
 Page 1

Intel® Xeon Phi™ Coprocessor
(codename: Knights Corner)
Performance Monitoring Units

Revision: 1.01
Last Modified: July 10, 2012
Document Number: 327357-001

 Page 2

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS.
NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL
PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S
TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY
WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO
SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING
TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could
result, directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE
INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY
AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE
DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS,
DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF,
DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR
DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR
NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR
WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without
notice. Designers must not rely on the absence or characteristics of any features or
instructions marked "reserved" or "undefined". Intel reserves these for future definition and
shall have no responsibility whatsoever for conflicts or incompatibilities arising from future
changes to them. The information here is subject to change without notice. Do not finalize a
design with this information.

The products described in this document may contain design defects or errors known as
errata which may cause the product to deviate from published specifications. Current
characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and
before placing your product order.

Copies of documents which have an order number and are referenced in this document, or
other Intel literature, may be obtained by calling 1-800-548-4725, or go to:
http://www.intel.com/design/literature.htm

Intel, the Intel logo, Xeon, Intel® Xeon Phi™, Intel® Pentium®, Intel® Pentium® Pro, Intel®
Pentium® 4 Processors, Intel® VTune™ Amplifier XE are trademarks or registered trademarks
of Intel Corporation or its subsidiaries in the United States and/or other countries. *Other
names and brands may be claimed as the property of others.

 Page 3

Copyright 2012 Intel Corporation. All rights reserved.

 Page 4

Table of Contents

Table of Contents ... 4

1 Intel® Xeon Phi™ Coprocessor Performance Monitoring Units 5

1.1 Overview ... 5

1.2 Overview of Core Performance Monitoring Units (PMU) and Events 5

1.3 Performance Monitoring Programming Methodology .. 6

1.3.1 Expected Sampling Methodologies ... 6

1.3.2 Ring 0 vs. Ring 3 Programmability in the Core PMUs....................... 7

1.3.3 Production vs. Instrumented Driver ... 7

1.4 Core PMU Programming.. 7

1.4.1 Basic Programming ... 8

1.4.2 Core PMU Instructions .. 9

1.4.3 Core PMU Control Registers .. 10

1.4.4 Warm Reset/INIT Behavior .. 20

 Page 5

1 Intel® Xeon Phi™ Coprocessor Performance Monitoring Units

1.1 Overview

Many of the challenges of complex application performance tuning arise from the fact that
developers have very limited (or no) insight into the architectural specifics of how their
code runs on a given silicon architecture. This is especially challenging for high performance
computing applications where a product’s success is directly determined by the quality of
software performance tuning in both the driver and in the applications. Modern software
performance tuning requires implementing detailed performance events and counters in
hardware. Developer-friendly performance analysis tools (e.g. Intel® VTune™ Amplifier XE,
etc.) can then configure and access these hardware counters to deliver accurate and
sophisticated performance analysis of applications to the developer.

1.2 Overview of Core Performance Monitoring Units (PMU) and Events

The foundation for the Intel® Xeon Phi™ coprocessor core PMU is the PMU from the original
Intel® Pentium® processor (aka P54C). Most of the forty-two performance events that were
available in the original Intel® Pentium® processor are also available on the Intel® Xeon Phi™
coprocessor. The core PMU has been upgraded to an Intel® Pentium® Pro processor-like (“P6-
style”) programming interface. Below is a summary of the upgrades to the core PMU:

1. Array of Cores/PMUs: Each physical Intel® Xeon Phi™ coprocessor core has an

independently-programmable core PMU. Thus, there is an “array of core PMUs” that

correspond 1-to-1 to the array of physical Intel® Xeon Phi™ coprocessor x86 cores.

2. 4-Way Threaded: Each Intel® Xeon Phi™ coprocessor core is able to process 4 threads

concurrently.

3. 2 Per-Thread Counters per Core: Each core PMU has 2 counters per thread instead of

just two per core. Events with many-thread or no-thread context will also increment

the counters.

4. P6-Style PMU Selection and Control: The programming interface to the core PMU has

been upgraded to mimic the Intel® Pentium® Pro processor (P6) interface, i.e. “P6-

style”.

 Page 6

5. New Core PMU Instructions: Several instructions have been added to the Intel® Xeon

Phi™ coprocessor instruction set to enhance performance monitoring capability for

application-level code, i.e. Ring 3 code.

6. New Core PMU Events: Many new performance monitoring events have been added

to provide insight into the new functional units, e.g. vector-processing unit (VPU),

etc., available in the Intel® Xeon Phi™ coprocessor.

Each of these changes is discussed in detail in the rest of this document.

1.3 Performance Monitoring Programming Methodology

1.3.1 Expected Sampling Methodologies

1.3.1.1 Manual Instrumentation

In conjunction with a performance counter configuration tool (Ring 0), developers can
manually instrument critical sections of their code with the new Ring 3 performance
monitoring instructions, e.g. RDTSC, RDPMC, SPFLT, to obtain detailed performance counts.
Note that the Intel® Xeon Phi™ coprocessor PMUs cannot be programmed at Ring 3. A (Ring
0) configuration tool will be built to program the core PMUs. Developers must use this tool
to configure which hardware events they want to monitor.

1.3.1.2 Time-Based Sampling

It is expected that performance monitoring tools like Intel® VTune™ Amplifier XE will be built
on a software stack that has Ring 0 access to the Intel® Xeon Phi™ coprocessor micro-
operating system. These tools will interrupt the processor at a regular sampling interval to
collect event counts and to reset the PMU counters if necessary.

1.3.1.3 Event-Based Sampling

Performance monitoring tools such as Intel® VTune™ Amplifier XE sometimes use an event-
based mechanism for collecting performance monitoring information. Typically, these tools
rely upon the overflow interrupt mechanism. More specifically, the tool will reset the PMU
counters to values that are a “predictable distance away from overflowing” and will thus
generate overflow interrupts at a desired beat rate. Because the event occurrence will
generate an overflow interrupt, the entire state of the machine can be sampled at the time
of the event to statistically characterize the machine state.

 Page 7

1.3.2 Ring 0 vs. Ring 3 Programmability in the Core PMUs

In the original Intel® Pentium® processor, access to performance counters was limited to
Ring 0 drivers meaning that a front-end tool such as Intel® VTune™ Amplifier XE was
required for end users. However, later architectures starting with the Intel® Pentium® Pro
processor (P6) allowed Ring 3 application-level code to read the counter values via special
instructions, e.g. RDPMC (Read Performance Monitor Counter). PMU configuration was still
controlled by from Ring 0, but optimization-focused developers could now instrument code
segments with RDPMC to directly retrieve performance information without going through
the driver.

The core PMUs in the Intel® Xeon Phi™ coprocessor follows a very similar methodology to
the P6: Intel® Xeon Phi™ coprocessor core PMUs provide the RDPMC instruction for Ring 3
application-level code to query its core performance counters. Configuration of those
counters still requires a Ring 0-based interface. In addition, the new thread-based
performance filtering capability can be controlled by application-level code via the new
SPFLT instruction.

1.3.3 Production vs. Instrumented Driver

In general, access to the core PMUs is expected to be provided and accessible in the
production driver stack including the production micro-operating system.

1.4 Core PMU Programming

Intel® Xeon Phi™ coprocessor core PMU provides 2 per-thread general purpose event
counters. All of these counters are 40-bit in their precision. The counters may be configured
to trigger Performance Monitoring Interrupts (PMI’s) when event counts exceed the 40-bit
representation. Event selection and each general propose counter’s behavior is configured
by a corresponding P6-style Performance Event Selection Register.

The model-specific registers (MSRs) to program core PMU operation can be read and written
using the RDMSR and WRMSR instructions from Ring 0, respectively. All of these features
and their MSRs are discussed in this section. In addition, Ring 3 access to the time-stamp
counter, performance counters, and the performance filter mask register are provided via
new instructions (also described in this section).

 Page 8

Figure 1.1: Core PMU Architecture Diagram

1.4.1 Basic Programming

Enabling the core PMU for event monitoring is relatively simple. The following registers
must be configured. Once the logical AND of respective enable bits in the event selection
and the master PMU registers is equal to one, the event monitoring hardware will begin
filtering configured events into the counters.

 IA32_PerfEvtSelX and corresponding counters initialized

 IA32_PERF_GLOBAL_CTRL

 Page 9

1.4.2 Core PMU Instructions

The table below lists the instructions used by Ring 0 and Ring 3 code to control and query
the core PMU as it applies to the running thread.

Table 1-1: Core PMU Instructions
Instruction

Name
Description Privilege

Mode
(CPL)

Thread-
Specific

Input Output

RDMSR Read model specific register.
Used by Ring 0 code to read
any core PMU register.

Ring 0 Yes ECX: Address of MSR EDX:EAX = 64-bit MSR
value

WRMSR Write model specific register.
Used by Ring 0 code to write
any core PMU register

Ring 0 Yes EDX:EAX = 64-bit
MSR value

ECX: Address of MSR

None

RDTSC Read time-stamp counter.
Reads the current time-
stamp counter value.

Ring 0-3 No None EDX:EAX = 64-bit time-
stamp value

RDPMC Read performance
monitoring counter. Reads
the counts of any of the
performance monitoring
counters, including the PMU
filtered counters.

Ring 0-3 Yes ECX: Counter #

0x0:
IA32_PerfCntr0
0x1:
IA32_PerfCntr1

EDX:EAX = Zero-extended
40-bit counter value

SPFLT Set user preference flag to
indicate counter
enable/disable.

Ring 0-3 Yes Any GPR[0]:
0x0: Clear (disable)
0x1: Set (enable)

Set/clear USER_PREF bit
in PERF_SPFLT_CONTROL.

The registers RDMSR, WRMSR, RDTSC, and RDPMC are well-documented (Intel® 64 and IA-
32 Architectures Software Developer Manuals). The only Intel® Xeon Phi™ coprocessor-
specific notes are that RDTSC has been enhanced to execute in 4-5 clock cycles.

SPFLT is unique because it allows software threads fine-grained control in
enabling/disabling the performance counters. The anticipated usage model for this
instruction is for instrumented code to enable/disable counters around desired portions of
code. Note that software can only specify its preference for enabling/disabling counters and
does not have control over which specific counters are affected (this behavior supports
virtualization).

 Page 10

1.4.3 Core PMU Control Registers

The table below lists the model-specific registers used to program the operation of the core
PMU.

Table 1-2: Core PMU Control Registers
Register
Address Name Description Threaded? Width

Hex Dec

0x10 16 IA32_TIME_STAMP_COUNTER “Time-Stamp Counter” No 64

0x20 32 IA32_PerfCntr0 “Events Counted”, core PMU counter 0 Yes 40

0x21 33 IA32_PerfCntr1 “Events Counted”, core PMU counter 1 Yes 40

0x28 40 IA32_PerfEvtSel0
Performance Event Selection and configuration
register for IA32_PerfCntr0.

Yes 32

0x29 41 IA32_PerfEvtSel1
Performance Event Selection and configuration
register for IA32_PerfCntr1.

Yes 32

0x2C 44 PERF_SPFLT_CONTROL

“SPFLT Control Register” This MSR controls the
effect of the SPFLT instruction and whether it
will allow software fine-grained control to
enable/disable IA32_PerfCntrN.

Yes 64

0x2D 45 IA32_PERF_GLOBAL_STATUS

“Counter Overflow Status” This read-only MSR
displays the overflow status of all the
counters. Each bit is implemented as a sticky
bit, set by a counter overflow.

Yes 32

0x2E 46 IA32_PERF_GLOBAL_OVF_CTRL

“Counter Overflow Control” This write-only
MSR clears the overflow indications in the
Counter Overflow Status register. For each bit
that is set, the corresponding overflow status
is cleared.

Yes 32

0x2F 47 IA32_PERF_GLOBAL_CTRL

“Master PMU Enable” Global PMU enable /
disable. When these bits are set, the core PMU
is permitted to count events as configured by
each of the Performance Event Selection
registers (which can each be independently
enabled or disabled). When these bits are
cleared, performance monitoring is disabled.
The operation of the Time-Stamp Counter is
not affected by this register.

Yes 32

1.4.3.1 IA32_TIME_STAMP_COUNTER

Name: Time-Stamp Counter
Address: 0x10
Default Value: 0x0000000000000000
Normal Access: RW

 Page 11

Size: 64 bits
Threaded: No
Additional Notes: The time-stamp counter increments at core clock rate and is not
appropriate for wall-clock use. There is only a single TSC per core, which is shared by all
threads.

Table 1-3: IA32_TIME_STAMP_COUNTER Register Layout
Bit Description

63:0 Time-Stamp Counter: Number of core clock cycles since reset

1.4.3.2 IA32_PerfCntr0/1

Name: Performance Events Counted
Address: 0x20 (0), 0x21 (1)
Default Value: 0x0000000000
Normal Access: RW
Size: 40 bits
Threaded: Yes
Additional Notes: Each of the 40-bit counters increments when a specified hardware event
occurs and the counter is enabled and allowed to count the hardware event. Reads and
writes to this register set all 40 bits which differs from the behavior of some IA32
processors which only write the lower 32 bits and sign extend the upper 8 bits.

Table 1-4: IA32_PerfCntr0/1 Register Layout
Bit Description

63:40 Reserved

39:0 Events Counted: Number of events counted as specified by the associated performance event selection
register.

1.4.3.3 IA32_PerfEvtSel0/1

Name: Performance Event Selection Register
Address: 0x28 (0), 0x29 (1)
Default Value: 0x00000000
Normal Access: RW
Size: 32 bits
Threaded: Yes
Additional Notes: None

Table 1-5: IA32_PerfEvtSel0/1 Register Layout

 Page 12

Bit Description

31:24 Counter mask (CMASK): When nonzero, the processor compares this mask to the number of events
counted during a single cycle. If the event count is greater than or equal to this mask, the counter is
incremented by one. Otherwise, the counter is not incremented. This mask can be used to count events
only if multiple occurrences happen per clock (for example, two or more instructions retired per clock). If
the counter-mask field is 0, then the counter is incremented each cycle by the number of events that
occurred that cycle.

23 Invert (INV): Inverts the result of the counter-mask comparison when set, so that both greater-than-or-
equal-to and less-than comparisons can be made.

22 Enable Counter (EN): When set, performance counting is enabled if the corresponding bit in
IA32_PERF_GLOBAL_CTRL bit is also set.

21 Thread Count Mode: When cleared, count events that match this thread’s context. When set, count
events that match any thread context. Events which have no thread-specific context will always be
counted regardless of Thread Count Mode.

20 APIC Interrupt Enable (INT): When set, the processor generates an exception through its local APIC on
counter overflow.

19 Reserved

18 Edge Detect (E): Enables (when set) edge detection of events. The processor counts the number of
deasserted-to-asserted transitions of any condition that can be expressed by the other fields. The
mechanism is limited in that it does not permit back-to-back assertions to be distinguished. This
mechanism allows software to measure not only the fraction of time spent in a particular state, but also
the average length of time spent in such a state (for example, the time spent waiting for an interrupt to
be serviced).

17 Operating System Mode (OS): Enables counting events when the processor is operating at Ring 0. This
flag can be used in conjunction with the USR flag to allow event counting at any privilege level.

16 User Mode (USR): Enables counting events when the processor is operating at Ring 1, 2 or 3. This flag
can be used in conjunction with the OS flag to allow event counting at any privilege level.

15:8 Unit Mask (UMASK): Further qualifies the event logic unit selected in the event select field to detect a
specific architectural condition. For example, for some cache events, the mask is used as a MESI-protocol
qualified of cache states.

7:0 Event Select: This 8-bit field is used to encode the desired hardware event. Illegal event encodings do
not cause any hardware exceptions or faults and also do not increment the counters.

Table 1-6: List of Events
FUB UMASK Event Code Mnemonic Event Name Description
P54C 0x00 0x00 DATA_READ Number of successful memory data reads

committed by the K-unit (L1). Cache
accesses resulting from prefetch
instructions are included for A0 stepping.

P54C 0x00 0x01 DATA_WRITE Number of successful memory data writes
committed by the K-unit (L1). Streaming
stores (hit/miss L1), cacheable write
partials, and UC promotions are all
included.

P54C 0x00 0x02 DATA_PAGE_WALK Number of data page walks

 Page 13

P54C 0x00 0x03 DATA_READ_MISS Number of memory read accesses that
miss the internal data cache whether or
not the access is cacheable or
noncacheable. Cache accesses resulting
from prefetch instructions are not
included.

P54C 0x00 0x04 DATA_WRITE_MISS Number of memory write accesses that
miss the internal data cache whether or
not the access is cacheable. Non-
cacheable misses are not included.

P54C 0x00 0x06 DATA_CACHE_LINES_WRITTEN_BACK Number of dirty lines (all) that are written
back, regardless of the cause

P54C 0x00 0x09 MEMORY_ACCESSES_IN_BOTH_PIPES Number of data memory reads or writes
that are paired in both pipes of the
pipeline

P54C 0x00 0x0A BANK_CONFLICTS Number of actual bank conflicts
P54C 0x00 0x0C CODE_READ Number of instruction reads; whether the

read is cacheable or noncacheable
P54C 0x00 0x0D CODE_PAGE_WALK Number of code page walks
P54C 0x00 0x0E CODE_CACHE_MISS Number of instruction reads that miss the

internal code cache; whether the read is
cacheable or noncacheable

P54C 0x00 0x11 L1_DATA_PF1 Number of data vprefetch0 requests seen
by the L1.

P54C 0x00 0x12 BRANCHES Number of taken and not taken branches,
including: conditional branches, jumps,
calls, returns, software interrupts, and
interrupt returns

P54C 0x00 0x15 PIPELINE_FLUSHES Number of pipeline flushes that occur
Pipeline flushes are caused by BTB misses
on taken branches, mispredictions,
exceptions, interrupts, and some segment
descriptor loads.

P54C 0x00 0x16 INSTRUCTIONS_EXECUTED Number of instructions executed (up to
two per clock)

P54C 0x00 0x17 INSTRUCTIONS_EXECUTED_V_PIPE Number of instructions executed in the
V_pipe
The event indicates the number of
instructions that were paired.

P54C 0x00 0x1C L1_DATA_PF1_MISS Number of data vprefetch0 requests seen
by the L1 which missed L1. Does not
include vprefetch1 requests which are
counted in L1_DATA_PF1_DROP.

P54C 0x00 0x1E L1_DATA_PF1_DROP Number of data vprefetch0 requests seen
by the L1 which were dropped for any
reason. A vprefetch0 can be dropped if
the requested address matches another
in-flight request or if it has a UC memtype.

P54C 0x00 0x1F PIPELINE_AGI_STALLS Number of address generation interlock
(AGI) stalls. An AGI occurring in both the U-
and V- pipelines in the same clock signals
this event twice.

P54C 0x00 0x20 L1_DATA_HIT_INFLIGHT_PF1 Number of data requests which hit an in-
flight vprefetch0. The in-flight vprefetch0
was not necessarily issued from the same

 Page 14

thread as the data request.

P54C 0x00 0x21 PIPELINE_SG_AGI_STALLS Number of address generation interlock
(AGI) stalls due to vscatter* and vgather*
instructions.

P54C 0x00 0x28 DATA_READ_OR_WRITE Number of memory data reads and/or
writes (internal data cache hit and miss
combined). Read cache accesses resulting
from prefetch instructions are included for
A0 stepping.

P54C 0x00 0x29 DATA_READ_MISS_OR_WRITE_MISS Number of memory read and/or write
accesses that miss the internal data
cache, whether or not the access is
cacheable or noncacheable

P54C 0x00 0x2A CPU_CLK_UNHALTED Number of cycles during which the
processor is not halted.

P54C 0x00 0x2B BRANCHES_MISPREDICTED Number of branch mispredictions that
occurred on BTB hits. BTB misses are not
considered branch mispredicts because no
prediction exists for them yet.

P54C 0x00 0x2C MICROCODE_CYCLES The number of cycles microcode is
executing. While microcode is executing,
all other threads are stalled.

P54C 0x00 0x2D FE_STALLED Number of cycles where the front-end
could not advance. Any multi-cycle
instructions which delay pipeline advance
and apply backpressure to the front-end
will be included, e.g. read-modify-write
instructions. Includes cycles when the
front-end did not have any instructions to
issue.

P54C 0x00 0x2E EXEC_STAGE_CYCLES Number of E-stage cycles that were
successfully completed. Includes cycles
generated by multi-cycle E-stage
instructions. For instructions destined for
the FPU or VPU pipelines, this event only
counts occupancy in the integer E-stage.

P54C 0x00 0x37 L1_DATA_PF2 Number of data vprefetch1 requests seen
by the L1. This is not necessarily the same
number as seen by the L2 because this
count includes requests that are dropped
by the core. A vprefetch1 can be dropped
by the core if the requested address
matches another in-flight request or if it
has a UC memtype.

P54C 0x00 0x38 L2_DATA_PF1_MISS Number of data vprefetch0 requests seen
by the L2 which missed L2.

P54C 0x00 0x3A LONG_DATA_PAGE_WALK Number of "long" data page walks, i.e.
page walks that also missed the L2 uTLB.
Subset of DATA_PAGE_WALK event

P54C 0x00 0x3B LONG_CODE_PAGE_WALK Number of "long" code page walks, i.e.
page walks that also missed the L2 uTLB.
Subset of DATA_CODE_WALK event

CRI 0x10 0xC8 L2_READ_HIT_E L2 Read Hit E State, may include

 Page 15

prefetches on A0 stepping.

CRI 0x10 0xC9 L2_READ_HIT_M L2 Read Hit M State
CRI 0x10 0xCA L2_READ_HIT_S L2 Read Hit S State
CRI 0x10 0xCB L2_READ_MISS L2 Read Misses. Prefetch and demand

requests to the same address will produce
double counting.

CRI 0x10 0xCC L2_WRITE_HIT L2 Write HIT, may undercount on A0
stepping.

CRI 0x10 0xD7 L2_VICTIM_REQ_WITH_DATA L2 received a victim request and
responded with data

CRI 0x10 0xE3 SNP_HITM_BUNIT Snoop HITM in BUNIT
CRI 0x10 0xE6 SNP_HIT_L2 Snoop HIT in L2
CRI 0x10 0xE7 SNP_HITM_L2 Snoop HITM in L2
CRI 0x10 0xF0 L2_CODE_READ_MISS_CACHE_FILL Number of code read accesses that

missed the L2 cache and were satisfied by
another L2 cache. Can include promoted
read misses that started as DATA
accesses.

CRI 0x10 0xF1 L2_DATA_READ_MISS_CACHE_FILL Number of data read accesses that missed
the L2 cache and were satisfied by
another L2 cache. Can include promoted
read misses that started as CODE
accesses.

CRI 0x10 0xF2 L2_DATA_WRITE_MISS_CACHE_FILL Number of data write (RFO) accesses that
missed the L2 cache and were satisfied by
another L2 cache.

CRI 0x10 0xF5 L2_CODE_READ_MISS_MEM_FILL Number of code read accesses that
missed the L2 cache and were satisfied by
main memory. Can include promoted read
misses that started as DATA accesses.

CRI 0x10 0xF6 L2_DATA_READ_MISS_MEM_FILL Number of data read accesses that missed
the L2 cache and were satisfied by main
memory. Can include promoted read
misses that started as CODE accesses.

CRI 0x10 0xF7 L2_DATA_WRITE_MISS_MEM_FILL Number of data write (RFO) accesses that
missed the L2 cache and were satisfied by
main memory.

CRI 0x10 0xFC L2_DATA_PF2 Number of data vprefetch1 requests seen
by the L2. Only counts vprefetch1 hits on
A0 stepping.

CRI 0x10 0xFD L2_DATA_PF2_DROP Number of data vprefetch1 requests seen
by the L2 which were dropped for any
reason.

CRI 0x10 0xFE L2_DATA_PF2_MISS Number of data vprefetch1 requests seen
by the L2 which missed L2. Does not
include vprefetch2 requests which are
counted in L2_DATA_PF2_DROP.

CRI 0x10 0xFF L2_DATA_HIT_INFLIGHT_PF2 Number of data requests which hit an in-
flight vprefetch1. The in-flight vprefetch1
was not necessarily issued from the same
thread as the data request.

VPU 0x20 0x00 VPU_DATA_READ Number of read transactions that were
issued. In general each read transaction
will read one 64B cacheline. If there are
alignment issues, then reads against

 Page 16

multiple cache lines will each be counted
individually.

VPU 0x20 0x01 VPU_DATA_WRITE Number of write transactions that were
issued. . In general each write transaction
will write one 64B cacheline. If there are
alignment issues, then write against
multiple cache lines will each be counted
individually.

VPU 0x20 0x03 VPU_DATA_READ_MISS VPU L1 data cache readmiss. Counts the
number of occurrences.

VPU 0x20 0x04 VPU_DATA_WRITE_MISS VPU L1 data cache write miss. Counts the
number of occurrences.

VPU 0x20 0x05 VPU_STALL_REG VPU stall on Register Dependency.
Counts the number of occurrences.
Dependencies will include RAW, WAW,
WAR.

VPU 0x20 0x16 VPU_INSTRUCTIONS_EXECUTED Counts the number of VPU instructions
executed in both u- and v-pipes.

VPU 0x20 0x17 VPU_INSTRUCTIONS_EXECUTED_V_PIPE Counts the number of VPU instructions
that paired and executed in the v-pipe.

VPU 0x20 0x18 VPU_ELEMENTS_ACTIVE Counts the cumulative number of
elements active (via mask) for VPU
instructions issued.

1.4.3.4 PERF_SPFLT_CONTROL

Name: SPFLT Control Register
Address: 0x2C
Default Value: 0x00000000_00000000
Normal Access: RW
Size: 64 bits
Threaded: Yes
Additional Notes: None

Table 1-7: PERF_SPFLT Register Layout
Bit Description

63 User Preference: Software-controlled preference bit to enable/disable counters. When this bit is 0,
software is declaring preference to disable counters. When this bit is 1, software is declaring preference
to enable counters. Note that this bit only affects counters that have specific SPFLT Enable Counter N
bit set also, i.e., logical AND of the User Preference and SPFLT Counter Enable N bits.

62:2 Reserved

1 SPFLT Enable Counter 1: When set, allows SPFLT to count events for IA32_PerfCntr1. Used in
combination with the User Preference bit. This bit is controlled by the operating system.

0 SPFLT Enable Counter 0: When set, allows SPFLT to count events for IA32_PerfCntr0. Used in
combination with the User Preference bit. This bit is controlled by the operating system.

 Page 17

1.4.3.5 IA32_PERF_GLOBAL_STATUS

Name: Performance Counter Overflow Status
Address: 0x2D
Default Value: 0x00000000
Normal Access: RO
Size: 32 bits
Threaded: Yes
Additional Notes: Each bit is implemented as a sticky bit, set by a counter overflow. This
register will update even if APIC interrupts are not enabled. The intended use of this
register by interrupt service routines is to see which counters have overflowed.

Table 1-8: IA32_PERF_GLOBAL_STATUS Register Layout
Bit Description

31:2 Reserved

1 PerfCntr1: Counter 1 caused an overflow.

0 PerfCntr0: Counter 0 caused an overflow.

1.4.3.6 IA32_PERF_GLOBAL_OVF_CONTROL

Name: Performance Counter Overflow Status
Address: 0x2E
Default Value: 0x00000000
Normal Access: WO
Size: 32 bits
Threaded: Yes
Additional Notes: None

Table 1-9: IA32_PERF_GLOBAL_OVF_CONTROL Register Layout
Bit Description

63:2 Reserved

1 PerfCntr1: Clear overflow caused by counter 1.

0 PerfCntr0: Clear overflow caused by counter 0.

1.4.3.7 IA32_PERF_GLOBAL_CTRL

Name: Global Performance Counter Control
Address: 0x2F
Default Value: 0x00000000
Normal Access: RW

 Page 18

Size: 32 bits
Threaded: Yes
Additional Notes: These global bits are used in conjunction with each individual
IA32_PerfEvtSelx register’s enable bit.

Table 1-10: IA32_PERF_GLOBAL_CTRL Register Layout
Bit Description

31:2 Reserved

1 Enable Performance Monitoring via IA32_PerfEvtSel1: 0: Counter 1 is disabled, 1: Counter 1 is enabled.

0 Enable Performance Monitoring via IA32_PerfEvtSel0: 0: Counter 0 is disabled, 1: Counter 0 is enabled.

1.4.3.8 Handling PMIs in the Core PMU

With 40-bit counters, events that occur once per core clock cycle will take approximately 18
minutes to overflow assuming a clock frequency of 1.0GHz. Virtually all configurable
hardware events occur much less frequently than this, so counter overflow should not be a
significant problem. However, for sampling usage models, where counters are artificially set
to a near-overflow condition, overflow interrupts may be a much more common occurrence.
The counters can be configured to deliver an interrupt to the local APIC when an overflow
condition is reached. The overflow status of all the counters is mirrored in the read-only
IA32_PERF_GLOBAL_STATUS status register. Each thread has its own local APIC and the
core PMU routes the interrupt to the APIC whose thread generated the overflow condition.
For events with no thread-specific context, events are routed to whichever thread happens
to be in the execution stage at that time. Once the local APIC receives the signal from the
core PMU, it references its local vector table (LVT) entry for performance counter overflow
events (offset 0x340), which directs it to the entry within the Interrupt Descriptor Table
(IDT). The IDT entry should be instrumented by the EMON driver, which will be responsible
for executing instructions to clear the overflow condition. The corresponding interrupt
service routine should unmask interrupts, write into the
IA32_PERF_GLOBAL_OVF_CONTROL to clear the interrupt, and signal end-of-interrupt (EOI).

1.4.3.9 Multiple / Rapid Counter Overflows

In rare instances, multiple counters may overflow simultaneously and/or in rapid succession,
generating multiple and/or rapid performance monitoring interrupts (PMIs) to the local APIC.
Since there is only a 1-bit interrupt signal between the core PMU and the threaded APIC,
communicating multiple overflow interrupts is impossible. Multiple / rapid interrupt behavior
is further complicated by APIC behavior introduced in the Intel® Pentium® 4 processor family
to automatically mask the Performance Counter Register LVT entry whenever an overflow
interrupt is received. An excerpt from the Software Developer’s Manual (Intel® 64 and IA-32
Architectures Software Developer Manuals):

 Page 19

“When the local APIC handles a performance-monitoring counter interrupt, it
automatically sets the mask flag in the corresponding LVT entry. This flag will remain
set until software clears it.”

However, in combination with the IA32_PERF_GLOBAL_STATUS register and some
software mechanisms in the interrupt service routine (ISR), the 1-bit interrupt signal is
enough to handle these situations.

Figure 1.2: Sample Execution Timeline for Counter Overflow Interrupt Delivery

The figure above shows how a PMI is serviced by the ISR. By carefully following the detailed
steps, dropped / delayed PMIs can be avoided even in situations when there are multiple /
rapid interrupts.

The most important points are as follows:

 The 1-bit PMI interface to the APIC transitions from ‘0 to ‘1 whenever a counter

needs servicing. The identities of the overflowed counters are stored in the

overflow status register. So, it does not matter if multiple interrupts occur at the

same time, nor does it matter if unique interrupts occur rapidly in succession. The

first interrupt alerts the APIC and the rest of the interrupts are tracked in the

overflow status register.

 The sole responsibility of the ISR is to clear the overflow status register to zero

before unmasking interrupts. That is why the counters are stopped in step 2 to

prevent additional PMIs. If the counters are not stopped in step 2, any PMIs after

step 3 will not be cleared and hence the interrupt line to the APIC will remain ‘1. In

order to request another interrupt to the APIC, the line must transition from ‘0 to ‘1

while interrupts are unmasked.

 Page 20

1.4.4 Warm Reset/INIT Behavior

From the core PMU perspective, a warm reset is identical to a cold reset. In other words, all
the control register and counter state is reset to zero. An INIT does not affect the core PMU
control register state or counters.

