
Intel® Processor Graphics: Optimizing 
Computer Vision and More

Aaron Kunze – GPU Compute Architect, Intel Corporation

GVCS002



2

Agenda

• Intel® Graphics Introduction

• OpenCV 3.0 on Intel Graphics

• OpenCL™ Applications on Intel® Graphics Architecture

• Optimization Techniques

- Maximizing Occupancy

- Optimizing Memory Access

- Using Registers

- Maximizing Computation

• Intel® VTune™ Amplifier XE 2013 Support for OpenCL Applications

• New OpenCL 2.0 Features

• Summary / Questions



3

Agenda

• Intel® Graphics Introduction

• OpenCV 3.0 on Intel Graphics

• OpenCL™ Applications on Intel® Graphics Architecture

• Optimization Techniques

- Maximizing Occupancy

- Optimizing Memory Access

- Using Registers

- Maximizing Computation

• Intel® VTune™ Amplifier XE 2013 Support for OpenCL Applications

• New OpenCL 2.0 Features

• Summary / Questions



4

Intel® Graphics

2014

>



5

Intel® Graphics

Intel® Core™ M:

Intel® 

Processor Graphics 

Gen8 

Graphics, Media, 

& Compute

2014

>



6

Intel® Graphics

Intel® Processor Graphics is a key compute resource 

Intel® Core™ M:

Intel® 

Processor Graphics 

Gen8 

Graphics, Media, 

& Compute

2014

>



7

The first industry SDK to provide developer tools for OpenCL™ 2.0

Intel® SDK for OpenCL™ Applications 2014 R2

Supports latest standards and processors

• New Intel® Core™ M Processors for tablets and 2-in-1s

• OpenCL™ 2.0 and Shared Virtual Memory

• SPIR* 1.2

Easy-to-use development environment 

• Build, Debug, Analyze

• Develop OpenCL 2.0 code that runs everywhere1

Remote execution on Android* devices

More analysis? Upgrade to Intel® VTune™ Amplifier XE

Download: intel.com/software/OpenCL

1Runs on previous generations of Intel Core Processors with CPU based OpenCL 2.0 runtime.

Build

Debug

Analyze



8

OpenCL™ Applications on Intel® Architecture: 
Success Stories

“OpenCL lets us write one line of code that will run on lots of different types 
of hardware”

Eric Berdahl, Senior Engineering Manager, Adobe*

Adobe Optimizes with OpenCL™ and Intel® Graphics: http://www.youtube.com/watch?v=IXdhhud5iH4

“The Intel Iris Pro graphics and the Intel Core i7 processor are … allowing me 
to do all of this while the graphics and video are never stopping”

Dave Helmly, Solution Consulting Pro Video/Audio, Adobe
Adobe Premiere Pro demonstration: http://www.youtube.com/watch?v=u0J57J6Hppg

“We are very pleased that Intel is fully supporting OpenCL. We think there is a 
bright future for this technology.”

Michael Bryant, Director of Marketing, Sony Creative Software
Vegas* Software Family by Sony* Optimized with OpenCL and Intel® Processor Graphics
http://www.youtube.com/watch?v=_KHVOCwTdno

http://www.youtube.com/watch?v=IXdhhud5iH4
http://www.youtube.com/watch?v=u0J57J6Hppg
http://www.youtube.com/watch?v=_KHVOCwTdno


9

OpenCL™ Applications on Intel® Architecture: 
Success Stories

“OpenCL lets us write one line of code that will run on lots of different types 
of hardware”

Eric Berdahl, Senior Engineering Manager, Adobe*

Adobe Optimizes with OpenCL™ and Intel® Graphics: http://www.youtube.com/watch?v=IXdhhud5iH4

“The Intel Iris Pro graphics and the Intel Core i7 processor are … allowing me 
to do all of this while the graphics and video are never stopping”

Dave Helmly, Solution Consulting Pro Video/Audio, Adobe
Adobe Premiere Pro demonstration: http://www.youtube.com/watch?v=u0J57J6Hppg

“We are very pleased that Intel is fully supporting OpenCL. We think there is a 
bright future for this technology.”

Michael Bryant, Director of Marketing, Sony Creative Software
Vegas* Software Family by Sony* Optimized with OpenCL and Intel® Processor Graphics
http://www.youtube.com/watch?v=_KHVOCwTdno

Our customers report on benefits like productivity, 
performance, and use of open standard

http://www.youtube.com/watch?v=IXdhhud5iH4
http://www.youtube.com/watch?v=u0J57J6Hppg
http://www.youtube.com/watch?v=_KHVOCwTdno


10

Agenda

• Intel® Graphics Introduction

• OpenCV 3.0 on Intel Graphics

• OpenCL™ Applications on Intel® Graphics Architecture

• Optimization Techniques

- Maximizing Occupancy

- Optimizing Memory Access

- Using Registers

- Maximizing Computation

• Intel® VTune™ Amplifier XE 2013 Support for OpenCL Applications

• New OpenCL 2.0 Features

• Summary / Questions



11

OpenCV Optimization for Intel® Graphics

• OpenCV: the leading open-source 
computer vision library

• Intel is contributing optimizations for 
the OpenCL™ code in OpenCV

• Intel optimizations delivering 
substantial performance 
improvements!

- Example optimizations 
described throughout this 
talk

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.  Performance tests, such as SYSmark* and MobileMark*, are 
measured using specific computer systems, components, software, operations and functions.  Any change to any of those factors may cause the results to vary.  You should consult other 
information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more 
information go to http://www.intel.com/performance

Up to 
3.4X!



12

OpenCV Optimization for Intel® Graphics

Intel is working with Itseez* to 
further optimize OpenCL™ code in 
OpenCV 3.0

• Itseez is the official maintainer of 
OpenCV

• Itseez is using optimization
BKMs described in this talk!

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.  Performance tests, such as SYSmark* and MobileMark*, are 
measured using specific computer systems, components, software, operations and functions.  Any change to any of those factors may cause the results to vary.  You should consult other 
information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more 
information go to http://www.intel.com/performance



13

OpenCV 3.0 for Intel® Graphics

OpenCV 3.0 architecture further improves support for Intel® Graphics 
(Alpha release available!)

• “Transparent API” enables same code to use CPU or OpenCL™ devices

- Little or no code changes from existing OpenCV code

- Code uses efficient CPU fallback on platforms without OpenCL

• APIs operate asynchronously
• Improved use of shared physical memory for integrated GPU performance

cv::UMat inMat, outMat;
vidInput >> inMat;
cv::cvtColor(inMat, outMat, cv::COLOR_RGB2GRAY);
vidOutput << outMat;



14

OpenCV 3.0 for Intel® Graphics

OpenCV 3.0 architecture further improves support for Intel® Graphics 
(Alpha release available!)

• “Transparent API” enables same code to use CPU or OpenCL™ devices

- Little or no code changes from existing OpenCV code

- Code uses efficient CPU fallback on platforms without OpenCL

• APIs operate asynchronously
• Improved use of shared physical memory for integrated GPU performance

OpenCV 3.0 improves use of OpenCL on Intel® Graphics!

cv::UMat inMat, outMat;
vidInput >> inMat;
cv::cvtColor(inMat, outMat, cv::COLOR_RGB2GRAY);
vidOutput << outMat;



15

Agenda

• Intel® Graphics Introduction

• OpenCV 3.0 on Intel Graphics

• OpenCL™ Applications on Intel® Graphics Architecture

• Optimization Techniques

- Maximizing Occupancy

- Optimizing Memory Access

- Using Registers

- Maximizing Computation

• Intel® VTune™ Amplifier XE 2013 Support for OpenCL Applications

• New OpenCL 2.0 Features

• Summary / Questions



16

Intel® Processor Graphics Architecture

• Today, our focus is on Intel® Iris™ 
Graphics and Intel® HD Graphics in 
4th Generation Intel® Core™ 
Processors and Intel Core M Processors

- Or, Intel Processor Graphics Gen7.5 and 
Gen8.0

• For more details, see our whitepaper, 
The Compute Architecture of Intel Processor 
Graphics Gen7.5/Gen8.0

- https://software.intel.com/en-us/articles/intel-
graphics-developers-guides

New!

https://software.intel.com/en-us/articles/intel-graphics-developers-guides


17

Fixed function units 

Slice
L3 Data Cache

Shared Local Memory

Slice: 24 EUs

Read: 64B/cyc
Write: 64B/cyc

Atomics, 
Barriers

Local Thread 
Dispatcher

Instruction
cache

Data Port
Sampler

L1

L2
Sampler

Cache

Subslice: 8 EUs

EU

EU

EU

EU

EU

EU

EUEU

Read: 64B/cyc
Write: 64B/cyc

Local Thread 
Dispatcher

Instruction
cache

Data Port
Sampler

L1

L2
Sampler

Cache

Subslice: 8 EUs

EU

EU

EU

EU

EU

EU

EUEU

Local Thread 
Dispatcher

Instruction
cache

Data Port
Sampler

L1

L2
Sampler

Cache

Subslice: 8 EUs

EU

EU

EU

EU

EU

EU

EUEU

Read: 64B/cyc
Write: 64B/cyc

Read: 64B/cyc
Write: 64B/cyc

Read: 
64B/cyc

Read: 
64B/cyc

Read: 
64B/cyc

Intel® Graphics Architecture Building Blocks

Local Thread 
Dispatcher

Instruction
cache

Data Port
Sampler

L1

L2
Sampler

Cache

Subslice: 8 EUs

EU

EU

EU

EU

EU

EU

EU

EU

EU: Execution Unit

In
st

ru
ct

io
n

 F
e

tc
h

SIMD
FPU

SIMD
FPU

  Branch

Send

T
h

re
a

d
 A

rb
it

e
r

. . .

. . .

. . .

. . .

. . .

. . .

. . .

28KB GRF:
7 thrds x 128x 
SIMD8 x 32b ARF



18

Executing OpenCL™ Kernels

• OpenCL™ work items map to SIMD lanes

• Compiler can choose between SIMD8, SIMD16, and SIMD32



19

Executing OpenCL™ Kernels

• OpenCL™ work items map to SIMD lanes

• Compiler can choose between SIMD8, SIMD16, and SIMD32

Example: work group with 64 work items
00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f 10 11 12 13 3f



20

Executing OpenCL™ Kernels

• OpenCL™ work items map to SIMD lanes

• Compiler can choose between SIMD8, SIMD16, and SIMD32

SIMD8
Compilation

Example: work group with 64 work items
00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f 10 11 12 13 3f



21

Executing OpenCL™ Kernels

• OpenCL™ work items map to SIMD lanes

• Compiler can choose between SIMD8, SIMD16, and SIMD32

SIMD8
Compilation

Example: work group with 64 work items
00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f 10 11 12 13 3f



22

Executing OpenCL™ Kernels

• OpenCL™ work items map to SIMD lanes

• Compiler can choose between SIMD8, SIMD16, and SIMD32

SIMD8
Compilation

Example: work group with 64 work items
00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f 10 11 12 13 3f



23

Executing OpenCL™ Kernels

• OpenCL™ work items map to SIMD lanes

• Compiler can choose between SIMD8, SIMD16, and SIMD32

SIMD8
Compilation

00 01 02 03 04 05 06 07

08 09 0a 0b 0c 0d 0e 0f

10 11 12 13 14 15 16 17

18 19 1a 1b 1c 1d 1e 1f

20 21 22 23 24 25 26 27

28 29 2a 2b 2c 2d 2e 2f

30 31 32 33 34 35 36 37

38 39 3a 3b 3c 3d 3e 3f



24

Executing OpenCL™ Kernels

• OpenCL™ work items map to SIMD lanes

• Compiler can choose between SIMD8, SIMD16, and SIMD32

SIMD8
Compilation

00 01 02 03 04 05 06 07

08 09 0a 0b 0c 0d 0e 0f

10 11 12 13 14 15 16 17

18 19 1a 1b 1c 1d 1e 1f

20 21 22 23 24 25 26 27

28 29 2a 2b 2c 2d 2e 2f

30 31 32 33 34 35 36 37

38 39 3a 3b 3c 3d 3e 3f

512 Bytes of 
Register Space 
Per Work Item



25

Executing OpenCL™ Kernels

• OpenCL™ work items map to SIMD lanes

• Compiler can choose between SIMD8, SIMD16, and SIMD32

SIMD8
Compilation

00 01 02 03 04 05 06 07

08 09 0a 0b 0c 0d 0e 0f

10 11 12 13 14 15 16 17

18 19 1a 1b 1c 1d 1e 1f

20 21 22 23 24 25 26 27

28 29 2a 2b 2c 2d 2e 2f

30 31 32 33 34 35 36 37

38 39 3a 3b 3c 3d 3e 3f

512 Bytes of 
Register Space 
Per Work Item

SIMD16
Compilation



26

Executing OpenCL™ Kernels

• OpenCL™ work items map to SIMD lanes

• Compiler can choose between SIMD8, SIMD16, and SIMD32

SIMD8
Compilation

00 01 02 03 04 05 06 07

08 09 0a 0b 0c 0d 0e 0f

10 11 12 13 14 15 16 17

18 19 1a 1b 1c 1d 1e 1f

20 21 22 23 24 25 26 27

28 29 2a 2b 2c 2d 2e 2f

30 31 32 33 34 35 36 37

38 39 3a 3b 3c 3d 3e 3f

512 Bytes of 
Register Space 
Per Work Item

SIMD16
Compilation

00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f

10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f

20 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f

30 31 32 33 34 35 36 37 38 39 3a 3b 3c 3d 3e 3f



27

Executing OpenCL™ Kernels

• OpenCL™ work items map to SIMD lanes

• Compiler can choose between SIMD8, SIMD16, and SIMD32

SIMD8
Compilation

00 01 02 03 04 05 06 07

08 09 0a 0b 0c 0d 0e 0f

10 11 12 13 14 15 16 17

18 19 1a 1b 1c 1d 1e 1f

20 21 22 23 24 25 26 27

28 29 2a 2b 2c 2d 2e 2f

30 31 32 33 34 35 36 37

38 39 3a 3b 3c 3d 3e 3f

512 Bytes of 
Register Space 
Per Work Item

SIMD16
Compilation

00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f

256 Bytes of 
Register Space 
Per Work Item

10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f

20 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f

30 31 32 33 34 35 36 37 38 39 3a 3b 3c 3d 3e 3f



28

Executing OpenCL™ Kernels

• OpenCL™ work items map to SIMD lanes

• Compiler can choose between SIMD8, SIMD16, and SIMD32

SIMD8
Compilation

00 01 02 03 04 05 06 07

08 09 0a 0b 0c 0d 0e 0f

10 11 12 13 14 15 16 17

18 19 1a 1b 1c 1d 1e 1f

20 21 22 23 24 25 26 27

28 29 2a 2b 2c 2d 2e 2f

30 31 32 33 34 35 36 37

38 39 3a 3b 3c 3d 3e 3f

512 Bytes of 
Register Space 
Per Work Item

SIMD16
Compilation

00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f

256 Bytes of 
Register Space 
Per Work Item

10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f

20 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f

30 31 32 33 34 35 36 37 38 39 3a 3b 3c 3d 3e 3f

Compiler can trade register space for IPC!



29

Executing OpenCL™ Kernels

Example:  SIMD16 compile, 64 work items per work group

Work Group A

Work Group B

Work Group C



30

Executing OpenCL™ Kernels

Example:  SIMD16 compile, 64 work items per work group

Work Group A

Work Group B

Work Group C



31

Executing OpenCL™ Kernels

Example:  SIMD16 compile, 64 work items per work group

Work Group A

Work Group B

Work Group C



32

Executing OpenCL™ Kernels

Example:  SIMD16 compile, 64 work items per work group

Work Group A

Work Group B

Work Group C



33

Executing OpenCL™ Kernels

Example:  SIMD16 compile, 64 work items per work group

Work Group A

Work Group B

Work Group C



34

Executing OpenCL™ Kernels

Example:  SIMD16 compile, 64 work items per work group

Work Group A

Work Group B

Work Group C

Workgroups may 
span EU threads!

Workgroups may 
span EUs!

If using local memory or 
barriers, workgroups will 

not span sub slices! 
(8 EUs in Processor Graphics Gen8)



35

Agenda

• Intel® Graphics Introduction

• OpenCV 3.0 on Intel Graphics

• OpenCL™ Applications on Intel® Graphics Architecture

• Optimization Techniques

- Maximizing Occupancy

- Optimizing Memory Access

- Using Registers

- Maximizing Computation

• Intel® VTune™ Amplifier XE 2013 Support for OpenCL Applications

• New OpenCL 2.0 Features

• Summary / Questions



36

Maximizing Occupancy

• Occupancy is a measure of EU thread utilization

• Two primary things to consider:

- Launch enough work items to keep EU threads busy

- In short kernels: use short vector data types and compute multiple pixels to better 
amortize thread launch cost





37

Maximizing Occupancy

• Occupancy is a measure of EU thread utilization

• Two primary things to consider:

- Launch enough work items to keep EU threads busy

- In short kernels: use short vector data types and compute multiple pixels to better 
amortize thread launch cost

 For example, color conversion:

__global uchar* src, dst;
p = src[src_idx]     * B2Y + 

src[src_idx + 1] * G2Y + 
src[src_idx + 2] * R2Y;

dst[dst_idx] = p;

Before:
One pixel per work item



38

Maximizing Occupancy

• Occupancy is a measure of EU thread utilization

• Two primary things to consider:

- Launch enough work items to keep EU threads busy

- In short kernels: use short vector data types and compute multiple pixels to better 
amortize thread launch cost

 For example, color conversion:

__global uchar* src, dst;
p = src[src_idx]     * B2Y + 

src[src_idx + 1] * G2Y + 
src[src_idx + 2] * R2Y;

dst[dst_idx] = p;

__global uchar* src_ptr, dst_ptr;
uchar16 src = vload16(0, src_ptr);
uchar4 c0 = src.s048c;
uchar4 c1 = src.s159d;
uchar4 c2 = src.s26ae;
uchar4 Y = c0 * B2Y + 

c1 * G2Y + 
c2 * R2Y;

vstore4(Y, 0, dst_ptr);Before:
One pixel per work item After: 

Four pixels per work item



39

Occupancy Constraints

• More subtle occupancy issues (when using barriers or local memory):







Local Thread 
Dispatcher

Instruction
cache

Data Port
Sampler

L1

L2
Sampler

Cache

Subslice: 8 EUs

EU

EU

EU

EU

EU

EU

EU

EU



40

Occupancy Constraints

• More subtle occupancy issues (when using barriers or local memory):

- Sub slices will not run partial workgroups

 Can be a limiting factor for very large work groups





Local Thread 
Dispatcher

Instruction
cache

Data Port
Sampler

L1

L2
Sampler

Cache

Subslice: 8 EUs

EU

EU

EU

EU

EU

EU

EU

EU



41

Occupancy Constraints

• More subtle occupancy issues (when using barriers or local memory):

- Sub slices will not run partial workgroups

 Can be a limiting factor for very large work groups

- Sub slices will not run more than 16 work groups

 Can be limiting factor for very small work groups



Local Thread 
Dispatcher

Instruction
cache

Data Port
Sampler

L1

L2
Sampler

Cache

Subslice: 8 EUs

EU

EU

EU

EU

EU

EU

EU

EU



42

Occupancy Constraints

• More subtle occupancy issues (when using barriers or local memory):

- Sub slices will not run partial workgroups

 Can be a limiting factor for very large work groups

- Sub slices will not run more than 16 work groups

 Can be limiting factor for very small work groups

- Shared Local Memory (SLM) – 64KB SLM per sub slice

 Can be a limiting factor for kernels that use a lot of local 
memory

Local Thread 
Dispatcher

Instruction
cache

Data Port
Sampler

L1

L2
Sampler

Cache

Subslice: 8 EUs

EU

EU

EU

EU

EU

EU

EU

EU



43

Occupancy Constraints

• More subtle occupancy issues (when using barriers or local memory):

- Sub slices will not run partial workgroups

 Can be a limiting factor for very large work groups

- Sub slices will not run more than 16 work groups

 Can be limiting factor for very small work groups

- Shared Local Memory (SLM) – 64KB SLM per sub slice

 Can be a limiting factor for kernels that use a lot of local 
memory

• General advice when using barriers or local memory

- Experiment with workgroup sizes of 64, 128, or 256

- Use less than 64 bytes of local memory per work item

Local Thread 
Dispatcher

Instruction
cache

Data Port
Sampler

L1

L2
Sampler

Cache

Subslice: 8 EUs

EU

EU

EU

EU

EU

EU

EU

EU



44

Occupancy Constraints

• More subtle occupancy issues (when using barriers or local memory):

- Sub slices will not run partial workgroups

 Can be a limiting factor for very large work groups

- Sub slices will not run more than 16 work groups

 Can be limiting factor for very small work groups

- Shared Local Memory (SLM) – 64KB SLM per sub slice

 Can be a limiting factor for kernels that use a lot of local 
memory

• General advice when using barriers or local memory

- Experiment with workgroup sizes of 64, 128, or 256

- Use less than 64 bytes of local memory per work item

Maximize occupancy to keep EUs busy!

Local Thread 
Dispatcher

Instruction
cache

Data Port
Sampler

L1

L2
Sampler

Cache

Subslice: 8 EUs

EU

EU

EU

EU

EU

EU

EU

EU



45

Optimizing Host to Device Transfers

• Host (CPU) and Device (GPU) share the same physical memory

• For buffers allocated through the OpenCL™ runtime:
- Let the OpenCL runtime allocate system memory

 Create buffer with system memory pointer and  CL_MEM_ALLOC_HOST_PTR

- OR, Use pre-allocated system memory
 Create buffer with system memory pointer and  CL_MEM_USE_HOST_PTR

 Allocate system memory aligned to a page (4096 bytes) (e.g., use _aligned_malloc or 
memalign to allocate)

 Allocate a multiple of cache line size (64 bytes)

 No transfer needed (zero copy)!

- Use clEnqueueMapBuffer() to access data
 No transfer needed (zero copy)!

- OpenCV 3.0 changes make excellent use of this feature!



46

Optimizing Host to Device Transfers

• For images allocated through the OpenCL™ 
runtime:
- OpenCL images are tiled by default (transfer 

required)

Default Image Creation Path



47

Optimizing Host to Device Transfers

• For images allocated through the OpenCL™ 
runtime:
- OpenCL images are tiled by default (transfer 

required)
- Or, convert a linear buffer to an image without 

copy!
- Core feature in OpenCL 2.0, 
cl_khr_image2d_from_buffer extension 
in OpenCL 1.2

Default Image Creation Path

Convert a Buffer to an Image
(No Copy!)

New!



48

Optimizing Host to Device Transfers

• For images allocated through the OpenCL™ 
runtime:
- OpenCL images are tiled by default (transfer 

required)
- Or, convert a linear buffer to an image without 

copy!
- Core feature in OpenCL 2.0, 
cl_khr_image2d_from_buffer extension 
in OpenCL 1.2

• Texture sampler great for cases that need 
linear interpolation

• Used in some flavors of OpenCV resize and 
Pyramid Lucas-Kanade
- Up to 2X performance!

Default Image Creation Path

Convert a Buffer to an Image
(No Copy!)

New!



49

Optimizing Host to Device Transfers

• For images allocated through the OpenCL™ 
runtime:
- OpenCL images are tiled by default (transfer 

required)
- Or, convert a linear buffer to an image without 

copy!
- Core feature in OpenCL 2.0, 
cl_khr_image2d_from_buffer extension 
in OpenCL 1.2

• Texture sampler great for cases that need 
linear interpolation

• Used in some flavors of OpenCV resize and 
Pyramid Lucas-Kanade
- Up to 2X performance!

Take advantage of shared physical 
memory for buffers and images!

Default Image Creation Path

Convert a Buffer to an Image
(No Copy!)

New!



50

Optimizing Memory Accesses

• Merging kernels reduces memory traffic
- Computer vision algorithms often form pipelines

- Merging multiple kernels in a pipeline can reduce trips to memory

 Also reduces runtime overhead!

- But mind instruction cache size (2K – 4K instructions)!

- New read/write images in OpenCL™ 2.0 standard can help merge kernels

read
filter_x
write

read
filter_y
write

read
filter_x
write
read
filter_y
write

New!



51

Optimizing Memory Accesses

• Merging kernels reduces memory traffic
- Computer vision algorithms often form pipelines

- Merging multiple kernels in a pipeline can reduce trips to memory

 Also reduces runtime overhead!

- But mind instruction cache size (2K – 4K instructions)!

- New read/write images in OpenCL™ 2.0 standard can help merge kernels

read
filter_x
write

read
filter_y
write

read
filter_x
write
read
filter_y
write

Used to speedup OpenCV separable filters!

New!



52

Memory Access Patterns

• Local memory accesses have latencies similar to L3$ hits

- Just using local memory as a cache is often not productive

• But, local memory and L3$ are organized differently



53

Memory Access Patterns

• Local memory accesses have latencies similar to L3$ hits

- Just using local memory as a cache is often not productive

• But, local memory and L3$ are organized differently

16 banks on 4-byte boundaries
Touch as many banks as possible

bank 0 1 2 3 4

addr 0x00 0x04 0x08 0x0c

64-byte cache lines
Touch as few cache lines as possible

5 6 7 8 9 a b c d e f 0 1 2 3

0x10 0x14 0x18 0x1c 0x20 0x24 0x28 0x2c 0x30 0x34 0x38 0x3c 0x40 0x44 0x48 0x4c

line line 0

addr 0x00

line 1

0x40

SLM (local)

L3$ (global and constant)



54

Memory Access Patterns

• Examples

data[get_global_id(0)];

data[get_global_id(0) + 1];

data[get_global_id(0) * 2];

data[get_global_id(0) * 16];

data[get_global_id(0) * 17];

1 cache line
Full bandwidth

2 cache lines
Half bandwidth

2 cache line
Half bandwidth

16 cache lines
Worst case!

16 cache line
Worst case!

16 banks
Full bandwidth

16 banks
Full bandwidth

8 banks
Half bandwidth

1 bank
Worst case!

16 banks
Full bandwidth

L3$ SLM

data[get_local_id(0)];

data[get_local_id(0) + 1];

data[get_local_id(0) * 2];

data[get_local_id(0) * 16];

data[get_local_id(0) * 17];



55

Memory Access Patterns

• Examples

data[get_global_id(0)];

data[get_global_id(0) + 1];

data[get_global_id(0) * 2];

data[get_global_id(0) * 16];

data[get_global_id(0) * 17];

1 cache line
Full bandwidth

2 cache lines
Half bandwidth

2 cache line
Half bandwidth

16 cache lines
Worst case!

16 cache line
Worst case!

16 banks
Full bandwidth

16 banks
Full bandwidth

8 banks
Half bandwidth

1 bank
Worst case!

16 banks
Full bandwidth

L3$ SLM

When picking a memory type, 
consider access patterns!

data[get_local_id(0)];

data[get_local_id(0) + 1];

data[get_local_id(0) * 2];

data[get_local_id(0) * 16];

data[get_local_id(0) * 17];



56

Registers Vs. Memory

• Each work item in an OpenCL™ kernel has access to up to 512 bytes of register 
space

• Bandwidth to registers faster than any memory

• Loading and processing blocks of pixels in registers is very efficient!



57

Registers Vs. Memory

• Each work item in an OpenCL™ kernel has access to up to 512 bytes of register 
space

• Bandwidth to registers faster than any memory

• Loading and processing blocks of pixels in registers is very efficient!

- Example: non-separable convolution (filter2D) in OpenCV

float sum[PX_PER_WI_X] = { 0.0f };
float k[KERNEL_SIZE_X];
float d[PX_PER_WI_X + KERNEL_SIZE_X];
// Load filter kernel in k, input data in d
...
// Compute convolution
for (px = 0; px < PX_PER_WI_X; ++px)

for (sx = 0; sx < KERNEL_SIZE_X; ++sx)
sum[px]= mad(k[sx], d[px + sx], sum[px]);



58

Registers Vs. Memory

• Each work item in an OpenCL™ kernel has access to up to 512 bytes of register 
space

• Bandwidth to registers faster than any memory

• Loading and processing blocks of pixels in registers is very efficient!

- Example: non-separable convolution (filter2D) in OpenCV

float sum[PX_PER_WI_X] = { 0.0f };
float k[KERNEL_SIZE_X];
float d[PX_PER_WI_X + KERNEL_SIZE_X];
// Load filter kernel in k, input data in d
...
// Compute convolution
for (px = 0; px < PX_PER_WI_X; ++px)

for (sx = 0; sx < KERNEL_SIZE_X; ++sx)
sum[px]= mad(k[sx], d[px + sx], sum[px]);

Use available registers (up 
to 512 bytes) instead of 

memory, where possible!



59

Maximizing Compute Performance

• Avoid long and size_t data types

• Using short data types may improve performance

• Trade accuracy for speed, where appropriate

- Use “native” built-ins (or use -cl-fast-relaxed-math)

- Use mad() / fma()(or use -cl-mad-enable)

x = cos(i); x = native_cos(i);



60

Maximizing Compute Performance

• Avoid long and size_t data types

• Using short data types may improve performance

• Trade accuracy for speed, where appropriate

- Use “native” built-ins (or use -cl-fast-relaxed-math)

- Use mad() / fma()(or use -cl-mad-enable)

Used to speedup OpenCV SURF and HOG!

x = cos(i); x = native_cos(i);



61

Maximizing Compute Performance

• The OpenCL™ 2.0 standard offers new workgroup reductions and scans

- Operations available: add, min, max

- Allows reductions and scans without exposed local memory or barriers

- Device-specific implementation very efficient for the hardware



62

Maximizing Compute Performance

• The OpenCL™ 2.0 standard offers new workgroup reductions and scans

- Operations available: add, min, max

- Allows reductions and scans without exposed local memory or barriers

- Device-specific implementation very efficient for the hardware

__local float smem[256];
unsigned int id = get_local_id(0);
float smem[id] = sum = input;

if (id < 128) smem[id] = sum = sum + smem[id + 128]; barrier(CLK_LOCAL_MEM_FENCE);
if (id <  64) smem[id] = sum = sum + smem[id +  64]; barrier(CLK_LOCAL_MEM_FENCE);
if (id <  32) smem[id] = sum = sum + smem[id +  32]; barrier(CLK_LOCAL_MEM_FENCE);
if (id <  16) smem[id] = sum = sum + smem[id +  16]; barrier(CLK_LOCAL_MEM_FENCE);
if (id <   8) smem[id] = sum = sum + smem[id +   8]; barrier(CLK_LOCAL_MEM_FENCE);
if (id <   4) smem[id] = sum = sum + smem[id +   4]; barrier(CLK_LOCAL_MEM_FENCE);
if (id <   2) smem[id] = sum = sum + smem[id +   2]; barrier(CLK_LOCAL_MEM_FENCE);
if (id <   1) smem[id] = sum = sum + smem[id +   1]; barrier(CLK_LOCAL_MEM_FENCE);
sum = smem[0];

Before



63

Maximizing Compute Performance

• The OpenCL™ 2.0 standard offers new workgroup reductions and scans

- Operations available: add, min, max

- Allows reductions and scans without exposed local memory or barriers

- Device-specific implementation very efficient for the hardware

sum = work_group_reduce_add(input);

After

New!



64

Maximizing Compute Performance

• The OpenCL™ 2.0 standard offers new workgroup reductions and scans

- Operations available: add, min, max

- Allows reductions and scans without exposed local memory or barriers

- Device-specific implementation very efficient for the hardware

sum = work_group_reduce_add(input);

After

 No exposed local memory or 
barriers

 Code written independent of 
workgroup size

 Intel optimized for Processor 
GraphicsNew!



65

Use work group reductions to 
clean up and speed up code!

Maximizing Compute Performance

• The OpenCL™ 2.0 standard offers new workgroup reductions and scans

- Operations available: add, min, max

- Allows reductions and scans without exposed local memory or barriers

- Device-specific implementation very efficient for the hardware

sum = work_group_reduce_add(input);

After

 No exposed local memory or 
barriers

 Code written independent of 
workgroup size

 Intel optimized for Processor 
GraphicsNew!



66

Agenda

• Intel® Graphics Introduction

• OpenCV 3.0 on Intel Graphics

• OpenCL™ Applications on Intel® Graphics Architecture

• Optimization Techniques

- Maximizing Occupancy

- Optimizing Memory Access

- Using Registers

- Maximizing Computation

• Intel® VTune™ Amplifier XE 2013 Support for OpenCL Applications

• New OpenCL 2.0 Features

• Summary / Questions



67

Intel® VTune™ Amplifier XE 2015

Aggregate Per-
Kernel Metrics

EU Activity

Memory 
Traffic

OpenCL™ Command 
Queue Profile



68

Intel® VTune™ Amplifier XE 2015

Aggregate Per-
Kernel Metrics

EU Activity

Memory 
Traffic

OpenCL™ Command 
Queue Profile

Use Intel® Vtune™ Amplifier XE 
for CPU and GPU performance 

analysis!



69

Agenda

• Intel® Graphics Introduction

• OpenCV 3.0 on Intel Graphics

• OpenCL™ Applications on Intel® Graphics Architecture

• Optimization Techniques

- Maximizing Occupancy

- Optimizing Memory Access

- Using Registers

- Maximizing Computation

• Intel® VTune™ Amplifier XE 2013 Support for OpenCL Applications

• New OpenCL 2.0 Features

• Summary / Questions



70

Exciting New Features in OpenCL™ 2.0 Standard

• Intel® Processor Graphics Gen8 supports the OpenCL™ 2.0 standard, including

















Go to intel.com/software/opencl to learn more!

New!



71

Exciting New Features in OpenCL™ 2.0 Standard

• Intel® Processor Graphics Gen8 supports the OpenCL™ 2.0 standard, including
- Shared Virtual Memory (coarse- and fine-grained 

buffer-based SVM)

 Share pointer-rich data structures (no more marshaling!)

 Hardware-supported byte-level coherency













Go to intel.com/software/opencl to learn more!

New!



72

Exciting New Features in OpenCL™ 2.0 Standard

• Intel® Processor Graphics Gen8 supports the OpenCL™ 2.0 standard, including
- Shared Virtual Memory (coarse- and fine-grained 

buffer-based SVM)

 Share pointer-rich data structures (no more marshaling!)

 Hardware-supported byte-level coherency

- Nested Parallelism

 Kernels can enqueue more kernels

 Great for divide and conquer algorithms









Go to intel.com/software/opencl to learn more!

New!



73

Exciting New Features in OpenCL™ 2.0 Standard

• Intel® Processor Graphics Gen8 supports the OpenCL™ 2.0 standard, including
- Shared Virtual Memory (coarse- and fine-grained 

buffer-based SVM)

 Share pointer-rich data structures (no more marshaling!)

 Hardware-supported byte-level coherency

- Nested Parallelism

 Kernels can enqueue more kernels

 Great for divide and conquer algorithms

- Non-uniform work-group sizes

 No longer necessary for work group size to evenly divide NDRange size

 Less conditional code, better SIMD usage, better memory access patterns





Go to intel.com/software/opencl to learn more!

New!



74

Exciting New Features in OpenCL™ 2.0 Standard

• Intel® Processor Graphics Gen8 supports the OpenCL™ 2.0 standard, including
- Shared Virtual Memory (coarse- and fine-grained 

buffer-based SVM)

 Share pointer-rich data structures (no more marshaling!)

 Hardware-supported byte-level coherency

- Nested Parallelism

 Kernels can enqueue more kernels

 Great for divide and conquer algorithms

- Non-uniform work-group sizes

 No longer necessary for work group size to evenly divide NDRange size

 Less conditional code, better SIMD usage, better memory access patterns

- Generic address space

 In many cases, __local, __global, and __constant can be inferred by the compiler

 Write generic functions that operate on any address space

Go to intel.com/software/opencl to learn more!

New!



75

Agenda

• Intel® Graphics Introduction

• OpenCV 3.0 on Intel Graphics

• OpenCL™ Applications on Intel® Graphics Architecture

• Optimization Techniques

- Maximizing Occupancy

- Optimizing Memory Access

- Using Registers

- Maximizing Computation

• Intel® VTune™ Amplifier XE 2013 Support for OpenCL Applications

• New OpenCL 2.0 Features

• Summary / Questions



76

Summary



77

Summary

• OpenCL™ applications make excellent use of Intel® Graphics architecture 
in a standard programming model



78

Summary

• OpenCL™ applications make excellent use of Intel® Graphics architecture 
in a standard programming model

• OpenCV uses OpenCL to take advantage of Intel Graphics



79

Summary

• OpenCL™ applications make excellent use of Intel® Graphics architecture 
in a standard programming model

• OpenCV uses OpenCL to take advantage of Intel Graphics

• Following optimization advice for Intel Graphics can provide dramatic 
performance improvements

- Maximize occupancy

- Optimize memory accesses

- Use registers

- Optimize compute



80

Summary

• OpenCL™ applications make excellent use of Intel® Graphics architecture 
in a standard programming model

• OpenCV uses OpenCL to take advantage of Intel Graphics

• Following optimization advice for Intel Graphics can provide dramatic 
performance improvements

- Maximize occupancy

- Optimize memory accesses

- Use registers

- Optimize compute

• Use Intel® VTune™ Amplifier to analyze your code and guide 
optimizations



81

Acknowledgements

• This presentation would not have been possible without material and 
review comments from many people – Thank you!

• Ben Ashbaugh, Murali Sundaresan, Stephen Junkins, Deepti Joshi, Tom 
Craver, Brijender Bharti, Michal Mrozek, Pavan Lanka, Adam Lake, Arnon 
Peleg, Mostafa Hagog, Raun Krisch, Berna Adalier, Allen Hux, Robert 
Ioffe, Mike MacPherson, Dan Petre, Konstantin Rodyushkin, Mikhail 
Letavin, Maxim Shevtsov, Alexander Batushin, Tim Bauer, Ron Miller, 
Julia Fedorova, Alexander Kurylev, Vitaly Slobodskoy, Scott Janus 



82

Download, Learn, Code, Optimize
• Free download of Intel® SDK for OpenCL™ Applications at: 

intel.com/software/opencl

• Follow us: @IntelOpenCL

• Contact as through our forum: 
http://software.intel.com/en-us/forums/intel-opencl-sdk

Try related products:

• Native client development with Intel® Integrated Native 
Developer Experience (Intel® INDE) 

• Performance tuning with the Intel® VTune™ Amplifier XE

• Media performance with the Intel® Media SDK 

What is available online?

 Free Downloads

 Code Samples

 Documentation

 Tech Articles

 Reviews

 Forums and Support

 Webinars

A PDF of this presentation is available from our Technical 
Session Catalog: www.intel.com/idfsessionsSF.  This URL is 
also printed on the top of Session Agenda Pages in the Pocket 
Guide.

http://www.intel.com/idfsessionsSZ


83

Legal Disclaimer
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY 
INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, 
INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS 
INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR 
OTHER INTELLECTUAL PROPERTY RIGHT.
A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death. SHOULD YOU 
PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, 
SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND 
EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH 
ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, 
MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.
Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features 
or instructions marked "reserved" or "undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities 
arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information.
The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published 
specifications. Current characterized errata are available on request.
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.
Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-4725, or go 
to: http://www.intel.com/design/literature.htm

Intel Iris, Iris Pro, Core, VTune and the Intel logo are trademarks of Intel Corporation in the United States and other countries.  

*Other names and brands may be claimed as the property of others.
OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos.
Copyright ©2014 Intel Corporation.

http://www.intel.com/design/literature.htm


84

• Iris™ Graphics: Iris™ graphics is available on select systems. Consult your system manufacturer.
• Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. 

Performance tests, such as SYSmark* and MobileMark*, are measured using specific computer systems, components, software, 
operations and functions.  Any change to any of those factors may cause the results to vary. You should consult other information 
and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when 
combined with other products. For more information go to http://www.intel.com/performance.

Legal Disclaimer

http://www.intel.com/performance


85

Risk Factors
The above statements and any others in this document that refer to plans and expectations for the second quarter, the year and the future are forward-
looking statements that involve a number of risks and uncertainties. Words such as “anticipates,” “expects,” “intends,” “plans,” “believes,” “seeks,” 
“estimates,” “may,” “will,” “should” and their variations identify forward-looking statements. Statements that refer to or are based on projections, 
uncertain events or assumptions also identify forward-looking statements. Many factors could affect Intel’s actual results, and variances from Intel’s 
current expectations regarding such factors could cause actual results to differ materially from those expressed in these forward-looking statements. 
Intel presently considers the following to be important factors that could cause actual results to differ materially from the company’s expectations. 
Demand for Intel's products is highly variable and, in recent years, Intel has experienced declining orders in the traditional PC market segment.  Demand 
could be different from Intel's expectations due to factors including changes in business and economic conditions; consumer confidence or income 
levels; customer acceptance of Intel’s and competitors’ products; competitive and pricing pressures, including actions taken by competitors; supply 
constraints and other disruptions affecting customers; changes in customer order patterns including order cancellations; and changes in the level of 
inventory at customers. Intel operates in highly competitive industries and its operations have high costs that are either fixed or difficult to reduce in the 
short term. Intel's gross margin percentage could vary significantly from expectations based on capacity utilization; variations in inventory valuation, 
including variations related to the timing of qualifying products for sale; changes in revenue levels; segment product mix; the timing and execution of 
the manufacturing ramp and associated costs; excess or obsolete inventory; changes in unit costs; defects or disruptions in the supply of materials or 
resources; and product manufacturing quality/yields.  Variations in gross margin may also be caused by the timing of Intel product introductions and 
related expenses, including marketing expenses, and Intel's ability to respond quickly to technological developments and to introduce new products or 
incorporate new features into existing products, which may result in restructuring and asset impairment charges. Intel's results could be affected by 
adverse economic, social, political and physical/infrastructure conditions in countries where Intel, its customers or its suppliers operate, including 
military conflict and other security risks, natural disasters, infrastructure disruptions, health concerns and fluctuations in currency exchange rates. Intel’s 
results could be affected by the timing of closing of acquisitions, divestitures and other significant transactions. Intel's results could be affected by 
adverse effects associated with product defects and errata (deviations from published specifications), and by litigation or regulatory matters involving 
intellectual property, stockholder, consumer, antitrust, disclosure and other issues, such as the litigation and regulatory matters described in Intel's SEC 
filings. An unfavorable ruling could include monetary damages or an injunction prohibiting Intel from manufacturing or selling one or more products, 
precluding particular business practices, impacting Intel’s ability to design its products, or requiring other remedies such as compulsory licensing of 
intellectual property. A detailed discussion of these and other factors that could affect Intel’s results is included in Intel’s SEC filings, including the 
company’s most recent reports on Form 10-Q, Form 10-K and earnings release.

Rev. 4/15/14


