)
Total combinationsl furctions 5/33Z16(<1 %)
Diacheated kogic e 0/33216(0%)
Total registen o
Tt e M saATS(2X)
T otad virtuaal g o

[
Embedded Mullipher 3-b slements 0 /7010 %]
Totsl PLLE osafax]

58 3 Building Simple Applications with FPGA

Simulated Output

¥ Quartus Il - C:fakieral] 2sp Wguartusipriorityencd/prisriyencd - priotityencd - [Simulstion Report - Simulation Wavelorms]
& Fle Edt Vew Proect Assgreents Processng Tosk Window Help
D@D & " [priortyenca Adxrsr@@eS Clrvnivd K& 8 20
Propt Navigator x g | 8 Compitaon Flaga - Flow Susmary
ity [LogeCet |
|y Crokone - EP2CISFETICE BB Lecitue o e
|k peaskpencd 515 T) Fiows Summary
Pl Settrgs
A s
N ey |
S tectrn Maste Ters Bar NI 4| +| Pointer NGm Irderead
@D Semisen wasliers & !
& @D Sedaton Coversge | A o T3 ETT wpm CI CTE]
R v sge £ L nE Wi
b Mesages @ |
1IN ED Al il L 1] T 3 B 3 1T X
ol Al A T L
Py Y 1| J] 1
gl X - | a1l L T L
. (@ | = FTLY L O O G L O S
=+ s Th] a1
i [=F gl A | |
* (o7 e R 1 1 1 1
4 e L] A T 1
[E] o s - 1 15 L
w10 2 A 1
w11 i A 1
F3H] A |
< »
T | T L
Stabn - x
Mot TPRopes ™ T
| Simulator i 0000

Priority RTL Schematics

v ::D-- '

3.3 Universal Shift Register

The shift register is a logic circuit used to store the information message in binary
form. This device loads new data available on its inputs pin, and then, that data gets
shifts to the output on each clock cycle, that’s why the name “shift register.”

A universal shift register supports three different modes of transferring data:
(1) It accepts data in parallel and transmits data in parallel (PIPO). (2) Data comes
in serial and outputted in serial (SISO) may be through left shifts or right shifts.
(3) Universal register can load data in series and then output data in parallel (SIPO).

3.3 Universal Shift Register

Implementation Procedure in Short

Step 1

Double click on Quartus—II 7.2.

59

Step 2 Go to file — New Project wizard and then click Next, and then, one has
to give the working directory name, project name, and top-level entity

Step 3

name.

Then click on next 2 times which will ask to specify the device (Cyclone

I EP2C35F672C6).

Type your code for universal shift register and save file with the same

name as your entity (i.e., shift register).

-- Title : universal shift register
-- Design : vhdl_test
-- Author : Dr.J.S.Parab

library ieee;
use ieee.std_logic 1164.all;

entity shftregister is

port(C, SInp, left right,SL.D :in std logic;
D :in std_logic vector(7 downto 0);

SOut:out std_logic;

POut : out std_logic_vector(7 downto 0));

end shftregister;

architecture unisal of shftregister is
signal temp: std_logic_vector(7 downto 0);
begin

process (C)

begin

if (C'event and C='1") then

if (SLD="1") then

tmp <= D;

else

if (left_right='0") then

temp <= (temp(6 downto 0) & SI);
SOut <=temp(7);

else

temp <= (SInp & temp(7 downto 1));
end if}

end if}

end if}

end process;

POut <= temp;
end unisal;

60

3 Building Simple Applications with FPGA

Step 4 Next step is the assignment of FPGA pins.
Step 5 Building and compilation of project.

Compile it using tab Processing — start compilation.
After successful analysis and synthesis, compilation report is generated as shown

below.

Compilation Report

Flow Staha

Duartus i Vetson

Fivision N

Toprlevel Ently Name

Fandy

Device

Timing Models

Mel lming requecmerts

Tt koge: demens
Total combrtonal furcicns
Dadcated bog sagatens

Total gitens

Tetalpns

Total vt s

Total memosy bts

Embecided Mulipher St slementz

Tolal PLLs

Succeashd - Fii len 02 1622102015
7.2 Bulkd 207 DAE/2008 5P 35 ek Edtion
hitegeter

thitegeter

Cyclone 8

EPICIFETG

Fral

es

WBDEIIX]

ELEHUTER Y|
9/nnel<1x)

]

nTIEE)

]

0/483040[0%)

0/7010%)

0/410%)

After clicking on RTL Viewer, it will show that gate-level architecture as shown

below.

RTL Viewer

n_nght D—1
M g
-0 0
(=
LOAD E>-

Next step is to simulate the design, and the simulated output is shown below.

3.3 Universal Shift Register 61

Simulated Waveform Output:

PIPO
Here, SLOAD line = “1” which indicates parallel out.

—‘n—-mwﬁ_ﬁn-‘ e

DELe & B [—— HH/sEOO T r¥R RO E BB G0
e L p— | @ st s | S B Lk it |
& s =
. || T |
S —
ey y Moo e e e — Trim - e
. » —— A T N T T T Thie e THEe mim im W= Ris tmim teie
R e ja —].‘.‘ = T T e T = IR T
Aee == * % [3 58 o W g, B g W gy MOy U g OO g AR gy Py Y pory S gy O O ey P o O gy Py O g OB sy S e O
s [S5 s ™
= - o |}
. W —
o =R 1
- CRE 1 1
R T — ey W | —
= - — = i 7
" S S — —
PO
TR = e e i o e
o
" =
ool e S e | e ——— — —
) —
" T S ey | s |
o — CIE S Y oy I | CH gy y L
b T
* "
o
S ———— s
D@#.e & L e
== = | g s) S L b |

b s i
& o

= T S lbe) i dite an = am - =
.] I ey [—]__. T R R " s s
1 ; o
f ¥ =

LEEEEERELE]

$3 orr

SIPO Left Shift and SLOAD = “0”

dHsFPO T e DO L S B L0
|

ermpm D bt Bt b gt
[—

Iy = £ e P it — . - -
..,...o...; = Inu Wfm ®fm Wjm Spm W= W= Wj= Wj= Wps W= Uhie iRie 1Rim imim mie mie W)
o T s 0 S 0 s 0 0 0 0 e 0 0 8 e 0
=
E - oo
-)
Ear - |
&, . i
2 = |
K
s oK
= :
e |
B e T -
il
e B ——— 03 gy v SR B N N ERS S S
| —
- 3K —
o | T
: H . —p—t .
| ==
Pl ===
- i) s . | oo | FR LS

62 3 Building Simple Applications with FPGA

SIPO Right Shift and SLOAD = “0”

£ Gt Pt L ks

Now, the next step is to download the design on target board (DE2) and to test
the design.

3.4 4-Bit Counter

Counter is a device which is used to count the occurrence of particular event with
respect to the clock signal. There are basically two types of counters, i.e., asyn-
chronous and synchronous counter.

Bidirectional Counter

There are universal types of counter which counts in both directions, i.e., up or
down, based on the state of their mode control input. These bidirectional counters
are capable of counting in both directions, and their mode can be reversed at any
point within their count sequence by changing the control line.

Synchronous 4-bit Up/Down Counter:

Procedure in Short

Step 1 Double click on Quartus—II 7.2.
Step 2 Go to file — New Project wizard and then click Next, and then, one has to
give the working directory name, project name, and top-level entity name.

3.4 4-Bit Counter 63

Step 3 Then click on next 2 times which will ask to specify the device (Cyclone II
EP2C35F672C6).

Type your code for 4-bit counter and save file with the same name as your
entity (i.e., counter).

-- Title : 4 bit counter
--Design :vhdl_test
-- Author : Dr.J.S.Parab

library ieee;
use ieee.std logic 1164.all;
use ieee.std logic unsigned.all;

entity counter4 is
port(Clk, CLEAR, up_down : in std_logic;
count : out std_logic_vector(3 downto 0));
end counter4;

architecture updwn of counter4 is
signal temp: std_logic_vector(3 downto 0);

begin

process (Clk, CLEAR)
begin

if (CLEAR='"1") then
temp <= "0000";
elseif (CIk 'event and Clk='1") then
if (up_down='1") then
temp <=temp + 1;
else

temp <= temp - 1;

end if;

end if}

end process;
count <= temp;

end updwn;

Step 4 Next step is the assignment of FPGA pins.
Step 5 Building and compilation of project.

Compile it using tab Processing — start compilation.

After successful analysis and synthesis, compilation report is generated as shown
below.

64 3 Building Simple Applications with FPGA

| & Compaaten Hepent - Flow Summary |

T St Succreihd-Wed Dec 31 FHES1 2000
Peiacn Hame ooty

Teplevel Ertly M courtn

sl Cyctora

Dewce IPICIEFTAE

Trwrg Madeln Fral

et) Qe Yot

Totd e elomerts S/nnelaIx]

Totd eonbratoralireiors 5/ T206(<1%]
L —— HrnE(%)
+

Tota mgraeey

Tolaipes T4
Totd vt s]

okl memory by LTI E)
Embectiod Mgk Sk semerts 0/ 70[0%)
ToPLLs orejox)

After clicking on RTL Viewer, it will show that gate-level architecture as shown
below.

&M

CLR D

up_down

Next step is to simulate the design, and the simulated output is shown below.

Simulated Waveform Output

3.4 4-Bit Counter 65

Now, the next step is to download the design on target board (DE2) and to test
the design.

3.5 Implementation of Memory

There are various types of memories available. Here, we will consider only
random-access memory (RAM). RAM is volatile in nature and used to store the
data temporarily.

The VHDL code we have implemented includes reading and writing to RAM.

Address bus (as 2% = 256).

Hence, each location can store 8 bits (i.e., 1 byte each).

Procedure in Short

Step 1 Double click on Quartus—II 7.2.

Step 2 Go to file — New Project wizard and then click Next, and then, one has to
give the working directory name, project name, and top-level entity name.

Step 3 Then click on next 2 times which will ask to specify the device (Cyclone II
EP2C35F672C6).
Type your code for memory and save file with the same name as your
entity (i.e., memory).

-- Title . memory
--Design : vhdl_test
-- Author : Dr.J.S.Parab

library IEEE;

use [EEE.STD LOGIC 1164.ALL;

use IEEE.STD LOGIC ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity memory$ is

Port (Clk : in std_logic;

wrte : in std_logic;

wradd : in std_logic_vector(6 downto 0);
rdadd : in std logic_vector(6 downto 0);
datainp : in std_logic_vector(7 downto 0);
dataout : out std logic vector(7 downto 0));
end memory;

66 3 Building Simple Applications with FPGA

architecture RAMS of MemoryS is

type ram is array(127 downto 0) of std_logic_vector(7 downto 0);
signal ram1 1 : ram;

signal rd_add : std_logic_vector(6 downto 0);

begin

process(Clk, wrte)

begin

if Clk'event and Clk ="'1" then

if wrte ='1' then
raml_I(conv_integer(wradd)) <= datainp;
end if;

rd_add <= rdadd;

end if;

end process;

dataout <=raml _1(conv_integer(rd add));
end RAMS;

Step 4 Next step is the assignment of FPGA pins.

Building and Compilation of Project
Compile it using tab Processing — start compilation.

After successful analysis and synthesis, compilation report is generated as shown
below.

Compilation Report

Flows Statis Successiul - Thu Jan 01 1681251 2015

anetus 1 Version 7.2 Buid 207 031 8/2008 P 3 5 Web Edbion

Frevaises Mame o

Top-lavel Entity Hams aenon.

Famihs Ewclone il

Devies EPZCISFETICE

Timing Models Final

Mt Harang requinements

Total logee slements 24/33216(<1 %)
Total combinational funetions 13/33216(<1 %)
Dadicated logic megisters 23/326(<1 %)

Total iegetens 23

Tolal pars 3Z/ATEITX)

Total virtual pine o

Total memons bits 1.024 /483840 (< 1 X)

Embedded Multipher 3:ba slements 0/ 7000 %]

Total PLLs D/4(0%)

After clicking on RTL Viewer, it will show that gate-level architecture as shown
below.

3.5 Implementation of Memory 67

RTL Viewer

[P m——

Next step is to simulate the design, and the simulated output is shown below.

Simulated Waveform Output

[T Hire oo LU e o St Ent
L im 2pre N apre B e Rbre e Hpre 10 e i

L] B

o | e O e N oy I oy O o O e G o O s 1 ey N sy N ey O ey N
Bann (A W ¥ WX WOf T WX T PN Wy W gy WO (W

b . 1

- .

B ol .

sl . | L |

Ll 1 I I 1 r 1

ks . f f 1 f 1 | — B

[l - I 1 1 | — T

e 1 [_| —
Bema | A HCC_ I B u] B E T
o o &) & f Wy w ¥ &) @} mf ® & ® y &
et + W ® ® WX & &) ¥ W) & [S

Now, the next step is to download the design on target board (DE2) and to test
the design.

3.6 Traffic Light Controller

Traffic light controllers are installed mostly on the road junctions to solve the
problem of traffic congestion and that will ease the smooth flow of traffic.

Figure 3.20 shows the set of traffic LED lights, and these lights are installed at
junction with one rod going north—south and the other going east—west.

Here, we have implemented traffic light controller having red, yellow, and green
LEDs using state machine approach with six states as shown in Table 3.2.
Figure 3.21 shows the state diagram of traffic light controller.

68 3 Building Simple Applications with FPGA

Fig. 3.20 Set of traffic lights

Table 3.2 Six states of TLC controller

State North—South LEDs East-West LEDs Delay in seconds
0 Green Red 5
1 Yellow Red 1
2 Red Red 1
3 Red Green 5
4 Red Yellow 1
5 Red Red 1

Fig. 3.21 State machine

diagram

Countl<15 {A\
\'

Count<3 ﬁ AN
Q@ e& ount]1<3
ONENCO?

Count1<3 Q & ount1<3

j
9

Countl<15

3.6 Traffic Light Controller

Implementation Procedure in Short

Step 1

Step 2 Go to file — New Project wizard and then click Next, and then, one has to
give the working directory name, project name, and top-level entity name.
Then click on next 2 times which will ask to specify the device (Cyclone II

Step 3

Double click on Quartus—II 7.2.

EP2C35F672C6).

Type your code for traffic light controller and save file with the same name

as your entity (i.e., traffic light).

-- Title : Traffic lights controller

-- Design : vhdl test

-- Author : Dr.J.S.Parab

Note: Traffic lights controller based on state machine

library IEEE;

use [EEE.STD LOGIC 1164.all;

use [EEE.STD LOGIC unsigned.all;

entity TLC is

port (clk: in STD LOGIC;

clr: in STD_LOGIC;

ledlights: out STD LOGIC_VECTOR(S downto 0));
end TLC;

architecture trafficlight of TLC is

type stateTC_type is (s0, s1, s2, s3, s4, s5);

signal stateTC: state_type;

signal countl: STD LOGIC VECTOR(3 downto 0);
constant SECfive: STD_LOGIC_VECTOR(3 downto 0) :="1111";
constant SECone: STD_LOGIC_VECTOR(3 downto 0) :="0011";
begin
process(clk, clr)
begin

if clr ="'1" then

stateTC <= s0;

countl <=X"0";

elseif clock'event and clock ='1" then

case stateTC is

when s0 =>

if countl < SECFive then

state <= s0;

countl <= count + 1;

else

state <=s1;

countl <= X"0";

end if;

when s1 =>

70

3 Building Simple Applications with FPGA

if countl < SECOne then

state <=s1;

countl <= countl + 1;
else

state <=s2;

countl <= X"0";

end if;

when s2 =>

if countl < SECOne then
state <= s3;

countl <= countl + 1;
else

state <= s3;

countl <=X"0";

end if}
when 3 =>

if countl < SECFive then
state <=s3;

count 1<= countl + 1;
else

state <= s4;

countl <= X"0";

end if}

when s4 =>

if countl < SEC1 then
state <= s4;

countl <= count + 1;
else

state <=s5;

countl <= X"0";

end if}

when s5 =>

if countl < SEC1 then
state <= s5;

countl <= countl + 1;
else

state <= s0;

countl <= X"0";

end if}

when others =>

state <= s0;

end case;

end if;

end process;
C2: process(stateTC)
begin

3.6 Traffic Light Controller

71

case stateTC is

when s0 => ledlights <= "100001";
when s1 => ledlights <= "100010";
when s2 => ledlights <= "100100";
when s3 => ledlights <="001100";
when s4 => ledlights <="010100";
when s5 => ledlights <="100100";
when others => ledlights <= "100001";

end case;
end process;

end trafficlight;

Step 4 Next step is the assignment of FPGA pins.
Step 5 Building and compilation of project.
Compile it using tab Processing — start compilation.

After successful analysis and synthesis, compilation report is generated as shown

below.

Flows Status Successhul - Wed Dec 31 11:3517 20014
Qusartus 1| Version 7.2 Buld 207 03/18/2008 5P 3 5) Web Edition
Favision Name tratfichght
Toplevel Entity Name tnafichght
Famiy Cyclone Il
Device EP2CISFET2CE
Timing Modeds Firal
Mt timing requirements Yer
Total logic elements 18/33216(<1%)
Total combinational functions 18/B26(<1X)
Dedeated logic registers 10/3326(<1 %)
Totsl regusters 0
Total pins B/fa75(2%)
Totsl virtual pane o
T ol memory bits 0/483840(0%)
Embedded Multipher S-bit elements 0/70[0%]
Total PLLs 0/4(0%)

After clicking on RTL Viewer, it will show that gate-level architecture as shown

below.

72 3 Building Simple Applications with FPGA

RTL Viewer

oo} ame

ot -1]:_ s
- [He- =] % = m;L

e . f.f..” s e
=

g.

L

i/

=
H

= s
o
T

Ll'ljjiiI

Next step is to simulate the design, and the simulated output is shown below.

Simulated Waveform Output

Name [VakaSimd] ¢ - W o M. o MO W W M T M W ~

Now, the next step is to download the design on target board (DE2) and to test
the design.

Chapter 4
Building Embedded Systems Using Soft IP
Cores

Contents

4.1 Concept Of SOFt IPSc.couiiiiiiiiiiiiiiiiccc e 74

4.2 Soft Core Processors for Embedded Systems.........cccueevuerieiiinininienieieceescseeeeeeene 74

4.3 A Survey of Soft COre ProCeSSOIS........c.ceiruirieiiiiieiiiiiteieeet ettt 75
4.3.1 Commercial Cores and TOOIS..........ccoeiiiiiiiiiiiiiiiic e 75
4.3.2 OPen-SOUICE COTES.....c.ccvmiiiriiiiiiiiiiieiiieieiet ettt 76
4.3.3 Comparison of Soft COre ProCESSOISc.ceutrtiriirieieiieierienieieieit et 76

4.4 Soft Processor Cores Of AILETa........c.coueeriririnieiiirieiertetet ettt 76

4.5 DESIZN FIOW ettt sttt ettt 78

Abstract This chapter makes reader aware of embedded soft core processors, their
concepts, comparisons of various soft cores from various FPGA manufactures, etc.
Here, we have emphasized on Altera Nios II soft core processor. The soft core
nature of the Nios II processor lets the system designer specify and generate a
custom Nios II core, tailored for his or her specific application requirements.
System designers can extend the Nios II basic functionality by adding a predefined
memory management unit or defining custom instructions and custom peripherals.
Altera’s Nios® II processor, the world’s most versatile processor, according to
Gartner Research, is the most widely used soft processor in the FPGA industry.
Design development flow of Nios II System is also depicted in pictorial form which
is self-explanatory for the reader.

Keywords Soft processor - Soft IP - Nios II processor

What is Intellectual Property (IP)?

IP is law protected component, e.g., patents, copyright, and trademarks. IP allows
people to earn lot of recognition and also economic benefit with their invention or
creation.

© Springer (India) Private Ltd. 2018 73
J.S. Parab et al., Hands-on Experience with Altera FPGA Development Boards,
https://doi.org/10.1007/978-81-322-3769-3_4

74 4 Building Embedded Systems Using Soft IP Cores

IP core in technology domain, IP is copyright property of individual part which
can be a reusable unit or chip layout. ASIC chip and FPGA logic designs make use
of IP cores so as to make the design less complex. There are various reasons to
protect and publicize the IP.

e To create and invent new designs in technology domain.
e Further innovation by putting more resources.
e Protecting IP helps to enhances economic growth and creates new jobs.

4.1 Concept of Soft IPs

European Patent Forum was the first to use the term “Soft IP” in 2007. Soft IP is
synthesizable form licensed product and can be available to the different parties by
purchasing the licensed copy. Soft IPs are design rights, copyrights, or trademarks
but hard IPs are patents.

In digital design industry, IP cores can be of Gate Netlist form or synthesizable
form. IP with Netlist form is nothing but Boolean representation, i.e., with gates and
standards cells similar to assembly listing of high-level program. One cannot apply
reverse engineering on Netlist-based IP cores. Synthesizable IP versions are
available in HDL languages which allow customer to ulter the design at functional
level.

Soft IP provides customer with lot of design flexibility. It also offers better
predictive nature in terms of timing performance. In electronic design industry, IP
cores play major role in SoCs design.

4.2 Soft Core Processors for Embedded Systems

In today’s era, everybody talks about an Embedded Systems, which is nothing but a
hardware and software combination to achieve desired task. Designing an
embedded-based product is a challenging task as it has to meet constraints on area
usage, size, power consumption, and also time to market. Over the years, com-
plexity of the embedded system design has increased even if small change in the
design requires the designing from scratch which leads to lot of time consumption.
Hence, predesigned and tested IP cores are the alternative to solve the above
problem. There are many advantages of using soft IPs in embedded design.

e They are flexible in nature and can easily be customizable.

e Less chances of getting obsolete since it can be synthesizable for any target
device.

e Soft IPs are described in HDL; hence, it is easier to understand the entire design.

4.2 Soft Core Processors for Embedded Systems 75

Several FPGA manufactures in market provides their soft core IPs for various
blocks to attract the designers toward their products.

Altera has developed various IP cores so as to increase the usage and attract the
better market for their development boards. These IPs can be easily incorporated in
the design by using Quartus II system integration tool, Qsys. Altera also provides
number of other IP cores, which are available as Altera IP MegaStore.

4.3 A Survey of Soft Core Processors

Here, we will discuss in brief the soft cores provided by various vendors.

4.3.1 Commercial Cores and Tools

Altera and Xilinx corporation have developed leading soft core processor such as
NIOS II, MicroBlaze, and PicoBlaze. We will briefly discuss the some important
features of various soft core processors.

NIOS II by Altera Corporation

Altera corporation has marked its footprint in market as leading vendor of CPLDs
and FPGAs. They offer various range of FPGA variants such as Stratix, Stratix II,
and Cyclone. In any embedded system design, the NIOS II processor can be
instantiated just by simple selection process in SOPC Builder.

The NIOS II soft core processor is a RISC processor core and supports Harvard
memory architecture. Nios II has 32-bit ISA, 32 general purpose registers and
single instruction 32 x 32 multiply and divide. Nios II has three versions: economy,
standard, and fast core. Each version comes with variation pipeline stages,
instructions/data cache memories and their performance also varies.

MicroBlaze and PicoBlaze by Xilinx Incorporated

Spartan and Virtex FPGA are the devices of Xilinx Incorporated. In addition, they
offer MicroBlaze and PicoBlaze soft core processor which is 32 bit. It is based on
Harvard RISC architecture.

The MicroBlaze soft core processor developed is targeted on Virtex and Spartan
families of FPGAs only. Xilinx also provides set of other IP cores which are
required to design the embedded system. Xilinx also supplies lower version of soft
core which is PicoBlaze soft core, which is 8-bit Microcontroller targeted on
low-end FPGA like Spartan-3, Virtex-1II, and Virtex-II Pro families of FPGAs. The
PicoBlaze mostly used for simple data processing applications.

Soft Cores from Other Vendors
Tensilica Inc. offers a number of low cost, power-optimized soft IP processing cores
for embedded systems design. These cores are mostly used for DSP application.

76 4 Building Embedded Systems Using Soft IP Cores

Tensilica’s Xtensa Series processors has “configurable” feature which allows
designer to tune the processor as per his intended application by varying the pre-
defined parameters.

4.3.2 Open-Source Cores

There are large number of open-source cores are freely available. These cores are
mostly used by academia for research and development of their embedded
system-based product. Earlier, Altera has come out with UT NIOS open-core
processor. Open SPARC from Sun Microsystems, LEON by Gaisler Research, and
OpenRISC 1200 soft core processors that are available in open-source community.

4.3.3 Comparison of Soft Core Processors

Table 4.1 below shows a quick and best comparison about the various soft core
processors from different vendors.

Soft core processors such as NIOS II and MicroBlaze designed for system to be
implemented on FPGA. In contrast, the other three cores are not meant for specific
target technology.

4.4 Soft Processor Cores of Altera

The most popular and widely used processor in FPGA industry is Altera Nios II as
per Gartner Research. The processor can be implemented in three different
configurations:

Table 4.1 Comparison of soft core processors

Category Nios II (Fast MicroBlaze | Xtensa OpenRISC LEON
Core) 1200

Operating speed | 200 200 350 300 125

(MHz)

Architecture RISC (32 bit) RISC (32 RISC (32 | RISC (32 RISC (32 or

type bit) bit) bit) 64 bit)

Custom Up to 256 None Unlimited | Unspecified | None

instructions Instructions limit

Pipeline stages 6 3 5 5 7

Register 32 32 32 or64 |32 2-32

4.4 Soft Processor Cores of Altera 77

Nios II/f: f means “fast” version developed for best performance. This version
uses more resources of FPGA but the system performance is much better.
Nios II/s: s means “standard” version. This version of core is developed to
maintain the equilibrium between the system performance and system cost. This
also makes used of minimum chip recourses by sacrificing on better
performance.

Nios II/e: e means “economy” version. This processor version makes use of
minimum amount of FPGA resources. This version has the less set of features
which are user configurable and modifiable. For low-cost FPGA application,
this version of core is more suitable.

System
Requirement
NIOSII cores . Instructions &
[rm——" .System declaration logic
» in SOPC —
Custom SOPC system WriteANi(A)s I ‘ Hardware
hardware » Instantiation into appphagnon code abtraction &
modules Quartus IT project using Nios II IDE device
with Target drivers
Pin Assignment Download NiosII system
on target User C/C++
application
_>
Compile the system Run C/C++ program

on target board

l l

Download system Redefine
to target board 1] software and
Hardware

Fig. 4.1 Nios II system design development flow

78 4 Building Embedded Systems Using Soft IP Cores

The architecture of processor Nios II is based on RISC. Operands present in
general-purpose registers are used to perform arithmetic and logic operations. Load/
Store instructions are used to move data between these general-purpose registers
and memory.

Nios II is 32-bit processor have capability to work either in big-endian or
little-endian mode.

Following are the three modes in which Nios II operates:

¢ Supervisor mode: At reset, processor enters supervisory mode that enables the
processor to compile all instructions and execute all available functions.

e User mode: User mode is kind of restricted mode which prevents the handling
of few instructions. In this mode, all the features of processor are not accessed.

e Debug mode: To implement features like watch points and breakpoints, one has
to use software debug mode.

Designed application programs are possible to run in either the user or super-
visor modes. The processor version currently available does not support the user
mode.

4.5 Design Flow

Nios IT System Design Development Flow
The design flow Nios II system development goes through three stages: system
design, hardware design, and software design steps. For complex systems design
application, two different designers team are required one handle hardware while
other looks after software and also require proper coordination among themselves.
Designs which are less complex in nature can be handled solely by single person.
The entire design and development flow for Nios II system creation and pro-
totyping it is shown in Fig. 4.1.

Chapter 5
How to Build First Nios II System

Contents
5.1 Creating the Advanced Quartus II Project..........ccceoeiriniiniiiiniinininicicieineseieeeeee 81
5.2 Creation and Generation of NIOS II System by Using SOPC Builder..........ccccceueuneee. 81
5.3 Nios II System Integration into a Quartus II Project 87
5.4 Programming and Configuration Cyclone II Device on the DE2 Board...........c.c.c....... 92
5.5 Creating C/C++ Program Using Nios II IDE.......ccccccooiiiiiiiininininiicicienceceeee 94
5.5.1 Introduction 94
5.6 Running and Testing It on Target Boardccociiiiiiiiiiiiniiiiinicccccccee, 99

Abstract This chapter gives an introduction to Altera’s SOPC Builder, which is
used for the implementation of system that uses the Nios II processor on an
Altera FPGA device. The system development flow is illustrated by giving
step-by-step instructions for using the System-On-a-Programmable-Chip (SOPC)
Builder in conjunction with the Quartus II software (Version 7.2) to implement a
desired system. The final step in the development process is to configure the circuit
designed in a FPGA device and running a desired application program in C/C++
using Nios II IDE.

Keywords Nios II IDE - SOPC Builder - Configure

This chapter will make you familiar with Altera’s tool SOPC Builder, which is used
to build a Nios II processor system on an Altera FPGA device. The system design
development flow is illustrated in detail by giving step-by-step instructions for
using the SOPC Builder in conjunction with the Quartus II software (Version 7.2)
to implement a desired system. The final step in the development process is to
configure the circuit designed in a FPGA device and running a desired application
program in C/C++ using Nios II IDE. To implement this, the user requires an access
to a Altera DE2 Development board interface to a computer having Quartus II and

© Springer (India) Private Ltd. 2018 79
J.S. Parab et al., Hands-on Experience with Altera FPGA Development Boards,
https://doi.org/10.1007/978-81-322-3769-3_5

80 5 How to Build First Nios II System

Nios II IDE software installed on it. Altera Nios II is a soft processor described in
HDL, which will be implemented by using the Quartus II CAD system on
Altera FPGA.

To generate desired system, it is compulsorily required to include functional
units such as memory, parallel I/O ports, programmable timers, and communica-
tions interfaces. To implement such systems, it is useful to have CAD software to
design a SOPC. Altera provides SOPC Builder as a part of Quartus II IDE. The
following subsection will introduce a very user-friendly tool of Altera called SOPC
Builder that allows a quick implementation of a simple Nios II system on DE2
development board of the Altera.

NIOS II System
One can implement a system using Nios II on embedded platform DE2 board as
shown in Fig. 5.1.

The soft processor Nios II interacts with the other chips on the board (DE2)
through the interfaces created in Cyclone II FPGA chip (i.e., the SRAM, SDRAM,
and flash memory chips on the board DE2 are accessed through the appropriate
interfaces created inside FPGA Cyclone II). All components shown above need to
be connected by Avalon Switch Fabric interconnection network. Soft processor
Nios II has memory which is on-chip made up of several Cyclone II memory
blocks. Typical computer systems I/O ports are provided by Parallel and serial I/O
interfaces. A special interface, i.e., JTAG UART is used to connect to the circuitry

-

Cyclone II Device
T
ON-CHIP Nios IT soft core ONCHIP Emulator USB Blaster
Interval — —— (JTAG
Timer MEMORY PIOCESSOn (ITAG Debug port) INTERFACE)

Memory Interfaces & PIO Interface Serial Input
: Output
their controller /Outpu
Interface
I

| | |
(e | [rsn | [sommn | iy {

Port lines Port lines

Fig. 5.1 A Nios II system implemented on the DE2 board

5 How to Build First Nios II System 81

that provides a USB link to the host computer, which is called the USB-Blaster.
JTAG Debug system module used here will control the Nios II system using host
computer, which performs functions such as dumping programs, starting and
ending execution, and fixing breakpoints. Using HDL language, components of
Nios II system are defined and ported on FPGA. However, this would be a trou-
blesome and highly time consuming. Instead, SOPC Builder can be used for desired
system implementation, by selecting the component required. Here, we try to
explore the SOPC Builder capability by designing very simple system. One can
follow the same methodology to design large system.

Altera’s SOPC Builder

Altera Quartus II CAD software is used in conjunction with SOPC Builder. This
tool helps the designer to select the required modules to create a system using
Nios II.

5.1 Creating the Advanced Quartus II Project

To implement the desired system, one has to start the Quartus II software and do the
following simple steps:

Design system project is created in Quartus II as given in Fig. 5.2, (we stored
our project in a location called Testproject in D drive, and we assigned project name
as lights, and the same name is also assigned for the top-level design entity). One
has to select a different project name, but one has to be very careful while assigning
project/directory name since SOPC Builder software does not allow to file names
with spaces (e.g., an attempt to use a directory name 7est Project would lead to an
error). In your project, EP2C35F672C6 chip is selected as the target device, since
this is the FPGA present on the DE2 development board. However, one has the
flexibility to choose other target device.

5.2 Creation and Generation of NIOS II System by Using
SOPC Builder

Following steps will help you to get familiar with SOPC Builder and to create a
simple Nios II system required to build Nios II system.

1. Choose Tools and then select option SOPC Builder, which will show you a box as
shown in Fig. 5.3. Enter the system name; SOPC will generate a system with the
same name. Choose VHDL in the selection, in which the system module will be
specified. Click OK, then a window as shown in Fig. 5.4 appears. If you choose
Verilog, then modules will be created in Verilog (We have selected VHDL).
Tab with system contents is shown in Fig. 5.4 which helps for adding and
configuring the selected components to meet the requirements of design.

82 5 How to Build First Nios II System

=

New Project Wizard: Directory, Name, Top-Level Entity [page 1 of 5] @

What is the working directory for this project?

D:/Testproject o |

‘What is the name of this project?

|Iighls _|

‘What is the name of the top-level design entity for this project? This name is case sensitive
and must exactly match the entity name in the design file.

fights =

| Use Existing Project Settings ... I

Next > Finish Cancel
Fig. 5.2 Create a new project
Fig. 5.3 Creating a new r
Nios IT system = Create New System @
System Name:[nios_system]

Target HOL: () Verilog
® VHOL

[OK I[Cancel

5.2 Creation and Generation of NIOS II System by Using SOPC Builder 83

" Altera SOPC Builder - nios_system.sopc® (D:\sopc_builder_tutorial\nios_system.sopc)
Ele Edt Modue GSystem ‘iew Jools Heip

System Contents || System Generation

13 Alers SOPC Buider
) Creste new componert..
@ Mot I Processor
% Bridges and Adaphers a
intertace Protocols
Legacy Componerts
® Memaories and Memary Controliers
Peripherals |
® PLL ol
& st
Wideo and image Processing

Dezcription

&0 Info: Your system is ready to generabe

(2] (o] | <

[tetd] (Coommse]

Fig. 5.4 Window showing system contents

Window on the left side shows available list of components. Before choosing
any components, check the area in the figure-labeled target. Select the target

available on the board as Cyclone II.

2. DE2 board is provided with 2 clock sources, but we are designing a Nios II
system controlled by 50-MHz clock. As shown in Fig. 5.4, one has to specify a
clock name as clk with designated source as external, and the frequency is set to

50.0 MHz.
3. Now, specify the processor as follows:

e From the left-hand window pane, select Nios II Processor and click Add.
Select Nios II/s for the processor core which gives window as displayed in

Fig. 5.5.

e Simplest and standard version of the processor Nios II/S is selected and then
click Finish, which now displays the Nios II processor specified in Fig. 5.6.
There will be a lot of warnings or error messages generated on console,
since many parameters have not yet been specified. Ignore these messages

at this moment of time.

4. Steps to include on-chip memory in system:

e Choose Memories and Memory Controllers > On-Chip memory > On-Chip

Memory and then press Add button.

e In the Configuration Wizard window of On-Chip Memory, as shown in

Fig. 5.7, set the width of memory as 32 bits.

84 5 How to Build First Nios II System

* Nios Il Processor - cpu

“ Nios II Processor
Megaters

Caches and Memory Interfaces

Cora Mios Il

Select a Hios Il core:
ONios Iife |©_N|_os i’s O Nios IIF [
. RISC RISC RISC
Nios Il 32-bit 3202 3260
Selector Guide Instruction Cache Instruction Cache
Famiy: Cyconell Branch Prediction Branch Prediction
Hardware Multiphy Hardware Multipty
{ystem: SO.CMHZ Hardware Divide Hardware Divide
Barrel Shifter
Fpat Data Cache
Dynamic Branch Prediction
Performance at 50.0 MHz Up to & DMPS Upto 32 DMIPS. Up to 57 DMPS
Logic Usage &00-700 LEs 1200-1400 LEs 14D0-1800 LEs
Memory Usage Twio Mats (or equiv.) Two Maks + cache Three MSHs + cache
Hardware Muiply. | Enadded Mutliphers + | []Hardware Divide
Reset Vector: Memory: ~ |Offset gen
Exception Vector: Memory: | Offset [gy2n

Orily nclude the MW when using an operating system that expliclly suppons an MV
Fast TLB Miss Exception Vector: Memory. Offset

[Warming Reset vector and Exception vector cannct be set untl memary devices are connected 1o the Nios Il processor

Fig. 5.5 Nios II processor selection

e Other default settings are unaltered.
e Then, click Finish that gives system contents tab as shown in Fig. 5.8.

5. Specifying PIO (Parallel Input/output) interface by following below steps:

e Choose Peripherals > Microcontroller Peripherals > PIO (Parallel I/O) and
click button Add to get the Configuration Wizard of PIO shown in Fig. 5.9.

e Width and direction of the port is specified (8-bit port as input) as per user
requirement as shown in Fig. 5.9.

e Press finish to go back to system contents tab as shown in Fig. 5.10.

6. In the similar manner, assign the output I/O interface:

e Choose Peripherals Tab > Microcontroller Peripherals > PIO and Press
Add to get PIO settings.

e Width and direction of the port is specified (8-bit port as output).

e Press finish to complete the selection.

5.2 Creation and Generation of NIOS II System by Using SOPC Builder

"™ Altera SOPC Builder - nios_system.sopc® (D:\sopc_builder_tutorial\nios_system.sopc)

Ele Ect Modde Tystem ‘iew Jools Mozl Help
System Corterts | System Generation
[10 Anern S0PC Buier T Clock Settings
4 Creste new component
y Devics Family| Cyclone | v Mame Source Mz
+ Bridges snd Adaplers - Extormal st |
- irkertace Protocots
Legacy Conponeris
* - Memonies end Memary Controllers
Peripherals -
 PLL Usa Con. Module Name Description Clock Base End L]
£ USB = B cpu Mios I Processor
Video sl Inage Processing clion_master (A ik
date_master [Avalon Memory Mapped Master IRQ O IRg F1e—
Jing_debug_module [Avalon Memory Mapped Slave Dx0000R00 |0:00000LEE
. s || v | (]
To Do: epur No resed vecior has been specitied for this CPU. Please paramedesize the CPU to resolve this issue
To Do epux No exception vector has been specified for this CPU. Please paransterize the CPU to resolve this issue
1, Warning. cpuc Reset vector and Exceplion vector cannot be et untl memory cevices are connected to the Nos I processor
;

Fig. 5.6 NIOS II processor inclusion

7

10.

. To create an interaction between Designed Nios II system and host computer,

some interface is required. This will be achieved by including the JTAG UART
interface as given below:

e Choose Interface Protocols > then select Serial > JTAG UART and press
Add to get Configuration Wizard JTAG UART as shown in Fig. 5.11.
Do not alter the original default settings.

Press finish to complete the configuration.

The entire components of designed system are given in Fig. 5.12.

SOPC is an intelligent tool of Quartus which automatically assigns names for
the various components. Designer can change these names as an when required
by Right clicking on the pio name and then select Rename.

SOPC Builder automatically assigned the base and end addresses for the
components included in the designed system which can also be modified by the
designer. To auto-assign base address click on > Auto-Assign Base Addresses,
which gives the assignment as given in Fig. 5.13.

The settings of Nios II processor such as reset and exception vector addresses
are specified by performing following:

Keep the mouse cursor on the cpu, then right click and then choose edit.
Choose onchip_mem as memory for both reset and exception vector, as
depicted in Fig. 5.14.

Default offset setting is not altered.

Click Finish to complete the Nios II specification.

86

r

5 How to Build First Nios II System

'8 On-Chip Memory (RAM or ROM) - onchip_mem

On-Chip Memory

wee (RAM or ROM)

‘Memary type
(&) RA&M (Wriable) () ROM (Read-only)
["] Dual-port access
Read During Vite Mode: 1 ¢
Block type: [Auto v/
Initialize memory corrent

Memory will ke inttislized from onchip_mem hex

-Size
Data width: |32 v
Total memory size: [4 KkBytes |

Minimize memaory block usage (may Impact Tmak)

‘Read latency
Slave s1: |; v] Slave s2: ||

~Memory initiglization

["] Enable ncn-defautt inttialization file
User-crestec intislization file: [~ ., ot

["] Enable In-System Memory Content Editor festure
Instance ID: ‘I JONE [

Cancel

Fig. 5.7 Definition of the on-chip memory

5.2 Creation and Generation of NIOS II System by Using SOPC Builder 87

"™ Altera SOPC Builder - nios_system.sopc® (D:'sopc_builder_tutorial\nios_system.sopc)
Ele Gt Modue System View Tools Mozl Help
System Cordents | System Generation

(53 Aners S0PC Buider H Target Clock Seftings
14 Creste new component Z -
e Moz I Processer Device Family: Cyclone I - Hame: Source MHT
+ Bridges and Adapters | el External 50.0 |
4 Interface Protocols
Legacy Components
= Memories and Memory Controer:
D, |
: Flash Use Con.. Moduls Name Dezcription Clock Baze End L]
= On-Chip = B epu téos I Processar
¢ Avalon-ST Dual Clocl nstruction_master | Avalon Memory Mapped Master cllc
o Avnlon-5T Muli-Char data_master Avalon Memory Mapped Master Irg 0 IRQ 31—
s Avalon-5T Round Ro Rog_debug_modkde | Avalon Memory Mapped Slave Bx00000800 |0z000002EE
B onchip_mem On-Chip Memary (RAM or ROM)
Avslon Memaory Mspped Slave el Ds00B02000 |[Dx0DD0ZEEE
- - =

To Do epur No reset vector has been specified for this CPU, Please parameterize the CPU 1o resclve this issue
To Dot epur Mo exception vector has been specified for this CPU. Please parameterize the CPU to resobve this issue

Fig. 5.8 System content tab with on-chip memory added

11. After specifying all components required to implement the desired system, the
full system is now ready for generation. Choose the > System Generation tab,
select Turn off Simulation—Create simulator project files. Click Generate on
the bottom of the SOPC Builder window. After the generation process com-
pletion, messages as shown in Fig. 5.15 are displayed. Then, press Exit to
returns to the main Quartus I window.

Any changes required to the designed system can be easily made at any point of
time by opening SOPC Builder tool.

5.3 Nios II System Integration into a Quartus II Project

In the earlier chapter, we have seen VHDL/Verilog design entry method. Here, we
choose schematic entry methods for the integration of the generated system module
that depends on to the Quartus II project.

To complete the design, use the following steps:

e Instantiate the Nios II system module generated by the SOPC Builder into the
Quartus II project by double clicking on Block Design File (BDF) file, then
window as shown in Fig. 5.16 appears.

88 5 How to Build First Nios II System

= PIO (Parallel I/0) - pio

“ PIO (Parallel I/0) _

Parameter
Settings

Basic Settings Input Options Simulation
Width
Wicth (1-32 bits) : [g

Direction

() Bidirectional (tristate) ports

(O Both input and output ports

O Output ports only

Output Port Reset Value
Reset Value: I

Warning: PIO irputs are not hardwired in test bench. Undetined values will be read from PIO input

< | >

Fig. 5.9 Parallel input/output interface declaration

e One has to click Project and select the Nios II system by clicking ok and paste
the system on BDF file.

e Now, next step is to generate the pins of Nios II system by right clicking on the
system and select generate pins for symbol ports, the system will look like as
shown below Fig. 5.17.

e Now, one has to rename the pins as provided in the DE2 pin assignment file
(DE2_pin_assignments.csv) by double clicking on respective pin as shown in
Fig. 5.18 and change the pin name, i.e., clk as CLOCK_50, reset_n as KEY[0],

5.3 Nios II System Integration into a Quartus II Project 89
o d 0 p op -
EBe Gt Modue System Miew Jools Mozl Hep
System Contents | System Generation
£ Atern SOPC Bulder Torget Clock Settings
14 Create new component.. §
& Moz I Processor Device Family, Cyclone I -~ Name Source ! MHz
+ EBridges and Adaplers clk External 500 | [+=
intertace Protocols
¥ Legacy Components
Memories and Memory Controllers
= Periphersis
+ Lebag and Fertormance Use Con. ! Module Mame Description Clock Bate End L]
Display | B epu Mooz I Processor
FPGA Peripherals — struction_master ke
=/ MicrocontroBer Periphersls | | datn_master Aion Memory Mapped Master IRG O IRg 31—
s inkervsl Timer | Mog_debug_module Avalon Memory Mapped Slave Ox00000800 |0x000D0EEE
B0 (Paralel 1O)] & onchip_mem on-Chip Memory (R.AM or ROM)
4 Muiprocessor Coordination El Lavaion Memory Mapped Slave ¢k 0%00002080 000002 £ E
® L] |8 pio P10 (Paradel 1)
® Us8 1 = L ¥ ik
Video and Image Processing
N - v (e-.]
- To Do cpur N resed vector has been specified for this CPU. Please parameterize the CPU to resobve this issue

To Do epur Mo exception vector has been speciiied for this CPU, Please the CPUI this issue
., Warning: plo: PIO inputs are not hardwired in tess bench. Undefined valses wil be read from PIO inputs during simulation

(ea) (v) [o J[mead][conwes]

Fig. 5.10 Inclusion of PIO interface in system

in_port_to_the _switches[7...0] as SW[7...0] and out_port_from_the_LEDs as

LEDG[7...].
e Next Step is Assignment of FPGA Pins:

There are two ways of assigning the pins manual pin assignment and automatic pin

assignment:

When the system design is large and many input/output pins are involved, one
has to select the automatic pin assignment model, whereas for simple design, one

can go for manual pin assignment.

(1) Manual Pin Assignment:

Here, to see the pins in assignment editor directly, one has to compile the entire
system by clicking the start compilation under the processing toolbar. Once the
entire system is compiled without any errors (warnings generated are accepted),
then go to Assignment — Pins (window appears as shown in below Fig. 5.19).
To assign FPGA pin to Node (pin named in design file) click on the Location
and select the respective pin of FPGA, continue this process till you assign all

the pins.

(2) Automatic Pin Assignment:

e Go to Assignment — Import Assignment — Browse the DE2_pin_asign-

ment.csv file and click on OK.

90 5 How to Build First Nios II System

"= JTAG UART - jtag uart

“ JTAG UART

Megators”

Parameter
Settings

Configuration Simulation

Write FIFO (Data from Avalon to JTAG)

Buffer depth (byles): g4 v i IR@ threshold: (g
L - |
[] Construct using registers instead of memary blocks

Read FIFO (Data from JTAG to Avalon)
Buffer depth (bytes): g4 | IRG threshold: (g
L L

D Construct using registers instead of memory blocks

'Cancel Back | Next > I Einish |

Fig. 5.11 JTAG UART module interface

e Next step is to generate the tcl script for the project by choosing
Project > Generate Tcl file for project (Fig. 5.20) then click OK.

e To run the Tcl script select tools > script (Fig. 5.21) Then, click on Project
Name and click on Run.

e Compilation of Design

Once the assignment is done, save the design file and select start compilation option
by clicking on Processing tab — start compilation or by clicking on the toolbar
icon |ge. As the compilation progresses through various stages, its progress is
reported at left side of the Quartus II display.

After successful analysis and synthesis, compilation report is generated as shown
in Fig. 5.22. If there is error, click on that error so that helps you for debugging the
design.

5.3 Nios II System Integration into a Quartus II Project

™ Altera SOPC Build builder_tutorialin

91

Fie Ect Modue System View Tcols Mosl

71 ARers SOPC Euider A | - Torget Clock Seffings
"'? x::lepwcw g | Device Famey:| Cycone 1 > st S (1 -m
% Bridges and Adapters : o [Externat o | ==
= Interfoce Protocols
= ASI
- Ethermet
i [Use | Con.. | Meckde Name Descrition Ciock Base £nd Ro
= Serial] B epu Moz I Processor | |
o Avsion.ST JTAG te | _master |Avaicn Mapped etk |
o Avalon.ST Serial Per | data_master Lavalon Memory Mapped Master 120 0 IR 317
. m ! 18g_debug_module [avalon Memory Mapped Skave 0x00000800 Ox00000ELE |
5 SPI(3Wire Serial) B onchip_mem On-Chip Mesmory (RAM or ROM) |
@ UART (RS-232 Serial = Avalon Memory Mapped Slave el 0300002000 0x00002£2¢
- Legacy Componerts B pie (Paraliel W) !
+ Memories snd Memory Controder: | \Avalon Memery Mapped Stave etk 000000000 |0:0000000¢
& Peripherals | B pio_1 PO (Paralel 1)
H PLL # Awalon Memory Mapped Stave etk 020000001 £
5 use “| = B jtag_vart UraG UaRT |
[l { avalon_ftng_sieve | Avalon Memory Mapped Slave el 0x00000027
N] B Edt A Move L =

5 To Do epue No reset vector has been specified for this CPU, Please parameterize the CPU to resobve this issue
' ToDec epur Mo excaption vector has been specified for thes ZPU. Please the CPU T
1, Warning: pio: PIO inputs are not hardwined intest bench. Undefined values will be read froe PIO inputs during simulation

(2] [(me] [<

Fig. 5.12 Complete system

Fle Edl Modue System Yiew Jools Mosl Help

System Corterts | System Generation|

1 Allera SOPC Buider &) | Torgmt Clock Settings
ot || ooereeriovire)[R Souce L I
[Bridges and Adaplers ik [External 1500 !
= Irtertace Protocols: |
#-a3l
@ Ethernst

& Avalon-5T JTAG inte
s Avoloe-ST Seriel Per | me o ™o 31

000002800 0x0000ZLLE

:
:
{
3]

000001000 0x0000DLEEE

|
|
!
B Memories and Memcey Cordrolier: I 2 | G=00003000 |0x0000300E
. | 0%0000301¢
2 | | L) |oxaoo03027
[2 - | (3=

! To Do epir No reset vactor has been specified for this (PU, Please parameterize the CPU to resclve this issue
+) To Do epur Mo exception vector haz been specified for this CPU. Please parameterize the CPU to rezobve this issus
1, Warning: Switches: FIO inputs are not hardwired in test bench, Undefined values will be read from FIO inputs during simulation

[ea] [rew] [4o

Fig. 5.13 Full proof final system specification

92 5 How to Build First Nios II System

" Mios Il Processor - cpu

Nios II Processor

rCora Nios Il

Select a Hios Il core:
[CiNios iife™ " ©Nios Is |ONios It I
RISC RISC RISC
Nios Il 32.bit 3260 3260
Selector Guide Instruction Cache Instruction Cache
Famity. Cyclone I Branch Prediction Eranch Prediction
Hardware Muliply Hardware Multiply
teystem: S0.0MHZ Hardware Divide Harchware Divide
; Barrel Shifter
el Data Cache
2 Dynamic Branch Prediction
Performance ot 50.0 MHz UploSOMPS | Upto 25 DMPS Upto 1 DMPS
Logic Usage 600-700 LEs 1200-1400 LEs 1400-1800 LEs
Memary Uisage Wi TwoMaKs + cache Thres M4Ks + cache
v |Offset: (g0 | oxboootoon
v |Offset: 0,20 000001020

Only inchade the MML when using an operating system that expicily supports an ML
Fast TLE Miss Exception Vector: Memory: Offset: [

o) - Eo)Ee

Fig. 5.14 Reset and exception vector declaration

When the compilation is finished, a compilation report is produced automatically.
One can also open the compilation report, and it can be opened at any time either by

selecting Processing > Compilation Report or by clicking on the icon | a.
The report includes a number of sections listed on the left side of its window.

5.4 Programming and Configuration Cyclone II Device
on the DE2 Board

Program and configuring details of Cyclone II FPGA is explained in Chap. 2.

5.4 Programming and Configuration Cyclone II Device on the DE2 Board 93
Fle Edt Modse System View Tools Mosl Hep
| System Cortents | System Generation |
Options
System module logic 'will be created in YHOL.
[Simusation. Create project simulstor fies.
Nioe § Tools
Info: Peak virtusl memory: 47 megabyles -
Info: Processing ended Mon Jun 30 14:57:40 2008
Info: Elapsad teme: 00:00:00
Info: Total CPU time (on all processors): 000000
#2008.06.30 14:57:41 () Completed generation o sysiem: nios_sysiem.
20080630 14:57:41 (*) THE FOLLOWMNG SY HAVE BEEN
SOPC Bulder datsbase : Crisopc_bulder_futorialinios_system ptf
System HOL Model: D/sope_bulder_utorialihios_system vhd
System Generation Script ; [n/sopc_bulder_tulorialinios_system_generation_script
200810630 14:57-41 (*) SUCCESS: SYSTEM GENERATION COMPLETED.
D it System generation was successiul. w
<
., Warning: Switehes: FIO inputs are not hardwired in 1ast banch, Undefined values wil be read from PIO inplts during Simwlation.
(e bt b

Fig. 5.15 Full generated system

nios_system

ek
e n

+ ¢ =tin_piet_to_the_Swichea(7.0]

out_port_irom _Jhe_LEDS[T 0] et

Fig. 5.16 Nios II system component

94 5 How to Build First Nios II System

E-a.. Ol v ot I-ua—m m--n:hnl.l ——

CEED & B o G| HsrE@D T rEnHO L BB 20

ot R [Ty

[
[y Ercoran 19 | @
* s
B
A
o
=]
=1
"1
b |
L. =t
o =t
- i
- =yt
o
(=]

Fig. 5.17 Complete Nios II system in Quartus

Fig. $18 Ronaning the pins

General] Format |

To create multiple pins, enter a name in AHDL bus notation (for example,
"name[3..0]"). or enter a comma-separated fist of names.

Pin name(s) |SW[7..0]

Defauit value: [VCC =l

! 0K | Cancel

5.5 Creating C/C++ Program Using Nios II IDE

5.5.1 Introduction

Nios® II integrated development environment (IDE) helps programmer to write his
own C/C++ program which will control the different peripherals included in the
designed system. This section will highlight some important features of Nios II
IDE.

5.5 Creating C/C++ Program Using Nios II IDE 95

A HsSWS T T MmO R B S a0

B sargrmant e

— o

Clamse: Ty e [060

Fig. 5.19 Manual pin assignment window

Generate Tcl File for Project [X' :

Allows you to generate a Tl Script File [tcl) for a Quartus |l project.

Tel Script File name:

D:/T estProject/ghts.tcl
v Open generated file

™ Include default assignments

[~ Wersion 3.0 compatible

Fig. 5.20 Generating tcl script for project

The Nios II IDE Workbench

Nios II IDE workbench is a desktop development environment. The workbench is
the place where you edit, compile, and debug your programs. The snapshot of how
the Nios II IDE workbench looks is shown in Fig. 5.23.

Perspectives, Editors, and Views

Every perspective gives a set of capabilities for doing a specific task. Development
perspective Nios II C/C++ IDE is depicted in Fig. 5.23.

Perspectives under workbench consist of editor slot and one or more views area.
To open and edit a resource of project, an editor is used.

96 5 How to Build First Nios II System

Copyright (C) 1951-2007 Altera Corporation

Tour use of Altera Corporation's design tools, legic functions
and other software and tools, and its AMPP partner logic
functions, and any output files from any of the foregoing
{including device programming of simulation files), and any
associated documentation or information are expressly subject
to the terms and conditions of the Altera Frogram License
Subscription Agreement, Altera MegaCore Function License
eement, of other applicable license agreement, including,
t limitation, that your use is for the sole purpose of
moing logic devices manufactured by Altera and sold by
Altera or its authorized distributors. Please refer to the
applicable agreement for further details.

x Tel Scripts |
Quartus II: Generate Tcl File for Project —
File: lights.tcl Libwaries: I—IR”"
Generated on: Ved Aug 27 10:44:05 2014

E 5 Project

OpenFis |

B# Load Quartus II Tcl Project package 03 raos_syslem_sehup_quastus
package require ::quartus::project B c/akera/ T2 quaiy Iy

1V apps/gua Add to Tel Toobas I
B dw
set need_to_close_project 0 D dw . Cancel I

set make_assignments 1 3 dw_tiering_analysis

ERBRBERRB BB B R R

o
™ mw

B# Check that the right project is open

Eif ([is_project_open]) (

= if ([string compare $quartusiproject] "1J Preview
puts "Project lights is not open”

set make assignments O # Copyright (C)} 1991-2007 Alrera Corporation ~
) = H Your use of Altera Corporation's design tools, logic
) else # and other software and tools, and its ANPP partner .
Only open if not already open # functions, and any output files from any of the for:
= if {[project exists lights]) # (including device programming or simulation files),
project_open -revision lights lights ¥ associaced ion or i ion are :
}oalee : to the terms and conditions of the Altera Program L:

project_new -revision lights lights Subscription Agreement, Altera MegaCore Function Ll.xv

]
set need_to_close_project 1

~

>

E# Hake assignmencs
Eif ($make_azsignments) |
set_global_assignment -name FAMILY "Cyclone II™
zet_global_assignment -name DEVICE EPZC3ISFET72C6
set_global_assignment -name ORIGINAL_QUARTUS VERSION "7.2 SP3"
set olobal assionment -name PROJECT CREATION TIME DATE "12:16:13 AUGUST 25. 2014"

Fig. 5.21 Running the tcl script

Editor showing the C program and Project’s view of Nios II C/C++ in the
left-hand side of workbench is given in Fig. 5.23. View display of C/C++ Projects
gives the content information about the active Nios II projects.

Programmer can open many editor windows, but at given time, only one can be
active. Tabs in the editor area indicate the names of resources that are currently
open for editing.

Creating a New IDE Project
Creating a Nios II IDE project is very simple; one has to follow the following steps
carefully. Here, New Project wizard of IDE that guides you to create new
IDE-managed projects. To start the New Project wizard, click on File menu, then
hold cursor on New, and then choose Nios II C/C++ application as given in the
below Fig. 5.24.

New Project wizard of Nios II IDE prompts to specify:

1. A name to new Nios II project.
2. The target CPU.
3. Project template.

5.5 Creating C/C++ Program Using Nios II IDE 97

& Quartus Il - D:/TestProject/lights - lights

File Edt View Project Assignments Frocessing Tooks Window Help

DELHP & ‘B o o ights X, @SS T(» W wO NS B B0
Propect Navigator .
E Loge Celt
&) Cyckoe I EPZLIFET6 |
- ghts 2842
£ .
ByHiesschy B Fies | o Design Uras |
Status - x
Moo T - Successhul - Wed Aug 27 11:24:11 2014
Full Compation) 7.2 Buld 207 03/18/2008 5P 3 5) Web Edibon
Anshysis & Syrithesss | | ghts
Fater Toa00] Top-evel Entty Name ights
Assembler o200 Femty Drckna
Clastic: Timing Anskyzer 0000, Device EP2CISFET2CE
Timing Models Final
Met timing requirements: Yes
Total logic slemans 2784/ BAB(T %)
Total combinationsal furctions 2050/ 33216(6%)
Dedicated kg registers 1340/33216(4 %)
Total regaters 1340
Total pinz: 227475(5%)
Total vitual pirs: o
Total mamory bits 78,080 / 483,840 [16X)
Embedded Muliphes 3t elemerts 4/ 70(6%]
Total PLLs 0/410%)
< »
= Type [me=sage
By Info: th for register "pzdyge:nabbocipzdyq: impl:pzdyge_impl_instiFWUJE567" (data pin = "altera_internal_ jtag-TO
& Warning: Found invalid timing sssigrments -- see Ignored Timing Assignments report for details
B Info: Quartus IT Classic Timing Analyzer was successful. 0 errors, 2 warnings

Fig. 5.22 Display after a successful compilation (compilation report)

T L —
T B AT AT i
it N T

: ane

- e e

Fig. 5.23 Workbench space of Nios II IDE

98

5 How to Build First Nios II System

hello_world.c

Edit Refactor MNavigate Ssarch

Open File...

Close
Close all

=] save as...

Convert Line Delimiters To

1 hello_world.c [helo_world_0]

Exit

Mios Il IDE

Chri+w
Cerl+Shife+wW

£2h Print... Ckrl+P
Switch Workspace. ..

=g Import. ..

=% Export...
Properties Alt+Enter

Project

Tools Run
9 Project.

window Help

e Mios II System Library
| Er Nios 11 User-Makefile CjC++ Application
ey Mios II CfC++ Library
&Y Source Folder 3
€] Source File
b Header File
| &F Class

LR

4 Other...

Fig. 5.24 New Project wizard Nios I C/C++ application

. New Project

Nios II C/C+ + Application

Click Finish to create application with a default system library as
D:\TestProjectisoftwareihello_world_small

X)

0

MName: | hello_world_small_0

[[] specify Location

Select Target Hardware,
SOPC Bulder System PTF Fie: |

CPU:

Select Project Template
Hello

Hello LED

Hello MicroCfOS-11
Hello World

Hel 5
Host Fie System
Mernory Test
MicroCJiOS-11 Message Box
MicroCfOS-11 Tutorial
i Socket Server

Zip File System

Path

@

bt]

Prints "Hello from Mios II' from a small Fookprint program
Details

Hello World Small prints ‘Hello from Nios IT' to STDOUT. The
project occupies the smallest memory footprint possible for &
hello world application,

51|

This example runs with or without the MicroCfOS-11 RTOS and
requires an STDOUT device in your system's hardware.

hext > Finish

J [_cancel

Fig. 5.25 Hello world template selection

5.5 Creating C/C++ Program Using Nios II IDE 99

. Mios 1| CIC+ » - hello_world_small.c - Nios |1 IDE

Fle Edt Refactor Mavigste Search Project Tooks Run Window Help
E-E @G- BrO-Qr ™

i T

1 skter.componerts
S 15 hello_world_smal 0
L] hello_world_smal.c
apchcation.stf
(51 readme.tt
= 15 hebo_wworkd_smal_0_sysib [rios_srstem]
L) readme.ta
system.stf

Winclude "sys/alc_stdio.n”

int main()

[
ale_pucsce (*Hello from Mios II'\n"):
while (1):

return 07
)

Fig. 5.26 Hello world Nios II IDE C, C++ project

It is always advisable to start with the Hello world small template. “Hello World
small” template selection is shown in Fig. 5.25.

Then, click Finish which creates the new project (Fig. 5.26); it also generates
system library for the project.

5.6 Running and Testing It on Target Board

Building Projects
Although the commands are available on tool bar menu, but right clicking is the
fastest way to locate the required commands.

To compile a project, hold the cursor on the project, right click on the project,
and press Build Project. Figure 5.27 shows how to get the build project option.
First, system library project is generated, and then, entire project is compiled.

100

Nios Il

5 How to Build First Nios II System

Fle Edt Refactor Mavigste Search Project Took Run Window Help

e LS iE S @ i w0 S ARSH R
= 01| [2 helo_workd_smallc 1
. - Check Don't use C+
. This builds without the Ce+ support code.
. - Check Small € library
. This uses a reduced functiomality ¢ library, which lacks
= support for buffering, Zile I0, floating point and getch(), etc.
e Check the Nios II Software Developers Manual for a complete lise,

Restore from Local History...

‘Syystees Library Properties

Check Reduced device drivers

B This uses reduced functionality drivers if they're available. For the

. standard design this means you get polled UART and JTAG UART drivers,

L no support for the LCD driver and you lose the ability to program

. CF1 compliant flash devices.

. - Check Access device drivers directly

. This bypasses the device file system to access device drivers directly.
. This eliminates the space required for the device file system services.
v It alac provides s HAL version of libe services that access the drivera
. directly, further reducing space. Only a limited number of libe

functions are available in this configuration.

Use ALT versions of stdio routines:

v Function Deacription
L ale_printf Only supports %=, %x, and %c (| < 1 Koyte]
* ale_putste Smaller overhead than puts with direct drivers

. Mote this function doesn't add m newline.

. alc_pucchar Smaller overhead than putchar with direct drivers
L2 alt_gecchar Smaller overhead than getchar with direct drivers
o4

Ninclude “ay=/alt_stdio.h”
int maini)
t
alt_putscr({“Hells frem Nios IIMn"):

/* Event loop mever exits. ¥/
while (1]:

return 0;

Fig. 5.27 Right click on Project to get build option

5.6 Running and Testing It on Target Board 101

."Nios Il C/C++ - hello_world_small.c - Nios Il IDE
File Edit Refactor Mavigate Search Project Tools Run Window Help

] ij & W E&S (-G i 0-Q ™ -
< o - *
3 L=
=5 altera.components - = GEEEE Jon’ L. une Cbx
= "_5 g I * This builds without the
> =
) @ MNew
® = Check Small C library
=
= | o Into - * This uses a reduced fun
8 S helit Open in New Window = support for buffering,
& [&é * Check the Nios II Softw
B Rebuild Index *
= | Active Build Configuration ~ » |f| * - Check Reduced device dr
Bl Ronas i Nos T Hardware t
Debug As » Nios II Instruction Set Simulator
Build Project @ nios 11 Modelsim
Clean Project 4
‘ Lauterbach Nios II Instruction Set Simulator
Copy . -
g Paste * This bypasses the devic
Delete » This eliminates the spa
Move... ¥ It also provides a HAL -
Rename d directly, further reduc
| ® functions are available
| 23 Import.... *
| &3 Export.., * - Use ALT versions of std
- o x
| SR
¢ Refresh * Function
Close Project * P i et R S a e R
Team » * alt_printct Only
. .
Compare With > ’ alt_putstr l?Ima.].
5
Restore From Local History... ‘D &
* alt_putchar Smal
Properties x alt_getchar Smal
®
System Library Properties */

Fig. 5.28 Running a program on target hardware

Running and Debugging Programs
User can run or debug the project on target board or NIOS II instruction simulator
(Fig. 5.28). To run the code on board, one has to right click on the Project, then
choose Run As > then select NIOS II Hardware. This runs the code on target
boards and displays the desired result on the board.

If the entire system and written code is correct, it will display a message on
console as “Hello from Nios II”.

Chapter 6
Case Studies Using Altera Nios II

Contents

6.1 Blinking of LEDs in Different Patternsccccccceviiininiiiiiinininicieicencse e 104
6.2 Display of Scrolling Text on LCDcc.ccoiiiiiiiiiiiiiieeeeeee et 106
6.3 Interfacing of Digital Camera

6.4 Multiprocessor Communication for Parallel Processing............ccccoeverveoinincncneniecnene. 116
6.5 Robotic ARM Controlled Over Ethernet..........c.ccceovviriniiiiiininineniiieiececseeeeeeeee 120
6.6 Multivariate System Implementation

6.7 Matrix Crunching on Altera DE2 Boardccccoviiiiiniiiiiiiiiniicicccccecceen 140
6.8 Reading from the Flash (Web Application)c.cceciririenieieininienieieeecsieseeeeeeeees 146

Abstract This chapter will further boost the interest as it covers lots of interesting
case studies designed around Nios II soft core processor such as blinking of LEDs
in different patterns, displaying scrolling text on LCD, interfacing camera for
acquiring images, multiprocessor communication, Ethernet-based robotic arm
control, matrix crunching problem for multivariate analysis, and reading flash for
Web application.

Keywords Multivariate analysis - Robot control - Web application
Multiprocessor communication « Camera interfacing

A Nios II-based embedded system design consists of customized hardware and
software. To configure the processor and I/O peripherals, Altera’s SOPC Builder
tool is used and Nios II EDS platform is used to design software which runs on the
designed hardware. We have already explained in Chap. 5 detailed procedure for
creating an Nios II system. In this chapter, we will provide in brief how to create an
Nios II system for particular application on how the hardware and software inter-
face and basic coding techniques help to access low-level I/O peripherals.

© Springer (India) Private Ltd. 2018 103
J.S. Parab et al., Hands-on Experience with Altera FPGA Development Boards,
https://doi.org/10.1007/978-81-322-3769-3_6

104 6 Case Studies Using Altera Nios II

6.1 Blinking of LEDs in Different Patterns

Light-emitting diodes are the commonly used components in many applications to
display the different sequences. The DE2 board which we are using has 26 LEDs
which are user-controllable: 18 are red LEDs, and 8 are green LEDs. Every LED is
driven by Cyclone II FPGA pin directly; sending high logic level to pin turns the
LED on, and driving low on the pin turns it off. Here, we have selected eight green
LEDs to display different patterns.

To demonstrate the entire process, we have designed a simple blinking LED
system run on soft core processor Nios II platform. The key steps in brief for the
development of entire system for blinking of LEDs are as follows:

e Open the Quartus software and create a new project.
Go to assignments select import assignments and add the de2_pin assignment file.
Select create tcl file for project from the project menu and the run the tcl script
by selecting tcl script from the tool menu.

e To select the components, open the SOPC Builder and choose the following
components. After selection of below components, the complete SOPC Nios 11
system looks like as shown in Fig. 6.1.

NIOS II PROCESSOR (STANDARD)
JTAG UART

SRAM (512 KB)

PIO (RENAME AS led)

e Next auto-assign base addresses and irq.
e In the system generation tab, click generate.

‘ools MNiosl Help
Target Clock Settings
Device Family:| Cyclone I ~ Name Source
clk External
Use Con Mocule Name Description Clock Base End RGQ
3] B epu Nios Il Processor
instruction_master Ayalon Master clk
— data_master Avalon Master IRQ O IRQ 31
— Jag_debug_module Awvalon Slave 0x00100800 0x00LO0EEE
2] B sram_0 SRAM
Pt avalon_sram_slave |Avalon Slave ek 0x00080000 0x000f££Es
& B timer Interval Timer
= s1 Awvalon Slave ik 0x00101000 0x00L0L0LE
2] B jtag_uart JTAG UART
— avalon_ftag_skave Avalon Slave ek 0x00101030 0x00101037
B sysid System ID Peripheral
o> control_slave Avalon Slave ik 0x00101038 0x0010103%
] B led PIO (Paraliel 1)
— #1 Avalon Slave ek 0x00101020 0x0010102¢

Fig. 6.1 Complete SOPC system

6.1 Blinking of LEDs in Different Patterns 105

e Move back to the Quartus software and go to file menu and choose new block
and schematic file.

e Right click on the workspace and add the component created in SOPC (located
in the project folder).

e Add the respective connectors to the I/O generated in the component, and then,
the entire system looks like as shown in Fig. 6.2.

e Save the entire project with the same file name as the entity and compile, and the
compilation report is given in Fig. 6.3.

e In tools, choose programmer, check the program, configure tab, and click start.

e Open the Nios II IDE software.

e In the file menu, choose new C/C++ program, and from the template, choose
blank project.

e Type in the following code mentioned below (led.c).

———————————— blinking of LEDs C code --------—-——————————-

#include <stdio.h>

#include <unistd.h>

#include "system.h"

#include "altera avalon pio regs.h"
#include "alt types.h"

alt u8 ledl[8] ={0x01,0x02,0x04,0x08,0x10,0X20,0x40,0x80} ;
int 1i,7;

int main ()

printf ("THIS IS LED BLINKING PROGRAM\n");
for (i=0;1<6;i++)
{

IOWR ALTERA AVALON PIO DATA (LED1 BASE, 0x00);
usleep (1000000) ;
IOWR_ALTERA AVALON PIO DATA(LED1 BASE, OxFF);
usleep (1000000) ;

}

while (1)
{
for (i=0;1<8;1++)
{
TOWR ALTERA AVALON PIO DATA (LED1 BASE, led[i]);
usleep (1000000) ;
}
for (i=7;1>=0;1i--)
{
IOWRiALTERAiAVALONiPIOiDATA(LEDliBASE, led[i]);

usleep (1000000) ;

}
}

e Build the entire program and run on hardware to see the LED blinking effect.

106

& Quarten I - C:lalberafl Eledbik - bedbik - [ldbie bef]

DS & et Bl P LX)
< =1
iyt [P | F Do v |
o o t
IEW' [Fopen = [Tee | |
ol
ol
o

6 Case Studies Using Altera Nios II

A Tk R 200 50 3K 18

P ——

o=
]

Fig. 6.2 Complete Nios II system in Quartus

Flow Status

Quiartus | Version

Revition Name

Top-level Entity Name

Faridy

Device

Timing Models

Met timing requirements

Total logic elements
Total combinational lunctions
Dedicated logc registers

Todal registers

Total pins

Total vitual pins

Total memorny bits

Embedded Multipher 9-bit sloments

Total PLLs

Fig. 6.3 Compilation report

Successhul - Wed Apr 22 11:18:53 2015
7.2 Busid 207 03/18/2008 SP 3 SJ Web Edition
I

Il

Cwclone 11

EP2CISFE72CE

Final

Ves

2623/33216(8%)

2387 /126 (T %)
1612/33216(5%)

1612

53/475(11 %)

]

46,208 / 483840 (10 %)

4/70(6%)

0/4[(0%)

6.2 Display of Scrolling Text on LCD

LCD (liquid crystal display) is the modern technology used for various displays in
mobiles, notebook, and Tablets PC. Like LEDs and plasma devices, LCDs allow
displays to be much thinner than cathode ray tube (CRT) technology. One of the
greatest advantages of LCDs is that it consumes very low power than LED and

6.2 Display of Scrolling Text on LCD 107

gas-display displays because they work on the principle of blocking light rather
than emitting it. LCD displays consist of two plates of polarizing material with a
special kind of liquid between them which has very high impedance. An electric
current passed through the liquid causes the crystals to align, and it turns opaque so
that light cannot pass through them.

Optrex LCD Controller 16207 Core is present on DE2 board with Avalon®
interface which provides the hardware component interface and driver required to
display characters using Nios® II processor on LCD panel. Device drivers are
provided in the HAL system library for the Nios II processor. SOPC Builder has
readily available LCD controller, and it can be easily integrated in SOPC
Builder-generated system.

Functional Description

The LCD hardware comprises of 11 signals that connect to the pins of Optrex
16207 LCD panel—these signals are defined in the data sheet of Optrex 16207.

Enable (output)—E

Register Select (output)—RS

Read or Write (output)—R/W

Data Bus (bidirectional)>—DB0-DB7

Figure 6.4 shows LCD controller core interface diagram.
Instantiating the Core in SOPC Builder

To select the components, open the SOPC Builder and choose the following
components. After selection of below components, the complete SOPC Nios II
system looks like as shown in Fig. 6.5.

NIOS Il PROCESSOR (STANDARD)
JTAG UART

SRAM (512 KB)

LCD (16 x 2)

Altara FPGA

address E
—_—

Avalon-MM slave data
inMaerface 1o
on-chip logic control

LcD B Opirex 16207
Controller A - LCD Module

Fig. 6.4 LCD controller interface block diagram

108 6 Case Studies Using Altera Nios II

Fig. 6.5 SOPC components

In SOPC Builder, the LCD controller component has the name Character LCD
(16 x 2, Optrex 16207). There are no user-configurable settings for LCD con-
troller. The only choice one has to make in SOPC Builder is whether to add an LCD
controller to the system or not. For each LCD controller added in the system, the
top-level system module has 11 signals that connect to the LCD module.

Full-Fledged Nios II System for Scrolling LCD Display

6.2 Display of Scrolling Text on LCD 109

Compilation Report

a iy O 732 I T
NS00 P 3 B s iy

void lcd init();

void LCD_show Text (char*Text);
void LCD Line2();

void LCD Test();

//#endif

#include<stdio.h>

#include<unistd.h>

#include"system.h"

#include"alt types.h"
#include"altera avalon lcd 16207 regs.h"

void lcd init()
{
usleep (15000) ;
IOWR _ALTERA AVALON_LCD 16207_COMMAND (LCD BASE, 0X38) ;
usleep (4150);
IOWR_ALTERA AVALON LCD_16207_COMMAND (LCD_BASE, 0X06) ;
usleep (4150);
IOWR_ALTERA AVALON LCD 16207 COMMAND (LCD_BASE, 0XOE) ;
usleep (4150);
IOWR_ALTERA AVALON_LCD 16207_COMMAND (LCD_BASE, 0X01) ;
usleep (2050) ;
}
void LCD_Show Text (char* Text)
{

int i;

for (1i=0;1<25;1i++)

{

IOWR_ALTERA_AVALON_LCD_ 16207 DATA (LCD_BASE, Text[i]);
usleep (200000) ;
if (i==15)
{
lcd init();
}
}

for (i=16;1i<40;1i++)

{

IOWR_ALTERA AVALON LCD 16207 DATA(LCD BASE,Text[i]);
usleep (200000) ;

}}

110 6 Case Studies Using Altera Nios II

void LCD_Line2 ()

{
IOWR ALTERA AVALON LCD 16207 COMMAND (LCD_BASE, 0xCO) ;
usleep (2000) ;

void LCD_Test ()
{

char Textl[24] = "<This is Goa University>";
led init ()

LCD_Show_Text (Textl);

int main (wvoid)

{
printf ("abcd hello...... \n");

while (1)

{
LCD_Test();
lcd init ()

6.3 Interfacing of Digital Camera

Digital camera takes photographs by recording images electronically via an image
sensor, and the digitized image is stored in a flash memory card. The image sensor
used contains millions of pixel which helps in generating the proper image. A pixel
sensor converts light to an electronic signal. The output of the pixel sensors is
digitized and stored as an image file. A typical digital camera contains a set of
buttons and knobs to control and adjust camera operation and a small LCD display
to preview the stored pictures. The embedded system in the camera performs two
major tasks. The first task involves the general “housekeeping” I/O operations,
including processing the button and knob activities, generating the graphic on an
LCD display, and writing image files to the storage device.

6.3 Interfacing of Digital Camera

Connect D5SM to Your DE2 Board as Shown in Below Figure

111

Main Features of DSM Camera Module

High frame rate
Low dark current

Automatic black level calibration

Key Performance Parameters

Programmable control for gain, frame rate, frame size

Parameter

Value

Active pixels

2,592 H x 1,944 V

Pixel size

2.2 pm x 2.2 pym

Color filter array

RGB Bayer pattern

Shutter type

Global reset release (GRR)

Maximum data rate/master

96 Mp/s at 96 MHz

Frame rate Full resolution

Programmable up to 15 fps

VGA (640 x 480)

Programmable up to 70 fps

ADC resolution

12-bit

Responsivity

1.4 V/lux-s (550 nm)

Pixel dynamic range

70.1 dB

SNRMAX

38.1 dB

Supply voltage Power

33V

1/0

1.7-3.1V

112 6 Case Studies Using Altera Nios II

Connection Setup of DE2 Board

VGA Monitor

VGA OUT

Procedure for Configuring the Digital Camera

When users buy the camera module from Terasic technologies, they provide CD
containing the user manual and demonstration design files.

e Ensure the connection is done as shown in above figure. Make sure D5 M
module is connected to GPIOL.

e Create project in Quartus and then click on SOPC to select the SOPC compo-
nents as shown below

NIOS 1I

Avalon Trisatate Bridge

Audio and Video config under University Program DE2 Board
Interval Timer

JTAG Uart

RS 232 UART

SRAM

VGA

PIO (Input-8, Output-8).

e Then, generate the system and paste the system in Quartus Bdf file which looks
like as shown in below figure.

6.3

Interfacing of Digital Camera

—{ck pl_cl_gyshemn
—{reset_n pi_ct_memory

avs_s1_sxport_reacdstn_to_the_cemers{31_0] wvs_s1_swport_sddress,_from_fhe_cemers{l 0]
wve_s1_eoport_ch_from_fhe_camers
ave_s1_expont_read_from jhe_camers
avs_s1_export_reset_from_the_camera
wvs_s1_expord_write_from_fhe_camers
wvs_s1_gxport_writedata_from_the_camera{31.0]

eg_cebug_ofichip_trace_ck_irom_She_cpu
ag_debug_offchip_irace_dats_trom_the_cou(17.0]

ctz_n_jo_the_uart
rxdd_to_he_uart

LCD_data_o_snd_from_tha_led7_0]

dats_fo_sand_from_the_ssram{31 0]

ag_debug_trigout_tree,_the_cpu

LCD_E_from_the _lcd
LCD_S_trom_the led
LCO_RW,_frem_tha lcd

out_port_from_the_pio_led($. 0]

locked_from_the_pl
phasedane_from_the_pl

sddress_fo_the_ssram{20.0]
adsc_n_jo_fhe_ssrem
brwe_n_to_fhe_ssram{3.0]
trevm_n_lo_fre_ssrem
chipenablel_n_to_the_ssram

cutputenable_n_fo_fhe_ssrem

s _n_trom_the_uaet
xd_from_he_usd

e Compile the entire design and download the .sof file on to the DE2 board.

e Then, run the C code given below on Nios II system.

NOTE: If Readers want the header file used in program they can contact the authors

#include "my includes.h"
#include "camera hal.h"
#include "packet.h"
#include "function.h"
#include "jtaguart.h"
#include "uart.h"
#include "LCD.h"

#ifdef DEBUG_APP
#define APP DEBUG (x)
#else
#define APP DEBUG (x)
#endif

DEBUG (x)

113

114 6 Case Studies Using Altera Nios II

void init (void) {
UART Open () ;
APP_DEBUG (("\r\n===== DE2-70 Camera Utility [10/26/2007]
APP_DEBUG(("SiZeOf(PKLENiTYPE):%d\r\n", sizeof (PKLEN_TYPE)));

if (!JTAGUART Open()) {
APP DEBUG (("JTAG open faill\r\n"));

}else{
APP_DEBUG (("JTAG open success and clear input buffer\r\n"));
JTAGUART ClearInput ();

}

if (LCD Open()) {

LCD_TextOut ("Welcome DE2-70\nCamera Demo\n");
telse{

APP_DEBUG ((" [LCD] open faillr\n"));

int main ()

alt u32 time start, ticks per sec;
alt_u8 *szPacket;

init ();

szPacket = malloc(PKT_NIOSZPC_MAX_LEN);

if (!szPacket) {
APP_DEBUG (("malloc fail, program is terminated!\r\n"));
return 0;

lelse{
APP_DEBUG (("malloc %d byte success\r\n",PKT NIOS2PC_MAX LEN));

ticks_per_sec = alt_ticks_per_second();
while (1) {
if (!read packet (szPacket)
continue;

6.3 Interfacing of Digital Camera 115
bool bResponse = TRUE, bSuccess = FALSE;
time_start = alt_nticks();
alt_u8 OP = szPacket [PKT OP_ INDEX];
dump_op_name (OP) ;
switch (OP) {

case OP_POLLING:
bSuccess = op polling(szPacket); // ack
break;
case OP_CAMERA CONFIG:
bSuccess = op_camera_config(szPacket);
break;
case OP_CAMERA CAPTURE:
bSuccess = op_ camera capture(szPacket);
break;
case OP CAMERA_ PORT_READ:
bSuccess = op_camera_ port_ read(szPacket);
break;
case OP_MEMORY_ READ:
bSuccess = op _memory read(szPacket);
break;
case OP_MEMORY WRITE:
bSuccess = op_memory_write(szPacket);
break;
default:
bResponse = FALSE;
break;
}
if (bResponse) {
alt_u32 time_ elapsed;
PKLEN_TYPE pl len;
alt_u32 pk_len;
memcpy (&pl_len, &szPacket[PKT_LEN_INDEX], sizeof(pl_len));
// payload len
pk len = pl len + PKT NONEPL SIZE;
if (pk_len > PKT NIOS2PC MAX LEN) {
APP DEBUG (("response packet len too long\r\n"));
}else{
//DEBUGiPRINTF("pkilen:%d", pk_len);
//DEBUGiHExiPRINTF(szPacket, pk_len);
APP_DEBUG (("JTAGUART Write (len=%d)...\r\n", pk len));

if (!JTAGUART Write (szPacket, pk len)) {

APP_DEBUG (("send packet fail, len=%d\r\n", pk_len));

}
}

time elapsed = alt nticks() - time start;
APP_DEBUG (("\r\n%s (OP=%d, %d ms)\r\n",

bSuccess?"ok":"ng", OP, (int) (1000*time elapsed/ticks per sec)));

return 0;

116 6 Case Studies Using Altera Nios II

e Connect the output of DE2 board, i.e., VGA to VGA compatible monitor.
e Press KEY3 to make camera in FREE RUN mode.
e Press KEY2 to take a shot of photograph and then press KEY3.
e Below table summarizes the functions of keys.
Component Function description
KEY[0] Reset circuit
KEY[1] Set the new exposure time (use with SW[0])
KEY[2] Trigger the image capture (take a shot)
KEY[3] Switch to free run mode
SWIO0] Off: Extend the exposure time

On: Shorten the exposure time
SWJ16] On: ZOOM in

Off: Normal display
HEX([7:0] Frame counter (display ONLY)

6.4 Multiprocessor Communication for Parallel
Processing

Multiprocessor system is a system which incorporates two or more processors
working together to do one or more related tasks. Multiprocessor systems that share
resources can be easily developed by using the Altera Nios II processor under
SOPC Builder tool.

Multiprocessor Systems Benefits

The benefit of multiprocessor systems is increased performance at the price of
significantly increased complexity of system. For such reason, multiprocessor
systems have been limited to workstation and high-end PC computing use by using
a symmetric multiprocessing (SMP) method of load-sharing. Usually, the overhead
of SMP is too high for many embedded systems, but embedded platform-based
application comprising multiple processors is gaining popularity since it performs
different tasks and functions on different processors. Ideal platform for embedded
multiprocessor systems can be developed using Altera FPGAs. Altera FPGAs make
it possible to design system with many Nios II processors on a single chip. Here,
different configurations of system can be designed, built, and evaluated very
quickly by using SOPC Builder tool.

6.4 Multiprocessor Communication for Parallel Processing 117

SOPC Components to Create Multiprocessor System

1l a7 Fap Tigmart s Wb CPUTemasbl s 733 vapc]

L

T EHsdee

-

a3 ue

aris

118 6 Case Studies Using Altera Nios II

#include <stdio.h>

#include <string.h>

#include "sys/alt_alarm.h"
#include "system.h"

#include "nios2.h"

#include "altera avalon mutex.h"

#define MESSAGE WAITING 1
#define NO_MESSAGE 0

#define LOCK_SUCCESS 0
#define LOCK_FAIL 1

#define MESSAGE BUFFER BASE MESSAGE BUFFER RAM BASE

#define FIRST LOCK 1 /* for testing only */

#define ERROR OPENED INVALID MUTEX 1 /* for testing only */

#define ERROR ALLOWED ACCESS WITHOUT OWNING MUTEX 2 /* for testing only */
#define ERROR COULDNT OPEN MUTEX 3 /* for testing only */

#define MS_DELAY 1000

// Message buffer structure
typedef struct {

char flag;

char buf[100];
} message_buffer struct;

int main()

{

alt_mutex_dev* mutex = NULL; // Pointer to our mutex device

// Local variables

unsigned int id;

unsigned int value;

unsigned int count = 0;

unsigned int ticks at last message;

char got first lock = 0; /* for testing only */
unsigned int error code = 0; /* for testing only */

6.4 Multiprocessor Communication for Parallel Processing 119

message_buffer struct *message;

NIOS2_READ_CPUID(id);
id += 1;

value = 1;
message = (message_buffer struct*)MESSAGE BUFFER_BASE;

mutex = altera_avalon_mutex_open("/dev/wrong_device_name"); if (mutex !'=
NULL) {
error_code = ERROR_OPENED INVALID MUTEX;
goto error; }

mutex = altera_avalon_mutex_open (MESSAGE_BUFFER_MUTEX NAME) ;
ticks_at last message = alt nticks();

if (mutex)

{

if (altera_avalon mutex_ trylock(mutex, value) == LOCK_SUCCESS) {
if (altera_avalon mutex first lock(mutex) == FIRST_ LOCK) {
message->flag = NO MESSAGE; /* for testing only */
got first lock = 1; /* for testing only */
}

altera avalon mutex unlock(mutex); /* for testing only */
}
while (1)
{
if (alt_nticks() >= (ticks_at_last message + ((alt_ticks_per_second() *

(MS_DELAY)) / 1000))
{

ticks_at_last _message = alt_nticks();

// Try and aquire the mutex (non-blocking).
if (altera_avalon mutex trylock(mutex, value) == LOCK_SUCCESS)
{
// Just make sure we own the mutex
if (altera_avalon mutex is_mine (mutex)) /* for testing only */
{
// Check if the message buffer is empty
if (message->flag == NO_MESSAGE)
{
count++;
// If we were the first to lock the mutex, say so in our first
message.
if (got_first lock) /* for testing only */
{
sprintf (message->buf, "FIRST LOCK - Message from CPU %d.
Number sent: %d\n", id, count); /* for testing only */
got first lock = 0; /* for testing only */
}
else
{
sprintf (message->buf, "Message from CPU %d. Number sent:
%d\n", id, count);
}
// Set the flag that a message has been put in the buffer.
message->flag = MESSAGE WAITING;

120 6 Case Studies Using Altera Nios II

}
}
else {
error code = ERROR ALLOWED ACCESS WITHOUT OWNING MUTEX;
goto error; /* for testing only */ N N N N
}
// Release the mutex
altera avalon mutex unlock (mutex);
}
}
#ifdef JTAG UART NAME
{
if (message->flag == MESSAGE_WAITING)
{

altera_avalon_mutex_lock (mutex, value); /* for testing only */

if (altera_avalon mutex_ is_mine (mutex)) /* for testing only */
{
printf ("%s", message->buf);
message->flag = NO MESSAGE;
}
else {
erroricode = ERROR_ALLOWED ACCESS WITHOUT OWNING MUTEX;
goto error; }

altera avalon mutex unlock(mutex); /* for testing only */
}
}
#endif
}
}
else {
error_code = ERROR_COULDNT_OPEN_MUTEX; /* for testing only */
goto error; }

error: return(error_code); }

6.5 Robotic ARM Controlled Over Ethernet

With an advent of considerable exponential growth of the Internet and all of its
computing hardware/software technologies, it is possible to design a tele-operated
robots controlled over the Internet. The operations like dangerous, hostile, and
inaccessible to humans and areas of work regardless of geographical locations
Internet-based tele-operated robot finds great utility in such situations. The Internet
being so matured and freely available, people can get connected and allow access to
devices across the globe.

Small robotic arm has been designed which is operated over the LAN using the
TCP/IP protocol. VB.NET is used to design a graphical user interface (GUI) client
application which sends control instructions over a LAN using TCP/IP. Remote
server receives these instructions, decodes it, and moves the motors of the robotic
arm accordingly.

6.5 Robotic ARM Controlled Over Ethernet 121

The designed robotic arm is of 2 degrees of freedom (DOF) which is able to turn
left, right, down, and up. Figure 6.6 illustrates robotic arm control setup.

The main block diagram of entire system is shown in Fig. 6.7.

NET framework needs to be installed on the client side so that the GUI works.
The main reason behind using VB.NET is that it simplifies the process of designing
GUI applications.

The server is implemented on an Altera DE2 development board which has
Cyclone® II 2C35 FPGA on which we implement a customized Nios II config-
urable processor. Socket communication on the DE2 board is established by
loading lightweight IP, TCP/IP stack on Nios II. DM9000A Ethernet PHY/MAC
controller is already present on the board which simplifies the Ethernet interface.

Fig. 6.6 Block of robotic arm control

GUI control panel implemented using
MNET Sockets

1l

NIC

[

Stepper motors

Ethemet
1 Driver

Switch/Hub

Altera DE2

Fig. 6.7 Detailed block of robotic arm control

122 6 Case Studies Using Altera Nios II

Design of the Robotic Arm

Here, we have used two stepper motors to design a robotic arm. X-axis rotation is
controlled by one stepper. The second stepper motor controls the rotation along the
Y-axis.

Client Interface

The GUI was designed in Microsoft Visual Studio 2008 and coded using VB.NET.

The GUI acts as a client that tries to connect to the server that is programmed
onto the DE2 board. The GUI is used to control the stepper motors of the robotic
arm by transmitting control messages. The sliders on the home tab page of the GUI
are used to specify the number of steps and direction that the stepper motor should
move.

The GUI uses the system.net.sockets and system.net namespaces of the .NET
framework. The GUI uses the socket to act as a TCP/IP client.

In order to have a smoothly operating GUI, we also required to use some
multithreading concepts. This was used mainly to update the interface while trying
to maintain the TCP connections. The updating of the controls on the GUI was
sometimes required to be run on a separate thread.

The various features of the GUI will be discussed with reference to Fig. 6.8.

1. There are three tab pages named Home, Ping, and Network Info.

(a) Home: This is the main page that you use to control the stepper motor. This
is the page that allows you to connect to the server.

(b) Ping: This page provides a simple utility that allows you to ping to a remote
host. This saves us the trouble of pinging from DOS.

(c) Network Info: This tab page gives the basic information on the available
network connections present on the host machine on which the client GUI
is running.

6.5 Robotic ARM Controlled Over Ethernet 123

M Ethernet Based Robotic Control System) . |l_|[x|

Help

File
‘ma | Ping | Network Info |

IP Address Port N

[fez1687 139 2 [30 % uAe |

Controls
> - Aons: W - Axis:
Cuentwalue: [0] [o 1]
Previous Value: | o | | o || ! Remove 3
8 Clear Al I
SM As

L F'ragamrmble mode

 Real-Time Mode

R
;1"— — - - — - —

Relay-1 Relay-2 Relay-3 Relay-4 Relay5 Relay-6 Relay-7 Relay8

Display
===\ elcome to the Mios || Robotic Control Server=== |~

Number of bytes sent to servern: 3 14
Command sent to server: N
-

.

L

Message received from servern:
Command received by server: N

Fig. 6.8 GUI for robotic arm control

*®

10.

This is where you enter the IP address of the server that is programmed onto the
DE2 board.

This is where you enter the port number. This should match that of the server
socket port number.

The Connect button is used to connect to or disconnect from the server.
These are sliders that can be moved with either the mouse or the keyboard
arrow keys. The value on the slider specifies the number of steps for the stepper
motor. Moving the slider up will result in forward motion, and moving the
slider down will reverse the motors’ movement. The left slider controls the
left/right movement of the robotic arm. The slider toward the right specifies the
up/down movement of the robotic arm.

The Insert button is used to insert the steps in a queue. This can be used to
program the robotic arms’ movements.

The Remove button is used to remove values from the queue.

The Clear All button clears the steps from the queue.

The Save As button is used to save the queue entries to an external text file for
later use.

The Load button is used to load previously saved queue entries.

124 6 Case Studies Using Altera Nios II

11. The GUI has two modes.

(a) Programmable mode: In this mode, the user has to first fill up the queue and
then hit the Run button to send the instructions to the robotic arm. He has
no real-time control over the arm.

(b) Real-time mode: In this mode, the user has real-time control over the
robotic arm. He can send only one instruction at a time.

12. The Run button is used to send the entries from the queue as packets to the
Server.

13. This is the queue that holds the step entries.

14. This displays the status of the socket connection and the number of bytes sent
to the server.

15. These checkboxes are used to toggle the relays connected to the expansion
header of the DE2 board.

The Remote Server

The remote server is implemented on an Altera DE2 development board that has
Cyclone® II 2C35 FPGA on which we implement a Nios® II configurable pro-
cessor. The board has a DM9000A 10/100 Ethernet PHY/MAC controller.

To implement the server on Nios® 11, we first needed to embed a TCP/IP stack
onto the Nios® II soft processor. We choose the lightweight IP (LwIP) TCP/IP
stack. Altera platform supports LwIP along with MicroC/OS-II RTOS multi-
threaded environment. Therefore, to use IwIP, you must base your C/C++ project
on the MicroC/OS-II RTOS.

LwIP

Adam Dunkels from Computer and Networks Architectures (CNA) laboratory at
the Swedish Institute of Computer Science (SICS) has developed Independent
LwIP which is a small version of TCP/IP protocol.

The main intention behind using LwIP stack is to reduce memory usage and
code size, making IwIP suitable for use in small clients with very limited resources
such as embedded systems. LwIP uses a tailor-made API in order to reduce pro-
cessing and memory demands.

The DE2 board receives these packets through its Ethernet port and sends it to
the Nios® II processor where the packet gets decoded. The processor then
accordingly sends control bits to the board expansion headers where the stepper
motor driver circuit is connected.

6.5 Robotic ARM Controlled Over Ethernet 125

The C Code for the Entire Nios II System to Control Robotic Arm is Given
Below

Code for web_server.c

#include <stdio.h>

#include <errno.h>

#include <ctype.h>

#include "includes.h"

#include "alt lwip dev.h"

#include "lwip/sys.h"

#include "user.h"

#include "alt error handler.h"

#include "altera avalon pio regs.h"
#include "dm9000.h"

#include "lcd.h"
ALTERA_AVALON_DMY9K_ INSTANCE (DM9000A, dm9k) ;
void user task(wvoid * pvoid)

{

static u long val=0xFO0;

// simply doing sanity check

for (;;)

{

val = ~val;
IOWR_ALTERA AVALON PIO DATA(LED GREEN BASE, val);
usleep (1000000) ;

} // of forever loop

}

#ifndef LWIP

#error This Server requires the Lightweight IP Software Component.
#endif

#ifndef ucosii

#ferror This Server requires the UCOS II IP Software Component.
#endif

OS_EVENT *attained_ip_address_sem;

static void tcpip init done(void *arg)

{

// hychu

ALTERA_AVALON_DMOK_INIT (dm9k) ;

if (!lwip devices_init (ETHER_PRIO))

die_with_error("[tcpip init done] Fatal: Can't add ethernet interface!");
attained ip address_sem = OSSemCreate (1) ;

#if LWIP_DHCP ==

if (! (IORD(SWITCH_PIO BASE, 0) & (1<<17))) sys_thread new(dhcp_timeout_task,
NULL, DHCP TMR PRIO);

#endif /* LWIP_DHCP */

if (!sys_thread new (http_ task, NULL, HTTP_PRIO))

die_with error("[tcpip_init done] Fatal: Can't add HTTP task! aka SERVER
TASK") ;

}

int main ()

{

INT8U error_code;

LCD_Init();

lwip_stack_init (TCPIP_PRIO, tcpip_init done, 0);

error_code = OSTaskCreateExt (SSSInitialTask,
NULL,

(void *)&SSSInitialTaskStk[TASK STACKSIZE],
SSS_INITIAL TASK PRIORITY,
SSS_INITIAL TASK PRIORITY,

SSSInitialTaskStk,
TASK_STACKSIZE,

126

NULL,

0) 7

alt uCOSIIErrorHandler (error code, 0);

printf ("\nThe Nios II Robotic Control Server is starting up\n");
// hychu

sys_thread new(user task, NULL, SANITY PRIO);

OSStart () ;

return 0;

}

Code for simple_socket server.c
#include <stdio.h>

#include <string.h>

#include <ctype.h>

#include "includes.h"

#include "alt error handler.h"

#include "altera avalon pio regs.h"
#include "alt lwip dev.h"

#include "lwip/sys.h"

#include "lwip/netif.h"

#include "lwip/sockets.h"

#include "user.h"

/* Local Function Prototypes */

void SSSCreateOSDataStructs();

void SSSCreateTasks () ;

OS_EVENT *SSSLEDCommandQ;

#define SSS_LED COMMAND Q SIZE 100

void *SSSLEDCommandQTbl[SSS LED COMMAND Q STZE]; /*Storage for
0S_FLAG GRP *SSSLEDEventFlag;

OS_EVENT *SSSLEDLightshowSem;

0S_STK SSSInitialTaskStk[TASK STACKSIZE];

0S_STK LEDManagementTaskStk[TASK STACKSIZE];
0S_STK LED7SegLightshowTaskStk[TASK STACKSIZE];
void SSSInitialTask (void* pdata)

{

INT8U error_code = OS_NO_ERR;

/*create os data structures */
SSSCreateOSDataStructs () ;

error_code = OSTaskDel (OS_PRIO_SELF) ;
alt_uCOSIIErrorHandler (error_code, 0);

while (1);

void SSSCreateOSDataStructs (void)

{

INT8U error code;

SSSLEDCommandQ = 0SQCreate (&SSSLEDCommandQTbl[0], SSS_LED_COMMAND Q SIZE) ;
if (!SSSLEDCommandQ)

{
altiuCOSIIErrorHandler(EXPANDEDiDIAGN05157CODE,
"Failed to create SSSLEDCommandQ.\n");

}

SSSLEDLightshowSem = OSSemCreate(1l);

if (!SSSLEDLightshowSem)

{

alt uCOSIIErrorHandler (EXPANDED DIAGNOSIS CODE,
"Failed to create SSSLEDLightshowSem.\n");

SSSLEDEventFlag = OSFlagCreate (0, &error code);
if (!SSSLEDEventFlag)

6 Case Studies Using Altera Nios II

6.5 Robotic ARM Controlled Over Ethernet 127

{

alt_uCOSIIErrorHandler (error code, 0);

}

attained ip address_sem = OSSemCreate (0);

if (!attained ip address_sem)

{

alt _uCOSIIErrorHandler (EXPANDED DIAGNOSIS_ CODE,
"Failed to create attained_ip_address_sem.\n”);
}

}

void SSSCreateTasks (void)

{

void sss_reset connection (SSSConn* conn)

{

memset (conn, 0, sizeof (SSSConn));

conn->fd = -1;

conn->state = READY;

conn->rx wr_pos = conn->rx_buffer;
conn->rx rd_pos = conn->rx_buffer;
return;

}

void sss_send menu (SSSConn* conn)

{

alt_u8 tx buf[SSS _TX BUF SIZE];

alt_u8 *tx wr pos = tx buf;

tx_wr_pos += sprintf (tx wr_pos,"\r\n===Welcome to the Nios II Robotic Control
Server===\r") ;

send (conn->fd, tx_buf, tx wr pos - tx_buf, 0);

return;

}

void sss_handle_accept (int listen_ socket, SSSConn* conn)
{

int socket, len;

struct sockaddr_in incoming_addr;

len = sizeof (incoming_addr) ;

if ((conn)->fd == -1)

{

if ((socket=accept (listen_socket, (struct sockaddr*) &incoming_addr, &len))<0)

alt lwIPErrorHandler (EXPANDED DIAGNOSIS CODE,

"[sss_handle accept] accept failed");

}

else

{

(conn) ->fd = socket;

sss_send_menu (conn) ;

printf (" [sss_handle accept] accepted connection request from %s\n",
inet ntoa(incoming addr.sin_addr));

}

}

else

{

printf (" [sss_handle accept] rejected connection request from %s\n",
inet ntoa(incoming addr.sin_addr));

}

return;

}

void sss_exec command (SSSConn* conn)

{

128 6 Case Studies Using Altera Nios II

int bytes to process = conn->rx wr pos - conn->rx rd pos;
INT8U tx_buf[SSS_TX BUF_SIZE];

INT8U *tx wr pos = tx buf;

// INT8U error code;

int j=0;

alt u8 step[4] = {0xA,0x6,0x5,0x9};

INT8U SSSCommand;

SssCommand = CMD LEDS BIT 0 TOGGLE;

while (bytes to process--)

{

SSSCommand = toupper (* (conn->rx_rd pos++));
if (SSSCommand >= ' ' && SSSCommand <= '~"')
{

tx wr pos += sprintf (tx wr pos,
"\r\nCommand received by server: %c\r"
SSSCommand) ;

if (sssCommand == CMD_QUIT)

{

tx_wr pos += sprintf (tx wr pos,"\r\n===Terminating connection===\n\r");
conn->close = 1;

}

else

{

#ifdef LED RED BASE

static int upl = 0;

static int downl = 3;
static int leftl = 0;
static int rightl = 3;
static int togglel =
static int toggle2 =
static int toggle3 =
static int toggled =
static int toggle5 =
static int toggle6 =
static int toggle7 =
static int toggle8 =
static int relayval =
switch (SSSCommand) {

[sNeoNoNeoNeNoNoNok

o~

;

case 'U':

if (upl == 4)
{

upl = 0;

}

IOWR_ALTERA AVALON PIO DATA (MOTORLED 2 BASE, steplupl]);
IOWR_ALTERA AVALON PIO DATA (MOTOR2 BASE, step[upl]);
printf ("upl value = %i\n", upl);

upl++;

downl = upl - 2;

usleep (90000) ;

printf ("Move motor one step UP\n");

break;

case 'D':

if (downl == -1)

{

downl = 3;

}

IOWR_ALTERA AVALON PIO DATA (MOTORLED 2 BASE, stepldownl]);
IOWR_ALTERA AVALON PIO DATA (MOTOR2 BASE, step[downl]);
printf ("downl value = %i\n", downl);

downl--;

6.5 Robotic ARM Controlled Over Ethernet 129

upl = downl + 2;

usleep (90000) ;

printf ("Move motor one step DOWN\n");

break;

case 'L':

if (leftl == 4)

{

leftl = 0;

}

IOWR ALTERA AVALON PIO DATA (MOTORLED 1 BASE, step[leftl]);
IOWR_ALTERA_AVALON_PIO_DATA (MOTOR1 BASE, step[leftl]);
printf ("leftl value = %$i\n", leftl);

leftl++;

rightl = leftl - 2;

usleep (90000) ;

printf ("Move motor one step LEFT\n");

break;

case 'R':

if (rightl == -1)

{

rightl = 3;

}

TOWR ALTERA AVALON PIO DATA (MOTORLED 1 BASE, step[rightl]);
IOWR_ALTERA AVALON PIO DATA (MOTOR1 BASE, step[rightl]);
printf ("rightl value = %i\n", rightl);

rightl--;

leftl = rightl + 2;

usleep (90000) ;

printf ("Move motor one step RIGHT\n");

break;

case 'l':

togglel = ~togglel;

if (togglel)

{

relayval = relayval | 0x01;
IOWR_ALTERA AVALON PIO DATA (RELAY BASE, relayval);
IOWR _ALTERA AVALON PIO DATA (RELAYLED BASE, relayval);
}

else

{

relayval = relayval & Oxfe;

IOWR ALTERA AVALON PIO DATA (RELAY BASE, relayval);
IOWR _ALTERA AVALON PIO DATA (RELAYLED BASE, relayval);
}

break;

case '2':

toggle2 = ~toggle2;

if (toggle2)

{

relayval = relayval | 0x02;

IOWR ALTERA AVALON PIO DATA (RELAY BASE, relayval);
IOWR_ALTERA AVALON PIO DATA (RELAYLED BASE, relayval);
}

else

{

relayval = relayval & Oxfd;

IOWR ALTERA AVALON PIO DATA (RELAY BASE, relayval);
IOWR_ALTERA AVALON PIO DATA (RELAYLED BASE, relayval);
}

break;

case '3':

130 6 Case Studies Using Altera Nios II

toggle3 = ~toggle3;

if (toggle3)

{

relayval = relayval | 0x04;

IOWR_ALTERA AVALON PIO_ DATA (RELAY BASE, relayval);
IOWR_ALTERA AVALON_ PIO_DATA (RELAYLED BASE, relayval);
}

else

{

relayval = relayval & Oxfb;
IOWR_ALTERA_AVALON_PIO_DATA (RELAY_ BASE, relayval);
IOWRﬁALTERAiAVALONiPIOiDATA(RELAYLED BASE, relayval);
}

break;

case '4':

toggled = ~toggled;

if (toggled)

{

relayval = relayval | 0x08;
IOWR_ALTERA_AVALON_PIO_DATA (RELAY_ BASE, relayval);
IOWRﬁALTERAiAVALONiPIOiDATA(RELAYLED BASE, relayval);
}

else

{

relayval = relayval & 0xf7;
IOWR_ALTERA_AVALON_PIO_DATA (RELAY_ BASE, relayval);
IOWR_ALTERA_AVALON_PIO_DATA (RELAYLED BASE, relayval);
}

break;

case '5':

toggle5 = ~toggleb;

if (toggleb)

{

relayval = relayval | 0x10;
IOWR_ALTERA_AVALON_PIO_DATA (RELAY_ BASE, relayval);
IOWR_ALTERA_ AVALON_PIO_DATA (RELAYLED BASE, relayval);
}

else

{

relayval = relayval & Oxef;
IOWR_ALTERA_AVALON_PIO_DATA (RELAY_ BASE, relayval);
IOWR_ALTERA_AVALON_PIO_DATA (RELAYLED BASE, relayval);
}

break;

case '6':

toggle6 = ~toggleb;

if (toggle6)

{

relayval = relayval | 0x20;
IOWR_ALTERA_AVALON_PIO_DATA (RELAY BASE, relayval);
IOWR_ALTERA_AVALON_PIO_DATA (RELAYLED BASE, relayval);
}

else

{

relayval = relayval & Oxdf;
IOWR_ALTERA_AVALON_PIO_DATA (RELAY_ BASE, relayval);
IOWR_ALTERA_. AVALON PIO_DATA (RELAYLED BASE, relayval);
}

break;

case '7':

toggle7 = ~toggle7;

if (toggle?)

6.5 Robotic ARM Controlled Over Ethernet

{

relayval = relayval | 0x40;
IOWR_ALTERA AVALON PIO DATA (RELAY BASE, relayval);
IOWR_ALTERA AVALON_ PIO_DATA (RELAYLED BASE, relayval);
}

else

{

relayval = relayval & Oxbf;
IOWR_ALTERA AVALON_ PIO_DATA (RELAY BASE, relayval);
IOWR_ALTERA_ AVALON_PIO_DATA (RELAYLED BASE, relayval);
}

break;

case '8':

toggle8 = ~toggle8;

if (toggle8)

{

relayval = relayval | 0x80;

IOWR_ALTERA AVALON_ PIO_DATA (RELAY BASE, relayval);
IOWR_ALTERA_ AVALON_PIO_DATA (RELAYLED BASE, relayval);
}

else

{

relayval = relayval & Ox7f;
IOWR_ALTERA_AVALON_PIO_DATA (RELAY_ BASE, relayval);
IOWR_ALTERA_ AVALON_PIO_DATA (RELAYLED BASE, relayval);
}

break;

default:

IOWR _ALTERA AVALON PIO DATA (MOTORLED 1 BASE, 0x00);
IOWR_ALTERA AVALON PIO DATA (MOTORLED 2 BASE, 0x00);
printf ("STALL MOTOR for 1 second\n");

usleep (90000) ;

break;

}

#endif

}

}

}

send (conn->fd, tx_buf, tx wr pos - tx_ buf, 0);
return;

}

void sss_handle_receive (SSSConn* conn)

{

int data used = 0, rx code = 0;

INT8U *1f addr;

conn->rx_rd_pos = conn->rx_buffer;

conn->rx_wr_pos = conn->rx_buffer;

printf (" [sss handle receive] processing RX data\n");
while(conn7>gtate 1= CLOSE)

{

1f addr = strchr(conn->rx_buffer, '\n');

if (1f addr)

{
sss_exec_command (conn) ;

}

else

{

rx_code = recv(conn->fd, conn->rx_wr_pos,

SSS_RX_BUF_SIZE - (conn->rx_wr_pos - conn->rx buffer) -1,

if (rx_code > 0)
{

conn->rx_wr_pos += rx_code;

0) 7

131

132
*(conn->rx_wr_pos+l) = 0;

}

}

conn->state = conn->close ? CLOSE : READY;

data_used = conn->rx_rd pos - conn->rx_buffer;
memmove (conn->rx_buffer, conn->rx_rd pos,

conn->rx_wr_pos - conn->rx_rd pos);
conn->rx_rd_pos = conn->rx_buffer;
conn->rx_wr_pos -= data_ used;

memset (conn->rx_wr_pos, 0, data used);

}

printf (" [sss_handle receive] closing connection\n");
close (conn->fd) ;

sss_reset_connection(conn);

return;

}

void http task()

{

int fd listen, max_ socket;

struct sockaddr in addr;

static SSSConn conn;

fd_set readfds;

if ((fd listen = socket (AF_INET, SOCK STREAM, 0)) < 0)

{

alt_ lwIPErrorHandler (EXPANDED DIAGNOSIS_CODE, "[sss_task] Socket creation
failed");

}

addr.sin_family = AF INET;

addr.sin_port = htons(SSS_PORT) ;

addr.sin_addr.s_addr = INADDR ANY;

if ((bind(fd_listen, (struct sockaddr *)&addr,sizeof (addr))) < 0)

{

alt_lwIPErrorHandler (EXPANDED DIAGNOSIS_CODE, " [sss_task] Bind failed");
}

if ((listen(fd_listen,1)) < 0)

{

alt lwIPErrorHandler (EXPANDED DIAGNOSIS CODE,"[sss task] Listen failed");
}

sss_reset connection (&conn);

printf (" [sss task] Simple Socket Server listening on port %d\n", SSS PORT) ;
while (1) B B

{

FD_ZERO (&readfds) ;

FD_SET (fd _listen, &readfds);

max socket = fd listen+l;

if (conn.fd != -1)

{

FD_SET (conn.fd, &readfds);

if (max_socket <= conn.fd)

{

max socket = conn.fd+1;

}

}

select (max_socket, &readfds, NULL, NULL, NULL);
if (FD_ISSET(fd_listen, &readfds))
{

sss_handle accept (fd listen, &conn);

6 Case Studies Using Altera Nios II

6.5 Robotic ARM Controlled Over Ethernet 133

}

else

{
if ((conn.fd != -1) && FD_ISSET (conn.fd, &readfds)

{
sssihandleireceive(&conn);

}

}
}
}

The remaining codes for the following utilities are not provided here; if some-
body wants these, a personnel request may be sent to authors.

Code for network_utilities.c
Code for user.h

Code for alt_error_handler.c
Code for dm9000.c

6.6 Multivariate System Implementation

Current advancement in computational technology and instrumentation techniques
enables us to collect and process huge amounts of data from chemical and bio-
logical processes. Multivariate Statistical Process Control (MVSPC) has become
very popular tool to extract the useful information from the measured input data for
improving the product quality process and performance. During the last several
years, it has been successfully applied and tested for monitoring and modeling of
chemical and biological processes.

One of the most popular MVSPC techniques is partial least squares (PLS). PLS
is a multivariate process identification method that projects the input—output data
down into a latent space, extracting a number of principal factors with an orthog-
onal structure, while capturing most of the variance in the original data.

134

6 Case Studies Using Altera Nios II

SOPC Components for NIOS II System Creation

'E Altera SOPC Builder - systemtop.sopc (F t\altera\72sp3\quartusiHelolsystemiop.sopc)

Fle Bt Modde Sysiem View Took Mosl Hew

System Cortents | System Gereration

5 Alers S0PC Duser Al T fp—
£l Creste new component
Mos 1 Processor Device Faemiy, Cycione § v | e

Eriiges and Adaghers

4 Stres
= intertace Protocols
et
Serid Lise Dwscription
= JTAG LART = Mo 1 Processer
] v Wagter
LA (Fe5- 232 Sav ovaion, Master
Legacy Components o Laovmion: Shave
Memories and Memeory Controber = oA
DA Lavvaiors Siave
Flash] rtre Trmer
W oncre avador, Staren
& SORAM =] HTAG LaRT
= M ovmion, Siaree
Cypress CYTC100 = System O Peripheral
DIT1V416 SRAM vsior: Siaren
5 Perghersis
=i Debug ared Pertimancs

Avalon-ST Test Patt

Source
External
ok Bazn Erd L)
o
mg 0 0 31
Ex08100800 0200100888
em Su080RES0D Da0O0ELEEE
ok Ewos181880 000LOLOLE
ik x00101820 (0200101027 i)
e Sx08100828 (0200101028

Here, the system generated is very simple,

and the components required are

Main Nios II cpu, SRAM, Interval time, JTAG UART, and System ID.

Full-Fledged Nios IT System for Multivariate Analysis

|
>0l

0 FIEII00

Compilation Report

6.6 Multivariate System Implementation

C Code for Multivariate Partial Least Square Regression

#include <stdio.h>
#include <math.h>
#include <float.h>

#define ROW1
#define COL1
#define ROW2
#define COL2
#define N 4

double** minusl (double**
double additionl (double**
double** wpgl (double**
double**dividel (double*~*,
double** column (double**,int,int);

void Jacobil_Cyclicl_ Methodl (double eigenvaluesl[COL1], double
*eigenvectorsl[COL1] [COL1],double *A,
double** identity(int);

double** transposel (double**,int,int);
double** initl (double**,int, int);
double** setl (double**,int, int);

void get (double**,int, int);

double** mull (double**,double**, int, int, int);

void main ()
{
int 1,3

4

4
4
4

,double**,int);

int,int,double) ;

135

double**matrixl, **matrix2, **A0, **MO, **transl, **CO, **A0_transl, **g,M[COL1] [COL

11;

double eigenvaluesl[COL1], **gh, **Wh, **Wh_mat, **Ch, **W, **ph, **p, **q, **vh;

double eigenvectorsl[COL1][COL1],Ch_sq,m=2.0,**X pre;
v_transl,Cl,**p_transl,**M1,**Al,**q_transl,**B, **T,av_vh;

double
clrscr();

matrixl=init (matrixl,ROW1l,COL1) ;
matrix2=init (matrix2,COL2,COL2) ;

setl (matrixl, ROW1l,COL1) ;
setl (matrix2, ROW2,COL2) ;

clrscr();

transl=transposel (matrixl,COL1l,ROW1) ;

AO=mull (trans,matrix2,COL1,COL2,ROWL) ;

MO=mull (trans,matrixl,COL1,COL1,ROWL) ;

CO=identity (COL1) ;

AO_transl=transposel (AO,COL2,COL1) ;

g=mul (AO transl,AO,COL2,COL2,COL1) ;
for (i=0;1<COL1;i++)

{

for (j=0;j<COL1; j++)

{

MIi][3]=*(*(g+i)+]);

}
}

Jacobil Cyclicl Methodl (eigenvaluesl, *eigenvectorsl, *M,COL1) ;
gh=initl (gh,COL1,COL1) ;

for (i=0;i<COL1;i++)

{

for (j=0; J<COL1; j++)

{
if (i==]

gh[i] [j]=eigenvaluesl[i];

else

gh[i] (3]

)

0.

0;

136 6 Case Studies Using Altera Nios II

}

Wh=mull (AO,gh,COL1,COL1,COL2) ;
Wh_matl=column (Wh,COL1,COL1) ;
Ch=transposel (Wh_mat,1,COLl) ;

Ch=mull (Ch,MO,1,COLl,COLl) ;

Ch=mull (Ch,Wh _mat,1,1,COLl) ;
Ch_sg=sqroot (**Ch) ;

Wh _matl=dividel (Wh_mat,COL1,1,Ch_sq);
W=wpgl (Wh_mat,COL1,1);

Wh_mal=column (W,COL1,1) ;
ph=mull (MO,Wh mat,COL1,1,COLl) ;
p=wpql (ph, COL1, 1) ;

Wh_mat=column (W,COL1,1);
gh=mull (AO_transl,Wh_mat,COL2,1,COLl);
g=wpql (gh,COL2,1) ;
ph=column (p,COL1, 1) ;
vh=mull (CO, ph,COL1,1,COL1) ;
av_vh=additionl (vh,COL1,1);
av_vh=av_vh/m;
vh=dividel (vh,COL1,1,av_vh);
v_transl=transposel (vh,1,COLl);
Cl=mull (vh,v_trans,COL1,COLl,1);
Cl=minusl (CO,C1,COL1) ;
p_transl=transposel (ph,1,COL1) ;

Ml=mull (ph,p_transl,COL1l,COL1,1);
Ml=minusl (MO,M1,COL1) ;

Al=mull (CO,AO,COL1,COL2,COL1) ;
g_transl=transposel (q,1,COL1) ;
B=mull (W,q transl,COL1l,COLl,1);
T=mull (matrixl,W,ROWl,1,COLl) ;
get (T,ROW1,1);

ph=transposel (p,1,COL1) ;
X_pre=mull (T, ph,ROW1,COLL, 1) ;
matrixl=transposel (matrixl,COL1l,ROW1) ;
X_pre=transposel (X_pre,COL1l,ROW1) ;

get (X _pre,COL1,ROW1) ;

getch () ;
free (matrixl);
free (matrix?2);

} /* end main */

double** initl (double** arrl,int row,int col)
{
int i=0,3j=0;
arrl=(double**)malloc (sizeof (double) *row*col) ;
for (i=0;i<row;i++)
{
for (§j=0; j<col;j++)
{
*((arrl+i)+j)=
((arrl+i)+3)

}

(double*)malloc (sizeof (double)) ;
=0.0;

}

return arrl;

}

6.6 Multivariate System Implementation 137

double** setl (double** arrl,int row,int col)
{
int i=0,3=0;
double val=0.0;
for (i=0;i<row;i++)
{
for (j=0;j<col;j++)
{
printf ("Enter value of row %d col %d :", (i+l), (3+1));
scanf ("$1f", &val);
((arrl+i)+j)=val;
}
}
return arrl;

}

void get (double** arrl,int row,int col)

{
int i=0,4=0;

for (i=0;i<row;i++)
{
for (§=0;j<col; j++)
{
printf ("$1E\t", * (* (arrl+i)+73));
}
printf ("\n");
}
}
double** mull (double** arr2,double** arr3,int row,int col,int coll)
{
double **result;
int i=0,3=0,k=0;
result=initl (result,row,col);
for (i=0; i<row;i++)
{
for (§=0; j<col;j++)
{

for (k=0; k<coll; k++)

{
((result+i)+j) +=(* (* (arr2+i) +k)) * (* (* (arr3+k) +73));
if (k!=(coll-1)
printf ("+");

}

printf ("\t");
}
printf ("\n");
}
return (result);

}

double** transposel (double** arr2,int rowl,int coll)
{
double **trans;
int 1i,3;
transl=init (transl,rowl,coll);
for (i=0;i<coll;i++)
{
for (j=0;j<rowl;j++)
((transl+j)+i)=*(* (arrl+i)+7);
}

return transl;

138 6 Case Studies Using Altera Nios II

}

double** identity (int diml)
{
double **CO;
int 1i,3;
CO=init (CO,diml,diml) ;
for (i=0;i<diml;i++)
{
for (j=0;3j<diml; j++)
{
if (i==3)
{
CO[i][31=1.0;
}
else
{
CO[1][j1=0.0;
b}
return CO;

}

Void Jacobil Cyclicl Methodl (double eigenvaluesl[N],
double*eigenvectorsl[N] [N],double *A, int n)
{
int row, i, 3, k, m;
double *pAk, *pAm, *p r, *p_e;
double threshold norm;
double threshold;
double tanl_phi, sin_phi, cos_phi, tan2_phi, sinl_phi, cosl_phi;
double sin_2phi, cos_2phi, cot_2phi;
double duml;
double dum2;
double dum3;
double r;
double max;
if (n < 1) return;
if (n==1) {

eigenvaluesl[0] = *A;
*eigenvectorsl[0][0] = 1.0;
return;
}
for (p_e = eigenvectorsl, i = 0; i < n; i++)
J < n; p et+, j++)

for (j = 0;
if (1 == J)
*p_ e = 1.0; else *p e = 0.0;
for (threshold = 0.0, pAkl = A, 1 =0; 1 < (n -1); pAkl += n, i++)
for (j = 1 + 1; j < n; j++) thresholdl += * (pAkl + j) * *(pAkl + J);
thresholdl = sqgroot (thresholdl + thresholdl);
threshold norm = thresholdl * DBL_EPSILON;
max = thresholdl + 1.0;
while (thresholdl> threshold norm) {
thresholdl /= 10.0;
if (max < thresholdl) continue;
max = 0.0;
for (pAkl = A, k = 0; k < (n-1); pAkl += n, k++) {
for (pAml = pAkl + n, m = k + 1; m < n; pAml += n, m++) {
if (fabs(* (pAkl + m)) < threshold) continue;
cot 2phi = 0.5 * (*(pAkl + k) - *(pAml + m)) / *(pAkl + m);
duml = sqgroot(cot 2phi * cot 2phi + 1.0);
if (cot 2phi < 0.0) duml = -duml;

6.6 Multivariate System Implementation
tan_phi = -cot_2phi + duml;
tan2_phi = tan_phi * tan_phi;
sin2 phi = tan2 phi / (1.0 + tan2 phi);
cos2 phi = 1.0 - sin2 phi;
sin phi = sgroot (sin2 phi);
if (tan phi < 0.0) sin phi = - sin phi;
cos_phi = sqgroot (cos2_phi);
sin 2phi = 2.0 * sin phi * cos_phi;
cos_2phi = cos2 phi - sin2 phi;
p_r = A;
duml = * (pAkl + k);
dum?2 = * (pAml + m);
dum3 = *(pAkl + m);
*(pAk + k) = duml * cos2 phi + dum2 * sin2 phi + dum3 * sin 2phi;
*(pAm + m) = duml * sin2 phi + dum2 * cos2_phi - dum3 * sin_2phi;
*(pAk + m) = 0.0;
*(pAm + k) = 0.0;
for (1 = 0; i < n; p_r +=n, i++) {
if ((1 == k) || (1 == m)) continue;
if (1 < k) duml = *(p_r + k);
else
duml = *(pAkl + 1i);
if (1 <m) dum2 = *(p_r + m); else dum2 = *(pAm + i);
dum3 = duml * cos phi + dum2 * sin phi;
if (i < k) *(p.r + k) = dum3; else *(pAkl + i) = dum3;
dum3 = - duml * sin phi + dum2 * cos phi;
if (i <m) *(p.r +m = dum3; else *(pAml + i) = dum3;
}
for (p_e = eigenvectorsl, i = 0; i < n; p_e +=n, i++) {

duml = *(p e + k);
dum2 = *(p_e + m);

*(p_e + k) = duml * cos_phi + dum2 * sin phi;
*(p_e + m) = - duml * sin phi + dum2 * cos_phi;
}
}
for (i = 0; 1 < n; 1i++)
if (1 == k) continue;

else if (max < fabs(* (pAkl + 1i))) max = fabs(* (pAkl + 1i));
}
for (pAkl = A, k = 0; k < n; pAkl += n, k++) eigenvaluesl[k] = *(pAkl + k)

}

double** column (double** matrix,int row,int col)

{

int i,j,k=0;

double **column;

column=init (column, row,col) ;

for (i=0,j=(col-1) ;i<row; i++)

{

((column+i) +k)=* (* (matrix+i)+7);

}

return column;

}

double** dividel (double** matrix,int row,int col,double Ch_sq)

{

int i,3j,k=0;

double **dividel;

divide=init (column, row,col) ;

for (i=0,j=(col-1) ; i<row; i++)

{

* (*(dividel+i) +k)=* (* (matrix+i)+3j) / Ch_sqg;

}

139

7

140 6 Case Studies Using Altera Nios II

return dividel;

}

double** wpqgl (double** matrix,int row,int col)
{

int i,3,k=0;

double **wpgl;
wpg=init (wpql, row,col) ;

for (i=0;i<row;i++)

{

* (% (wpgti) +k)= * (* (matrix+i) +k);
}

return wpqgl;

}

double additionl (double** matrix,int row,int col)
{

int i,j=col-1;

double add=0.0;

for (i=0;i<row; i++)

addl+= * (* (matrix+i)+7);

return addl;

}

double** minusmat (double** matrixl,double** matrix2,int col)
{
int 1i,3;
double **minusmat;
minusmat=init (minusmat,col,col);
for (i=0;i<col;i++)
{
for (j=0;j<col;j++)
((minusmat+i)+3)=(* (* (matrixl+i)+j) - *(* (matrix2+i)+j));
}

return minusmat;

}

6.7 Matrix Crunching on Altera DE2 Board

FPGA Platform have become a preferred choice over the others especially when the
design application involves hardware implementation of highly computive algo-
rithms,high performance, reconfigurability and time to market. Sophisticated
algorithms involving kernel operation such as Matrix multiplication, transpose,
Inverse which are normally used in applications like image, signal processing and
communication can now be achieved using low cost FPGA platform instead of
using dedicated multi processor system.

Nios II system for the implementation of matrix crunching problems such as
matrix multiplication, matrix transpose, matrix inverse is same as that of multi-
variate system implementation where only the algorithms change.

6.7 Matrix Crunching on Altera DE2 Board 141

e Matrix Multiplication
#include<stdio.h>

int main() {
int amat([5]([5], bmat[5][5], cmat([5][5], i, 3, ks
int suml = 0;

printf ("\nEnter First Matrix : n");
for (i = 0; i < 3; i++) {
for (7 = 0; j < 3; j++) {
scanf ("%d", &amat[i][3j]);
}
}

printf ("\nEnter Second Matrix:n");
for (i = 0; i < 3; i++) {
for (3 = 0; J < 3; j++) {
scanf ("%d", &bmat[i][]]);
}
}

printf ("The First Matrix is: \n");
for (i = 0; i < 3; i++) {
for (3 = 0; j < 3; j++) {
printf (" %d ", amat[i][3]);
}
printf ("\n");
}

printf ("The Second Matrix is : \n");
for (i = 0; i < 3; i++) {
for (3 = 0; J < 3; j++) {
printf (" %d ", bmat[i]l[j]);
}
printf ("\n");
}

//Multiplication Logic
for (i = 0; 1 <= 2; i++) {
for (3 = 0; j <= 2; j++) {

0; k <= 2; kt++) {
suml = suml + amat[i][k] * bmat[k][j];

cmat[1i][j] = suml;

}

printf ("\n Multiplication Of Two Matrices : \n");
for (i = 0; 1 < 3; i++) {
for (3 = 0; j < 3; j++) {
printf (" %d ", cmat[i][j]);
}
printf ("\n");
}

return (0);

142 6 Case Studies Using Altera Nios II

Result

Enter Firse Meaosisx

Encer Seconcd MoacEisx:

The Firsc MacEix is
2 = =
1 = =
1 = =
The Decond Motcoix i: 3
= =
a = =
= =
Mulciplicacion OFf Two Mook icess @
= iz 1
= 1= 1e
= 1= 1

e Transpose of Matrix
#include <stdio.h>

void main ()

{
static int arrayt[10][10];
int i, j, %k, 1;

printf ("Enter the order of the matrix \n");
scanf ("%d %d", &k, &l);
printf ("Enter the coefiicients of the matrix\n");
for (1 = 0; i < k; ++1i)
{
for (j = 0; j < 1; ++3)
{
scanf ("%d", &arrayt[i][J]1);
}
}
printf ("The given matrix is \n");
for (1 = 0; 1 < k; ++1i)
{
for (j = 0; j < 1; ++3)
{
printf (" %d", arraytl[i][]J]);
}
printf ("\n");
}
printf ("Transpose of matrix is \n");
for (3 = 0; 7 < 1; ++3)
{
for (i = 0; i < k; ++1i)
{
printf (" %d4d", arrayt[i]l[]J]);
}
printf ("\n");

6.7 Matrix Crunching on Altera DE2 Board

Result

Enter the order of the matrix

The given matrix is
2 4
5 7
Transpose of matrix is
2 5
q 7

Enter the coefiicients of the matrix

Inverse of Matrix

#include<stdio.h>
#include<math.h>

float determinantl (float[][], float);

void cofactorl (float[] [], float) ;

void transposel (float[][],float[][],float);
int main ()

{

float al[10][10],k,d;
int i,3;

printf("-————————
printf ("-—----—————————— made by Dr.J.S.Parab ----
Printf (Mmoo

printf("\n C Program to find inverse of Matrix\n\n");

printf ("Enter the order of the Matrix : ");
scanf ("$£", &k) ;
printf ("Enter the elements of $.0fX%.0f Matrix
for (i=0;i<k;i++)
{
for (3=0;j<k;J++)
{
scanf ("$£f",&al[1][J])
}
}
d=determinantl (a, k) ;
printf ("Determinant of the Matrix = %f",d);
if (d==0)
printf ("\n Matrix Inverse not possible\n");
else
cofactorl (al,k);
printf ("\n\n**** Thank for using the program!!!

\n", k, k) ;

KKK S

143

144 6 Case Studies Using Altera Nios II

}

/*For calculating Determinant of the Matrix */
float determinantl (float a[10][10],float k)
{
float s=1,det=0,b[25][25];
int i,j,m,n,c;
if (k==1)
{
return (al[0][0]);

else
{
det=0;
for (c=0;c<k;ct++)
{
m=0;
n=0;
for (i=0;i<k;i++)
{
for (3=0;73<k;j++)

bm] [n]=ali] [J];
if (n<(k-2))

n++;
else

{

n=0;

m++;

}

}
}
det=det + s * (al[0][c] * determinantl (b,k-1));
s=-1 * s;
}
}

return (det);
}

void cofactorl (float num[25] [25], float f)
{
float b([25]([25],fac([25]([25];
int p,q,m,n,1,3;
for (g=0;g<f;qg++)
{
for (p=0;p<f;p++)
{
m=0;
n=0;
for (i=0;i<f;i++)
{
for (j=0;3<f;j++)
{
if (i != g && J !=p)
{
b[m] [n]=num[i] [J];
if (n<(£-2))
n++;
else

{

145

6.7 Matrix Crunching on Altera DE2 Board

n=0;
m++;

}
}
}

fac([q] [pl=pow(-1l,g + p) * determinantl (b, f-1);

}
}

Transposel (num, fac, f) ;

}
/*Finding transpose of matrix*/
void transposel (float num[25] [25], float fac[25][25],float r)

{
int i,9;
float b[25][25],inverse[25][25],d;

for (i=0;i<r;i++)

{
for
{

(3=0;3<r;j++)

blil[jl=fac[j][i];
}
}

d=determinantl (num, r) ;

for (i=0;i<r;i++)

{

for
{

(§=0;3<r;j++)
Inversel[i] [§]1=b[i][]j] / d;
}

}
printf ("\n\n\nThe inverse of matrix is \n") ;

for (i=0;i<r;i++)

{

for (j=0;j<r;j++)

{
printf ("\t%f",inversel[i][]j]);

}
printf ("\n");

}

146

6 Case Studies Using Altera Nios II

Result
—————————————————— Ade by Dr.J.% . Parab ————————————————————— —— —
C Program to find inverse of Matrix
[Enter = hues order o e Matr ix 3
Enter the slements of ZX2 Matrs ix z
IDetcerminant of che Matcrix - 2 . 000000
[T e inverse or IOEMT T A iz= H
2 .000000 —1.000000
—1.S00000 1.000000
www* Thanks Tor using the progreaum'! ! ! -www

6.8 Reading from the Flash (Web Application)

A Web server is a platform that stores the content such as Web pages and delivers
to the clients as and when requested. Here, we have implemented FPGA DE2
development board based on Web server. Web server core is first instantiated in a
Nios II system. Nios II system for Web application is designed using SOPC Builder

of Quartus II CAD. After implementing Web
application program can be run on to system to
the Web pages are loaded beforehand on to the

Procedure

e Open the Quartus software and create a new

server Nios II system, an C++
implement the Web server. Here,
flash memory of the DE2 board.

project.

e Go to assignments, select import assignments, and add the de2_pin assignment

file.

e Select create tcl file for project from the project menu and the run the tcl script

by selecting tcl script from the tool menu.

e To select the components, open the SOPC Builder and choose the following

components (Fig. 6.9)

NIOS II PROCESSOR (STANDARD)
JTAG UART

SDRAM

SRAM

6.8 Reading from the Flash (Web Application) 147

Fig. 6.9 SOPC components selected

Flash
Timer
PIO
LEDs
LCD.

Next auto-assign base addresses and Irq.

In the system generation tab, click generate.

Move on back to the Quartus software and click on file menu and choose new
block and schematic file.

Right click on the workspace and add the component created in SOPC (located
in the project folder).

Add the respective connectors to the I/O generated for the component.

Save the entire project with the same file name as the entity and compile.

In tools, choose programmer, check the program, configure tab, and click start.
Open the Nios II IDE software.

In the file menu, choose new C/C++ program, and from the template, choose zip
file system project.

Do the necessary changes like setting the base address in the system library.
Build the entire program and run on hardware.

Note: before compiling the project, make sure you have loaded the files in the

flash using the DE2 control panel utility. The files should be ziped in .zip format
with 0% compression.

Steps for Programming Web Pages on to FLASH Memory

The flash has to be programmed with the Web pages of the Web server.
Program the FPGA with the usb_api.sof.

Execute the DE2_control_panel.exe and switch to the flash page as shown
below.

148 6 Case Studies Using Altera Nios II

DE? DEZ Conticl Fanel PR T=TE-1]
Spen Heley Abou:

e B2 & F-SES 1 LED & LoD 1 TooLsS

[FLASH 1] SFLARN | ESELAN | VGA

FLASH
Random Access
Address : [0 wAIATA - [00 roATA . [oo
Chip Ermse (24 Sec.) | Write | Read |

Seaequantial vWrire
Address - Itj L engrh © E T File Length

VWrite o File to FLASH

Sequential Read
Auddress I(l Le=rvggths F) M Entire Flash

Losd FLASH Content to e File I

Click the “Chip Erase” button to erase flash memory.

Select the “File length” checkbox and confirm that start address is O under
sequential Write.

Click the “write a file to flash” button. Select the ro_zipfs.zip in your local
directory (DE2_web).

Close DE2_panel.

Open the Quartus software and open the de2_web server project.

Launch the Nios II IDE and open the DE2_web workspace.

Build and compile the C code given below.

Run the design choosing “run” as hardware.

Open the Web browser and input the IP into the address bar which is displayed
on the LCD.

Static ip address: 192. 168. Sw[15:12]. Sw[11:8]+128.

e Mac address: 00-90-00-ae-sw/7:0].

By changing the position on switches as mentioned above, the static IP and mac
address can be changed.

6.8 Reading from the Flash (Web Application)

Full System for Web Application

e T T T T Ty e T e 7
¥

Compilation Report

B ih em Prow et Framars
DELg &8 e

Tock s Py

peos 0 A HsESd

P —— e LT
sty i oy [|
iy Crcorm 8 EPICIFRTIAE 2 voosiience
£ DELNOS L LRt] P sy
potemy
o M (o ikt
ot T
B rmion
« =] s —
‘it [o | # Do .

ET

e S| R 014 %
s wen 3
prae T o
[Rapeee

#include
#include
#include
#include
#include
#include
#include

#include
#include

ALTERA AVALON DM9K INSTANCE (DM9000A,

[Modde [Pepeu®]imed |
ol Compion. W

<stdio.h>
<errno.h>
<ctype.h>
"includes.h"
"alt lwip dev.h"
"lwip/sys.h"
"user.h"

"dm9000.h"
"lcd.h"

Slr¥nBO LSS 4o

| 8 Compduiion Hopor - Flam Summary

C code for web server Implementattion

dm9k) ;

Flom s Succesid- Theden 8011 B34 008
Pavce Huma otz ey
Fap el Lty Hama otz jecrs
Foy Coskra k.
Cwen PRI
T il Fodl
e g s Yo
[Te— Aol FELE (15
T contancraihrcions. A0S 19X)
e 2w RNE(E]
Toin e =
fotaipons @ nmn
ot ek ps]
oty 341 T 0
bkt bk 3 sty 4/ 70163 |
TotalPLLs ATE L]

150 6 Case Studies Using Altera Nios II

void user_task(void * pvoid)
{
static u_long val=0;

for (;;)
val "= (1<<17);
IOWR (LED_RED BASE, 0, val);
usleep (500000) ;
}
#ifndef LWIP
#error This Web Server requires the Lightweight IP Software Component.
#endif
#ifndef _ ucosii_
#error This Web Server requires the UCOS II IP Software Component.
#endif
#ifndef RO_ZIPFS
#error This Web Server requires the Altera Read only Zip filing system.
#endif
OS_EVENT *attained ip address_sem;

static void tcpip_init_done(void *arg)

{
ALTERA_AVALON_DM9K_INIT (dm9k) ;

if (!lwip devices_init (ETHER_PRIO))
die_with_error (" [tcpip_init done] Fatal: Can't add ethernet interface!");

attained ip address_sem = OSSemCreate (1) ;
#if LWIP_DHCP ==

if (! (IORD(SWITCH_PIO_BASE, 0) & (1<<17)))
sys_thread new(dhcp_timeout_ task, NULL, DHCP_TMR_PRIO);
#endif

if (!sys_thread new (http_task, NULL, HTTP_PRIO))
die_with_error (" [tcpip_init done] Fatal: Can't add HTTP task!");

}
int main ()
{
LCD_Init();
lwip_stack_init (TCPIP_PRIO, tcpip_init_done, 0);
sys_thread_new(user_task, NULL, SANITY_ PRIO);
OSStart () ;

return 0;

	Foreword
	Preface
	Contents
	About the Authors
	1 Genesis of PLD’s, Market Players, and Tools
	Abstract
	1.1 Brief Insight of Microprocessor, Microcontroller and PLD’s
	1.1.1 Selection of Technology Based on Application

	1.2 Family Tree of PLDs
	1.2.1 When to Choose a PLD?
	1.2.1.1 Tips on Choosing PLA, PAL, CPLD, and FPGAs

	1.3 Major Players in the Market and Their Product Specialties
	1.3.1 Overview of Xilinx Products (www.Xilinx.com)
	1.3.2 Overview of Altera Products (www.altera.com)
	1.3.3 Overview of Lattice (http://www.latticesemi.com/)
	1.3.4 Overview of QuickLogic (www.Quicklogic.com)

	1.4 Overview of Software Tools
	1.4.1 Programming Aspects of VHDL
	1.4.2 Programming Aspects of Verilog
	1.4.3 Programming Aspects of ABEL

	2 Getting Hands on Altera® Quartus® II Software
	Abstract
	2.1 Installation of Software
	2.2 Setting Up of License
	2.3 Creation of First Embedded System Project
	2.4 Project Building and Compilation
	2.5 Programming and Configuring the FPGA Device

	3 Building Simple Applications with FPGA
	Abstract
	3.1 Implementation of 8:1 Multiplexer
	3.2 Implementation of Encoder/Decoder and Priority Encoder
	3.3 Universal Shift Register
	3.4 4-Bit Counter
	3.5 Implementation of Memory
	3.6 Traffic Light Controller

	4 Building Embedded Systems Using Soft IP Cores
	Abstract
	4.1 Concept of Soft IPs
	4.2 Soft Core Processors for Embedded Systems
	4.3 A Survey of Soft Core Processors
	4.3.1 Commercial Cores and Tools
	4.3.2 Open-Source Cores
	4.3.3 Comparison of Soft Core Processors

	4.4 Soft Processor Cores of Altera
	4.5 Design Flow

	5 How to Build First Nios II System
	Abstract
	5.1 Creating the Advanced Quartus II Project
	5.2 Creation and Generation of NIOS II System by Using SOPC Builder
	5.3 Nios II System Integration into a Quartus II Project
	5.4 Programming and Configuration Cyclone II Device on the DE2 Board
	5.5 Creating C/C++ Program Using Nios II IDE
	5.5.1 Introduction

	5.6 Running and Testing It on Target Board

	6 Case Studies Using Altera Nios II
	Abstract
	6.1 Blinking of LEDs in Different Patterns
	6.2 Display of Scrolling Text on LCD
	6.3 Interfacing of Digital Camera
	6.4 Multiprocessor Communication for Parallel Processing
	6.5 Robotic ARM Controlled Over Ethernet
	6.6 Multivariate System Implementation
	6.7 Matrix Crunching on Altera DE2 Board
	6.8 Reading from the Flash (Web Application)

