Decomposable and Responsive Power Models for
Multicore Processors using Performance Counters

Ramon Bertran*t, Marc Gonzalez*t, Xavier Martorell*T,
Nacho Navarro*t, Eduard Ayguade~t

*Departament d’Arquitectura de Computadors

Universitat Politecnica de Catalunya

Barcelona, Spain.

fBarcelona Supercomputing Center
Barcelona, Spain.

name.surname@bsc.es

ABSTRACT

Power modeling based on performance monitoring counters
(PMCs) attracted the interest of researchers since it became
a quick approach to understand and analyse power behavior
on real systems. As a result, several power-aware policies use
power models to guide their decisions and to trigger low-level
mechanisms such as voltage and frequency scaling. Hence,
the presence of power models that are informative, accurate
and capable of detecting power phases is critical to increase
the power-aware research chances and to improve the suc-
cess of power-saving techniques based on them. In addition,
the design of current processors has varied considerably with
the inclusion of multiple cores with some resources shared
on a single die. As a result, PMC-based power models war-
rant further investigation on current energy-efficient multi-
core Processors.

In this paper, we present a methodology to produce de-
composable PMC-based power models on current multicore
architectures. Apart from being able to estimate the power
consumption accurately, the models provide per component
power consumption, supplying extra insights about power
behavior. Moreover, we validate their responsiveness —the
capacity to detect power phases—. Specifically, we produce a
set of power models for an Intel® Core™ 2 Duo. We model
one and two cores for a wide set of DVFS configurations.
The models are empirically validated by using the SPEC-
cpu2006 benchmark suite and we compare them to other
models built using existing approaches. Overall, we demon-
strate that the proposed methodology produces more accu-
rate and responsive power models. Concretely, our models
show a [1.89-6]% error range and almost 100% accuracy in
detecting phase variations above 0.5 watts.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modeling Techniques

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

1CS’10, June 24, 2010, Tsukuba, Ibaraki, Japan.

Copyright 2010 ACM 978-1-4503-0018-6/10/06 ...$10.00.

147

General Terms

Measurement, Experimentation

Keywords

Power estimation, Performance counters

1. INTRODUCTION

Energy, power density and power consumption have at-
tracted the interest of researchers since they have become
limiting factors in processor designs [22, 29]. Power density
reduces the reliability and lifetime of processors [32] and
limits their operating frequency [7]. Moreover, energy and
power consumption are key factors in all market segments.
For instance, they are important to extend the battery life
of mobile devices and also, to reduce the need of power sup-
ply and energy bills of HPC data centers [8]. As a result,
there are several techniques —working at different levels— ad-
dressing power related issues. All of them rely on accurate
methods to gather information about power consumption.
Specifically, for software-based solutions the need to esti-
mate and predict power behavior has justified the research
on power modeling methods.

The methods based on Performance Monitoring Coun-
ters (PMCs) have been shown to be a good solution to esti-
mate power consumption. As a result, their applicability has
been demonstrated on several fields such as power manage-
ment and application profiling. PMC-based power models
are used to perform live predictions of power behavior in
order to guide power aware policies [20, 31, 4]. Moreover,
they are also used in research for quickly exploring new ap-
proaches since they allow to profile real systems and full
executions of applications, avoiding the need of performing
long-time and limited simulations [3, 14, 19, 6, 18, 5]. In
the end, they have been crucial in the process of addressing
power issues.

The simpler approaches to produce PMC-based power
models select the PMCs that are most correlated with power
and apply a multiple linear regression to derive the model
[3, 19, 6, 5]. This leads to accurate power models, but they
do not allow to know how the power is consumed within the
processor. In addition, these models are less acceptable to
experts and layman because PMCs that should positively
affect the final power consumption may have negative coef-
ficients and vice versa. Figure 1 illustrates the importance
of having a model capable of breaking down the power con-
sumption. The figure shows two time slices of the 473.as-

473.astar

12 /N>t -

INT

Fp WDE gvp 'T50

P ——

Instruction
Distribution

(mW)

Component
Contribution

INT —=-
- FSB -O-

AR RS B S e]

e s BaGBER088"
N I O TV O VIR S |

Figure 1: Power, instruction distribution and per component power breakdown for two time slices of the

473.astar SPECcpu2006 benchmark.

tar application. During the first time slice on the left, the
power consumption —at the top— remains constant. How-
ever, the distribution of executed instruction —at the center—
and the per component power breakdown® —at the bottom—
show variations. The Front Side Bus (FSB) contribution in-
creases, the contributions of the other components decrease
and the overall power does not change. In this case, just
reading power measurements or using a model unable to
breakdown the power consumption would not detect such
variations. Specifically, in this example the data locality
changed and data had to be brought from main memory.
The time slice on the right shows that the changes of con-
tribution of each component have not always the same di-
rection as the changes of power. In this example, a model
just based on the frontend (FE) component would fail to re-
port the second change on power consumption because its
contribution increases but the overall power consumption
decreases. These two examples demonstrate the advantages
and the necessity of tracking as many components as possi-
ble in order to model correctly the power behavior.

More complex PMC-based modeling methods solve these
issues by splitting the model in microarchitectural compo-
nents and then use heuristics —such as floorplan information—
and manual tuning (not systematic) to calibrate the model.
These last techniques have been successfully applied to pre-
vious generation processors such as Pentium IV [14]. Since
these processors were not designed taking into account power
consumption as a main design constraint, they lack or do
not use extensively several power related mechanisms [10,
17] that are common in today’s processors. Moreover, the
design of current processors has varied considerably with
the inclusion of multiple cores with some resources shared
on a single die. As a result, these decomposable power mod-
els warrant further investigation on current energy-efficient
multicore processors. The proposal in this paper performs
such investigation on such architectures and presents a new
systematic methodology that reduces the complexity of gen-
erating decomposable power models for current multicore ar-

!The power components are mapped to the microarchitec-
tural components in the following manner. FE: frontend,
INT: integer units, FP: floating point units, BPU: branch
prediction unit, L1: L1 cache, L2: L2 cache and FSB: front
side bus and main memory.

148

POWER —— Power

---- Model 1
—— Model 2

J
TIME)

Figure 2: Power model examples.

chitectures, avoiding the need of using heuristics or manual
tuning. Our proposal is a tradeoff between the component
breakdown granularity of the model and the complexity of
producing it. As a result, this approach addresses the prob-
lem of the lack of decomposable power models for current
architectures.

Besides, the validation of power models have been only
carried out via calculating the accuracy of their predictions.
However, most of the power aware solutions that are built
on top of the models, trigger their actions when they detect
some variation in power consumption, i.e. a change of power
phase. Therefore, it is important to study the capacity of
the models to detect power phase changes because it affects
the final success of the solutions built on top of them. Con-
cretely, it must be validated that models detect correctly
the magnitude and the instant of phase variations. Figure 2
illustrates the importance of this problem. The two models
shown have low average error in their power predictions. In
fact, Model 1 on average is more accurate than Model 2.
In this case,a validation based only on accuracy would say
that the Model 1 is more suitable than the Model 2. How-
ever, the Model 1 would not predict any change in power
behavior and therefore, any policy built on top of it would
miss optimization opportunities. The capacity of the Model
2 to guide power policies is better since it reacts in a similar
fashion to power. We call this property the responsiveness
of the model. We conclude that the overall usefulness and
applicability of power models rely on their accuracy and also
on their responsiveness. Consequently, both metrics should
be evaluated in order to validate power models.

In summary, the properties that power models must have
in order to improve their applicability are: accuracy, respon-
siveness and decomposability. In addition, the methodology

to produce them should be applicable on new energy-efficient
multicore architectures under different power configurations
—i.e. different frequency configurations—. The main contri-
butions of this paper are:

e A new systematic methodology for producing PMC-
based power models on multicore architectures. The
methodology ensures the decomposability, the accu-
racy and the responsiveness of the models generated.

e We evaluate and validate the responsiveness of the
models based on power phase detection accuracy.

e A case study is presented for an Intel® Core™ 2 Duo,
a high performance processor designed with power ef-
ficiency as a main design constraint [12]. Single and
multiple core models are presented for different DVFS
configurations. An empirical validation of the pro-
duced models is performed using long executions of
the SPECcpu2006 benchmarks. The accuracy valida-
tion shows average errors between [1.89-6]%. The re-
sponsiveness validation when operating at maximum
frequency shows an overall 83.31% accuracy on phase
change predictions and near 100% accuracy for changes
bigger than 0.5 watts. As a result, we show that the
model produced is sensible to variations as small as
0.25 watts, which only represent a 2.24% variation of
the average power consumption of the SPECcpu2006
suite.

e A power phase characterization of the SPECcpu2006
benchmark suite is presented.

The rest of the paper is organized as follows. Section 2 de-
scribes our modeling methodology including the power com-
ponent definition, the microbenchmark design, the experi-
mental infrastructure and the method to produce the power
models. The validation of the power models is presented in
Section 3, including a responsiveness analysis. In Section 4
we compare and contrast related work. Finally, Section 5
concludes by summarizing our results.

2. METHODOLOGY

In this section, we describe our methodology for produc-
ing power models. The discussion is guided through the
presentation of an example for a particular architecture, an
Intel® Core™ 2 Duo [12]. The final outcome of this sec-
tion is a set of power models with three main characteristics.
First, the models are able to breakdown the power consump-
tion among several architectural components. Second, the
models have low average errors in their predictions. And
last, the models are responsive in front of power variations.
These last two characteristics are validated in Section 3 and
the first one is ensured by the methodology.

In short, our methodology to produce decomposable power
models follows the common modeling steps. First, we define
the model inputs, which in our case are the power component
activity ratios. Second, we define the training data which
in our case is generated using microbenchmarks. Third, we
collect the required data in order to train and validate the
model respectively. And fourth, the model is built using our
method. The main differences of our methodology over pre-
vious works are three: the basic rules to define power com-
ponents; the design of the microbenchmarks, which isolate

149

TToTLsHL2DTLB
L1 L2
DCACHE [|CACHE @

Figure 3: Single core view of Intel® Core™ 2 Duo
microarchitectural components.

and decouple power component activities allowing the gener-
ation of decomposable power models; and finally, the model
generation methodology, which profits from the specifically
generated training data to built accurate, responsive and
decomposable power models.

It should be noted that even though the example pre-
sented is for a particular architecture, the methodology can
be applicable to other architectures. Particularly, one should
redefine and redesign the power components and the mi-
crobenchmarks in order to fulfill the requirements of our
method. The rest of the section presents in detail the afore-
mentioned steps and justifies their rationale.

2.1 Defining power components

The inputs of our model are component activity ratios,
which have been shown to be good proxies for power esti-
mation [3, 14]. As a result, the first step towards the final
power model is to define the power components and their
associated activity ratio formulas.

In order to have a detailed power model, we need to
reach a component definition with as many power compo-
nents that represent a single microarchitectural component
as possible. However, there are two main restrictions to this
direct-mapping between microarchitectural components and
power components. First, some microarchitectural compo-
nents are tightly related in the sense that even if they are
monitored by a different set of PMCs, they expose very sim-
ilar levels of activity. For such components it is not possible
to discern directly their power contribution because their
activity cannot be isolated or decoupled from the activity
of other microarchitectural components. And second, there
are also microarchitectural components that do not have any
PMC that reports their activity. Therefore, due to these
restrictions, in our approach a power component can rep-
resent one or a set of microarchitectural components. This
approach is a reasonable tradeoff between the undecompos-
ability of simpler approaches [31] and the complexity of the
microarchitectural-level decomposable ones [14].

As a case study, we explain the power component defini-
tion for an Intel® Core™ 2 Duo. We have identified more
than 25 microarchitectural components on this architecture.
Figure 3 shows an schematic view of them classified into
three categories in order to facilitate the explanation: the

Table 1: Power components defined for an Intel®
Core™ 2 Duo in conjunction with their PMCs-
based activity formulas and microarchitectural com-
ponents that represent.

Power
Component Activity formula Modeled components
FE UOPS_RETIRED:ANY/ L1_ITLB, L1_ICACHE,
CPU_CLK_UNHALTED:CORE_P FETCH_UNIT,
PREDECODE, LSD,
DECODE, uCODE ROM,
SPT, uOP BUFFER,
RAT, ROB, RETIRE
INT (RS_UOPS_DISPATCHED_CYCLES:PORT_0 + Integer
RS_UOPS_DISPATCHED_CYCLES:PORT_1 + arithmetic
RS_UOPS_DISPATCHED_CYCLES:PORT_5 - units
FP_COMP_OPS_EXE - SIMD_UOPS_EXEC -
BR_INST_RETIRED:ANY)/
CPU_CLK_UNHALTED:CORE_P
FP FP_COMP_OPS_EXE/ Floating point
CPU_CLK_UNHALTED:CORE_P arithmetic units
SIMD SIMD_UOPS_EXEC/ SIMD arithmetic
CPU_CLK_UNHALTED:CORE_P units
BPU BR_INST_DECODED/ BPU and
CPU_CLK_UNHALTED:CORE_P branch execution
L1 L1D_ALL_REF/ LD/ST execution, MOB,
CPU_CLK_UNHALTED:CORE_P L1,L1DTLB, L2 DTLB
L2 L2_RQSTS:BOTH_CORES:ANY:MESI/ L2
CPU_CLK_UNHALTED:CORE_P
FSB BUS_DRDY_CLOCKS:ALL_AGENTS/ FSB and memory
CPU_CLK_UNHALTED:BUS

in-order engine (dark gray), the memory subsystem (white)
and the out-of-order engine (light gray).

The in-order engine includes some microarchitectural com-
ponents that do not have PMCs that report their activity.
Moreover, the activity of each of these components cannot be
isolated since they are in the in-order part of the pipeline,
i.e. activity in the FETCH unit, means activity in the PRE-
DECODE unit. Therefore, we group the whole in-order engine
components —excepting the branch prediction unit (BPU)— as
one power component, namely, the frontend (FE) of the pro-
cessor. The decision of defining the BPU power component
separately is based in the fact that it includes several predic-
tors that can consume between 10% and 40% of the whole
processor power budged [23].

For the memory subsystem, it is not possible to generate
activity in one memory level without causing activity in the
previous one due to its stacked configuration. However, it
is possible to decouple their activity. As a result, the whole
memory subsystem is divided in three power components:
the L1 cache, the L2 cache and the Front Side Bus (FSB),
which also represents the main memory.

The parts of the architecture in the out-of-order engine
define the INT, FP and SIMD power components. At the end,
eight power components are defined. Table 1 summarizes
them in conjunction with their related microarchitectural
components and PMC-based activity formulas.

2.2 Designing microbenchmarks

We need empirical data in order to train our power model.
For that purpose, a set of microbenchmarks must be de-
signed. This is an important step in the methodology be-
cause not considering a significant set of possible scenar-
ios incurs in inaccuracy of the final model [33]. We do not
use real applications to train the model due to two reasons.
First, we want a model suitable for any workload; there-
fore, the training set should be workload independent. And
second, in order to be able to derive the contribution of
each power component to the total power consumption it
is mandatory to be able to isolate or decouple their activ-
ity. This is required in order to apply multiple regression
techniques without collinearity problems [24].

150

The microbenchmark-based approach is always a source
of inaccuracy since it is not possible to cover all scenarios of
power consumption and activity. For example, for exercis-
ing the INT units we can use different instructions that will
consume differently. Similarly, different inputs produce dif-
ferent power consumption. In conclusion, the microbench-
mark suite should cover enough variety of power behavior in
order to minimize all these sources of inaccuracy.

For our case study, we have designed 97 microbenchmarks.
Their structure is an infinite loop containing a specific se-
quence of assembly instructions with distinct dependency
chains in order to explore different activity ratios. However,
we had to face the problem of the inherent correlation be-
tween the FE component and the rest of components. We
solved it by introducing diverse combinations of fxch? in-
structions. The instruction sequence within the infinite loop
is long enough to minimize the effect of the branch instruc-
tion at the end of it. Table 2 summarizes the activity ratio
ranges that are explored for each power component. For ex-
ample, for the INT component we have designed 13 bench-
marks with INT activity ratios ranging from 1 to 3 and FE
activity ratios from 1 to 3.45. Notice that we are able to
have a FE activity of 3.45 uops/cycle with only 3 uops/cycle
on the INT component, while the rest of components unused.
This decoupling of activity is the effect of the £xch instruc-
tion and it is mandatory to be able to form a decomposable
power model afterwards. Next section describes the exper-
imental framework and the data gathering process used to
obtain the power consumption.

2.3 Collecting Data

All the experiments are carried out on a workstation that
features an Intel® Core™ 2 Duo T9400 processor [12] and
two modules of 2GB of memory. The embedded controller
firmware of the platform provides information about the
power source and fulfills the SMAPI specification [30]. This
specification defines an interface to obtain power consump-
tion measurements with a guaranteed granularity and accu-
racy. As a result, we are able to gather power measurements
in a granularity of milliwatts with a maximum error of 2%.

The platform runs a Linux kernel 2.6.28 with the required
patches to allow PMC readings. The tp_smapi [1] module is
loaded in order to be able to gather the power information.
This module creates some entries in the /sys filesystem that
provide information such as the power consumption. We use
a modified version of pfmon [2] to access to the PMCs and
power consumption simultaneously. All measurements are
obtained running the experiments in standalone mode to
minimize interferences. We switch off all sources of power
consumption —i.e. the display— that we do not want to in-
clude in the model. The components of the platform where
it is not possible to switch them off are configured at con-
stant operation mode. For example, we find that the fan
of the processor introduces up to 0.5W variations on power
consumption. Hence, we configure it to always operate at
full-speed. Under these conditions, we track the power con-
sumption during five minutes before each experiment and we
find that the baseline power consumption of the idle system

2As far as we know, the frch is the only instruction that
does not dispatch any operation to the out-of-order engine.
It only performs register renaming, therefore it allows to
decouple the activity on the FE and the components in the
out-of-order engine.

Table 2: Microbenchmark characteristics. Activity ratios and power consumption ranges.

Microbench FE INT FP SIMD BPU L1 L2 FSB Power
set # Activity | Activity | Activity | Activity | Activity | Activity Activity Activity Range
FE 1 1 0 0 0 0 0 0 5587mW
INT 13 1-3.45 1-3 0 0 0 0 0 5792mW-8114mW
FP 9 0.2-1.98 0 0.2-1 0 0 0 0 5087mW-6887mW
SIMD 12 | 1.85-3.29 0 0 0.99-2.63 0 0 0 6966MmW-9274mW
BPU 5 | 0.42-1.14 | 0-0.42 0 0 0.46-1 0 0 0 5761mW-8521mW
L1 16 1-2.97 0 0 0 0.66-2 0 0 6571mW-8160mW
L2 12 | 0.12-0.42 0 0 0 0.11-0.22 | 0.11-0.21 0 8600mW-10112mW
FSB 18 | 0.02-0.14 0 0 0 0.02-0.04 | 0.02-0.04 | 0.58-0.71 | 10976mW-12205mW
MIX 11 | 1.63-3.95 0-1 0-0.8 0-1.97 0-0.34 0-1.97 0-0.07 0-0.34 7318mW-11298mW
Total 97 | 0.02-3.95 0-3 0-1 0-2.63 0-1 0-2 0-0.21 0-0.71 5087mW-12205mW

is 9.8W. The fact that we find a fairly constant idle power
consumption for all the experiments demonstrates that we
nullify possible interferences. For the purpose of the model
generation, we assume that baseline, 9.8W, to be the power
consumption of the platform except the processor and the
memory. This assumption and the accuracy ensured by the
SMART specification avoids the need of more complicated
measuring techniques [31].

The performance monitoring unit of the processor is not
able to track all the selected PMCs simultaneously. There-
fore, we group them in sets that can be sampled at the same
time. We program pfmon to switch PMC sets every 10ms
and print the PMCs values and power measurements every 2
seconds. Although it is widely accepted that the PMC sam-
pling does not introduce unacceptable inaccuracies [16, 14],
we measure its effect. The sampling introduces interferences
of less than 150mW.

To generate the input data for training the power model
we run every microbenchmark during three minutes with
only one core enabled, collecting a trace of 90 samples. We
validate that each microbenchmark stress the component it
is designed to do so by applying the formulas in Table 1.
Moreover, we check that during the entire trace of each mi-
crobenchmark the PMC activities and power consumption
remain nearly constant. We use the average over the 90
samples so that the possible errors and noise are minimized
as much as possible [33]. Similarly, we collect the data for
26 applications of the SPECcpu2006 [13] benchmark suite. In
this case, every benchmark runs for 30 minutes, or less if it
ends earlier. This data is going to be used to validate the
power models.

All gathered data allows to explain the difficulties to direct
relate the processor activity and the actual power consump-
tion. In order to show the type of gathered data, Figure 4
depicts a time slice of the activity evolution of all compo-
nents for three applications of the SPECcpu2006 benchmark
suite. We accompany this data with actual power measure-
ments and the instruction distribution between load, store,
integer, floating point and branch instructions which can be
computed from the activity ratios. In general, we observe
that power variations might have very different causes re-
lated to specific trends on every component. We do not
detail them to avoid overloading the explanation. However,
from that observation we conclude that power aware poli-
cies built on top of decomposable power models have more
opportunities because they can discern the causes and com-
ponents involved in power variations. Moreover, these power
aware policies can also take advantage of the extra informa-
tion provided by the model inputs —i.e. component perfor-
mance or instruction distribution—.

151

2.4 Modeling power
2.4.1 Single Core modeling

We model the power consumption using a multiple lin-
ear equation with seven input variables, one for each power
component defined. The SIMD component is not used be-
cause the SPECcpu2006 suite do not present any activity in
such component. Therefore, the total power consumption is
expressed as:

i=comps

Piotar = (Z AR; X P;) 4+ Psatic (1)
=1

where P; is the weight of component ¢ that we need to solve,
and AR, is its activity ratio. The AR; X P; represents
the dynamic power consumption of component ¢, and Pstqtic
represents the overall static power consumption of all com-
ponents. This approach is commonly used for generating
PMC based power models [14, 33, 31]. However, instead
of applying directly linear regression techniques [11, 24], we
derive the marginal effect of each component to the over-
all power consumption. Firstly, we compute the P; of each
component —except the FE— separately using a multiple lin-
ear regression with the component related microbenchmark
set as input. For example, we computed Pry7 using only the
INT microbenchmark set, which only stresses the INT com-
ponent. The components which activity is not completely
isolated —i.e. L2 and FSB- are calculated incrementally. For
example, before deriving Prs from the L2 microbenchmark
subset, we derive Pr; and use that value for the Py estima-
tion. The rationale that justifies this methodology is that
the collinearity that may exist between components that are
not stressed together is cancelled. Therefore, we get better
estimates about what is the contribution of each component.
The goodness of the estimates also relies on the collinearity
between the exercised component and the FE, which we min-
imize with the specifically designed microbenchmarks. Fi-
nally, we use again a multiple linear regression using as input
the MIX microbenchmark subset to derive Psiqiic and Prg.
We use that set because it represents the common activity
scenario, when there is activity on all processor components,
canceling the known effect of under-estimate their contribu-
tion [33]. Moreover, this process is automatized using an
R script [28] in order to be applicable systematically. This
is possible because no manual tuning is required, demon-
strating that with an appropriate set of microbenchmarks
it is possible to generate decomposable and accurate power
models.

Table 3 summarizes the models generated. The first four
columns indicate the model name, the methodology used to

473.astar 482.sphinx 416.gamess
135 [T AT I I AT 135
o 13 - 4 F 13
&g N 1 F]
25 125 - 4 F — 125
3 1 E
a 12 4 F
15 Covaboveebinnnbeen b STRTEST Dbl bl b 445
. "
100% INT 3 FP wa JMP coimEM war | 100%
gg 75% PRSI ettt P getng 75%
53
S2 s0% 50%
%G
E3 25% 25%
0% 0%
1.6 [T IS I TG TR TR 1
w 1BF 4 F e 4 15
14 3 F 4 F 4 14
o> F B F B F e
ES 13p 4 F 4 F - 13
w2 q2F E 4 F 4 12
4 F 1 F 1 E B
a< 11E E % E 37
[1 4 F E ER
by d = A Bttt d Bt in d 35
PO L T L L L b b b b IS L b b i) g g RO
065 |- 4 F 4 F 3 065
z 06F 9 F 4 E - 06
5 oss | 4 F E 3 055
2% 05 4 F 4 F 4 05
3 E E 1 E E
< 0.45 = - = — - — 045
04 F 94 F 94 F 04
03 Bttt d Bt OYNWYEE Bttt d 53
0.18 T T e 018
0.14 q4 P 1 F 4 0.14
> 012 B - 0.12
as 01fF E E 01
g 008 E - 0.08
2 o006 E E 0%
0.04 E - 0.04
002 F ittt E goz
Y e —— P g 928
0.2 - / 3 E 4 02
. 018 F E E 3 o018
S>€ 016 | E F 3 016
T2 014fF E E 3 014
85 012 E E 3 012
* ME 3 : 3 %%
P4 PO PCPOPUIOPA Ve N oY PR PPY PRI v eves e S VWY POV TP = 3%
1.15 EETIAIIAANT ET T T IR AT T T I e e 1445
11 F - 4 F 4 14
.. 105F 4 E 3 W 1.05
Z 1E 4 B 4 E 31
SE 095 E 4 F 4 F - 095
09 - 4 F 4 F 3 09
< F B F F e
0.85 = 4 F N F 3 085
o Bttt d Bttt bt Bttt o3
§§}g -_ T e e B e e B T L B R §:§12
014 |- 4 F 4 F 3 0014
> 0012 | 4 F 4 F 4 0.012
~5 001 | E 4 F 3 o001
=% 0008 F E M\\W_A; - 3 0.008
3 E 1 E E E
< 0006 F 9 F 9 F 0.006
0.004 [~ 4 F 4 E N 0.004
0002 B bbbl Bttt bttt d B Vbt - §002
0.04 A Y e e 0.04
s O AR L A A L IO L L A A Iy
0.03 - 4 F 4 F 3 0.03
oZ 0025 F 4 F q F 3 0.025
@2 002| 4 F 4 F - 0.02
g ooi5fF 94 F 94 F 3 o015
0.01 |~ 1 F 4 F 9 o001
e TR TRT FRTIINT: B - <t revA AT Iei FTITTOTTOIY: BN -V P TR AP TP TV TITOOY: o
0 0

Figure 4: Power consumption, instruction distribution and component activity ratios during three time slices
of the 473.astar, 482.sphinx and 416.gamess SPECcpu2006 benchmarks.

produce the model, the training dataset and the frequency
used to generate it respectively. Using our methodology
(inc. in Table 3), we have generated one model for each
frequency available in our experimental platform. We refer
to our models as MICRO models and can be found at the top
eleven rows in Table 3.

Analysing in detail the MICRO models in Table 3, one can
see that the weight of all the components increases expo-
nentially with frequency. An exception is the FSB compo-
nent which remain fairly constant on two values. This is
because the frequency of the memory bus does not change
with the frequency of the processor. Actually, it is 133GHz
for core frequencies below 1.6GHz and 266GHz otherwise.
The fact that the power weights have a exponential relation
—like power—, provides an evidence about the effectiveness of
the proposed methodology to model power behavior.

We have also produced other models using already known
techniques to able to compare them, in Section 3, against our
MICRO models. To generate the MICRO-LIN model, we have
applied a multiple linear regression using as input all the mi-

152

crobenchmarks. Moreover, we produced a set of over-trained
models taking an incremental number of input variables.
The FE model only uses as input the FE activity and the
+FSB model uses the FE activity plus the FSB activity. These
models are also generated applying multiple linear regres-
sions but using as input the SPECcpu2006 data. Notice that
these last models do not fulfill our objectives because they
do not track all the components, the component weights are
not acceptable to decompose power —i.e. negative weights—
or they are not workload independent.

2.4.2 Multiple Core modeling

We use an accumulative approach for modeling multiple
cores assuming that each core behaves equally. This assump-
tion have been already done in similar works [31]. Hence, we
apply the single core model to each core in the architecture.
Therefore, we express the total power consumption as:

j=cores i=comps
Potar=»_ ((> ARy x Pi) + Puauc) (2)
j=1 i=1

Table 3: Models generated for an Intel® Core™ 2 Duo.

Model Method training set Frequency PFE PINT PFP PBPU PLl PL2 PFSB PSTATIC
MICRO inc. micro 2.54GHz 789 261 502 1908 856 | 24437 | 8852 8701
MICRO inc. micro 2.4GHz 709 237 424 1647 763 | 22078 8816 7830
MICRO inc. micro 2.26GHz 621 208 357 1463 693 19525 8580 7036
MICRO inc. micro 2.13GHz 566 193 357 1334 620 | 17676 | 8553 6272
MICRO inc. micro 2.0GHz 506 174 253 1108 542 | 15911 8572 5590
MICRO inc. micro 1.86GHz 433 148 261 995 476 13770 8232 4896
MICRO inc. micro 1.6GHz 336 113 184 769 360 10613 8680 3508
MICRO inc. micro 1.2GHz 239 80 148 582 266 7848 10268 2581
MICRO inc. micro 1.06GHz 208 72 131 500 238 6896 10273 2176
MICRO inc. micro 0.93GHz 177 60 103 404 198 5944 10270 1792
MICRO inc. micro 0.8GHz 148 55 106 362 169 5069 10815 1309
MICRO-LIN linear micro 2.54GHz 1044 -373 -305 528 89 20795 | 7965 9674
FE linear spec 2.54GHz 623 - - - - - - 10444
+FSB linear spec 2.54GHz 1318 - - - - - 9725 9430
ALL linear spec 2.54GHz -621 1325 | 2809 3416 | 3750 | 36983 | 16892 6845

where the P; of each component is the same of the single core
model but the formulas to calculate the AR;; should be mod-
ified to perform per core accounting. This is straightforward
since PMCs already support per core event masks. Besides,
it is needed to redefine the Pstqtic component of the model
because that component represents the static power of the
entire processor. As a result, the Psiqtic value obtained from
single-core model training set is not valid because such value
accounts for shared resources that consume static power that
should not be replicated —i.e. the L2 cache—. To recalculate
it, we need an input data where all the cores modeled in the
architecture are active. For that purpose, we re-executed the
MIX subset of the microbenchmark suite on both cores at the
same time in order to get a suitable training data. Then, a
new Psiqtic was generated by using a linear regression and
dividing the obtained value by the number of cores.

3. VALIDATION AND EVALUATION

The model evaluation is organized in three main sections.
The first one covers the MICRO model validation for one core,
analysing their accuracy and responsiveness compared to
other models. The second part validates the MICRO model
for the whole chip, when two cores are active. And the third
part validates the MICRO models for all the frequencies stud-
ied.

3.1 One Core Validation

3.1.1 Model Error

In this section we compare the FE, +FSB, ALL, MICRO-LIN
and MICRO models in terms of accuracy (average error). Ta-
ble 4 shows the average error and standard deviation for
every application and every model. In general, all models
behave similarly, showing average errors below 3%. How-
ever, their standard deviation differs showing that the more
components tracked, the lesser the deviation is. This re-
marks the importance of taking into account as many power
components as possible.

One interesting observation is how the error evolves tak-
ing into account that there is an incremental relation be-
tween the FE, the +FSB and the ALL and MICRO-LIN mod-
els. Depending on the modeled application, not all compo-
nents affect the power modeling in the same manner. For
the case of +FSB, several applications are modeled more ac-
curately, showing high error reductions. Examples of this
behavior are the 435.gromacs, 453.povray, 470.1bm and

153

471.omnetpp benchmarks. But other applications like the
434 .zeusmp and 437.leslie3d do not expose any improve-
ment, showing higher error rates for the +FSB model. This
suggests that not every application is equally conditioned by
the components in the architecture. This supports the idea
of having a per component based model in order to never
discard any architectural component that has a significant
power contribution for a particular application. This is the
case of the ALL and MICRO-LIN which in overall present lower
error rates.

Table 4 also includes the average error for every model.
Notice that for all of them the average error is always be-
low a 3%. Initially, these results suggest that accuracy is
not significantly improved by the component decomposition.
However, the deviation is reduced when more components
are taken into account recommending the usage of as much
components as possible. Besides, there is one qualitative
difference between them: the MICRO model can account for
the power contribution of every component and the rest of
the models cannot. In any case, if one just validates the
models only using prediction accuracy, all models are valid
and expose a similar error levels. Next section proves this
assumption to be false on the basis of power phase detection
and analysis.

3.1.2 Model Responsiveness

As we stated earlier, the responsiveness of a model is its
capacity to react in a similar fashion as power, having simi-
lar inflection points with similar magnitudes. Therefore, to
evaluate the responsiveness of a model, we apply a phase de-
tection algorithm to both, the modeled and the real power.
Then, we can compare them afterwards. The phase detec-
tion algorithm used is a modified version of the first pivot
clustering algorithm presented in [15]. In our method, the
power of a new sample is compared to the power of the
current pivot sample, the starter of a phase. If the power
of the new sample is within a specified threshold distance
of the pivot power, in our case +250mW, it is assigned to
that phase. Otherwise, a new phase is added with the cur-
rent sample as the pivot. We choose a £250mW threshold
because it only represents 2.24% of the average power con-
sumption of the SPECcpu2006 suite. Lowering that thresh-
old would introduce inaccuracies because it will be below
the 2% error of the measurement device. The characteris-
tics of each phase are its starting time (timestamp of the
pivot sample), its duration, its variation with respect to the

Table 4: Average

error of the single core FE, FSB, ALL, MICRO-LIN and MICRO models for the SPECcpu2006 suite.

Benchmark Model FE Model +FSB Model ALL Model MICRO-LIN | Model MICRO
%err o Y%err o %err o Y%err o %err o
400.perlbench 3.31 126 | 409 | 1.56 | 1.12 | 2.66 | 2.78 1.7 1.48 1.77
401.bzip2 1.2 1.61 1.22 1.7 3.47 | 291 1.21 1.65 1.26 1.59
403.gcc 293 [325 | 369 | 393 [352 | 5.16 | 3.65 4.24 3.4 3.52
410.bwaves 6.07 1.54 | 824 | 258 | 4.01 1.79 7 2.15 4.89 1.62
416.gamess 0.98 0.84 1.1 1.04 | 1.11 1.21 0.93 1.13 0.88 1.03
429.mcf 1 166 | 1.59 | 2.82 | 1.15 | 3.98 | 4.19 2.97 1.28 2.6
433.milc 1.28 1.09 | 248 | 1.91 125 | 225 | 1.51 1.67 1.21 1.28
434.zeusmp 1.5 1.96 | 3.47 | 3.58 2.4 3.03 | 2.21 2.74 1.64 2.21
435.gromacs 12.12 | 1.54 7.7 196 | 596 | 2.69 | 8.39 1.88 5.69 2
436.cactusADM | 4.14 | 2.02 | 356 | 2.16 | 3.91 359 | 4.16 2.14 2.18 1.98
437.leslie3d 0.56 0.53 3.4 248 | 1.79 | 1.92 | 1.51 1.84 1.14 1.1
444.namd 1.34 1.07 | 1.91 1.23 | 239 | 219 | 2.08 1.32 2.11 1.39
445.gobmk 3.49 1.05 | 537 | 164 | 1.32 | 3.77 | 3.35 1.42 2.76 1.58
450.soplex 1.24 1.05 | 1.88 | 1.91 2.03 | 249 | 2.31 1.76 0.99 1.22
453.povray 0.6 0.36 | 0.42 | 0.65 | 0.56 | 0.48 | 0.34 0.6 0.32 0.53
454.calculix 0.5 254 | 485 | 259 | 3.24 2.7 2.75 1.89 0.87 2.71
456.hmmer 0.44 1.06 | 043 | 093 | 0.56 | 1.03 | 3.08 1.1 1.65 1.08
458.sjeng 3.33 0.78 | 5.04 | 0.98 0.5 1.32 | 4.73 0.93 3.34 0.92
459.GemsFDTD | 6.32 1.48 | 8.03 | 2.05 | 1.33 1.6 7.07 1.77 2.56 1.78
462.libquantum 6.37 | 4.41 9.94 5 3 3.94 10 4.73 3.99 4.31
464.h264ref 3.14 1.03 | 5.13 | 1.58 6 1.8 1.79 1.32 3.47 1.38
465.tonto 1.2 228 | 148 | 257 | 2.31 425 | 1.49 2.55 1.41 2.52
470.lbm 18.95 | 0.82 | 3.95 1.4 2.85 | 1.99 5.8 1.37 6.87 1.48
471.omnetpp 4.74 | 0.75 2.7 0.9 2.8 1.42 2.6 0.78 3.6 0.82
473.astar 2.51 218 | 257 | 296 | 1.67 | 1.92 | 3.03 1.85 1.9 2.21
482.sphinx3 1.05 0.88 | 0.77 | 1.06 | 2.99 | 1.66 0.8 0.99 0.56 0.57
TOTAL 215 | 411 | 2.77 | 257 | 2.02 | 1.48 | 2.65 2.45 1.89 1.64

Phase distribution

T T T T 160
21000 — — 140
£ 120
= 500 — —
_5 100
E o —H s0
S
© -500 — e
;:"'u 40
a -1000 — — 20
| | | | 0
0 2 10 30 60
Phase duration (seconds)
Figure 5: Power phases distribution of the SPEC-
cpu2006.

prior power phase and the average power consumption for
all the samples in the phase.

We classify the power phases in intervals of duration and
variation. This allows us to perform analysis by duration
and variation, while still being able to easily summarize the
power trends. Figure 5 shows the distribution of the phases
by its duration and its variation. From the duration point
of view, we can observe that most of the phases last from
2 to 10 seconds. From the other point of view, we realize
that most phases are defined after inflection points where
power varies between 500mW and 1000mW. However, it is
important to remark that power variations of more than
1000mW exist. These power variations correspond to signif-
icant targets of power aware policies. We observe that they
are concentrated in the 2-or-less-seconds category, although
they also appear for phases of 30-60 seconds. Next, we show
that there are several phases which have a high variation
and sufficient time to be detected and potentially treated
by power aware policies.

154

Table 5 details the phase characterization for each bench-
mark sorted by number of phases. Columns 2 to 7 show
the number of phases classified by the its variation. It also
shows that most of the phases correspond to inflection points
of more than 500mW of variation. The next 5 columns show
the number of phases classified by its duration. We observe
that most phases last from 2 to 10 seconds. The last col-
umn is the average power consumption. The 470.1bm con-
sumes the maximum power on average —about 14.5 watts—
and 435.gromacs the minimum, about 10.5 watts. The first
one, shows high activity ratios in all the components and the
second one has low activity ratios in the memory hierarchy
and the BPU. At first sight, we see that half of the bench-
marks are regular in power consumption, and that few ones
concentrate the majority of inflection points. If we analyze
the variability, we see that about a 14% of the inflections
points have a variation bigger than 1 watt. The 454.cal-
culix, 403.gcc and 410.bwaves centralize the majority of
such points with 44 (224+22), 19 (10+9) and 25 (7+18) re-
spectively. The percentage of points with a variation within
0.5 and 1 watts is about 46% of the total. The bench-
marks that contribute more to this category are 444.namd
(52+48), 434.zeus (41+42), 462.1libquantum (19+25) and
465.tonto (19419). These benchmarks are also the ones
that contribute more to the inflection points with a varia-
tion less than 0.5 watts, which account for the 40% of the
total. Taking into account phase duration, we see that a 63%
of phases are within the (2,10] range and that only a 6.9% of
them are shorter than two seconds. This distribution shows
that there is room to apply power aware policies since most
of the phases are enough long to overcome the overhead of
applying them. Moreover, we see that the set of aforemen-
tioned benchmarks are also the ones which experiment more
shorter power phases. A special case is 454 .calculix, which
shows an high number of very short and long phases. In par-
ticular, it presents 21 phases less or equal to 2 seconds and

Table 5: Power phases characteristics of the SPECcpu2006.

25 between half and one minute long. We have checked that
its power consumption is periodic, switching between a very
short phase and a long phase with a variation bigger than 1
watt.

After analyzing the insights of the SPECcpu2006 power
behavior, we use these results to validate that our power
models predict a similar number of phases, with similar vari-
ations and durations. For this purpose we use two metrics.
The main metric is the percentage of accuracy, which indi-
cates the percentage of times that a model predicts correctly
a real power phase. The other metric is the percentage of
false positives (the model predicts an nonexistent change
of phase). Again, the analysis are summarized taking into
account the variation and the duration of the phases.

Figure 6 shows the percentage of accuracy for the model
FE, model +FSB and model MICRO. The x and y axes corre-
spond to the phase duration and the phase variation respec-
tively. The z axis is the percentage of accuracy. The surface
is colored to facilitate the readability. The darker the color,
the more accurate the model is for that duration and vari-
ation. The three models show a similar trend. The bigger
the variation, the bigger the accuracy is. These means that
important changes in power consumption are detected even
though all the components are not modeled. However, the
final accuracy varies considerably among the different mod-
els. The MICRO model is almost 100% accurate for changes
bigger than 1 watt. However, the FE models shows a 58%
accuracy on average and the +FSB model about a 80%. This
difference is important because our model is almost 100% ac-
curate on detecting most important power variations where
potentially power aware policies need to be reevaluated. If
we take into account the rest of the phases we also see that
the MICRO model is also the most accurate. In overall, the
MICRO model shows a 83.31% of accuracy. The FE and the
+FSB models show a 15.22% and a 27.9% of accuracy, re-
spectively. This revokes the assumption that a power model
with a low average error is valid for any applicability. We
have shown that for phase detection analysis, a model should

155

Phase variation(mW) Phase duration (seconds)
BENCHMARK |< = -1000 | (-1000,-500]](-500,0]] (0,500] [(500,1000] [>1000 | <=2](2,10] [(10,30] [(30,60][>60 |POWER(mW)

434.zeusmp 0 41 57 48 42 1 1 170 18 0 0 11778.8
444.namd 0 52 17 23 48 0 0 75 65 0 0 11264.9
454.calculix 22 5 4 4 6 22 21 17 0 25 0 13157.1
462.libquantum 2 19 19 24 25 2 1 83 6 1 0 10636.5

403.gcc 10 9 10 9 9 9 6 35 14 1 0 11679
410.bwaves| 7 5 0 0 6 18 16 9 3 8 0 11082.1

465.tonto 2 19 13 19 19 0 2 55 11 4 0 12131
416.gamess| 0 7 4 1 8 0 0 2 9 4 5 12124.9

429.mcf] 2 4 2 2 0 3 2 2 2 5 2 11453
400.perlbench 1 1 7 6 1 2 2 9 7 0 0 12628.4
433.milc 0 3 1 0 3 1 1 3 0 1 3 11665.7
401.bzip2 0 1 5 6 3 0 0 4 5 1 5 11888.2
473.astar| 0 1 2 3 1 0 0 0 1 2 4 12413.9
456.hmmer| 0 1 2 2 1 0 0 3 2 0 1 12425.9
450.soplex| 0 1 1 1 1 0 0 1 1 0 2 11659.2
436.cactusADM 0 0 1 2 0 0 0 3 0 0 0 11507.2
482.sphinx3 0 0 1 2 0 0 0 0 0 0 3 11959.1
459.GemsFDTD 0 0 1 1 0 0 0 1 0 0 1 10999.4
470.1bm| 0 0 1 1 0 0 0 1 1 0 0 14410.6
471.omnetpp) 0 0 1 0 0 0 0 0 0 0 1 12445.8
435.gromacs 0 0 0 0 0 0 0 0 0 0 0 10573.8
437.leslie3d| 0 0 0 0 0 0 0 0 0 0 0 10863.6
445.gobmk| 0 0 0 0 0 0 0 0 0 0 0 12453.6
453.povray] 0 0 0 0 0 0 0 0 0 0 0 12266.8
458.sjeng| 0 0 0 0 0 0 0 0 0 0 0 12510.7
464.h264ref]| 0 0 0 0 0 0 0 0 0 0 0 12109.6

TOTAL 46 169 149 154 173 58 52 | 473 145 52 27
Model MICRO

False Positive Distribution

False Negative Distribution
T T T T
1000 |— -

1000

@
g
8
@
g
8

&
g
8

Phase variation (mW)
°
&
8
T

Phase variation (mW)
°
T

1000 1000 [~ —

1 L L 1 0
0 2 10 30 60 [2 10 30 60
Phase duration (seconds) Phase duration (seconds)

Phase Duration Phase variation (mW)

<=-1000 [(-1000,-500] | (-500,0] (0,500] | (500,1000] | >1000
FN | FP FN FP FN FP | FN FP | FN | FP | FN FP
<=2 0 12 0 0 0 0 0 0 0 0 2 9
(2,10] 0 2 7 33 28 54 36 62 9 23 0 4
(10,30] 0 0 1 4 10 7 14 8 2 0 0 0
(30,60] 1 0 0 6 2 1" 5 10 1 3 0 0
>60 0 0 1 0 5 3 1 5 0 3 0 0

Figure 7: Distribution of False Positives and False
Negatives for the model MICRO.

include as many components as possible.

If we analyze the other metric, the MICRO model shows
a 34% of false positives and the FE and +FSB models show
10.81% and a 23.77% respectively. These last two models are
less responsive, and therefore they are likely to not have false
positives at the expenses of having plenty of false negatives.

We have also studied the distribution of false positives
and negatives. Figure 7 shows it for the MICRO model. In the
figure, the false positives are concentrated in the phases with
a low variation or short duration, demonstrating that the
false positive ratio is not an issue for power aware policies.
Actually, the model performs fairly well for the phases and
variations which are interesting for power policies. The rest
of the models are not depicted due to space limitations but
we point out some their trends. The +FSB model and the
FE model show less false positives in overall, but have some
of them in phases with huge variations. The reason is that
sometimes there is a huge variation in the activity of the

Model FE

Accuracy
100%

Accuracy

30 500 1000

60
Phase duration
(seconds)

.60
Phase duration

0
0
(seconds) Phase variation (mW)

Model +FSB

1000 5

Model MICRO

Accuracy
100%

30 500 1000

300 1000

.60 0
Phase duration -1000 ™

0
0
(seconds) Phase variation (mW)

[}
0
Phase variation (mW)

Figure 6: Accuracy distribution for three of the models studied.

components modeled, but the activity of the non-modeled
components cancel (example 3 of Figure 4) the effect on
power. As a result, such models predict non-existent huge
changes.

3.2 Two Core Validation

We select a subset of the SPECcpu2006 benchmarks to eval-
uate the power models when two cores are active and one
application runs on each core. The applications are cho-
sen according to the classification and characterization of
the SPECcpu2006 for multi-programming evaluation [26, 25].
We select a total number of 6 applications and for every
pair of applications (15 experiments), we run each for ten
minutes on one dedicated core.

Table 6 shows the power and model average errors on
two cores. The models were extended as explained in Sec-
tion 2.4.2. In general the MICRO model outperforms the
other two and shows an average error of 4.63% while the
other two models suffer from average errors of 5.12% and
6.09%, with higher standard deviations. This magnitudes
are mainly caused by the pairs generated in conjunction with
the 462.1libquantum application. For these cases, all mod-
els produce inaccurate estimations. We suspect that the
reason is related to the hardware pre-fetcher because it af-
fects heavily the application performance, compared to the
rest of benchmarks. The rest of pairs generally expose an
acceptable error (below the 5% border).

In conclusion, the extended MICRO model succeeds in mod-
eling the entire multi-core chip. The last three columns of
Table 6 show a direct application of the it: per core/per ap-
plication power consumption. Notice that this model is the
only one that can deliver this data.

3.3 Frequency validation

Table 7 summarizes the average error of the MICRO mod-
els. For all the frequencies, the MICRO models obtain low
percentages of error, which decreases with frequency. The
absolute error remains in the same magnitude for all the
frequencies, showing that the methodology used is valid for
any given power configuration.

To sum up, we have applied the proposed methodology
on a particular architecture and we have validated that the
power models generated are valid in terms of accuracy for
different DVFS configurations. Moreover, a case study of
responsiveness analysis was presented for a particular fre-
quency, 2.53GHz. Overall, the models present fairly good
results, outperforming the ones generated using previous
modeling techniques.

156

Table 7: Average error summary of the MICRO models
for all the frequencies.

Frequency | Avg.Power Model MICRO
(Ghz) (mW) %err o err(mW)
0.800 2113.46 6.07 | 6.96 128.28
0.933 2654.6 4.76 | 5.22 126.42
1.066 3120.04 4.1 4.33 127.96
1.200 3584.31 3.56 | 3.73 127.61
1.600 4795.22 3.27 | 3.73 156.59
1.866 6407.61 247 | 2.59 158.03
2.000 7240.7 2.23 | 2.36 161.79
2.133 8100.77 2 2.34 161.85
2.266 9023.32 1.89 | 2.12 170.61
2.400 10006.21 1.9 1.96 189.64
2.533 11143.27 1.89 | 1.64 | 210.38

AVERAGE 2.85 1.4 154.15

4. RELATED WORK

In general, previous works on power modeling focus in
two main aspects: power model generation and its usage
to guide power aware policies. For instance, Tao Li et al.
[19] study the power consumption at the OS level. For this
purpose, an IPC based model is built based on the broadly
accepted observation that there is a linear relation between
IPC and power consumption. In [3], F. Bellosa implements
an OS power aware policy based on data collected at runtime
through the PMCs. In this work, overall power consumption
is being modeled using a reduced set of PMCs. K.Singh et al.
[31] describe a methodology based on a set of microbench-
marks that stress particular components of the processor
architecture being modeled. As a result, a model suitable
for any workload —generic— is produced. Our main difference
with all these approaches is that they use the PMCs —one
or several- to predict the power consumption of the whole
processor, treating it as a black-box.

A. Miyoshi et al. [21] introduce the concept of critical
power slope. This new metric is used to determine the effec-
tiveness of activating power saving techniques on scheduling
points. A contribution of this work is that depending on the
workload characteristics lowering the processor frequency re-
sults in power savings. Our proposal agrees with this result,
and points out the fact that power models have to be val-
idated at inflection points of power in order to be used by
power aware policies.

The works of R.Joseph, C.Isci, G.Contreras and M.Marto-
nosi [16, 14, 9] present many similarities to our proposal be-
cause we follow the same objective: generate an accurate
power model capable to breakdown the power consumption.

Table 6: Average errors for the two core modeling and accounting for the power contribution of each core.

Benchmark Power Model MICRO Model FE Model +FSB Processor Core 0 Core 1

cpuO—cput (mW) %err o %err o %err o (mw) (mw) (mw)
400.perlbench-436.cactusADM 18540.20 4.10 1.85 4.16 1.38 3.56 1.41 19298.02 10707.80(55.49%) 8590.22(44.51%)
400.perlbench-453.povray 19686.18 | 6.08 1.09 052 | 053 | 0.60 | 0.58 20882.35 | 10762.56(51.54%) | 10119.79(48.46%)
400.perlbench-454.calculix 20462.40 4.38 1.52 2.33 0.97 5.10 1.94 21352.66 10768.96(50.43%) | 10583.71(49.57%)
400.perlbench-462.libquantum 24034.74 6.80 1.78 17.46 | 1.21 13.54 | 1.77 22398 10954.22(48.91%) | 11443.79(51.09%)
400.perlbench-473.astar 19377.92 5.62 3.11 2.71 1.89 1.91 1.33 204441 10776.56(52.71%) 9667.53(47.29%)
462.libquantum-436.cactusADM | 22661.80 9.22 2.08 13.78 | 1.54 8.96 2.12 20569.68 11432.35(55.58%) 9137.33(44.42%)
462.libquantum-453.povray 23896.88 9.02 1.38 16.37 | 1.25 | 13.34 | 1.55 21739.6 11508.96(52.94%) | 10230.64(47.06%)
462.libquantum-454.calculix 24716.67 | 10.15 1.45 15.12 | 1.73 9.31 2.01 22206.72 11495.94(51.77%) | 10710.77(48.23%)
462.libquantum-473.astar 23353.39 | 9.26 200 | 17.01 [1.69 | 11.70 | 2.97 21188.89 | 11399.75(53.80%) | 9789.13(46.20%)
473.astar-436.cactusADM 18964.17 4.40 3.76 3.01 1.80 3.04 2.15 18131.4 9523.93(52.53%) 8607.47(47.47%)
473.astar-453.povray 20049.61 3.12 2.87 3.21 3.35 3.62 3.40 19776.85 9619.77(48.64%) 10157.08(51.36%)
473.astar-454.calculix 20798.19 | 3.04 3.59 3.01 [273] 378 [1.79 20206.38 9628.47(47.65%) | 10577.91(52.35%)
436.cactusADM-453.povray 18477.38 1.47 1.09 5.09 1.50 4.36 1.50 18708.42 8590.34(45.92%) 10118.09(54.08%)
436.cactusADM-454.calculix 19269.42 1.68 1.17 6.06 2.41 8.81 3.08 19143.36 8569.32(44.76%) 10574.04(55.24%)
453.povray-454.calculix 20163.70 2.84 0.89 3.46 1.30 6.78 2.52 20732.2 10142.99(48.92%) | 10589.20(51.08%)
AVERAGE 4.63 2.9 5.12 6.31 6.09 4.15

The most similar work to ours is [14]. In that work, the Pen- e Besides the validation of the model based on aver-

tium IV architecture is decomposed in microarchitectural
components in a similar fashion. But the model generation
methodology differs: they use component area as the main
heuristic to derive each component power consumption, as
well as some microbenchmarks in order to guide the manual
tuning of the model. In contrast, we derive the marginal ef-
fect of each component on power from data gathered using
a specifically designed set of microbenchmarks. Thus, we
avoid their test-and-evaluate manual tuning and the need
of the floorplan information. In [9], they also use statisti-
cal linear regression to generate the model but they validate
it against a similar set of applications. In overall, these
works are able to predict power consumption in the same
order of accuracy than the ones that use less PMCs but,
they can breakdown the power consumption. These works
also proved that the usage of sampling techniques to read a
bigger set of PMCs does not incur in inaccuracies. In [15],
C.Isci and M.Martonosi present a study comparing power
phase classification techniques based on PMCs and control
flow information, concluding that PMCs detect more power
phases.

In [27], M.Powell proposes a methodology based on few
performance counters to estimate the activity factors of sev-
eral microarchitectural structures. Then, they estimate the
power consumption of such structures based on the the activ-
ity estimations. However, they do not evaluate empirically
their proposal because a simulation based infrastructure is
required to be able to obtain such low level information.

There is not doubt about the applicability of PMC-based
power models since they provide accurate insight into pro-
cessor power consumption and that they can be used to
breakdown the power consumption of a given platform. Whi-
le this work is based on the same idea of using the PMCs
for power estimation, there are some key characteristics that
differentiate our proposal from all previous research:

e We present a new methodology to model current mul-
ticore architectures. The key difference is that our
methodology is strictly based on the appropriate def-
inition of power components and the specifically de-
signed microbenchmarks that isolate and decouple each
component activity. This allows us to produce models
that are accurate, responsive and decomposable.

157

age error, we validate and evaluate the responsiveness
of the model, comparing it against other PMC-based
power models.

e We present a wide set of power models for the Intel®
Core™ 2 processor, a high performance processor de-
signed with power efficiency as a main design con-
straint, for different DVFS configurations.

CONCLUSION

In this paper we presented a novel systematic power mod-
eling methodology based on performance monitoring coun-
ters (PMCs) to derive per component power breakdowns on
current multicore architectures. Moreover, besides validat-
ing the accuracy of power estimates, we validate the mod-
els by evaluating their responsiveness, their capacity to de-
tect power variations. We generated a set of models for the
Intel® Core™ 2 Duo architecture, modeling one or two
cores for different DVFS configurations. The models were
validated using empirical measurements of long executions
of the SPECcpu2006 benchmarks, and despite the energy-
efficient characteristics and the complexity of the modeled
architecture, the models shown fairly good accuracy and re-
sponsiveness. Concretely, the accuracy validation showed
average errors between [1.89-6]%, and the responsiveness
validation when operating at maximum frequency showed
an overall 83.31% accuracy on phase change predictions and
almost 100% accuracy for changes bigger than 0.5 watts.
As a result, we showed that the model produced is sensible
to variations as small as 0.25 watts, which only represent
a 2.24% variation of the average power consumption of the
SPECcpu2006 suite. Moreover, the comparison performed
against models built using existing methods showed that our
methodology produces more accurate and responsive power
models. In overall, this work addresses the problem of the
lack of decomposable power models for current architectures.

S.

6. ACKNOWLEDGEMENTS

This work was supported by the Ministry of Science and
Innovation of Spain (CICYT) [TIN-2007-60625], the Gener-
alitat de Catalunya [2009-SGR-980] and the European Com-
mission in the context of the SARC Project #27648 (FP6).
The authors acknowledge the support of the Barcelona Su-
percomputing Center (BSC). The authors would also like to

thank the colleagues of our department and research group
for their helpful comments.

7.
(1]

[6]

(13]

[14]

[15]

[16]

REFERENCES

Thinkpad SMAPI kernel module version 0.40.
http://tpctl.sourceforge.net/ .

Perfmon2. http://perfmon2.sourceforge.net/ .

F. Bellosa. The benefits of event: driven energy accounting
in power-sensitive systems. In EW 9: Proceedings of the 9th
workshop on ACM SIGOPS European workshop, pages
37-42, New York, NY, USA, 2000. ACM.

A. Bhattacharjee and M. Martonosi. Thread criticality
predictors for dynamic performance, power, and resource
management in chip multiprocessors. In ISCA ’09:
Proceedings of the 36th annual international symposium on
Computer architecture, pages 290-301, New York, NY,
USA, 2009. ACM.

W. Bircher and L. John. Complete system power
estimation: A trickle-down approach based on performance
events. Performance Analysis of Systems and Software,
IEEE International Symmposium on, 0:158-168, 2007.

W. L. Bircher, M. Valluri, J. Law, and L. K. John.
Runtime identification of microprocessor energy saving
opportunities. In ISLPED ’05: Proceedings of the 2005
international symposium on Low power electronics and
design, pages 275—280, New York, NY, USA, 2005. ACM.
S. Borkar, T. Karnik, S. Narendra, J. Tschanz,

A. Keshavarzi, and V. De. Parameter variations and impact
on circuits and microarchitecture. In DAC ’03: Proceedings
of the 40th annual Design Automation Conference, pages
338-342, New York, NY, USA, 2003. ACM.

J. S. Chase, D. C. Anderson, P. N. Thakar, A. M. Vahdat,
and R. P. Doyle. Managing energy and server resources in
hosting centers. In SOSP ’01: Proceedings of the eighteenth
ACM symposium on Operating systems principles, pages
103-116, New York, NY, USA, 2001. ACM.

G. Contreras and M. Martonosi. Power prediction for Ontel
XScale®processors using performance monitoring unit
events. In ISLPED ’05: Proceedings of the 2005
international symposium on Low power electronics and
design, pages 221-226, New York, NY, USA, 2005. ACM.
J. Donald and M. Martonosi. Techniques for multicore
thermal management: Classification and new exploration.
In ISCA ’06: Proceedings of the 33rd annual international
symposium on Computer Architecture, pages 78-88,
Washington, DC, USA, 2006. IEEE Computer Society.

N. Draper and H. Smith. Applied Regression Analysis.
Wiley, New York, NY, second edition, 1981.

V. George, S. Jahagirdar, C. Tong, K. Smits, S. Damaraju,
S. Siers, V. Naydenov, T. Khondker, S. Sarkar, and

P. Singh. Penryn: 45-nm next generation Intel® Core™ 2
processor. In ASSCC’07 IEEE Asian Solid-State Circuits
Conference, 2007.

J. L. Henning. Spec cpu2006 benchmark descriptions.
SIGARCH Comput. Archit. News, 34(4):1-17, 2006.

C. Isci and M. Martonosi. Runtime power monitoring in
high-end processors: Methodology and empirical data. In
MICRO 36: Proceedings of the 36th annual IEEE/ACM
International Symposium on Microarchitecture, page 93,
Washington, DC, USA, 2003. IEEE Computer Society.

C. Isci and M. Martonosi. Phase characterization for power:
Evaluating control-flow-based and event-counter-based
techniques. In HPCA-12. Princeton University, February
2006.

R. Joseph and M. Martonosi. Run-time power estimation in
high performance microprocessors. In ISLPED ’01:
Proceedings of the 2001 international symposium on Low
power electronics and design, pages 135-140, New York,
NY, USA, 2001. ACM.

158

(17]

(18]

[25]

[26]

[27]

(28]

[29]

Y.-M. Kuo, S.-H. Weng, and S.-C. Chang. A novel

sequential circuit optimization with clock gating logic. In
ICCAD ’08: Proceedings of the 2008 IEEE/ACM

International Conference on Computer-Aided Design,
pages 230233, Piscataway, NJ, USA, 2008. IEEE Press.
K.-J. Lee and K. Skadron. Using performance counters for
runtime temperature sensing in high-performance
processors. In IPDPS ’05: Proceedings of the 19th IEEE
International Parallel and Distributed Processing
Symposium (IPDPS’05) - Workshop 11, page 232.1,
Washington, DC, USA, 2005. IEEE Computer Society.

T. Li and L. K. John. Run-time modeling and estimation of
operating system power consumption. SIGMETRICS
Perform. Eval. Rev., 31(1):160-171, 2003.

A. Merkel and F. Bellosa. Balancing power consumption in
multiprocessor systems. SIGOPS Oper. Syst. Rev.,
40(4):403-414, 2006.

A. Miyoshi, C. Lefurgy, E. Van Hensbergen, R. Rajamony,
and R. Rajkumar. Critical power slope: understanding the
runtime effects of frequency scaling. In ICS ’02: Proceedings
of the 16th international conference on Supercomputing,
pages 3544, New York, NY, USA, 2002. ACM.

T. Mudge. Power: A first-class architectural design
constraint. Computer, 34(4):52-58, 2001.

D. Parikh, K. Skadron, Y. Zhang, M. Barcella, and M. R.
Stan. Power issues related to branch prediction. In
Proceedings of the 8th International Symposium on
High-Performance Computer Architecture, pages 233—,
Washington, DC, USA, 2002. IEEE Computer Society.

M. J. Pazzani and S. D. Bay. The independent sign bias:
Gaining insight from multiple linear regression. In In
Proceedings of the Twenty First Annual Conference of the
Cognitive Science Society, pages 525-530, 1999.

A. Phansalkar, A. Joshi, and L. K. John. Analysis of
redundancy and application balance in the spec cpu2006
benchmark suite. SIGARCH Comput. Archit. News,
35(2):412-423, 2007.

A. Phansalkar, A. Joshi, and L. K. John. Subsetting the
spec cpu2006 benchmark suite. SIGARCH Comput. Archit.
News, 35(1):69-76, 2007.

M. Powell, A. Biswas, J. Emer, S. Mukherjee, B. Sheikh,
and S. Yardi. Camp: A technique to estimate per-structure
power at run-time using a few simple parameters. In High
Performance Computer Architecture, 2009. HPCA 2009.
IEEE 15th International Symposium on, pages 289-300,
Feb. 2009.

R Development Core Team. R: A language and
environment for statistical computing. R Foundation for
Statistical Computing, Vienna, Austria, 2005. ISBN
3-900051-07-0.

P. Ranganathan, P. Leech, D. Irwin, and J. Chase.
Ensemble-level power management for dense blade servers.
In ISCA ’06: Proceedings of the 33rd annual international
symposium on Computer Architecture, pages 66—77,
Washington, DC, USA, 2006. IEEE Computer Society.
SBSIF. SMART specifiaction rev.1.1 Dec 11, 1998. [Online]
Available: http://sbs-forum.org.

K. Singh, M. Bhadauria, and S. A. McKee. Real time power
estimation and thread scheduling via performance counters.
SIGARCH Comput. Archit. News, 37(2):46-55, 2008.

K. Skadron, M. R. Stan, W. Huang, S. Velusamy,

K. Sankaranarayanan, and D. Tarjan. Temperature-aware
microarchitecture. In ISCA ’03: Proceedings of the 30th
annual international symposium on Computer architecture,
pages 2-13, New York, NY, USA, 2003. ACM.

W. Wu, L. Jin, J. Yang, P. Liu, and S. X.-D. Tan. A
systematic method for functional unit power estimation in
microprocessors. In Proceedings of the 43rd annual Design
Automation Conference, pages 554-557, New York, NY,
USA, 2006. ACM.

