

Using Intel® Visual Fortran to Create
and Build Windows*-Based Applications

Document Number: 324197-001US

www.intel.com

Legal Information

Contents
Legal Information.. 5

Chapter 1: Introduction
Overview..6
Notational Conventions...6
Related Information... 7

Chapter 2: Creating Windowing Applications
Creating Windowing Applications Overview..8
Understanding Coding Requirements for Fortran Windowing Applications...........8
Using Menus and Dialogs in SDI and MDI Fortran Windowing Applications........11
Sample Fortran Windows Applications...13
Advanced Graphics Using OpenGL.. 13

Chapter 3: Creating and Using DLLs
Creating and Using Fortran DLLs Overview.. 15
Coding Requirements for Sharing Procedures in DLLs....................................15
Coding Requirements for Sharing Data in DLLs.. 16
Building Dynamic-Link Libraries... 18
Building Executables that Use DLLs.. 20

Chapter 4: Using QuickWin
Using QuickWin Overview..21
Special Naming Convention for Certain QuickWin and Windows* Graphics

Routines... 22
Comparing QuickWin with Windows*-Based Applications............................... 22
Using Windows API Routines with QuickWin...23
Types of QuickWin Programs... 23

QuickWin Programs Overview..23
Fortran Standard Graphics Applications...24
Fortran QuickWin Graphics Applications.. 24

The QuickWin User Interface... 25
QuickWin User Interface Overview... 25
Default QuickWin Menus... 25

USE Statement Needed for Fortran QuickWin Applications............................. 26
Creating QuickWin Windows.. 27

Creating QuickWin Windows Overview.. 27
Accessing Window Properties...27
Creating Child Windows.. 29
Giving a Window Focus and Setting the Active Window......................... 31
Keeping Child Windows Open.. 32
Controlling Size and Position of Windows.. 32

Using QuickWin Graphics Library Routines...33
Using Graphics Library Routines...33
Selecting Display Options..33
Checking the Current Graphics Mode.. 34

Using Intel® Visual Fortran to Create and Build Windows*-Based Applications

2

Setting the Graphics Mode.. 34
Setting Figure Properties.. 35
Understanding Coordinate Systems..35

Understanding Coordinate Systems Overview..............................35
Text Coordinates... 36
Graphics Coordinates... 36
Setting Graphics Coordinates.. 39
Real Coordinates Sample Program... 39

Adding Color... 43
Adding Color Overview... 43
Color Mixing... 44
VGA Color Palette.. 45
Using Text Colors.. 46

Writing a Graphics Program...46
Writing a Graphics Program Overview.. 46
Activating a Graphics Mode...47
Drawing Lines on the Screen...48
Drawing a Sine Curve.. 49
Adding Shapes.. 50

Displaying Graphics Output... 51
Displaying Graphics Output Overview...51
Drawing Graphics.. 51
Displaying Character-Based Text... 53
Displaying Font-Based Characters..54
Using Fonts from the Graphics Library..54

Storing and Retrieving Images.. 57
Working With Screen Images.. 57
Transferring Images in Memory...58
Loading and Saving Images to Files... 58
Editing Text and Graphics from the QuickWin Edit Menu................58

Customizing QuickWin Applications.. 59
Customizing QuickWin Applications Overview.............................. 59
Enhancing QuickWin Applications...59
Controlling Menus..60
Changing Status Bar and State Messages................................... 63
Displaying Message Boxes.. 63
Defining an About Box..64
Using Custom Icons... 64
Using a Mouse.. 64

QuickWin Programming Precautions... 67
QuickWin Programming Precautions Overview............................. 67
Using Blocking Procedures.. 67
Using Callback Routines... 68

Simulating Nonblocking I/O...68

Chapter 5: Using Dialog Boxes for Application Controls
Using Dialog Boxes for Application Controls Overview................................... 69
Using the Resource Editor to Design a Dialog Box...69

Designing a Dialog Box Overview...69
Setting Control Properties... 73

Contents

3

Including Resources Using Multiple Resource Files................................74
The Include (.FD and .H) Files... 74

Writing a Dialog Application...74
Writing a Dialog Application Overview...75
Initializing and Activating the Dialog Box.. 75
Using Dialog Callback Routines.. 77
Using a Modeless Dialog Box... 78
Using Fortran AppWizards to Help Add Modal Dialog Box Coding............ 79
Using Fortran AppWizards to Help Add Modeless Dialog Box Coding........ 81
Using Dialog Controls in a DLL...83

Summary of Dialog Routines... 84
Understanding Dialog Controls...85

Understanding Dialog Controls Overview...85
Using Control Indexes.. 86
Available Indexes for Each Dialog Control..87
Specifying Control Indexes..90

Using Dialog Controls... 91
Using Dialog Controls Overview... 91
Using Static Text... 92
Using Edit Boxes..92
Using Group Boxes.. 93
Using Check Boxes and Radio Buttons.. 93
Using Buttons... 94
Using List Boxes and Combo Boxes.. 94
Using Scroll Bars... 97
Using Pictures... 98
Using Progress Bars... 98
Using Spin Controls..98
Using Sliders...99
Using Tab Controls...99
Setting Return Values and Exiting.. 100

Using ActiveX* Controls.. 100
Using ActiveX* Controls Overview.. 101
Using the Resource Editor to Insert an ActiveX Control........................101
Using the Intel® Fortran Module Wizard to Generate a Module.............. 101
Adding Code to Your Application...102
Registering an ActiveX Control...104

Using Intel® Visual Fortran to Create and Build Windows*-Based Applications

4

Legal Information
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL(R) PRODUCTS. NO LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS
GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR
SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR
IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT
OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR
INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A
SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.
Intel may make changes to specifications and product descriptions at any time, without notice. Designers
must not rely on the absence or characteristics of any features or instructions marked "reserved" or
"undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts
or incompatibilities arising from future changes to them. The information here is subject to change without
notice. Do not finalize a design with this information.
The products described in this document may contain design defects or errors known as errata which may
cause the product to deviate from published specifications. Current characterized errata are available on
request.
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing
your product order.
Copies of documents which have an order number and are referenced in this document, or other Intel
literature, may be obtained by calling 1-800-548-4725, or by visiting Intel's Web Site.

Intel processor numbers are not a measure of performance. Processor numbers differentiate features within
each processor family, not across different processor families. See http://www.intel.com/products/
processor_number for details.

Centrino, Cilk, Intel, Intel Atom, Intel Core, Intel NetBurst, Itanium, MMX, Pentium, Xeon are trademarks of
Intel Corporation in the U.S. and/or other countries.

* Other names and brands may be claimed as the property of others.

Copyright (C) 1996-2012, Intel Corporation. All rights reserved.

Copyright (C) 2012, Intel Corporation. All rights reserved.

Portions Copyright (C) 2001, Hewlett-Packard Development Company, L.P.

Microsoft product screen shot(s) reprinted with permission from Microsoft Corporation.

5

Introduction 1
Overview
This document describes how to use features specific to Windows* OS when building applications using the
Intel® Visual Fortran Compiler.

Notational Conventions
This documentation uses the following conventions:

THIS TYPE Indicates statements, data types, directives, and
other language keywords. Examples of statement
keywords are WRITE, INTEGER, DO, and OPEN.

this type Indicates command-line or option arguments, new
terms, or emphasized text. Most new terms are
defined in the Glossary.

This type Indicates a code example.

This type Indicates what you type as input.

This type Indicates menu names, menu items, button names,
dialog window names, and other user-interface
items.

File > Open Menu names and menu items joined by a greater
than (>) sign indicate a sequence of actions. For
example, "Click File>Open" indicates that in the
File menu, click Open to perform this action.

{value | value} Indicates a choice of items or values. You can
usually only choose one of the values in the braces.

[item] Indicates items that are optional. Brackets are also
used in code examples to show arrays.

item [, item]... Indicates that the item preceding the ellipsis (three
dots) can be repeated. In some code examples, a
horizontal ellipsis means that not all of the
statements are shown.

Windows* OS

Windows operating system

These terms refer to all supported Windows*
operating systems.

compiler option This term refers to Windows* OS options that can
be used on the compiler command line.

 1 Using Intel® Visual Fortran to Create and Build Windows*-Based Applications

6

Related Information
For more information, see the Intel® Visual Fortran Compiler documentation set, and specifically the Intel®
Visual Fortran Compiler User and Reference Guides.

These guides include the following information:

• Key features
• Compatibility and Portability
• Compilation
• Program Structure
• Compiler Reference
• Language Reference

Introduction 1

7

Creating Windowing Applications 2
Creating Windowing Applications Overview
With Intel® Fortran, you can build Fortran applications that are also fully-featured Windows*-based
applications. You can create full Windows-based applications that use the familiar Windows interface,
complete with tool bars, pull-down menus, dialog boxes, and other features. You can include data entry and
mouse control, and interaction with programs written in other languages or commercial programs such as
Microsoft* Excel*.

With full Windows-based applications programming you can:

• Deliver Fortran applications with a Windows Graphical User Interface (GUI). GUI applications typically use
at least the Graphic Device Interface (GDI) and USER32 Windows API routines.

• Access all available Windows GDI calls with your Fortran applications. GDI functions use a 32-bit
coordinate system, allowing coordinates in the +/-2 GB range, and performs skewing, reflection, rotation
and shearing.

Only the Fortran Windows project type provides access to the full set of Windows API routines needed to
create GUI applications. Windows projects are much more complex than other kinds of Fortran projects.
Before attempting to use the full capabilities of Windows programming, you should be comfortable with
writing C applications and should familiarize yourself with the .NET Framework Software Development Kit
(SDK).

To build your application as a Fortran Windows application in the visual development environment, choose
Windowing Application from the list of Project types when you open a new project.

When using the command line, specify the /winapp option to search the commonly used link libraries.

Fortran Windows applications must use the IFWIN module or subset of IFWIN.

The following Fortran Windows application topics are discussed:

See Also
Understanding Coding Requirements for Fortran Windowing Applications
Using Menus and Dialogs in SDI and MDI Fortran Windowing Applications

Understanding Coding Requirements for Fortran Windowing
Applications
This topic covers the following:

• General Coding Requirements: WinMain Function and USE Statements
• Code Generation Options Using the Fortran Windows Application Wizard
• Single Document Interface (SDI) or Multiple Document Interface (MDI) Sample Code

General Coding Requirements: WinMain Function and USE Statements
Coding requirements for Fortran Windowing applications include (in the following order):

1. WinMain function declaration and interface

 2 Using Intel® Visual Fortran to Create and Build Windows*-Based Applications

8

The WinMain function declaration and interface are required for Windows Graphical User Interface (GUI)
applications (typically use at least the GDI and USER32 Windows API routines). An interface block for
the function declaration can be provided. The following function must be defined by the user:
INTEGER(DWORD) function WinMain (hInstance, hPrevInstance, &
& lpszCmdLine, nCmdShow)
use IFWIN
!DEC$ ATTRIBUTES STDCALL, DECORATE, ALIAS:”WinMain” :: WinMain
INTEGER(HANDLE), INTENT(IN) :: hInstance, hPrevInstance
INTEGER(LPVOID), INTENT(IN) :: lpszCmdLine
INTEGER(DWORD), INTENT(IN) :: nCmdShow

In a program that includes a WinMain function, no program unit can be identified as the main program
with the PROGRAM statement.

2. The statement USE IFWIN or other appropriate USE statements

The USE IFWIN statement makes available declarations of constants, derived types and procedure
interfaces for much of the Windows Application Programming Interface (API) routines, also referred to
as the Windows API. The Intel® Visual Fortran Compiler also provides individual modules for the various
libraries that make up the Windows API, such as KERNEL32 and USER32. Any Fortran program or
subprogram that references declarations from the Windows API must include a USE statement for either
IFWIN, which collects all the available modules, or the appropriate subset modules for the Windows API
libraries that are used.

If you want to limit the type of parameters and interfaces for Windows applications or if unresolved
references occur when linking your Fortran Windowing application, see the Intel® Visual Fortran
Compiler User and Reference Guides for information on calling Windows API routines.

3. Data declarations for the WinMain function arguments.
4. Application-dependent code (other USE statements, variable declarations, and then executable code).

For example, consider the first lines of this sample, which uses free-form source code:
INTEGER(DWORD) function WinMain (hInstance, hPrevInstance, &
& lpszCmdLine, nCmdShow)
use IFWIN
!DEC$ ATTRIBUTES STDCALL, DECORATE, ALIAS:”WinMain” :: WinMain
INTEGER(HANDLE), INTENT(IN) :: hInstance, hPrevInstance
INTEGER(LPVOID), INTENT(IN) :: lpszCmdLine
INTEGER(DWORD), INTENT(IN) :: nCmdShow
 .
 .
 .

IFWIN.F90 includes a Fortran version (a subset) of the Windows WINDOWS.H header file.

Code Generation Options Using the Fortran Windowing Application Wizard
When you choose the Fortran Windowing Application project type, you will need to select the type of project.

The following choices are available:

• Empty project
• Single Document Interface (SDI) sample code
• Multiple Document Interface (MDI) sample code
• Dialog-based sample code
• Single Document Interface (SDI) ActiveX* sample code
• Multiple Document Interface (MDI) ActiveX sample code
• Dialog-based ActiveX sample code

The ActiveX AppWizards will add additional template code for supporting ActiveX controls in your dialog
boxes.

Creating Windowing Applications 2

9

Single Document Interface (SDI) or Multiple Document Interface (MDI) Sample Code
Creating these types of application requires advanced programming expertise and knowledge of the Windows
routines API. Such applications call certain library routines and require the statement USE IFWIN. SDI
applications display a single window, whereas MDI application can display multiple windows (a main frame
window with one or more child windows that appear within the frame window).

For example, select the MDI option from the Fortran AppWizard screen. After you build and run the
application (without changing the source files), the following screen might appear after you create two child
window by clicking New from the File menu twice:

If you selected the SDI option from the Fortran AppWizard screen and built and ran the application, you
could not create child windows within the main window.

For more information:

• On using menus and dialogs from SDI and MDI Fortran Windowing applications, see Using Menus and
Dialogs in SDI and MDI Fortran Windowing Applications

• About SDI and MDI Samples that use the Fortran Windowing project type, see Sample Fortran Windows
Applications.

Dialog-Based Sample Code
Dialog applications use a dialog box for the application's main window. Creating these applications requires
some knowledge of the Windows routines API, but considerably less than for a SDI or MDI application. These
applications call certain Intel Visual Fortran library routines and require the statement USE IFLOGM. Dialog-
based applications usually do not have menus.

 2 Using Intel® Visual Fortran to Create and Build Windows*-Based Applications

10

For example, select the Dialog-based applications from the Fortran AppWizard screen. After you build and
run the application (without changing the source files), the following dialog box appears:

You can use dialogs in any project type. Dialogs don’t require the use of a windowing application if you are
using the module IFLOGM.

For more information:

• On using dialog boxes, see Using Dialog Boxes for Application Controls Overview

Using Menus and Dialogs in SDI and MDI Fortran Windowing
Applications
This section describes the following topics:

• Creating the Menu
• Using the Menu
• Handling Menu Messages
• Using Dialogs in an SDI or MDI Application

Creating the Menu
When you create a new SDI or MDI application, a default menu bar is created for you. The default menu bar
contains many of the menu entries that are common to Windows applications. You can modify the default
menu, or create a new menu, by using the Menu Editor, which is one of the Visual Studio Resource Editors.
The Resource Editor is not available with the Visual Studio Shell.

To create a new menu resource (menu bar):

1. From the Insert menu, select Resource.
2. Select Menu as the resource type.

The menu bar consists of multiple menu names, where each menu name contains one or more items. You
can use the Menu Editor to create submenus (select the pop-up property).

To edit an existing menu:

1. Double-click on the project .RC file.
2. Expand the Menu item in the list of resource types.
3. Double click on the menu name.

Creating Windowing Applications 2

11

For more information about the menu resource editor, see the Visual C++ User's Guide section on Resource
Editors.

Using the Menu
To use a menu bar in your Fortran application, you must load the menu resource and use it when creating
the main window of the application. Code to do this is created automatically by the Fortran Windowing
AppWizard. The code that loads the menu resource is:
 ghMenu = LoadMenu(hInstance, LOC(lpszMenuName))

The returned menu handle is then used in the call to CreatWindowEx:
 ghwndMain = CreateWindowEx(0, lpszClassName, &
 lpszAppName, &
 INT(WS_OVERLAPPEDWINDOW), &
 CW_USEDEFAULT, &
 0, &
 CW_USEDEFAULT, &
 0, &
 NULL, &
 ghMenu, &
 hInstance, &
 NULL &
)

Handling Menu Messages
Windows sends a WM_COMMAND message to the main window when the user selects an item from the
menu. The wParam parameter to the WM_COMMAND message contains:

• The low-order word specifies the identifier of the menu item
• The high-order word specifies either 0 if the message is from a menu item, or 1 if the message is the

result of an accelerator key. It is usually not important to distinguish between these two cases, but you
must be careful to compare against only the low-order word as in the example below.

For example, the following code from the main window procedure generated by the Fortran Windowing
AppWizard handles the WM_COMMAND messages from the File menu Exit item and the Help menu About
item:
 ! WM_COMMAND: user command
 case (WM_COMMAND)
 select case (IAND(wParam, 16#ffff))

 case (IDM_EXIT)
 ret = SendMessage(hWnd, WM_CLOSE, 0, 0)
 MainWndProc = 0
 return
 case (IDM_ABOUT)
 lpszName = "AboutDlg"C
 ret = DialogBoxParam(ghInstance,LOC(lpszName),hWnd,&
 LOC(AboutDlgProc), 0)
 MainWndProc = 0
 return

 ...

For advanced techniques with using menus, refer to the online Platform SDK section on User Interface
Services.

Using Dialogs in an SDI or MDI Application
A Fortran Windowing SDI or MDI application that uses dialogs has the choice of using:

 2 Using Intel® Visual Fortran to Create and Build Windows*-Based Applications

12

• Intel Visual Fortran Dialog routines
• native Windows APIs for creating dialog boxes

For any particular dialog box, you should use either the Intel Visual Fortran Dialog routines or the native
Windows dialog box APIs. For example, if you create a dialog box using Windows APIs, you cannot use the
Intel Visual Fortran dialog routines to work with that dialog box.

You should note, for example, that the code generated by the Fortran Windows AppWizard uses the native
Windows APIs to display the About dialog box.

For more information:

• On using the Intel Visual Fortran Dialog routines, see Using Dialog Boxes for Application Controls
Overview

• On using the Windows APIs, see the online Platform SDK section on User Interface Services

Sample Fortran Windows Applications
The Intel Visual Fortran Samples folder contains many Fortran Windowing applications that demonstrate
Windows* functionality or a particular Windows function. See the product release notes for the location of the
Samples folder.

If you are unfamiliar with full Windows applications, start by looking at:

• Sample SDI and MDI Fortran Windows Samples in the WIN32 folder, such as Generic, Platform, or Angle.
• Sample dialog Fortran Windows Samples in the DIALOG folder, such as TEMP and WHIZZY. For more

information about coding requirements for dialog boxes and using the Dialog Resource editor, see Using
Dialog Boxes for Application Controls Overview.

Advanced Graphics Using OpenGL
OpenGL is a library of graphic functions that create sophisticated graphic displays such as 3-D images and
animation. OpenGL is commonly available on workstations. Writing to this standard allows your program to
be ported easily to other platforms.

OpenGL windows are used independently of and in addition to any console, QuickWin and regular Windows
windows your application uses. Every window in OpenGL uses a pixel format, and the pixels carry, among
other things, RGB values, opacity values, and depth values so that pixels with a small depth (shallow)
overwrite deeper pixels. The basic steps in creating OpenGL applications are:

• Specify the pixel format
• Specify how the pixels will be rendered on the video device
• Call OpenGL commands

OpenGL programming is straightforward, but requires a particular initialization and order, like other software
tools. References to get you started are:

• The OpenGL Reference Manual, Addison-Wesley, ISBN 0-201-46140-4.
• The OpenGL Programming Guide, Addison-Wesley, ISBN 0-201-46138-2.
• OpenGL SuperBible: The Complete Guide to OpenGL Programming on Windows NT and Windows 95,

Richard Wright and Michael Sweet, Waite Group Press (Division of Sams Publishing), 1996, ISBN
1-57169-073-5.

• OpenGL documentation in the Platform SDK title in HTML Help Viewer.
• The OpenGL description from the Microsoft Visual C++ manuals.

NOTE
Microsoft no longer provides the glAux procedures.

Creating Windowing Applications 2

13

Intel Visual Fortran provides an OpenGL module, IFOPNGL.MOD, invoked with the USE statement line:
 USE IFOPNGL
When you use this module, all constants and interfaces that bind Fortran to the OpenGL routines become
available. Any link libraries required to link with an OpenGL program are automatically searched if USE
IFOPNGL is present in your Fortran program.

An OpenGL window can be opened from a console, Windows, or QuickWin application. The OpenGL window
uses OpenGL calls exclusively, not normal Graphic Device Interface (GDI) calls. Likewise, OpenGL calls
cannot be made within an ordinary Windows window or QuickWin child window, because special initialization
is required for OpenGL calls.

The Fortran OpenGL identifiers are the same as the C identifiers (such as using a GL_ prefix for constants),
except that the gl prefix is changed to fgl for routines and identifier lengths are limited to 31 characters . The
data types in the OpenGL C binding are translated to Fortran types as shown in the following table:

OpenGL/C Type Fortran Data Type

GLbyte INTEGER(1)

GLshort INTEGER(2)

GLint, GLsizei INTEGER(4)

GLfloat, GLclampf REAL(4)

GLdouble, GLclampd REAL(8)

GLubyte INTEGER(1)

GLboolean INTEGER(1)

GLushort INTEGER(2)

GLuint, GLenum, GLbitfield INTEGER(4)

GLvoid INTEGER(INT_PTR_KIND())

pointers INTEGER(INT_PTR_KIND())

If you include (USE) the parameter constant definitions from IFOPNGLT.F90 (such as by USE IFOPNGL), you
can use the constants to specify the kind type, such as INTEGER(K_GLint) instead of INTEGER(4).

 2 Using Intel® Visual Fortran to Create and Build Windows*-Based Applications

14

Creating and Using DLLs 3
Creating and Using Fortran DLLs Overview
A dynamic-link library is a collection of source and object code and is similar in many ways to a static library.
The differences between the two libraries are:

• The DLL is associated with a main project during execution, not during linking. Unlike a static library
where routines are included in the base executable image during linking, the routines in a DLL are loaded
when an application that references that DLL is loaded (run time).

A dynamic-link library (DLL) contains one or more subprogram procedures (functions or subroutines) that are
compiled, linked, and stored separately from the applications using them. Because the functions or
subroutines are separate from the applications using them, they can be shared or replaced easily.

Other advantages of DLLs include:

• You can change the functions in a DLL without recompiling or relinking the applications that use them, as
long as the functions' arguments and return types do not change.

This allows you to upgrade your applications easily. For example, a display driver DLL can be modified to
support a display that was not available when your application was created.

• When general functions are placed in DLLs, the applications that share the DLLs can have smaller
executables.

• Multiple applications can access the same DLL. This reduces the overall amount of memory needed in the
system, which results in fewer memory swaps to disk and improves performance.

• Common blocks or module data placed in a DLL can be shared across multiple processes.

To build a DLL in the integrated development environment, specify the Fortran Dynamic-Link Library project
type. On the command line, specify the /dll option.

You cannot make a QuickWin application into a DLL (see Using QuickWin Overview) and QuickWin
applications cannot be used with Fortran run-time routines in a DLL.

See Also
Coding Requirements for Sharing Procedures in DLLs
Coding Requirements for Sharing Data in DLLs
Building Dynamic-Link Libraries
Building Executables that Use DLLs

Coding Requirements for Sharing Procedures in DLLs
A dynamic-link library (DLL) contains one or more subprograms that are compiled, linked and stored
separately from the applications using them.

Coding requirements include using the cDEC$ ATTRIBUTES compiler directive DLLIMPORT and DLLEXPORT
options. Variables and routines declared in the main program and in the DLL are not visible to each other
unless you use DLLIMPORT and DLLEXPORT.

This section discusses aspects of sharing subprogram procedures (functions and subroutines) in a Fortran
DLL.

To export and import each DLL subprogram:

15

1. Within your Fortran DLL, export each subprogram that will be used outside the DLL. Add !DEC$
ATTRIBUTES DLLEXPORT to declare that a function, subroutine, or data is being exported outside the
DLL. For example:
SUBROUTINE ARRAYTEST(arr)
!DEC$ ATTRIBUTES DLLEXPORT :: ARRAYTEST
REAL arr(3, 7)
INTEGER i, j
DO i = 1, 3
DO j = 1, 7
arr (i, j) = 11.0 * i + j
END DO
END DO
END SUBROUTINE

2. Within your Fortran application, import each DLL subprogram. Add !DEC$ ATTRIBUTES DLLIMPORT to
declare that a function, subroutine, or data is being imported from outside the current image. For
example:
INTERFACE
SUBROUTINE ARRAYTEST (rarray)
!DEC$ ATTRIBUTES DLLIMPORT :: ARRAYTEST
REAL rarray(3, 7)
END SUBROUTINE ARRAYTEST
END INTERFACE
CALL ARRAYTEST (rarray)
Or, not using an INTERFACE block:
PROGRAM TESTA
!DEC$ ATTRIBUTES DLLIMPORT:: ARRAYTEST
REAL rarray (3,7)
CALL ARRAYTEST(rarray)
END PROGRAM TESTA
The DLLEXPORT and DLLIMPORT options (for the cDEC$ ATTRIBUTES directive) tell the linker that a
procedure, variable or COMMON block is to be visible in a DLL, or that it can be found in a DLL.

The DLLEXPORT property declares that functions or data are being exported to other images or DLLs,
usually eliminating the need for a Linker module definition (.DEF) file to export symbols for the
functions or subroutines declared with DLLEXPORT. When you declare a function, subroutine, or data
with the DLLEXPORT property, it must be defined in the same module of the same program.

A program that uses symbols defined in another image (such as a DLL) must import them. The DLL
user needs to link with the import LIB file from the other image and use the DLLIMPORT property inside
the application that imports the symbol. The DLLIMPORT option is used in a declaration, not a
definition, because you do not define the symbol you are importing.

3. Build the DLL and then build the main program, as described in Building Dynamic-Link Libraries.

Fortran and C applications can call Fortran and C DLLs provided the calling conventions are consistent.

See Also
Building Dynamic-Link Libraries About building DLLs
Coding Requirements for Sharing Data in DLLs sharing either common block or module data in a
DLL
Exporting and Importing Data Objects in Modules

Coding Requirements for Sharing Data in DLLs
A dynamic-link library (DLL) is an executable file that can be used as a place to share data across processes.

Coding requirements include using the cDEC$ ATTRIBUTES compiler directive DLLIMPORT and DLLEXPORT
options. Variables and routines declared in the program and in the DLL are not visible to each another unless
you use DLLIMPORT and DLLEXPORT.

 3 Using Intel® Visual Fortran to Create and Build Windows*-Based Applications

16

When sharing data among multiple threads or processes, do the following:

• Declare the order, size, and data types of shared data consistently in the DLL and in all procedures
importing the DLL exported data.

• If more than one thread or process can write to the common block simultaneously, use the appropriate
features of the Windows* operating system to control access to the shared data. Such features include
critical sections (for single process, multiple thread synchronization) and mutex objects (for multi-process
synchronization).

This section discusses:

• Exporting and Importing Common Block Data
• Exporting and Importing Data Objects in Modules

Exporting and Importing Common Block Data
Data and code in a dynamic-link library is loaded into the same address space as the data and code of the
program that calls it. However, variables and routines declared in the program and in the DLL are not visible
to one another unless you use the cDEC$ ATTRIBUTES compiler directive DLLIMPORT and DLLEXPORT
options. These directive options enable the compiler and linker to map to the correct portions of the address
space so that the data and routines can be shared, allowing use of common block data across multiple
images.

You can use DLLEXPORT to declare that a common block in a DLL is being exported to a program or another
DLL. Similarly, you can use DLLIMPORT within a calling routine to tell the compiler that a common block is
being imported from the DLL that defines it.

To export and import common block data:

1. Create a common block in the subprogram that will be built into a Fortran DLL. Export that common
block with !DEC$ ATTRIBUTES DLLEXPORT, followed by the COMMON statement, associated data
declarations, and any procedure declarations to be exported. For example:
!DEC$ ATTRIBUTES DLLEXPORT :: /X/
COMMON /X/ C, B, A
REAL C, B, A
END
...

If the Fortran DLL procedure contains only a common block declaration, you can use the BLOCK DATA
statement:
BLOCK DATA T
!DEC$ ATTRIBUTES DLLEXPORT :: /X/
COMMON /X/ C, B, A
REAL C, B, A
END

The Fortran procedure to be linked into a DLL can contain a procedure, such as the following:
 SUBROUTINE SETA(I)
!DEC$ ATTRIBUTES DLLEXPORT :: SETA, /X/
COMMON /X/ C, B, A
REAL C, B, A
INTEGER I
A = A + 1.
I = I + 1
WRITE (6,*) 'In SETA subroutine, values of A and I:' , A, I
RETURN
END SUBROUTINE

2. Refer to the common block in the main program with !DEC$ ATTRIBUTES DLLIMPORT, followed by the
local data declarations and any procedure declarations defined in the exported DLL. For example:
 PROGRAM COMMONX
!DEC$ ATTRIBUTES DLLIMPORT:: SETA, /X/
COMMON /X/ C, B, A

Creating and Using DLLs 3

17

REAL C, B, A, Q
EQUIVALENCE (A,Q)
A = 0.
I = 0
WRITE (6,*) 'In Main program before calling SETA...'
WRITE (6,*) 'values of A and I:' , A, I
CALL SETA(I)
WRITE (6,*) 'In Main program after calling SETA...'
WRITE (6,*) 'values of A and I:' , Q, I A
 = A + 1.
I = I + 1
WRITE (6,*) 'In Main program after incrementing values'
END PROGRAM COMMONX

3. Build the DLL and then build the main program, as described in Building Dynamic-Link Libraries.

Exporting and Importing Data Objects in Modules
You can give data objects in a module the DLLEXPORT property, in which case the object is exported from a
DLL.

When a module is used in other program units, through the USE statement, any objects in the module with
the DLLEXPORT property are treated in the program using the module as if they were declared with the
DLLIMPORT property. So, a main program that uses a module contained in a DLL has the correct import
attributes for all objects exported from the DLL.

You can also give some objects in a module the DLLIMPORT property. Only procedure declarations in
INTERFACE blocks and objects declared EXTERNAL or with cDEC$ ATTRIBUTES EXTERN can have the
DLLIMPORT property. In this case, the objects are imported by any program unit using the module.

If you use a module that is part of a DLL and you use an object from that module that does not have the
DLLEXPORT or DLLIMPORT property, the results are undefined.

For more information:

• On building a DLL, see Building Dynamic-Link Libraries.

Building Dynamic-Link Libraries
When you first create a DLL, create a new project, and select Fortran Dynamic-Link Library as the project
type.

To debug a DLL, you must use a main program that calls the library routines (or references the data). From
the Project Property Pages dialog box, choose the Debugging category. A dialog box is available for you to
specify the executable for a debug session.

To build the DLL from the Microsoft integrated development environment (IDE):

1. A Fortran DLL project is created like any other project, but you must specify Dynamic-Link Library as
the project type.

2. Add files to your Fortran DLL project. Include the DLL Fortran source that exports procedures or data as
a file in your project.

3. If your DLL exports data, consistently specify the project settings options in the Fortran Data compiler
option category for both the DLL and any image that references the DLL's exported data. In the Fortran
Data compiler option category, specify the appropriate values for Common Element Alignment
(common block data) and Structure Member Alignment (structures in a module). This sets the /align
option, which specifies whether padding is needed to ensure that exported data items are naturally
aligned.

For example, in the case of a common block containing four-byte variables, you might:

• Open the appropriate solution and select the project in the Solution View.
• From the Project>Properties, select the Fortran category.

 3 Using Intel® Visual Fortran to Create and Build Windows*-Based Applications

18

• Select Data.
• In the Common Element Alignment box, select 4 Bytes.

4. If you need to specify linker options, use the Linker category of the Project Property Pages dialog box.
5. Build your Fortran DLL project.

The IDE automatically selects the correct linker instructions for loading the proper run-time library
routines (located in a DLL themselves). Your DLL is created as a multithread-enabled library. An import
library (.LIB) is created for use when you link images that reference the DLL.

To build the DLL from the command line:

1. If you build a DLL from the command line or use a makefile, you must specify the /dll option. For
example, if the Fortran DLL source code is in the file f90arr.f90, use the following command line:
ifort /dll f90arr.f90
This command creates:

• A DLL named f90arr.dll.
• An import library, f90arr.lib, that you must link with applications that call your DLL.

If you also specify /exe:file or /link /out:file, the file name you specify is used for a .DLL rather
than an .EXE file (the default file extension becomes projectname.DLL instead of projectname.EXE)

The /dll option selects, as the default, the DLL run-time libraries to support multithreaded operation.
2. If your DLL will export data, the procedures must be compiled and linked consistently. Consistently use

the same /align option for the DLL export procedure and the application that references (imports) it.
The goal is to specify padding to ensure that exported data items are naturally aligned, including
common block data items and structure element alignment (structures in a module).

3. If you need to specify linker options, place them after the /link option on the ifort command line.
4. Build the application. For example, if your DLL exports a common block containing four-byte variables,

you might use the following command line (specify the /dll option):

ifort /align:commons /dll dllfile.for
The /dll option automatically selects the correct linker instructions for loading the proper run-time library
routines (located in a DLL themselves). Your DLL is created as a multithread-enabled library.

The DLL Build Output
When a DLL is built, two library files are typically created:

• An import library (.LIB), which the linker uses to associate a main program with the DLL.
• The .DLL file containing the library's executable code.

Both files have the same basename as the library project by default.

For a build from the command line, your library routines are contained in the file projectname.DLL located in
the default directory for your project, unless you specified another name and location. Your import library file
is projectname.LIB, located in the default directory for your project.

For a build from the Microsoft* Visual Studio* integrated development environment, both the library routines
and the import library file are located in the output directory of the project configuration.

NOTE
If the DLL contains no exported routines or data, the import library is not created.

Checking the DLL Symbol Export Table
To make sure that everything that you want to be visible shows up in the export table, look at the export
information of an existing DLL file by using QuickView in the Windows Explorer File menu or the following
DUMPBIN command:
 DUMPBIN /exports file.dll

Creating and Using DLLs 3

19

Building Executables that Use DLLs
When you build the executable that imports the procedures or data defined in the DLL, you must link using
the import library, check certain project settings or command-line options, and then build the executable.

To use the DLL from another image:

1. Add the import .LIB file with its path and library name to the other image.

In the integrated development environment, add the .LIB import library file to your project. In the
Project menu, select Add Existing Item... . If the importing project and the DLL are in the same
solution, you can add the DLL project as a dependency of the importing project instead.

On the command line, specify the .LIB file on the command line.

The import .LIB file contains information that your program needs to work with the DLL.
2. If your DLL exports data, consistently use the same property page options in the Fortran Data

category /align option as was used to create the DLL. In the Fortran Data category, specify the
appropriate values for Common Element Alignment (common block data) and Structure Member
Alignment (structures in a module). This sets the /align option, which specifies whether padding is
needed to ensure that imported data items are naturally aligned.

3. In the Project Property Pages dialog box, make sure the type of libraries specified is consistent with
that specified for the Fortran DLL.

4. If you need to specify linker options:

• In the IDE, specify linker options in the Linker category.
• On the ifort command line, place linker options after the /link option.

5. Copy the DLL into your path.

For an application to access your DLL, it must be located in a directory included in the PATH system
environment variable or in the same directory as the executable. If you have more than one program
accessing your DLL, you can keep it in a convenient directory identified in the environment variable
PATH. If you have several DLLs, you can place them all in the same directory to avoid adding numerous
directories to the path specification.

You should log out and back in after modifying the system path.
6. Build the image that references the DLL.

When using the visual development environment:

• Like building other projects in the integrated development environment, use the Build menu items
to create the executable.

When using the command line:

• Specify the import library at the end of the command line.
• If your DLL exports data that will be used by the application being built, specify the same /align

options that were used to build the DLL.
• If you are building a main application, omit the /dll option.
• When building a Fortran DLL that references another DLL, specify the /dll option.

For example, to build the main application from the command line that references 4-byte items in a
common block defined in dllfile.dll:

ifort /align:commons mainapp.f90 dllfile.lib

 3 Using Intel® Visual Fortran to Create and Build Windows*-Based Applications

20

Using QuickWin 4
Using QuickWin Overview
This section introduces the major categories of QuickWin library routines. It gives an overview of QuickWin
features and their use in creating and displaying graphics, and customizing your QuickWin applications with
custom menus and mouse routines. Drawing Graphics and Using Fonts from the Graphics Library Overview
cover graphics and fonts in more detail.

The Intel® Fortran QuickWin library helps you give traditional console-oriented Fortran programs a Windows
look and feel, with a scrollable window and a menu bar. Though the full capability of Windows is not available
through QuickWin, QuickWin is simpler to learn and to use. QuickWin applications support pixel-based
graphics, real-coordinate graphics, text windows, character fonts, user-defined menus, mouse events, and
editing (select/copy/paste) of text, graphics, or both.

You can use the QuickWin library to do the following:

• Compile console programs into simple applications for Windows.
• Minimize and maximize QuickWin applications like any Windows-based application.
• Call graphics routines.
• Load and save bitmaps.
• Select, copy and paste text, graphics, or a mix of both.
• Detect and respond to mouse clicks.
• Display graphics output.
• Alter the default application menus or add programmable menus.
• Create custom icons.
• Open multiple child windows.

In Intel Visual Fortran, graphics programs must be either Fortran QuickWin, Fortran Standard Graphics,
Fortran Windows, or use OpenGL routines. Fortran Standard Graphics Applications are a subset of QuickWin
that support only one window.

You can choose the Fortran QuickWin or Standard Graphics application type from the list of available project
types when you create a new project in the visual development environment. Or you can use
the /libs:qwin compiler option for Fortran QuickWin or the /libs:qwins compiler option for Fortran Standard
Graphics.

Note that Fortran QuickWin and Standard Graphics applications cannot be DLLs, and QuickWin and Standard
Graphics cannot be linked with run-time routines that are in DLLs. This means that the /libs:qwin option
and the /libs:dll with /threads options cannot be used together.

You can access the QuickWin routines library from Intel Fortran as well as other languages that support the
Fortran calling conventions.

A program using the QuickWin routines must explicitly access the QuickWin graphics library routines with the
statement USE IFQWIN (see USE Statement Needed for Fortran QuickWin Applications).

21

Special Naming Convention for Certain QuickWin and
Windows* Graphics Routines
Most QuickWin routines have a QQ appended to their names to differentiate them from equivalent Windows
operating system routines. However, a small group of QuickWin graphics routines have the same name as
the Windows routines, causing a potential naming conflict if your program unit includes both USE IFLIBS
(which includes QuickWin routine interface definitions) and USE IFWIN (which includes Windows API routine
interface definitions).

The QuickWin routines perform the same functions as the SDK routines but take a unit number, or use the
unit in focus at the time of call, instead of taking a device context (DC) as one of their arguments.

To handle this situation, a special MSFWIN$ prefix is used for the Windows routines. These prefixed names
must be used even if you only specify USE IFWIN.

For example, Rectangle is a QuickWin routine, not a Windows SDK routine, and you must use the name
MSFWIN$Rectangle to refer to the SDK routine:

QuickWin Routine Windows API Routine

ARC MSFWIN$Arc

ELLIPSE MSFWIN$Ellipse

FLOODFILL MSFWIN$FloodFill

GETBKCOLOR MSFWIN$GetBkColor

GETPIXEL MSFWIN$GetPixel

GETTEXTCOLOR MSFWIN$GetTextColor

LINETO MSFWIN$LineTo

PIE MSFWIN$Pie

POLYGON MSFWIN$Polygon

RECTANGLE MSFWIN$Rectangle

SETBKCOLOR MSFWIN$SetBkColor

SETPIXEL MSFWIN$SetPixel

SETTEXTCOLOR MSFWIN$SetTextColor

Comparing QuickWin with Windows*-Based Applications
One decision you must make when designing a program is how it will be used. If the person using your
program must interact with it, the method of interaction can be important. Anytime the user must supply
data, that data must be validated or it could cause errors. One way to minimize data errors is to allow the
user to select a value from a list. For example, if the data is one of several known values, the user can select
the desired value instead of typing it in.

When you design programs to be interactive, you use a different structure than if you design them to be run
in unattended batches. Interactive applications behave more like state machines than numerical algorithms,
because they perform the actions you request when you request them. You may also find that once you can
change what your program is doing while it runs, you will be more likely to experiment with it.

 4 Using Intel® Visual Fortran to Create and Build Windows*-Based Applications

22

The QuickWin library lets you build simple Windows applications. Because QuickWin is a wrapper around a
subset of the Windows API, there are limitations to what you can do, but it can fulfill the requirement of most
users. If you need additional capabilities, you can call the Windows API directly rather than using QuickWin
to build your program. You can also build a graphic user interface in either Microsoft* Visual C++* or Visual
Basic* that calls your Fortran code.

QuickWin applications do not provide the total capability of Windows*-based applications. Although you can
call many Windows APIs (Application Programming Interface) from QuickWin and console programs, many
other Windows APIs (such as GDI functions) should be called only from a full Windows-based application. You
need to use Windows-based applications, not QuickWin, if any of the following applies:

• Your application has an OLE* (Object Linking and Embedding) container.
• You want direct access to GDI (Graphical Data Interface) functions.
• You want to add your own customized Help information to QuickWin Help.
• You want to create something other than a standard SDI (Single Document Interface) or MDI (Multiple

Document Interface) application. (For example, if you want your application to have a dialog such as
Windows Calculator in the client area.)

• You want to use a Using Dialog Boxes for Application Controls Overview rather than a modal dialog box.

Using Windows API Routines with QuickWin
You can convert the unit numbers of QuickWin windows to Windows handles with the GETHWNDQQ QuickWin
function. You should not use Windows GDI to draw on QuickWin windows because QuickWin keeps a window
buffer and the altered window would be destroyed on redraw. You can use Windows OS subclassing to
intercept graphics messages bound for QuickWin before QuickWin receives them.

Types of QuickWin Programs

QuickWin Programs Overview
You can create a Fortran Standard Graphics application or a Fortran QuickWin application, depending on the
project type you choose. Standard Graphics (QuickWin single document) applications support only one
window and do not support programmable menus. Fortran QuickWin applications support multiple windows
and user-defined menus. Any Fortran program, whether it contains graphics or not, can be compiled as a
QuickWin application. You can use the Microsoft integrated development environment (IDE) to create, debug,
and execute Fortran Standard Graphics programs and Fortran QuickWin programs.

To build a Fortran QuickWin application in the IDE, select QuickWin Application from the list of available
project types displayed when you create a new project. You can choose to create an Empty QuickWin project
(multiple-windows) or a Fortran Standard Graphics application.

To build a Fortran QuickWin application from the command line, use the /libs:qwin option. For example:
 ifort /libs:qwin qw_app.f90
To build a Fortran Standard Graphics application from the command line, use the /libs:qwins option. For
example:
 ifort /libs:qwins stdg_app.f90

See Also
Fortran Standard Graphics Applications
Fortran QuickWin Graphics Applications

Using QuickWin 4

23

Fortran Standard Graphics Applications
A Fortran standard graphics application has a single maximized application window covering the entire screen
area, whose appearance resembles a MS-DOS* screen without scrolls bars or menus. The Esc key can be
used to exit a program that does otherwise terminate. When the Esc key is pressed, the frame window
appears with a border, title bar, scroll bars, and a menu item in the upper-left corner that allows you to close
the application.

Programmable menus and multiple child windows cannot be created in this mode.

The following figure shows a typical Fortran Standard Graphics application, which resembles an MS-DOS
application running in a window.

MTRX.F90 Compiled as a Fortran Standard Graphics Application

Fortran QuickWin Graphics Applications
The following shows a typical Fortran QuickWin application. The frame window has a border, title bar, scroll
bars, and default menu bar. You can modify, add, or delete the default menu items, respond to mouse
events, and create multiple child windows within the frame window using QuickWin enhanced features.
Routines to create enhanced features are listed in Enhancing QuickWin Applications. Using these routines to
customize your QuickWin application is described in Customizing QuickWin Applications Overview.

MTRX.F90 Compiled as a QuickWin Application

 4 Using Intel® Visual Fortran to Create and Build Windows*-Based Applications

24

The QuickWin User Interface

QuickWin User Interface Overview
All QuickWin applications create an application or frame window; child windows are optional. Fortran
Standard Graphics applications and Fortran QuickWin applications have these general characteristics:

• Window contents can be copied as bitmaps or text to the Clipboard for printing or pasting to other
applications. In Fortran QuickWin applications, any portion of the window can be selected and copied.

• Vertical and horizontal scroll bars appear automatically, if needed.
• The base name of the application's .EXE file appears in the window's title bar.
• Closing the application window terminates the program.

In addition, the Fortran QuickWin application has a status bar and menu bar. The status bar at the bottom of
the window reports the current status of the window program (for example, running or input pending).

Default QuickWin Menus shows the default QuickWin menus.

Default QuickWin Menus
The default MDI (Multiple Document Interface) menu bar has the following menus:

• File
• Edit
• View
• State
• Window

File Menu

Using QuickWin 4

25

Edit Menu

For instructions on using the Edit options within QuickWin see Editing Text and Graphics from the QuickWin
Edit Menu.

View Menu

The resulting graphics might appear somewhat distorted whenever the logical graphics screen is enlarged or
reduced with the Size to Fit and Full Screen commands. While in Full Screen or Size To Fit mode, cursors are
not scaled.

State Menu

Window Menu

For instructions on replacing the About default information within the Help menu with your own text
message, see Defining an About Box.

For instructions on how to create custom QuickWin menus, see Customizing QuickWin Applications Overview.

USE Statement Needed for Fortran QuickWin Applications
A program using the Fortran QuickWin or Standard Graphics features must explicitly access the QuickWin
graphics library routines with the statement USE IFQWIN.

 4 Using Intel® Visual Fortran to Create and Build Windows*-Based Applications

26

Any program using the QuickWin features must include the statement USE IFQWIN to access the QuickWin
graphics library. The IFQWIN.MOD module file contains subroutine and function declarations in INTERFACE
statements, derived-type declarations, and symbolic constant declarations for each QuickWin routine.

USE statements must immediately follow the PROGRAM, SUBROUTINE or FUNCTION statement, and precede
any IMPLICIT statement.

Depending on the type of routines used by your application, other USE statements that include other Fortran
modules may be needed. The description of each Intel Fortran routine in the Language Reference indicates
the module that needs to be included for external routines (such as USE IFCORE; USE IFPORT).

Creating QuickWin Windows

Creating QuickWin Windows Overview
The QuickWin library contains many routines to create and control your QuickWin windows.

See Also
Accessing Window Properties
Creating Child Windows
Giving a Window Focus and Setting the Active Window
Keeping Child Windows Open
Controlling Size and Position of Windows

Accessing Window Properties
SETWINDOWCONFIG and GETWINDOWCONFIG set and get the current virtual window properties. Virtual window
properties set by SETWINDOWCONFIG contain the maximum amount of text and graphics for that unit. The
SETWSIZEQQ routine sets the properties of the visible window, which is generally smaller than a virtual
window.

If the size of the virtual window (SETWINDOWCONFIG) is larger than the size of the visible window
(SETWSIZEQQ), scroll bars are automatically provided to allow all the text and graphics in a virtual window to
be displayed.

These virtual window properties are stored in the windowconfig derived type, which contains the following
parameters:
TYPE windowconfig
 INTEGER(2) numxpixels ! Number of pixels on x-axis.
 INTEGER(2) numypixels ! Number of pixels on y-axis.
 INTEGER(2) numtextcols ! Number of text columns available.
 INTEGER(2) numtextrows ! Number of scrollable text lines available.
 INTEGER(2) numcolors ! Number of color indexes.
 INTEGER(4) fontsize ! Size of default font. Set to
 ! QWIN$EXTENDFONT when using multibyte
 ! characters, in which case
 ! extendfontsize sets the font size.
 CHARACTER(80) title ! Window title, where title is a C string.
 INTEGER(2) bitsperpixel ! Number of bits per pixel. This value
 ! is calculated by the system and is an
 ! output-only parameter.
 ! The next three parameters support multibyte
 ! character sets (such as Japanese)
 CHARACTER(32) extendfontname ! Any non-proportionally spaced font
 ! available on the system.
 INTEGER(4) extendfontsize ! Takes same values as fontsize, but
 ! used for multiple-byte character sets

Using QuickWin 4

27

 ! when fontsize set to QWIN$EXTENDFONT.
 INTEGER(4) extendfontattributes ! Font attributes such as bold and
 ! italic for multibyte character sets.
 END TYPE windowconfig
If you use SETWINDOWCONFIG to set the variables in windowconfig to -1, the highest resolution will be set
for your system, given the other fields you specify, if any. You can set the actual size of the window by
specifying parameters that influence the window size -- the number of x and y pixels, the number of rows
and columns, and the font size. If you do not call SETWINDOWCONFIG, the window defaults to the best
possible resolution and a font size of 8 by 16. The number of colors depends on the video driver used.

The font size, x pixels, y pixels, and columns and rows are related and cannot all be set arbitrarily. The
following example specifies the number of x and y pixels and the font size and accepts the system calculation
for the best number of rows and columns for the window:
USE IFQWIN
 TYPE (windowconfig) wc
 LOGICAL status
 ! Set the x & y pixels to 800X600 and font size to 8x12.
 wc%numxpixels = 800 ! pixels on x-axis, window width
 wc%numypixels = 600 ! pixels on y-axis, window height
 wc%numtextcols = -1 ! -1 requests system default/calculation
 wc%numtextrows = -1
 wc%numcolors = -1
 wc%title = " "C
 wc%fontsize = #0008000C ! Request 8x12 pixel fonts
 status = SETWINDOWCONFIG(wc)

In this example:

• The variables wc%numxpixels and wc%numypixels specify the size of the window, in this case 800 by 600
pixels. Within this window size, you can choose to specify either the font size (wc%fontsize) or the
number of text columns (wc%numtextcols) and rows (wc%numtextrows).

This example specifies the window size and font size, and lets the system calculate the number of text
columns and rows.

If you choose to specify the number of text columns and rows, you can let the system calculate (specify
-1) either the font size or the window size.

• The variable wc%fontsize is given as hexadecimal constant of #0008000C, which is interpreted in two
parts:

• The left side of 0008 (8) specifies the width of the font, in pixels.
• The right side of 000C (12 in decimal) specifies the height of the font, in pixels.

• The variable wc%numtextrows is -1 and wc%numtextcols is -1, which allows the system to calculate the
best available number of text columns and text rows to be used, as follows:

• The number of text columns is calculated as wc%numypixels (800) divided by the width of the font 8
(decimal) or 100.

• The number of text rows is calculated as wc%numxpixels (600) divided by the width of the font, 12
(decimal) or 50.

The requested font size is matched to the nearest available font size. If the matched size differs from the
requested size, the matched size is used to determine the number of columns and rows.

If scroll bars are needed (virtual window size exceeds the visible window size), because of the size required
by horizontal and vertical scroll bars for a window, you may need to set the number of lines and columns to a
value 1 or 2 greater than the number of rows and columns needed to display the application's information.

If the requested configuration cannot be set, SETWINDOWCONFIG returns .FALSE. and calculates parameter
values that will work and best fit the requested configuration. Another call to SETWINDOWCONFIG establishes
these values:
IF(.NOT.status) status = SETWINDOWCONFIG(wc)
For information on setting the graphics mode with SETWINDOWCONFIG, see Setting the Graphics Mode.

 4 Using Intel® Visual Fortran to Create and Build Windows*-Based Applications

28

Routines such as SETWINDOWCONFIG work on the window that is currently in focus. You can have multiple
windows open as your application requires, but you need to decide which one gains focus. There is a single
frame window and one or more child windows. A window is in focus right after it is opened, after I/O to it,
and when FOCUSQQ is used. Clicking the mouse when the cursor is in a window will also bring the window
into focus.

For example, to set the characteristics for the window associated with unit 10, either gain focus with either
an OPEN, a subsequent READ or WRITE statement to unit 10, or FOCUSQQ. For example, use OPEN:
open(unit=10, file='user')
 result = setwindowconfig(wc)
After you open unit 10, focus can be regained by a READ or WRITE statement to that unit. For example:
write(10,*) "Hello, this is unit 10"
Or you can use FOCUSQQ:
result = focusqq(10)
 result = setwindowconfig(wc)
For more information about when a window gains focus, see Giving a Window Focus and Setting the Active
Window.

Creating Child Windows
The FILE='USER' option in the OPEN statement opens a child window. The child window defaults to a
scrollable text window, 30 rows by 80 columns. You can open up to 40 child windows.

When a file OPEN that specifies " file='user' " is issued for a program built with /libs:qwin (or /MW), special
processing takes place to handle this as a graphics window. The user can then write and or read to this
window by issuing READ and WRITE statements with the same unit number.

There are some api's that manipulate the window via unit number (e.g., setwsizeqq(), and others that
manipulate it because focus has been set to that window. The FRTL automatically sets focus to the last
window accessed. Thus, after an open, read, or write to unit number - focus is set to that window, and
subsequent api calls such as setbkcolorrgb(), which sets the background color, works for this window.

Running a QuickWin application displays the frame window, but not the child window. You must call
SETWINDOWCONFIG or execute an I/O statement or a graphics statement to display the child window. The
window receives output by its unit number, as in:
 OPEN (UNIT= 12, FILE= 'USER', TITLE= 'Product Matrix')
 WRITE (12, *) 'Enter matrix type: '
Child windows opened with FILE='USER' must be opened as sequential-access formatted files (the default).
Other file specifications (direct-access, binary, or unformatted) result in run-time errors.

The following example creates three child windows. A frame window is automatically created. Text is written
to each so the child windows are visible:
 program testch
 use ifqwin
 open(11,file="user")
 write(11,*) "Hello 11"
 open(12,file="user")
 write(12,*) "Hello 12"
 open(13,file="user")
 write(13,*) "Hello 13"
 write(13,*) "Windows 11, 12, and 13 can be read and written with normal"
 write(13,*) "Fortran I/O statements. The size of each window on the screen"
 write(13,*) "can be modified by SETWSIZEQQ. The size of the virtual window"
 write(13,*) "(i.e., a data buffer) can be modified by SETWINDOWCONFIG."
 read(13,*)
 end
When this program is run, the output appears as follows:

Using QuickWin 4

29

To use the default graphics window, you should use units *, 5, or 6.

In the example below, if you comment out the " open(7, …" statement, and substitute the existing unit 7's
with either *, or 6 for the WRITES and 5 for the READs, then the program should behave the same. API's
such as " SETWSIZEQQ(7 , …" should specify either 5 or 6, because * is not a valid integer. One issue with
using a default graphics window is that you cannot change the title of it from the default title.
ifort /threads /Qsave /traceback /libs:qwin simple_example.f90
 PROGRAM OneWindow
 USE IFQWIN
 USE DFMT
 USE DFLIB
 USE DFPORT

 type(windowconfig):: WIN_MainInput
 type(qwinfo) :: FrameSize, Win1Size
 integer(2) :: i2Status
 integer(4) :: i4Status,i4NumQ, i4Columns, i4LetterX, i4LetterY
 logical(4) :: L4Status
 character(1) :: c1YesNo

 i4LetterX=8 ! Height and width of the text font

 4 Using Intel® Visual Fortran to Create and Build Windows*-Based Applications

30

 i4LetterY=16
 !
 ! Frame-Window as wide as screen but half the height
 !
 i2Status=GETWSIZEQQ(QWIN$FRAMEWINDOW,QWIN$SIZEMAX,FrameSize)
 FrameSize.H=FrameSize.H/2 !! set window height 1/2 of max height
 FrameSize.W=FrameSize.W/3 !! set window width 1/3 of max width
 i2Status=SETWSIZEQQ(QWIN$FRAMEWINDOW,FrameSize)
 i4Columns=FrameSize.W/i4LetterX -1 ! number of possible columns in each window
 !
 ! Input-window for Main part
 !
 open(7, file='user',title="Main Input"C)
 Win_MainInput.title="Main Input"C !! in addition to OPEN, title can also be specified by
setwindowconfig()
 Win_MainInput.numtextrows=INT((FrameSize.H-40)/i4LetterY)
 Win_MainInput.numtextcols=i4Columns
 Win_MainInput.fontsize=65536*i4LetterX+i4LetterY
 L4Status=setwindowconfig(Win_MainInput)
 i4Status=setbkcolorrgb(#FFFFFF) !! white background
 i4Status=settextcolorrgb(#000000) !! black text
 call clearscreen($GCLEARSCREEN)
 Win1Size.X=0
 Win1Size.Y=0
 Win1Size.H=INT((FrameSize.H-40)/i4LetterY)
 Win1Size.W=i4Columns
 Win1Size.type=QWIN$SET
 i4Status=setwsizeqq(7,Win1Size)

 write(7,'("This is the Main Input window.",/)')
10 write(7,'("Type Y or y to Terminate this program: ",\)')
 read(7,'(Q,A)') i4NumQ, c1YesNo
 if (i4NumQ /= 1) goto 10
 if (c1YesNo == 'Y' .or. c1YesNo == 'y') goto 20
 goto 10

20 continue
 END PROGRAM OneWindow

Giving a Window Focus and Setting the Active Window
When a window is made active, it receives graphics output (from ARC, LINETO, and OUTGTEXT, for example)
but is not brought to the foreground and thus does not have the focus. When a window acquires focus, either
by a mouse click, I/O to it, or by a FOCUSQQ call, it also becomes the active window. When a window gains
focus, the window that previously had focus will lose focus.

If a window needs to be brought to the foreground, it must be given focus. The window that has the focus is
always on top, and all other windows have their title bars grayed out. A window can have the focus and yet
not be active and not have graphics output directed to it. Graphical output is independent of focus.

Under most circumstances, focus and active should apply to the same window. This is the default behavior of
QuickWin and a programmer must consciously override this default.

Certain QuickWin routines (such as GETCHARQQ, PASSDIRKEYSQQ, and SETWINDOWCONFIG) that do not take a
unit number as an input argument usually affect the active window whether or not it is in focus.

If another window is made active but is not in focus, these routines affect the window active at the time of
the routine call. This may appear unusual to the user since a GETCHARQQ under these circumstances will
expect input from a grayed, background window. The user would then have to click on that window before
input could be typed to it.

Using QuickWin 4

31

To use these routines (that effect the active window), either do I/O to the unit number of the window you
wish to put in focus (and also make active), or call FOCUSQQ (with a unit number specified). If only one
window is open, then that window is the one affected. If several windows are opened, then the last one
opened is the one affected since that window will get focus and active as a side effect of being opened.

The OPEN (IOFOCUS) parameter also can determine whether a window receives the focus when a I/O
statement is executed on that unit. For example:
 OPEN (UNIT = 10, FILE = 'USER', IOFOCUS = .TRUE.)
With an explicit OPEN with FILE='USER', IOFOCUS defaults to .TRUE. For child windows opened implicitly (no
OPEN statement before the READ, WRITE, or PRINT) as unit 0, 5, or 6, IOFOCUS defaults to .FALSE..

If IOFOCUS=.TRUE., the child window receives focus prior to each READ, WRITE, or PRINT. Calls to OUTTEXT
or graphics functions (for example, OUTGTEXT, LINETO, and ELLIPSE) do not cause the focus to shift. If you
use IOFOCUS with any unit other than a QuickWin child window, a run-time error occurs.

The focus shifts to a window when it is given the focus with FOCUSQQ, when it is selected by a mouse click, or
when an I/O operation other than a graphics operation is performed on it, unless the window was opened
with IOFOCUS=.FALSE.. INQFOCUSQQ determines which unit has the focus. For example:
 USE IFQWIN
 INTEGER status, focusunit
 OPEN(UNIT = 10, FILE = 'USER', TITLE = 'Child Window 1')
 OPEN(UNIT = 11, FILE = 'USER', TITLE = 'Child Window 2')
 ! Give focus to Child Window 2 by writing to it:
 WRITE (11, *) 'Giving focus to Child 2.'
 ! Give focus to Child Window 1 with the FOCUSQQ function:
 status = FOCUSQQ(10)
 ...
 ! Find out the unit number of the child window that currently has focus:
 status = INQFOCUSQQ(focusunit)
SETACTIVEQQ makes a child window active without bringing it to the foreground. GETACTIVEQQ returns the
unit number of the currently active child window. GETHWNDQQ converts the unit number into a Windows
handle for functions that require it.

Keeping Child Windows Open
A child window remains open as long as its unit is open. The STATUS parameter in the CLOSE statement
determines whether the child window remains open after the unit has been closed. If you set
STATUS='KEEP', the associated window remains open but no further input or output is permitted. Also, the
Close command is added to the child window's menu and the word Closed is appended to the window title.
The default is STATUS='DELETE', which closes the window.

A window that remains open when you use STATUS='KEEP' counts as one of the 40 child windows available
for the QuickWin application.

Controlling Size and Position of Windows
SETWSIZEQQ and GETWSIZEQQ set and get the size and position of the visible representation of a window.
The positions and dimensions of visible child windows are expressed in units of character height and width.
The position and dimensions of the frame window are expressed in screen pixels. The position and
dimensions are returned in the derived type qwinfo defined in IFQWIN.MOD as follows:
 TYPE QWINFO
 INTEGER(2) TYPE ! Type of action performed by SETWSIZEQQ.
 INTEGER(2) X ! x-coordinate for upper left corner.
 INTEGER(2) Y ! y-coordinate for upper left corner.
 INTEGER(2) H ! Window height.
 INTEGER(2) W ! Window width.
 END TYPE QWINFO
The options for the qwinfo type are listed under SETWSIZEQQ in the Language Reference.

 4 Using Intel® Visual Fortran to Create and Build Windows*-Based Applications

32

GETWSIZEQQ returns the position and the current or maximum window size of the current frame or child
window. To access information about a child window, specify the unit number associated with it. Unit
numbers 0, 5, and 6 refer to the default startup window if you have not explicitly opened them with the OPEN
statement. To access information about the frame window, specify the unit number as the symbolic constant
QWIN$FRAMEWINDOW. For example:
 USE IFQWIN
 INTEGER status
 TYPE (QWINFO) winfo
 OPEN (4, FILE='USER')
 ...
 ! Get current size of child window associated with unit 4.
 status = GETWSIZEQQ(4, QWIN$SIZECURR, winfo)
 WRITE (*,*) "Child window size is ", winfo.H, " by ", winfo.W
 ! Get maximum size of frame window.
 status = GETWSIZEQQ(QWIN$FRAMEWINDOW, QWIN$SIZEMAX, winfo)
 WRITE (*,*) "Max frame window size is ", winfo.H, " by ", winfo.W
SETWSIZEQQ is used to set the visible window position and size. For example:
 USE IFQWIN
 INTEGER status
 TYPE (QWINFO) winfo
 OPEN (4, FILE='USER')
 winfo.H = 30
 winfo.W = 80
 winfo.TYPE = QWIN$SET
 status = SETWSIZEQQ(4, winfo)

Using QuickWin Graphics Library Routines

Using Graphics Library Routines
Graphics routines are functions and subroutines that draw lines, rectangles, ellipses, and similar elements on
the screen. Font routines create text in a variety of sizes and styles. The QuickWin graphics library provides
routines that:

• Change the window's dimensions.
• Set coordinates.
• Set color palettes.
• Set line styles, fill masks, and other figure attributes.
• Draw graphics elements.
• Display text in several character styles.
• Display text in fonts compatible with Microsoft Windows.
• Store and retrieve screen images.

Selecting Display Options
The QuickWin run-time library provides a number of routines that you can use to define text and graphics
displays. These routines determine the graphics environment characteristics and control the cursor.

To display graphics, you need to set the desired graphics mode using SETWINDOWCONFIG, and then call the
routines needed to create the graphics. SETWINDOWCONFIG is the routine you use to configure window
properties. You can use DISPLAYCURSOR to control whether the cursor will be displayed. The cursor becomes
invisible after a call to SETWINDOWCONFIG. To display the cursor you must explicitly turn on cursor visibility
with DISPLAYCURSOR($GCURSORON).

Using QuickWin 4

33

SETGTEXTROTATION sets the current orientation for font text output, and GETGTEXTROTATION returns the
current setting. The current orientation is used in calls to OUTGTEXT.

For more information on these routines, see the Language Reference in the Intel® Visual Fortran Compiler
User and Reference Guides.

Checking the Current Graphics Mode
Call GETWINDOWCONFIG to get the child window settings.

GETWINDOWCONFIG uses the derived type, windowconfig, as a parameter:
 TYPE windowconfig
 INTEGER(2) numxpixels ! Number of pixels on x-axis
 INTEGER(2) numypixels ! Number of pixels on y-axis
 INTEGER(2) numtextcols ! Number of text columns available
 INTEGER(2) numtextrows ! Number of text rows available
 INTEGER(2) numcolors ! Number of color indexes
 INTEGER(4) fontsize ! Size of default font
 CHARACTER(80) title ! window title
 INTEGER(2) bitsperpixel ! Number of bits per pixel
 END TYPE windowconfig
By default, a QuickWin child window is a scrollable text window 640x480 pixels, has 30 lines and 80 columns,
and a font size of 8x16. Also by default, a Standard Graphics window is Full Screen. You can change the
values of window properties at any time with SETWINDOWCONFIG, and retrieve the current values at any time
with GETWINDOWCONFIG.

Setting the Graphics Mode
Use SETWINDOWCONFIG to configure the window for the properties you want. To set the highest possible
resolution available with your graphics driver, assign a -1 value for numxpixels, numypixels, numtextcols,
and numtextrows in the windowconfig derived type. This causes Fortran Standard Graphics applications to
start in Full Screen mode.

If you specify less than the largest graphics area, the application starts in a window. You can use ALT+ENTER
to toggle between Full Screen and windowed views. If your application is a QuickWin application and you do
not call SETWINDOWCONFIG, the child window defaults to a scrollable text window with the dimensions of
640x480 pixels, 30 lines, 80 columns, and a font size of 8x16. The number of colors depends on the video
driver used.

If SETWINDOWCONFIG returns .FALSE., the video driver does not support the options specified. The function
then adjusts the values in the windowconfig derived type to ones that will work and are as close as possible
to the requested configuration. You can then call SETWINDOWCONFIG again with the adjusted values, which
will succeed. For example:
 LOGICAL statusmode
 TYPE (windowconfig) wc
 wc%numxpixels = 1000
 wc%numypixels = 300
 wc%numtextcols = -1
 wc%numtextrows = -1
 wc%numcolors = -1
 wc%title = "Opening Title"C
 wc%fontsize = #000A000C ! 10 X 12
 statusmode = SETWINDOWCONFIG(wc)
 IF (.NOT. statusmode) THEN statusmode = SETWINDOWCONFIG(wc)
If you use SETWINDOWCONFIG, you should specify a value for each field (-1 or your own number for numeric
fields, and a C string for the title). Calling SETWINDOWCONFIG with only some of the fields specified can result
in useless values for the other fields.

 4 Using Intel® Visual Fortran to Create and Build Windows*-Based Applications

34

Setting Figure Properties
The output routines that draw arcs, ellipses, and other primitive figures do not specify color or line-style
information. Instead, they rely on properties set independently by other routines.

GETCOLORRGB (or GETCOLOR) and SETCOLORRGB (or SETCOLOR) obtain or set the current color value (or color
index), which FLOODFILLRGB (or FLOODFILL), OUTGTEXT, and the shape-drawing routines all use. Similarly,
GETBKCOLORRGB (or GETBKCOLOR) and SETBKCOLORRGB (or SETBKCOLOR) retrieve or set the current
background color.

GETFILLMASK and SETFILLMASK return or set the current fill mask. The mask is an 8-by-8-bit array with
each bit representing a pixel. If a bit is 0, the pixel in memory is left untouched: the mask is transparent to
that pixel. If a bit is 1, the pixel is assigned the current color value. The array acts as a template that repeats
over the entire fill area. It "masks" the background with a pattern of pixels drawn in the current color,
creating a large number of fill patterns. These routines are particularly useful for shading.

GETWRITEMODE and SETWRITEMODE return or set the current logical write mode used when drawing lines. The
logical write mode, which can be set to $GAND, $GOR, $GPRESET, $GPSET, or $GXOR, determines the
interaction between the new drawing and the existing screen and current graphics color. The logical write
mode affects the LINETO, RECTANGLE, and POLYGON routines.

GETLINESTYLE and SETLINESTYLE retrieve and set the current line style. The line style is determined by a
16-bit-long mask that determines which of the five available styles is chosen. You can use these two routines
to create a wide variety of dashed lines that affect the LINETO, RECTANGLE, and POLYGON routines.

See Also
Language Reference for a description of these routines.

Understanding Coordinate Systems

Understanding Coordinate Systems Overview

Several different coordinate systems are supported by the Intel® Fortran QuickWin Library.

Text coordinates use a coordinate system that divides the screen into rows and columns.

Graphics coordinates are specified using one of three coordinate systems:

• Physical coordinates, which are determined by the hardware and the video mode used
• Viewport coordinates, which you can define in the application
• Window coordinates, which you can define to simplify scaling of floating-point data values

Physical coordinates serve as an absolute reference and as a starting place for creating custom window and
viewport coordinates. Conversion routines make it simple to convert between different coordinate systems.

Unless you change it, the viewport-coordinate system is identical to the physical-coordinate system. The
physical origin (0, 0) is always in the upper-left corner of the display.

For QuickWin, display means a child window's client area, not the actual monitor screen (unless you go to
Full Screen mode). The x-axis extends in the positive direction left to right, while the y-axis extends in the
positive direction top to bottom. The default viewport has the dimensions of the selected mode. In a
QuickWin application, you can draw outside of the child window's current client area. If you then make the
child window bigger, you will see what was previously outside the frame.

You can also use coordinate routines to convert between physical-, viewport-, and window-coordinate
systems.

See Also
Text Coordinates
Graphics Coordinates

Using QuickWin 4

35

Text Coordinates

The text modes use a coordinate system that divides the screen into rows and columns as shown in the
following figure:

Text Screen Coordinates

Text coordinates use the following conventions:

• Numbering starts at 1. An 80-column screen contains columns 1-80.
• The row is always listed before the column.

If the screen displays 25 rows and 80 columns (as shown in the above Figure), the rows are numbered 1-25
and the columns are numbered 1-80. The text-positioning routines, such as SETTEXTPOSITION and
SCROLLTEXTWINDOW, use row and column coordinates.

Graphics Coordinates

Three coordinate systems describe the location of pixels on the screen:

• Physical coordinates
• Viewport coordinates
• Window coordinates

This topic provides information on each of these coordinate systems.

In all three coordinate systems, the x-coordinate is listed before the y-coordinate.

Physical Coordinates
Physical coordinates are integers that refer to pixels in a window's client area. By default, numbering starts
at 0, not 1. If there are 640 pixels, they are numbered 0-639.

Suppose your program calls SETWINDOWCONFIG to set up a client area containing 640 horizontal pixels and
480 vertical pixels. Each individual pixel is referred to by its location relative to the x-axis and y-axis, as
shown in the following figure:

Physical Coordinates

The upper-left corner is the origin. The x- and y-coordinates for the origin are always (0, 0).

Physical coordinates refer to each pixel directly and are therefore integers (that is, the window's client area
cannot display a fractional pixel). If you use variables to refer to pixel locations, declare them as integers or
use type-conversion routines when passing them to graphics functions. For example:
ISTATUS = LINETO(INT2(REAL_x), INT2(REAL_y))

 4 Using Intel® Visual Fortran to Create and Build Windows*-Based Applications

36

If a program uses the default dimension of a window, the viewport (drawing area) is equal to 640x480.
SETVIEWORG changes the location of the viewport's origin. You pass it two integers, which represent the x
and y physical screen coordinates for the new origin. You also pass it an xycoord type that the routine fills
with the physical coordinates of the previous origin. For example, the following line moves the viewport
origin to the physical screen location (50, 100):
TYPE (xycoord) origin
 CALL SETVIEWORG(INT2(50), INT2(100), origin)

The effect on the screen is illustrated in the following figure:

Origin Coordinates Changed by SETVIEWORG

The number of pixels hasn't changed, but the coordinates used to refer to the points have changed. The x-
axis now ranges from -50 to +589 instead of 0 to 639. The y-axis now covers the values -100 to +379.

All graphics routines that use viewport coordinates are affected by the new origin, including MOVETO, LINETO,
RECTANGLE, ELLIPSE, POLYGON, ARC, and PIE. For example, if you call RECTANGLE after relocating the
viewport origin and pass it the values (0, 0) and (40, 40), the upper-left corner of the rectangle would
appear 50 pixels from the left edge of the screen and 100 pixels from the top. It would not appear in the
upper-left corner of the screen.

SETCLIPRGN creates an invisible rectangular area on the screen called a clipping region. You can draw inside
the clipping region, but attempts to draw outside the region fail (nothing appears outside the clipping
region).

The default clipping region occupies the entire screen. The QuickWin Library ignores any attempts to draw
outside the screen.

You can change the clipping region by calling SETCLIPRGN. For example, suppose you entered a screen
resolution of 320x200 pixels. If you draw a diagonal line from (0, 0) to (319, 199), the upper-left to the
lower-right corner, the screen looks like the following figure:

Line Drawn on a Full Screen

You could create a clipping region by entering:
CALL SETCLIPRGN(INT2(10), INT2(10), INT2(309), INT2(189))

Using QuickWin 4

37

With the clipping region in effect, the same LINETO command would put the line shown in the following
figure on the screen:

Line Drawn Within a Clipping Region

The dashed lines indicate the outer bounds of the clipping region and do not actually print on the screen.

Viewport Coordinates
The viewport is the area of the screen displayed, which may be only a portion of the window's client area.
Viewport coordinates represent the pixels within the current viewport. SETVIEWPORT establishes a new
viewport within the boundaries of the physical client area. A standard viewport has two distinguishing
features:

• The origin of a viewport is in the upper-left corner.
• The default clipping region matches the outer boundaries of the viewport.

SETVIEWPORT has the same effect as SETVIEWORGSETCLIPRGN and combined. It specifies a limited area of
the screen in the same manner as SETCLIPRGN, then sets the viewport origin to the upper-left corner of the
area.

Window Coordinates
Functions that refer to coordinates on the client-area screen and within the viewport require integer values.
However, many applications need floating-point values -- for frequency, viscosity, mass, and so on.
SETWINDOW lets you scale the screen to almost any size. In addition, window-related functions accept double-
precision values.

Window coordinates use the current viewport as their boundaries. A window overlays the current viewport.
Graphics drawn at window coordinates beyond the boundaries of the window -- the same as being outside
the viewport -- are clipped.

For example, to graph 12 months of average temperatures on the planet Venus that range from -50 to +450,
add the following line to your program:
status = SETWINDOW(.TRUE., 1.0D0, -50.0D0, 12.0D0, 450.0D0)

The first argument is the invert flag, which puts the lowest y value in the lower-left corner. The minimum
and maximum x- and y-coordinates follow; the decimal point marks them as floating-point values. The new
organization of the screen is shown in the following figure:

Window Coordinates

 4 Using Intel® Visual Fortran to Create and Build Windows*-Based Applications

38

January and December plot on the left and right edges of the screen. In an application like this, numbering
the x-axis from 0.0 to 13.0 provides some padding space on the sides and would improve appearance.

If you next plot a point with SETPIXEL_W LINETO_W or draw a line with, the values are automatically scaled
to the established window.

To use window coordinates with floating-point values:

1. Set a graphics mode with SETWINDOWCONFIG.
2. Use SETVIEWPORT to create a viewport area. This step is not necessary if you plan to use the entire

screen.
3. Create a real-coordinate window with SETWINDOWDOUBLE PRECISION invert flag and four LOGICAL,

passing a x- and y-coordinates for the minimum and maximum values.
4. Draw graphics shapes with RECTANGLE_W and similar routines. Do not confuse RECTANGLE (the viewport

routine) with RECTANGLE_W (the window routine for drawing rectangles). All window function names
end with an underscore and the letter W (_W).

Real-coordinate graphics give you flexibility and device independence. For example, you can fit an axis into a
small range (such as 151.25 to 151.45) or into a large range (-50000.0 to +80000.0), depending on the
type of data you graph. In addition, by changing the window coordinates, you can create the effects of
zooming in or panning across a figure. The window coordinates also make your drawings independent of the
computer's hardware. Output to the viewport is independent of the actual screen resolution.

Setting Graphics Coordinates

You can set the pixel dimensions of the x- and y-axes with SETWINDOWCONFIG. You can access these values
through the wc%numxpixels and wc%numypixels values returned by GETWINDOWCONFIG. Similarly,
GETWINDOWCONFIG also returns the range of colors available in the current mode through the wc%numcolors
value.

You can also define the graphics area with SETCLIPRGN and SETVIEWPORT. Both of these functions define a
subset of the available window area for graphics output.SETCLIPRGN does not change the viewport
coordinates, but merely masks part of the screen. SETVIEWPORT resets the viewport bounds to the limits you
give it and sets the origin to the upper-left corner of this region.

The origin of the viewport-coordinate system can be moved to a new position relative to the physical origin
with SETVIEWORG. Regardless of the viewport coordinates, however, you can always locate the current
graphics output position with GETCURRENTPOSITION and GETCURRENTPOSITION_W.

Using the window-coordinate system, you can easily scale any set of data to fit on the screen. You define any
range of coordinates (such as 0 to 5000) that works well for your data as the range for the window-
coordinate axes. By telling the program that you want the window-coordinate system to fit in a particular
area on the screen (map to a particular set of viewport coordinates), you can scale a chart or drawing to any
size you want. SETWINDOW defines a window-coordinate system bounded by the specified values.

GETPHYSCOORD converts viewport coordinates to physical coordinates, and GETVIEWCOORD translates from
physical coordinates to viewport coordinates. Similarly, GETVIEWCOORD_W converts window coordinates to
viewport coordinates, and GETWINDOWCOORD converts viewport coordinates to window coordinates.

For more information:

• On these routines, see their descriptions in the Language Reference.

Real Coordinates Sample Program

The program REALG.F90 shows how to create multiple window-coordinate sets, each in a separate viewport,
on a single screen.
! REALG.F90 (main program) - Illustrates coordinate graphics.
 !
 USE IFQWIN
 LOGICAL statusmode
 TYPE (windowconfig) myscreen

Using QuickWin 4

39

 COMMON myscreen
 !
 ! Set the screen to the best resolution and maximum number of
 ! available colors.
 myscreen.numxpixels = -1
 myscreen.numypixels = -1
 myscreen.numtextcols = -1
 myscreen.numtextrows = -1
 myscreen.numcolors = -1
 myscreen.fontsize = -1
 myscreen.title = " "C
 statusmode = SETWINDOWCONFIG(myscreen)
 IF(.NOT. statusmode) statusmode = SETWINDOWCONFIG(myscreen)
 statusmode = GETWINDOWCONFIG(myscreen)
 CALL threegraphs()
 END
 .
 .
 .
The main body of the program is very short. It sets the window to the best resolution of the graphics driver
(by setting the first four fields to -1) and the maximum number of colors (by setting numcolors to -1). The
program then calls the threegraphs subroutine that draws three graphs. The program output is shown in the
following figure:

REALG Program Output

The gridshape subroutine, which draws the graphs, uses the same data in each case. However, the program
uses three different coordinate windows.

 4 Using Intel® Visual Fortran to Create and Build Windows*-Based Applications

40

The two viewports in the top half are the same size in physical coordinates, but have different window sizes.
Each window uses different maximum and minimum values. In all three cases, the graph area is two units
wide. The window in the upper-left corner has a range in the x-axis of four units (4 units wide); the window
in the upper-right corner has a range in the x-axis of six units, which makes the graph on the right appear
smaller.

In two of the three graphs, one of the lines goes off the edge, outside the clipping region. The lines do not
intrude into the other viewports, because defining a viewport creates a clipping region.

Finally, the graph on the bottom inverts the data with respect to the two graphs above it.

The next section describes and discusses the subroutine invoked by REALG.F90:

Drawing the Graphs
The main program calls threegraphs, which prints the three graphs:

 SUBROUTINE threegraphs()
 USE IFQWIN
 INTEGER(2) status, halfx, halfy
 INTEGER(2) xwidth, yheight, cols, rows
 TYPE (windowconfig) myscreen
 COMMON myscreen
 CALL CLEARSCREEN($GCLEARSCREEN)
 xwidth = myscreen.numxpixels
 yheight = myscreen.numypixels
 cols = myscreen.numtextcols
 rows = myscreen.numtextrows
 halfx = xwidth / 2
 halfy = (yheight / rows) * (rows / 2)
 !
 ! First window
 !
 CALL SETVIEWPORT(INT2(0), INT2(0), halfx - 1, halfy - 1)
 CALL SETTEXTWINDOW(INT2(1), INT2(1), rows / 2, cols / 2)
 status = SETWINDOW(.FALSE., -2.0_8, -2.0_8, 2.0_8, 2.0_8)
 ! The 2.0_8 notation makes these constants REAL(8)
 CALL gridshape(rows / 2)
 status = RECTANGLE($GBORDER,INT2(0),INT2(0),halfx-1,halfy-1)
 !
 ! Second window
 !
 CALL SETVIEWPORT(halfx, INT2(0), xwidth - 1, halfy - 1)
 CALL SETTEXTWINDOW(INT2(1), (cols/2) + 1, rows/2, cols)
 status = SETWINDOW(.FALSE., -3.0D0, -3.0D0, 3.0D0, 3.0D0)
 ! The 3.0D0 notation makes these constants REAL(8)
 CALL gridshape(rows / 2)
 status = RECTANGLE_W($GBORDER, -3.0_8,-3.0_8,3.0_8, 3.0_8)
 !
 ! Third window
 !
 CALL SETVIEWPORT(0, halfy, xwidth - 1, yheight - 1)
 CALL SETTEXTWINDOW((rows / 2) + 1, 1_2, rows, cols)
 status = SETWINDOW(.TRUE., -3.0_8, -1.5_8, 1.5_8, 1.5_8)
 CALL gridshape(INT2((rows / 2) + MOD(rows, INT2(2))))
 status = RECTANGLE_W($GBORDER, -3.0_8, -1.5_8, 1.5_8, 1.5_8)
 END SUBROUTINE

Although the screen is initially clear, threegraphs makes sure by calling the CLEARSCREEN routine to clear
the window:
 CALL CLEARSCREEN($GCLEARSCREEN)

The $GCLEARSCREEN constant clears the entire window. Other options include $GVIEWPORT and
$GWINDOW, which clear the current viewport and the current text window, respectively.

Using QuickWin 4

41

After assigning values to some variables, threegraphscreates the first window:

 CALL SETVIEWPORT(INT2(0), INT2(0), halfx - 1, halfy - 1)
 CALL SETTEXTWINDOW(INT2(1), INT2(1), rows / 2, cols / 2)
 status = SETWINDOW(.FALSE., -2.0_8, -2.0_8, 2.0_8, 2.0_8)

The first instruction defines a viewport that covers the upper-left quarter of the screen. The next instruction
defines a text window within the boundaries of that border. Finally, the third instruction creates a window
with both x and y values ranging from -2.0 to 2.0. The .FALSE. constant causes the y-axis to increase from
top to bottom, which is the default. The _8 notation identifies the constants as REAL(8).

Next, the function gridshape inserts the grid and plots the data, and a border is added to the window:

 CALL gridshape(rows / 2)
 status = RECTANGLE($GBORDER,INT2(0),INT2(0),halfx-1,halfy-1)

This is the standard RECTANGLE routine, which takes coordinates relative to the viewport, not the window.

The gridshape subroutine plots the data on the screen.

 ! GRIDSHAPE - This subroutine plots data for REALG.F90
 !
 SUBROUTINE gridshape(numc)

 USE IFQWIN
 INTEGER(2) numc, i, status
 INTEGER(4) rgbcolor, oldcolor
 CHARACTER(8) str
 REAL(8) bananas(21), x
 TYPE (windowconfig) myscreen
 TYPE (wxycoord) wxy
 TYPE (rccoord) curpos
 COMMON myscreen
 !
 ! Data for the graph:
 !
 DATA bananas / -0.3, -0.2, -0.224, -0.1, -0.5, 0.21, 2.9, &
 & 0.3, 0.2, 0.0, -0.885, -1.1, -0.3, -0.2, &
 & 0.001, 0.005, 0.14, 0.0, -0.9, -0.13, 0.31 /
 !
 ! Print colored words on the screen.
 !
 IF(myscreen.numcolors .LT. numc) numc = myscreen.numcolors-1
 DO i = 1, numc
 CALL SETTEXTPOSITION(i, INT2(2), curpos)
 rgbcolor = 12**i -1
 rgbcolor = MODULO(rgbcolor, #FFFFFF)
 oldcolor = SETTEXTCOLORRGB(rgbcolor)
 WRITE (str, '(I8)') rgbcolor
 CALL OUTTEXT('Color ' // str)
 END DO
 !
 ! Draw a double rectangle around the graph.
 !
 oldcolor = SETCOLORRGB(#0000FF) ! full red
 status = RECTANGLE_W($GBORDER, -1.00_8, -1.00_8, 1.00_8,1.00_8)
 ! constants made REAL(8) by appending _8
 status = RECTANGLE_W($GBORDER, -1.02_8, -1.02_8, 1.02_8, 1.02_8)
 !
 ! Plot the points.
 !
 x = -0.90
 DO i = 1, 19

 4 Using Intel® Visual Fortran to Create and Build Windows*-Based Applications

42

 oldcolor = SETCOLORRGB(#00FF00) ! full green
 CALL MOVETO_W(x, -1.0_8, wxy)
 status = LINETO_W(x, 1.0_8)
 CALL MOVETO_W(-1.0_8, x, wxy)
 status = LINETO_W(1.0_8, x)
 oldcolor = SETCOLORRGB(#FF0000) ! full blue
 CALL MOVETO_W(x - 0.1_8, bananas(i), wxy)
 status = LINETO_W(x, bananas(i + 1))
 x = x + 0.1
 END DO
 CALL MOVETO_W(0.9_8, bananas(i), wxy)
 status = LINETO_W(1.0_8, bananas(i + 1))
 oldcolor = SETCOLORRGB(#00FFFF) ! yellow
 END SUBROUTINE

The routine names that end with _W work in the same way as their viewport equivalents, except that you
pass double-precision floating-point values instead of integers. For example, you pass INTEGER(2) to
LINETO, but REAL(8) values to LINETO_W.

The two other windows are similar to the first. All three call the gridshape function, which draws a grid from
location (-1.0, -1.0) to (1.0, 1.0). The grid appears in different sizes because the coordinates in the windows
vary. The second window ranges from (-3.0, -3.0) to (3.0, 3.0), and the third from (-3.0, -1.5) to (1.5, 1.5),
so the sizes change accordingly.

The third window also contains a .TRUE. inversion argument. This causes the y-axis to increase from bottom
to top, instead of top to bottom. As a result, this graph appears upside down with respect to the other two.

After calling gridshape, the program frames each window, using a statement such as the following:

 status = RECTANGLE_W($GBORDER, -3.0_8, -1.5_8, 1.5_8, 1.5_8)

The first argument is a fill flag indicating whether to fill the rectangle's interior or just to draw its outline. The
remaining arguments are the x and y coordinates for the upper-left corner followed by the x and y
coordinates for the lower-right corner.RECTANGLE takes integer arguments that refer to the viewport
coordinates.RECTANGLE_W takes four double-precision floating-point values referring to window
coordinates.

After you create various graphics elements, you can use the font-oriented routines to polish the appearance
of titles, headings, comments, or labels. Using Fonts from the Graphics Library Overview describes in more
detail how to print text in various fonts with font routines.

Adding Color

Adding Color Overview

The Intel® Fortran QuickWin Library supports color graphics. The number of total available colors depends on
the current video driver and video adapter you are using. The number of available colors you use depends on
the graphics functions you choose.

If you have a VGA machine, you are restricted to displaying at most 256 colors at a time. These 256 colors
are held in a palette. You can choose the palette colors from a range of 262,144 colors (256K), but only 256
at a time. The palette routines REMAPPALETTERGB and REMAPALLPALETTERGB assign Red-Green-Blue (RGB)
colors to palette indexes.

Functions and subroutines that use color indexes create graphic outputs that depend on the mapping
between palette indexes and RGB colors.REMAPPALETTERGB remaps one color index to an RGB color, and
REMAPALLPALETTERGB remaps the entire palette, up to 236 colors, (20 colors are reserved by the system).
You cannot remap the palette on machines capable of displaying 20 colors or fewer.

SVGA and true color video adapters are capable of displaying 262,144 (256K) colors and 16.7 million colors
respectively. If you use a palette, you are restricted to the colors available in the palette.

Using QuickWin 4

43

To access the entire set of available colors, not just the 256 or fewer colors in the palette, you should use
functions that specify a color value directly. These functions end in RGB and use Red-Green-Blue color
values, not indexes to a palette. For example, SETCOLORRGB, SETTEXTCOLORRGB, and SETPIXELRGB specify a
direct color value, while SETCOLOR, SETTEXTCOLOR, and SETPIXEL each specify a palette color index. If you
are displaying more than 256 colors simultaneously, you need to use the RGB direct color value functions
exclusively.

To set the physical display properties of your monitor, open the Control Panel and click the Display icon.

QuickWin only supports a 256-color palette, regardless of the number of colors set for the monitor.

The different color modes and color functions are discussed and demonstrated in the following sections:

See Also
Color Mixing
VGA Color Palette
Using Text Colors

Color Mixing

If you have a VGA machine, you are restricted to displaying at most 256 colors at a time. These 256 colors
are held in a palette. You can choose the palette colors from a range of 262,144 colors (256K), but only 256
at a time. Some display adapters (most SVGAs) are capable of displaying all of the 256K colors and some
(true color display adapters) are capable of displaying 256 * 256 * 256 = 16.7 million colors.

If you use a palette, you are restricted to the colors available in the palette. In order to access all colors
available on your system, you need to specify an explicit Red-Green-Blue (RGB) value, not a palette index.

When you select a color index, you specify one of the colors in the system's predefined palette. SETCOLOR,
SETBKCOLOR, and SETTEXTCOLOR set the current color, background color, and text color to a palette index.

SETCOLORRGB, SETBKCOLORRGB, and SETTEXTCOLORRGB set the colors to a color value chosen from the
entire available range. When you select a color value, you specify a level of intensity with a range of 0 - 255
for each of the red, green, and blue color values. The long integer that defines a color value consists of 3
bytes (24 bits) as follows:
 MSB LSB
 BBBBBBBB GGGGGGGG RRRRRRRR
where R, G, and B represent the bit values for red, green, and blue intensities. To mix a light red (pink), turn
red all the way up and mix in some green and blue:
 10000000 10000000 11111111
In hexadecimal notation, this number equals #8080FF. To set the current color to this value, you can use the
function:
 i = SETCOLORRGB (#8080FF)
You can also pass decimal values to this function. Keep in mind that 1 (binary 00000001, hex 01) represents
a low color intensity and that 255 (binary 11111111, hex FF) equals full color intensity. To create pure yellow
(100-percent red plus 100-percent green) use this line:
 i = SETCOLORRGB(#00FFFF)
For white, turn all of the colors on:
 i = SETCOLORRGB(#FFFFFF)
For black, set all of the colors to 0:
 i = SETCOLORRGB(#000000)
RGB values for example colors are in the following table.

RGB Color Values

Color RGB Value Color RGB Value

Black #000000 Bright White #FFFFFF

 4 Using Intel® Visual Fortran to Create and Build Windows*-Based Applications

44

RGB Color Values

Color RGB Value Color RGB Value

Dull Red #000080 Bright Red #0000FF

Dull Green #008000 Bright Green #00FF00

Dull Yellow #008080 Bright Yellow #00FFFF

Dull Blue #800000 Bright Blue #FF0000

Dull Magenta #800080 Bright Magenta #FF00FF

Dull Turquoise #808000 Bright Turquoise #FFFF00

Dark Gray #808080 Light Gray #C0C0C0

If you have a 64K-color machine and you set an RGB color value that is not equal to one of the 64K preset
RGB color values, the system approximates the requested RGB color to the closest available RGB value. The
same thing happens on a VGA machine when you set an RGB color that is not in the palette. (You can remap
your VGA color palette to different RGB values; see VGA Color Palette.)

However, although your graphics are drawn with an approximated color, if you retrieve the color with
GETCOLORRGB, GETBKCOLORRGB, or GETTEXTCOLORRGB, the color you specified is returned, not the actual
color used. This is because the SETCOLORRGB functions do not execute any graphics, they simply set the
color and the approximation is made when the drawing is made (by ELLIPSE or ARC , for example).

GETPIXELRGB and GETPIXELSRGB do return the approximated color actually used, because SETPIXELRGB
and SETPIXELSRGB actually set a pixel to a color on the screen and the approximation, if any, is made at the
time they are called.

VGA Color Palette

A VGA machine is capable of displaying at most 256 colors at a time. QuickWin provides support for VGA
monitors and more advanced monitors that are set at 256 colors. Only a 256-color palette (or less) is
supported internally regardless of the current number of colors set for the display (in the Control Panel). The
number of colors you select for your VGA palette depends on your application, and is set by setting the wc
%numcolors variable in the windowconfig derived type to 2, 16, or 256 with SETWINDOWCONFIG.

An RGB color value must be in the palette to be accessible to your VGA graphic displays. You can change the
default colors and customize your color palette by using REMAPPALETTERGB to change a palette color index to
any RGB color value. The following example remaps the color index 1 (default blue color) to the pure red
color value given by the RGB value #0000FF. After this is executed, whatever was displayed as blue will
appear as red:
 USE IFQWIN
 INTEGER status
 status = REMAPPALETTERGB(1, #0000FF) ! Reassign color index 1
 ! to RGB red
REMAPALLPALETTERGB remaps one or more color indexes simultaneously. Its argument is an array of RGB
color values that are mapped into the palette. The first color number in the array becomes the new color
associated with color index 0, the second with color index 1, and so on. At most 236 indexes can be mapped,
because 20 indexes are reserved for system use.

If you request an RGB color that is not in the palette, the color selected from the palette is the closest
approximation to the RGB color requested. If the RGB color was previously placed in the palette with
REMAPPALETTERGB or REMAPALLPALETTERGB, then that exact RGB color is available.

Remapping the palette has no effect on 64K-color machines, SVGA, or true-color machines, unless you limit
yourself to a palette by using color index functions such as SETCOLOR. On a VGA machine, if you remap all
the colors in your palette and display that palette in graphics, you cannot then remap and simultaneously
display a second palette.

Using QuickWin 4

45

For instance, in VGA 256-color mode, if you remap all 256 palette colors and display graphics in one child
window, then open another child window, remap the palette and display graphics in the second child window,
you are attempting to display more than 256 colors at one time. The machine cannot do this, so whichever
child window has the focus will appear correct, while the one without the focus will change color.

NOTE
Machines that support more than 256 colors will not be able to do animation by remapping the palette.
Windows operating systems create a logical palette that maps to the video hardware palette. On video
hardware that supports a palette of 256 colors or less, remapping the palette maps over the current
palette and redraws the screen in the new colors.

On large hardware palettes that support more than 256 colors, remapping is done into the unused portion of
the palette. It does not map over the current colors nor redraw the screen. So, on machines with large
palettes (more than 256 colors), the technique of changing the screen through remapping, called palette
animation, cannot be used. See the MSDN* Platform SDK Manual for more information.

Symbolic constants (names) for the default color numbers are supplied in the graphics modules. The names
are self-descriptive; for example, the color numbers for black, yellow, and red are represented by the
symbolic constants $BLACK, $YELLOW, and $RED.

Using Text Colors

SETTEXTCOLORRGB (or SETTEXTCOLOR) and SETBKCOLORRGB (or SETBKCOLOR) set the foreground and
background colors for text output. All use a single argument specifying the color value (or color index) for
text displayed with OUTTEXT and WRITE. For the color index functions, colors are represented by the range
0-31. Index values in the range of 16-31 access the same colors as those in the range of 0-15.

You can retrieve the current foreground and background color values with GETTEXTCOLORRGB and
GETBKCOLORRGB or the color indexes with GETTEXTCOLOR and GETBKCOLOR. Use SETTEXTPOSITION to move
the cursor to a particular row and column. OUTTEXT and WRITE print the text at the current cursor location.

For more information on these routines, see the appropriate routines in the Language Reference.

Writing a Graphics Program

Writing a Graphics Program Overview

Like many programs, graphics programs work well when written in small units. Using discrete routines aids
debugging by isolating the functional components of the program. The following example program and its
associated subroutines show the steps involved in initializing, drawing, and closing a graphics program.

The SINE program draws a sine wave. Its procedures call many of the common graphics routines. The main
program calls five subroutines that carry out the actual graphics commands (also located in the SINE.F90
file):
 ! SINE.F90 - Illustrates basic graphics commands.
 ! USE IFQWIN
 CALL graphicsmode()
 CALL drawlines()
 CALL sinewave()
 CALL drawshapes()
 END
 .
 .
 .
For information on the subroutines used in the SINE program, see:

• graphicsmode in section Activating a Graphics Mode
• drawlines in section Drawing Lines on the Screen

 4 Using Intel® Visual Fortran to Create and Build Windows*-Based Applications

46

• sinewave in section Drawing a Sine Curve
• drawshapes in section Adding Shapes

The SINE program's output appears in the following figure. The project is built as a Fortran Standard
Graphics application.

Sine Program Output

Activating a Graphics Mode

If you call a graphics routine without setting a graphics mode with SETWINDOWCONFIG, QuickWin
automatically sets the graphics mode with default values.

The Writing a Graphics Program Overview program shown in the previous topic selects and sets the graphics
mode in the subroutine graphicsmode, which selects the highest possible resolution for the current video
driver:
 SUBROUTINE graphicsmode()
 USE IFQWIN
 LOGICAL modestatus
 INTEGER(2) maxx, maxy
 TYPE (windowconfig) myscreen
 COMMON maxx, maxy
 ! Set highest resolution graphics mode.
 myscreen.numxpixels=-1
 myscreen.numypixels=-1
 myscreen.numtextcols=-1
 myscreen.numtextrows=-1
 myscreen.numcolors=-1
 myscreen.fontsize=-1
 myscreen.title = " "C ! blank
 modestatus=SETWINDOWCONFIG(myscreen)
 ! Determine the maximum dimensions.
 modestatus=GETWINDOWCONFIG(myscreen)
 maxx=myscreen.numxpixels - 1
 maxy=myscreen.numypixels - 1
 END SUBROUTINE

Using QuickWin 4

47

Pixel coordinates start at zero, so, for example, a screen with a resolution of 640 horizontal pixels has a
maximum x-coordinate of 639. Thus, maxx (the highest available x-pixel coordinate) must be 1 less than the
total number of pixels. The same applies to maxy.

To remain independent of the video mode set by graphicsmode, two short functions convert an arbitrary
screen size of 1000x1000 pixels to whatever video mode is in effect. From now on, the program assumes it
has 1000 pixels in each direction. To draw the points on the screen, newx and newy map each point to their
physical (pixel) coordinates:
 ! NEWX - This function finds new x-coordinates.
 INTEGER(2) FUNCTION newx(xcoord)
 INTEGER(2) xcoord, maxx, maxy
 REAL(4) tempx
 COMMON maxx, maxy
 tempx = maxx / 1000.0
 tempx = xcoord * tempx + 0.5
 newx = tempx
 END FUNCTION
 ! NEWY - This function finds new y-coordinates.
 !
 INTEGER(2) FUNCTION newy(ycoord)
 INTEGER(2) ycoord, maxx, maxy
 REAL(4) tempy
 COMMON maxx, maxy
 tempy = maxy / 1000.0
 tempy = ycoord * tempy + 0.5
 newy = tempy
 END FUNCTION
You can set up a similar independent coordinate system with window coordinates, described in
Understanding Coordinate Systems Overview.

Drawing Lines on the Screen

Writing a Graphics Program Overview next calls the subroutine drawlines, which draws a rectangle around
the outer edges of the screen and three horizontal lines that divide the screen into quarters. (See Writing a
Graphics Program Overview.)
 ! DRAWLINES - This subroutine draws a box and
 ! several lines.
 SUBROUTINE drawlines() USE IFQWIN EXTERNAL newx, newy
 INTEGER(2) status, newx, newy, maxx, maxy
 TYPE (xycoord) xy
 COMMON maxx, maxy
 !
 ! Draw the box.
 status = RECTANGLE($GBORDER, INT2(0), INT2(0), maxx, maxy)
 CALL SETVIEWORG(INT2(0), newy(INT2(500)), xy)
 ! This sets the new origin to 0 for x and 500 for y.
 ! Draw the lines.
 CALL MOVETO(INT2(0), INT2(0), xy)
 status = LINETO(newx(INT2(1000)), INT2(0))
 CALL SETLINESTYLE(INT2(#AA3C))
 CALL MOVETO(INT2(0), newy(INT2(-250)), xy)
 status = LINETO(newx(INT2(1000)),newy(INT2(-250)))
 CALL SETLINESTYLE(INT2(#8888))
 CALL MOVETO(INT2(0), newy(INT2(250)), xy)
 status = LINETO(newx(INT2(1000)),newy(INT2(250)))
 END SUBROUTINE

 4 Using Intel® Visual Fortran to Create and Build Windows*-Based Applications

48

The first argument to RECTANGLE is the fill flag, which can be either $GBORDER or $GFILLINTERIOR. Choose
$GBORDER if you want a rectangle of four lines (a border only, in the current line style), or $GFILLINTERIOR
if you want a solid rectangle (filled in with the current color and fill pattern). Choosing the color and fill
pattern is discussed in Adding Color Overview and Adding Shapes.

The second and third RECTANGLE arguments are the x- and y-coordinates of the upper-left corner of the
rectangle. The fourth and fifth arguments are the coordinates for the lower-right corner. Because the
coordinates for the two corners are (0, 0) and (maxx, maxy), the call to RECTANGLE frames the entire
screen.

The program calls SETVIEWORG to change the location of the viewport origin. By resetting the origin to (0,
500) in a 1000x1000 viewport, you effectively make the viewport run from (0, -500) at the top left of the
screen to (1000, 500) at the bottom right of the screen:
 CALL SETVIEWORG(INT2(0), newy(INT2(500)), xy)
Changing the coordinates illustrates the ability to alter the viewport coordinates to whatever dimensions you
prefer. (Viewports and the SETVIEWORG routine are explained in more detail in Understanding Coordinate
Systems Overview.)

The call to SETLINESTYLE changes the line style from a solid line to a dashed line. A series of 16 bits tells
the routine which pattern to follow. Five possible line patterns are available. For more information, see
SETLINESTYLE in the Intel Fortran Language Reference.

When drawing lines, first set an appropriate line style. Then, move to where you want the line to begin and
call LINETO, passing to it the point where you want the line to end. The drawlines subroutine uses the
following code:
 CALL SETLINESTYLE(INT2(#AA3C))
 CALL MOVETO(INT2(0), newy(INT2(-250)), xy)
 dummy = LINETO(newx(INT2(1000)), newy(INT2(-250)))
MOVETO positions an imaginary pixel cursor at a point on the screen (nothing appears on the screen), and
LINETO draws a line. When the program called SETVIEWORG, it changed the viewport origin, and the initial y-
axis range of 0 to 1000 now corresponds to a range of -500 to +500. Therefore, the negative value -250 is
used as the y-coordinate of LINETO to draw a horizontal line across the center of the top half of the screen,
and the value of 250 is used as the y-coordinate to draw a horizontal line across the center of the bottom
half of the screen.

Drawing a Sine Curve

With the axes and frame in place, Writing a Graphics Program Overview is ready to draw the sine curve. The
sinewave routine calculates the x and y positions for two cycles and plots them on the screen:
 ! SINEWAVE - This subroutine calculates and plots a sine wave.
 SUBROUTINE sinewave()
 USE IFQWIN
 INTEGER(2) dummy, newx, newy, locx, locy, i
 INTEGER(4) color
 REAL rad
 EXTERNAL newx, newy
 PARAMETER (PI = 3.14159)
 !
 ! Calculate each position and display it on the screen.
 color = #0000FF ! red
 !
 DO i = 0, 999, 3
 rad = -SIN(PI * i / 250.0)
 locx = newx(i)
 locy = newy(INT2(rad * 250.0))
 dummy = SETPIXELRGB(locx, locy, color)
 END DO
 END SUBROUTINE
SETPIXELRGB takes the two location parameters, locx and locy, and sets the pixel at that position with the
specified color value (red).

Using QuickWin 4

49

Adding Shapes

After drawing the sine curve, Writing a Graphics Program Overview calls drawshapesto put two rectangles
and two ellipses on the screen. The fill flag alternates between $GBORDER and $GFILLINTERIOR:
 ! DRAWSHAPES - Draws two boxes and two ellipses.
 !
 SUBROUTINE drawshapes()
 USE IFQWIN
 EXTERNAL newx, newy
 INTEGER(2) dummy, newx, newy
 !
 ! Create a masking (fill) pattern.
 !
 INTEGER(1) diagmask(8), horzmask(8)
 DATA diagmask / #93, #C9, #64, #B2, #59, #2C, #96, #4B /
 DATA horzmask / #FF, #00, #7F, #FE, #00, #00, #00, #CC /
 !
 ! Draw the rectangles.
 !
 CALL SETLINESTYLE(INT2(#FFFF))
 CALL SETFILLMASK(diagmask)
 dummy = RECTANGLE($GBORDER,newx(INT2(50)),newy(INT2(-325)), &
 & newx(INT2(200)),newy(INT2(-425)))
 dummy = RECTANGLE($GFILLINTERIOR,newx(INT2(550)), &
 & newy(INT2(-325)),newx(INT2(700)),newy(INT2(-425)))
 !
 ! Draw the ellipses.
 !
 CALL SETFILLMASK(horzmask)
 dummy = ELLIPSE($GBORDER,newx(INT2(50)),newy(INT2(325)), &
 & newx(INT2(200)),newy(INT2(425)))
 dummy = ELLIPSE($GFILLINTERIOR,newx(INT2(550)), &
 & znewy(INT2(325)),newx(INT2(700)),newy(INT2(425)))
 END SUBROUTINE
The call to SETLINESTYLE resets the line pattern to a solid line. Omitting this routine causes the first
rectangle to appear with a dashed border, because the drawlines subroutine called earlier changed the line
style to a dashed line.

ELLIPSE draws an ellipse using parameters similar to those for RECTANGLE. It, too, requires a fill flag and
two corners of a bounding rectangle. The following figure shows how an ellipse uses a bounding rectangle:

Bounding Rectangle

The $GFILLINTERIOR constant fills the shape with the current fill pattern. To create a pattern, pass the
address of an 8-byte array to SETFILLMASK. In drawshapes, the diagmaskarray is initialized with the
pattern shown in the following table:

 4 Using Intel® Visual Fortran to Create and Build Windows*-Based Applications

50

Fill Patterns
Bit pattern Value in diagmask
Bit No. 7 6 5 4 3 2 1 0
 x o o x o o x x diagmask(1) = #93
 x x o o x o o x diagmask(2) = #C9
 o x x o o x o o diagmask(3) = #64
 x o x x o o x o diagmask(4) = #B2
 o x o x x o o x diagmask(5) = #59
 o o x o x x o o diagmask(6) = #2C
 x o o x o x x o diagmask(7) = #96
 o x o o x o x x diagmask(8) = #4B

Displaying Graphics Output

Displaying Graphics Output Overview

The run-time graphics library routines can draw geometric features, display text, display font-based
characters, and transfer images between memory and the screen.

The graphics routines provided with Intel® Visual Fortran set points, draw lines, draw text, change colors, and
draw shapes such as circles, rectangles, and arcs.

This section uses the following terms:

• The origin (point 0, 0) is the upper-left corner of the screen or the client area (defined user area) of the
child window being written to. The x-axis and y-axis start at the origin. You can change the origin in some
coordinate systems.

• The horizontal direction is represented by the x-axis, increasing to the right.
• The vertical direction is represented by the y-axis, increasing down.
• Some graphics adapters offer a color palette that can be changed.
• Some graphics adapters (VGA and SVGA) allow you to change the color that a color index refers to by

providing a color value that describes a new color. The color value indicates the mix of red, green, and
blue in a screen color. A color value is always an INTEGER number.

See Also
Drawing Graphics
Displaying Character-Based Text
Displaying Font-Based Characters

Drawing Graphics

If you want anything other than the default line style (solid), mask (no mask), background color (black), or
foreground color (white), you must call the appropriate routine before calling the drawing routine.
Subsequent output routines employ the same attributes until you change them or open a new child window.

The following is a list of routines that provide information on the current graphics settings, set new graphics
settings, and draw graphics:

Routine Description

ARC, ARC_W Draws an arc

CLEARSCREEN Clears the screen, viewport, or text window

ELLIPSE, ELLIPSE_W Draws an ellipse or circle

FLOODFILL, FLOODFILL_W Fills an enclosed area of the screen with the current color
index using the current fill mask

Using QuickWin 4

51

Routine Description

FLOODFILLRGB, FLOODFILLRGB_W Fills an enclosed area of the screen with the current RGB color
using the current fill mask

GETARCINFO Determines the endpoints of the most recently drawn arc or
pie

GETCURRENTPOSITION,
GETCURRENTPOSITION_W

Returns the coordinates of the current graphics-output position

GETPIXEL, GETPIXEL_W Returns a pixel's color index

GETPIXELRGB, GETPIXELRGB_W Returns a pixel's Red-Green-Blue color value

GETPIXELS Gets the color indices of multiple pixels

GETPIXELSRGB Gets the Red-Green-Blue color values of multiple pixels

GRSTATUS Returns the status (success or failure) of the most recently
called graphics routine

INTEGERTORGB Convert a true color value into its red, green, and blue
components

LINETO, LINETO_W Draws a line from the current graphics-output position to a
specified point

LINETOAR, LINETOAREX Draws lines from arrays at x,y coordinate points

MOVETO, MOVETO_W Moves the current graphics-output position to a specified point

PIE, PIE_W Draws a pie-slice-shaped figure

POLYGON, POLYGON_W Draws a polygon

RECTANGLE, RECTANGLE_W Draws a rectangle

RGBTOINTEGER Convert a trio of red, green, and blue values to a true color
value for use with RGB functions and subroutines

SETPIXEL, SETPIXEL_W Sets a pixel at a specified location to a color index

SETPIXELRGB, SETPIXELRGB_W Sets a pixel at a specified location to a Red-Green-Blue color
value

SETPIXELS Set the color indices of multiple pixels

SETPIXELSRGB Set the Red-Green-Blue color value of multiple pixels

Most of these routines have multiple forms. Routine names that end with _W use the window-coordinate
system and REAL(8) argument values. Routines without this suffix use the viewport-coordinate system and
INTEGER(2) argument values.

Curved figures, such as arcs and ellipses, are centered within a bounding rectangle, which is specified by the
upper-left and lower-right corners of the rectangle. The center of the rectangle becomes the center for the
figure, and the rectangle's borders determine the size of the figure. In the following figure, the points (x1,
y1) and (x2, y2) define the bounding rectangle.

Bounding Rectangle

 4 Using Intel® Visual Fortran to Create and Build Windows*-Based Applications

52

Displaying Character-Based Text

The routines in the following table ask about screen attributes that affect text display, prepare the screen for
text and send text to the screen. To print text in specialized fonts, see Displaying Font-Based Characters and
Using Fonts from the Graphics Library Overview.

In addition to these general text routines, you can customize the text in your menus with
MODIFYMENUSTRINGQQ. You can also customize any other string that QuickWin produces, including status bar
messages, the state message (for example, "Paused" or "Running"), and dialog box messages, with
SETMESSAGEQQ. Use of these customization routines is described in Customizing QuickWin Applications
Overview.

The following routines recognize text-window boundaries:

Routine Description

CLEARSCREEN Clears the screen, viewport, or text window

DISPLAYCURSOR Sets the cursor on or off

GETBKCOLOR Returns the current background color index

GETBKCOLORRGB Returns the current background Red-Green-Blue color value

GETTEXTCOLOR Returns the current text color index

GETTEXTCOLORRGB Returns the current text Red-Green-Blue color value

GETTEXTPOSITION Returns the current text-output position

GETTEXTWINDOW Returns the boundaries of the current text window

OUTTEXT Sends text to the screen at the current position

SCROLLTEXTWINDO
W

Scrolls the contents of a text window

SETBKCOLOR Sets the current background color index

SETBKCOLORRGB Sets the current background Red-Green-Blue color value

SETTEXTCOLOR Sets the current text color to a new color index

SETTEXTCOLORRGB Sets the current text color to a new Red-Green-Blue color value

SETTEXTPOSITION Changes the current text position

SETTEXTWINDOW Sets the current text-display window

WRAPON Turns line wrapping on or off

These routines do not provide text-formatting capabilities. If you want to print integer or floating-point
values, you must convert the values into a string (using an internal WRITE statement) before calling these
routines. The text routines specify all screen positions in character-row and column coordinates.

Using QuickWin 4

53

SETTEXTWINDOW is the text equivalent of the SETVIEWPORT graphics routine, except that it restricts only the
display area for text printed with OUTTEXT, PRINT, and WRITE.GETTEXTWINDOW returns the boundaries of the
current text window set by SETTEXTWINDOW. SCROLLTEXTWINDOW scrolls the contents of a text
window.OUTTEXT, PRINT, and WRITE display text strings written to the current text window.

NOTE
The WRITE statement sends its carriage return (CR) and line feed (LF) to the screen at the beginning
of the first I/O statement following the WRITE statement. This can cause unpredictable text positioning
if you mix the graphics routines SETTEXTPOSITION and OUTTEXT with the WRITE statement. To
minimize this effect, use the backslash (\) or dollar sign ($) format descriptor (to suppress CR-LF)
in the associated FORMAT statement.

See more information on routines mentioned here, see the routine descriptions in the Language Reference.

Displaying Font-Based Characters

Because the Intel Visual Fortran Graphics Library provides a variety of fonts, you must indicate which font to
use when displaying font-based characters. After you select a font, you can make inquiries about the width of
a string printed in that font or about font characteristics.

The following functions control the display of font-based characters:

Routine Description

GETFONTINFO Returns the current font characteristics

GETGTEXTEXT
ENT

Determines the width of specified text in the current font

GETGTEXTROT
ATION

Gets the current orientation for font text output in 0.1º increments

INITIALIZEF
ONTS

Initializes the font library

OUTGTEXT Sends text in the current font to the screen at the current graphics output position

SETFONT Finds a single font that matches a specified set of characteristics and makes it the current
font used by OUTGTEXT

SETGTEXTROT
ATION

Sets the current orientation for font text output in 0.1º increments

Characters may be drawn ("mapped") in one of two ways: as bitmapped letters (a "picture" of the letter) or
as TrueType characters. See Using Fonts from the Graphics Library Overview, for detailed explanations and
examples of how to use the font routines from the QuickWin Library.

For more information on these routines, see the Language Reference.

Using Fonts from the Graphics Library

Using Fonts from the Graphics Library Overview

The Intel® Fortran Graphics Library includes routines that print text in various sizes and type styles. These
routines provide control over the appearance of your text and add visual interest to your screen displays.

This section assumes you have read Displaying Graphics Output Overview and that you understand the
general terminology it introduces. You should also be familiar with the basic properties of both the
SETWINDOWCONFIG and MOVETO routines. Also, remember that graphics programs containing graphics
routines must be built as Fortran QuickWin or Fortran Standard Graphics applications.

 4 Using Intel® Visual Fortran to Create and Build Windows*-Based Applications

54

The project type is set in the visual development environment when you select New from the File menu, then
click on the Projects tab, and select Fortran QuickWin or Fortran Standard Graphics Application from the
application types listed. Graphics applications can also be built with the /libs:qwin or /libs:qwins
compiler option.

See Also
Available Typefaces
Initializing Fonts
Setting the Font and Displaying Text
SHOWFONT.F90 Example

Available Typefaces

A fontis a set of text characters of a particular size and style.

A typeface (or type style) refers to the style of the displayed characters -- Arial, for example, or Times New
Roman.

Type size measures the screen area occupied by individual characters. The term comes from the printer's
lexicon, but uses screen pixels as the unit of measure rather than the traditional points. For example,
"Courier 12 9" denotes the Courier typeface, with each character occupying a screen area of 12 vertical
pixels by 9 horizontal pixels. The word "font", therefore implies both a typeface and a type size.

The QuickWin Library font routines use all Windows operating system installed fonts. The first type of font
used is a bitmap (or raster-map) font. Bitmap fonts have each character in a binary data map. Each bit in the
map corresponds to a screen pixel. If the bit equals 1, its associated pixel is set to the current screen color.
Bit values of 0 appear in the current background color.

The second type of font is called a TrueType font. Some screen fonts look different on a printer, but
TrueType fonts print exactly as they appear on the screen. TrueType fonts may be bitmaps or soft fonts
(fonts that are downloaded to your printer before printing), depending on the capabilities of your printer.
TrueType fonts are scalable and can be sized to any height. It is recommended that you use TrueType fonts
in your graphics programs.

Each type of font has advantages and disadvantages. Bitmapped characters appear smoother on the screen
because of the predetermined pixel mapping. However, they cannot be scaled. You can scale TrueType text
to any size, but the characters sometimes do not look quite as solid as the bitmapped characters on the
screen. Usually this screen effect is hardly noticeable, and when printed, TrueType fonts are as smooth or
smoother than bitmapped fonts.

The bitmapped typefaces come in preset sizes measured in pixels. The exact size of any font depends on
screen resolution and display type.

Initializing Fonts

A program that uses fonts must first organize the fonts into a list in memory, a process called initializing. The
list gives the computer information about the available fonts.

Initialize the fonts by calling the INITIALIZEFONTS routine:
 USE IFQWIN
 INTEGER(2) numfonts
 numfonts = INITIALIZEFONTS()
If the computer successfully initializes one or more fonts, INITIALIZEFONTS returns the number of fonts
initialized. If the function fails, it returns a negative error code.

Setting the Font and Displaying Text

Before a program can display text in a particular font, it must know which of the initialized fonts to use.
SETFONT makes one of the initialized fonts the current (or "active") font. SETFONT has the following syntax:
result =SETFONT (options)

Using QuickWin 4

55

The function's argument consists of letter codes that describe the desired font: typeface, character height
and width in pixels, fixed or proportional, and attributes such as bold or italic. These options are discussed in
detail in the SETFONT entry in the Language Reference in the Intel® Visual Fortran Compiler User and
Reference Guides. For example:
 USE IFQWIN
 INTEGER(2) index, numfonts
 numfonts = INITIALIZEFONTS ()
 index = SETFONT('t''Cottage''h18w10')
This sets the typeface to Cottage, the character height to 18 pixels and the width to 10 pixels.

The following example sets the typeface to Arial, the character height to 14, with proportional spacing and
italics (the pi codes):
 index = SETFONT('t''Arial''h14pi')
If SETFONT successfully sets the font, it returns the font's index number. If the function fails, it returns a
negative integer. Call GRSTATUS to find the source of the problem; its return value indicates why the function
failed. If you call SETFONT before initializing fonts, a run-time error occurs.

SETFONT updates the font information when it is used to select a font. GETFONTINFO can be used to obtain
information about the currently selected font.SETFONT sets the user fields in the fontinfo type (a derived
type defined in DFLIB.MOD), and GETFONTINFO returns the user-selected values. The following user fields
are contained in fontinfo:
 TYPE fontinfo
 INTEGER(2) type ! 1 = truetype, 0 = bit map
 INTEGER(2) ascent ! Pixel distance from top to baseline
 INTEGER(2) pixwidth ! Character width in pixels, 0=prop
 INTEGER(2) pixheight ! Character height in pixels
 INTEGER(2) avgwidth ! Average character width in pixels
 CHARACTER(32) facename ! Font name
 END TYPE fontinfo
To find the parameters of the current font, call GETFONTINFO. For example:
 USE IFQWIN
 TYPE (fontinfo) font
 INTEGER(2) i, numfonts
 numfonts = INITIALIZEFONTS()
 i = SETFONT (' t ' 'Arial ')
 i = GETFONTINFO(font)
 WRITE (*,*) font.avgwidth, font.pixheight, font.pixwidth
After you initialize the fonts and make one the active font, you can display the text on the screen.

To display text on the screen after selecting a font:

1. Select a starting position for the text with MOVETO.
2. Optionally, set a text display angle with SETGTEXTROTATION.
3. Send the text to the screen (in the current font) with OUTGTEXT.

MOVETO moves the current graphics point to the pixel coordinates passed to it when it is invoked. This
becomes the starting position of the upper-left corner of the first character in the text. SETGTEXTROTATION
can set the text's orientation in increments of one-tenth of a degree.

SHOWFONT.F90 Example

The program SHOWFONT.F90 displays text in the fonts available on your system. (Once the screen fills with
text, press Enter to display the next screen.) An abbreviated version follows. SHOWFONT calls SETFONT to
specify the typeface. MOVETO then establishes the starting point for each text string. The program sends a
message of sample text to the screen for each font initialized:
! Abbreviated version of SHOWFONT.F90.
 USE IFQWIN
 INTEGER(2) grstat, numfonts,indx, curr_height

 4 Using Intel® Visual Fortran to Create and Build Windows*-Based Applications

56

 TYPE (xycoord) xyt
 TYPE (fontinfo) f
 CHARACTER(6) str ! 5 chars for font num
 ! (max. is 32767), 1 for 'n'
! Initialization.
 numfonts=INITIALIZEFONTS()
 IF (numfonts.LE.0) PRINT *,"INITIALIZEFONTS error"
 IF (GRSTATUS().NE.$GROK) PRINT *,'INITIALIZEFONTS GRSTATUS error.'
 CALL MOVETO (0,0,xyt)
 grstat=SETCOLORRGB(#FF0000)
 grstat=FLOODFILLRGB(0, 0, #00FF00)
 grstat=SETCOLORRGB(0)
! Get default font height for comparison later.
 grstat = SETFONT('n1')
 grstat = GETFONTINFO(f)
 curr_height = f.pixheight
! Done initializing, start displaying fonts.
 DO indx=1,numfonts
 WRITE(str,10)indx
 grstat=SETFONT(str)
 IF (grstat.LT.1) THEN
 CALL OUTGTEXT('SetFont error.')
 ELSE
 grstat=GETFONTINFO(f)
 grstat=SETFONT('n1')
 CALL OUTGTEXT(f.facename(:len_trim(f.facename)))
 CALL OUTGTEXT(' ')
! Display font.
 grstat=SETFONT(str)
 CALL OUTGTEXT('ABCDEFGabcdefg12345!@#$%')
 END IF
! Go to next line.
 IF (f.pixheight .GT. curr_height) curr_height=f.pixheight
 CALL GETCURRENTPOSITION(xyt)
 CALL MOVETO(0,INT2(xyt.ycoord+curr_height),xyt)
 END DO
10 FORMAT ('n',I5.5)
 END

Storing and Retrieving Images

Working With Screen Images

The routines described in the following topics offer the following ways to store and retrieve images:

• Transferring Images in Memory

Transferring images from buffers is a quick and flexible way to move things around the screen. Memory
images can interact with the current screen image; for example, you can perform a logical AND of a
memory image and the current screen or superimpose a negative of the memory image on the screen.

• Loading and Saving Images to Files

Transferring images from files gives access to images created by other programs, and saves graphs and
images for later use. However, images loaded from bitmap files overwrite the portion of the screen they
are pasted into and retain the attributes they were created with, such as the color palette, rather than
accepting current attributes.

• Editing Text and Graphics from the QuickWin Edit Menu

Editing screen images from the QuickWin Edit menu is a quick and easy way to move and modify images
interactively on the screen, retaining the current screen attributes, and also provides temporary storage
(the Clipboard) for transferring images among applications.

Using QuickWin 4

57

These routines allow you to cut, paste, and move images around the screen.

Transferring Images in Memory

The GETIMAGE and PUTIMAGE routines transfer images between memory and the screen and give you options
that control the way the image and screen interact. When you hold an image in memory, the application
allocates a memory buffer for the image. The IMAGESIZE routines calculate the size of the buffer needed to
store a given image.

Routines that end with _W use window coordinates; the other functions use viewport coordinates.

Routine Description

GETIMAGE, GETIMAGE_W Stores a screen image in memory

IMAGESIZE, IMAGESIZE_W Returns image size in bytes

PUTIMAGE, PUTIMAGE_W Retrieves an image from memory and displays it

Loading and Saving Images to Files

The LOADIMAGE and SAVEIMAGE routines transfer images between the screen and Windows bitmap files:

Routine Description

LOADIMAGE,
LOADIMAGE_W

Reads a Windows bitmap file (.BMP) from disk and displays it as specified
coordinates

SAVEIMAGE,
SAVEIMAGE_W

Captures a screen image from the specified portion of the screen and saves it as a
Windows bitmap file

You can use a Windows format bitmap file created with a graphics program as a backdrop for graphics that
you draw with the Intel Visual Fortran graphics functions and subroutines.

Editing Text and Graphics from the QuickWin Edit Menu

From the QuickWin Edit menu you can choose the Select Text, Select Graphics, or Select All options. You can
then outline your selection with the mouse or the keyboard arrow keys. When you use the Select Text
option, your selection is highlighted. When you use the Select Graphics or Select All option, your selection is
marked with a box whose dimensions you control.

Once you have selected a portion of the screen, you can copy it onto the Clipboard by using the Edit/Copy
option or by using the Ctrl+INS key combination. If the screen area you have selected contains only text, it
is copied onto the Clipboard as text. If the selected screen area contains graphics, or a mix of text and
graphics, it is copied onto the Clipboard as a bitmap.

The Edit menu's Paste option will only paste text. Bitmaps can be pasted into other Windows applications
from the Clipboard (with the Ctrl+V or Shift+INS key combinations).

Remember the following when selecting portions of the screen:

• If you have chosen the Select All option from the Edit menu, the whole screen is selected and you cannot
then select a portion of the screen.

• Text selections are not bounded by the current text window set with SETTEXTWINDOW.
• When text is copied to the Clipboard, trailing blanks in a line are removed.
• Text that is written to a window can be overdrawn by graphics. In this case, the text is still present in the

screen text buffer, though not visible on the screen. When you select a portion of the screen to copy, you
can select text that is actually present but not visible, and that text will be copied onto the Clipboard.

• When you choose Select Text or Select Graphics from the Edit menu, the application is paused, a caret
(^) appears at the top left corner of the currently active window, all user-defined callbacks are disabled,
and the window title changes to "Mark Text - windownam "or "Mark Graphics - windowname", where
windowname is the name of the currently active window.

 4 Using Intel® Visual Fortran to Create and Build Windows*-Based Applications

58

As soon as you begin selection (by pressing an arrow key or a mouse button), the Window title changes
to "Select Text - windowname" or "Select Graphics - windowname" and selection begins at that point. If
you do not want selection to begin in the upper-left corner, your first action when "Mark Text" or "Mark
Graphics" appears in the title is to use the mouse to place the cursor at the position where selection is to
be begin.

Customizing QuickWin Applications

Customizing QuickWin Applications Overview

The QuickWin library is a set of routines you can use to create graphics programs or simple applications for
Windows. For a general overview of QuickWin and a description of how to create and size child windows, see
the beginning of this section. For information on how to compile and link QuickWin applications, see the
Intel® Visual Fortran Compiler User and Reference Guides.

The following topics describe how to customize and fine-tune your QuickWin applications:

• Enhancing QuickWin Applications
• Controlling Menus
• Changing Status Bar and State Messages
• Displaying Message Boxes
• Defining an About Box
• Using Custom Icons
• Using a Mouse

Enhancing QuickWin Applications

In addition to the basic QuickWin features, you can optionally customize and enhance your QuickWin
applications with the features described in the following table. These features let you create customized
menus, respond to mouse events, and add custom icons.

Category QuickWin Function Description

Initial settings INITIALSETTINGS Controls initial menu settings and/or initial frame window

Display/add box MESSAGEBOXQQ Displays a message box

ABOUTBOXQQ Adds an About Box with customized text

Menu items CLICKMENUQQ Simulates the effect of clicking or selecting a menu item

APPENDMENUQQ Appends a menu item

DELETEMENUQQ Deletes a menu item

INSERTMENUQQ Inserts a menu item

MODIFYMENUFLAGSQQ Modifies a menu item's state

MODIFYMENUROUTINEQQ Modifies a menu item's callback routine

MODIFYMENUSTRINGQQ Changes a menu item's text string

SETWINDOWMENUQQ Sets the menu to which a list of current child window
names are appended

Directional keys PASSDIRKEYSQQ Enables (or disables) use of the arrow directional keys
and page keys as input

Using QuickWin 4

59

Category QuickWin Function Description

QuickWin
messages

SETMESSAGEQQ Changes any QuickWin message, including status bar
messages, state messages and dialog box messages

Mouse actions REGISTERMOUSEEVENT Registers the application defined routines to be called on
mouse events

UNREGISTERMOUSEEVEN
T

Removes the routine registered by
REGISTERMOUSEEVENT

WAITONMOUSEEVENT Blocks return until a mouse event occurs

Controlling Menus

You do not have to use the default QuickWin menus. You can eliminate and alter menus, menu item lists,
menu titles or item titles. The QuickWin functions that control menus are described in the following sections:

• Controlling the Initial Menu and Frame Window
• Deleting, Inserting, and Appending Menu Items
• Modifying Menu Items
• Creating a Menu List of Available Child Windows
• Simulating Menu Selections

Controlling the Initial Menu and Frame Window
You can change the initial appearance of an application's default frame window and menus by defining an
INITIALSETTINGS function. If no user-defined INITIALSETTINGS function is supplied, QuickWin calls a
predefined (default)INITIALSETTINGS routine that provides a default frame window and menu.

Your application does not call INITIALSETTINGS. If you supply the function in your project, QuickWin calls it
automatically.

If you supply it, INITIALSETTINGS can call QuickWin functions that set the initial menus and the size and
position of the frame window. Besides the menu functions, SETWSIZEQQ can be called from your
INITIALSETTINGS function to adjust the frame window size and position before the window is first drawn.

The following is a sample of INITIALSETTINGS:

 LOGICAL FUNCTION INITIALSETTINGS()
 USE IFQWIN
 LOGICAL result
 TYPE (qwinfo) qwi
 ! Set window frame size.
 qwi%x = 0
 qwi%y = 0
 qwi%w = 400
 qwi%h = 400
 qwi%type = QWIN$SET
 i = SetWSizeQQ(QWIN$FRAMEWINDOW, qwi)
 ! Create first menu called Games.
 result = APPENDMENUQQ(1, $MENUENABLED, '&Games'C, NUL)
 ! Add item called TicTacToe.
 result = APPENDMENUQQ(1, $MENUENABLED, '&TicTacToe'C, WINPRINT)
 ! Draw a separator bar.
 result = APPENDMENUQQ(1, $MENUSEPARATOR, ''C, NUL)
 ! Add item called Exit.
 result = APPENDMENUQQ(1, $MENUENABLED, 'E&xit'C, WINEXIT)
 ! Add second menu called Help.
 result = APPENDMENUQQ(2, $MENUENABLED, '&Help'C, NUL)

 4 Using Intel® Visual Fortran to Create and Build Windows*-Based Applications

60

 result = APPENDMENUQQ(2, $MENUENABLED, '&QuickWin Help'C, WININDEX)
 INITIALSETTINGS= .true.
 END FUNCTION INITIALSETTINGS

QuickWin executes your INITIALSETTINGS function during initialization, before creating the frame window.
When your function is done, control returns to QuickWin and it does the remaining initialization. The control
then passes to the Fortran application.

You only need to include the code for an INITIALSETTINGS function in your project. If it is part of your
project, you do not need to call your INITIALSETTINGS function.

The INITIALSETTINGS function can specify the position and size of the frame window and the contents of
the menus. Because the INITIALSETTINGS function is executed before creating the frame window, it must
not call any routines that require that frame window initialization be complete. For example, routines that
refer to the child window in focus (such as SETWINDOWCINFIG) or a specific child window unit number (such
as OPEN) should not be called from the INITIALSETTINGS function.

Your INITIALSETTINGS function should return .TRUE. if it succeeds, and .FALSE. otherwise. The QuickWin
default function returns a value of .TRUE. only.

Note that default menus are created after INITIALSETTINGS has been called, and only if you do not create
your own menus. Therefore, using DELETEMENUQQ, INSERTMENUQQ, APPENDMENUQQ, and the other menu
configuration QuickWin functions while in INITIALSETTINGS affects your custom menus, not the default
QuickWin menus.

Deleting, Inserting, and Appending Menu Items
Menus are defined from left to right, starting with 1 at the far left. Menu items are defined from top to
bottom, starting with 0 at the top (the menu title itself). Within INITIALSETTINGS, if you supply it, you can
delete, insert, and append menu items in custom menus. Outside INITIALSETTINGS, you can alter the
default QuickWin menus as well as custom menus at any point in your application. (Default QuickWin menus
are not created until after INITIALSETTINGS has run and only if you do not create custom menus.)

To delete a menu item, specify the menu number and item number in DELETEMENUQQ. To delete an entire
menu, delete item 0 of that menu. For example:
 USE IFQWIN
 LOGICAL status
 status = DELETEMENUQQ(1, 2) ! Delete the second menu item from
 ! menu 1 (the default FILE menu).
 status = DELETEMENUQQ(5, 0) ! Delete menu 5 (the default Windows
 ! menu).

INSERTMENUQQ inserts a menu item or menu and registers its callback routine. QuickWin supplies several
standard callback routines such as WINEXIT to terminate a program, WININDEX to list QuickWin Help, and
WINCOPY which copies the contents of the current window to the Clipboard. A list of available callbacks is
given in the Language Reference for INSERTMENUQQ and APPENDMENUQQ.

Often, you will supply your own callback routines to perform a particular action when a user selects
something from one of your menus.

In general, you should not assign the same callback routine to more than one menu item because a menu
item's state might not be properly updated when you change it (put a check mark next to it, gray it out, or
disable, or enable it). You cannot insert a menu item or menu beyond the existing number; for example,
inserting item 7 when 5 and 6 have not been defined yet. To insert an entire menu, specify menu item 0. The
new menu can take any position among or immediately after existing menus.

If you specify a menu position occupied by an existing menu, the existing menu and any menus to the right
of the one you add are shifted right and their menu numbers are incremented.

Using QuickWin 4

61

For example, the following code inserts a fifth menu item called Position into menu 5 (the default Windows
menu):
 USE IFQWIN
 LOGICAL status
 status = INSERTMENUQQ (5, 5, $MENUCHECKED, 'Position'C, WINPRINT)

The next code example inserts a new menu called My List into menu position 3. The menu currently in
position 3 and any menus to the right (the default menus View, State, Windows, and Help) are shifted right
one position:
 USE IFQWIN
 LOGICAL status
 status = INSERTMENUQQ(3,0, $MENUENABLED, 'My List'C, WINSTATE)

You can append a menu item with . The item is added to the bottom of the menu list. If there is no item yet
for the menu, your appended item is treated as the top-level menu item, and the string you assign to it
appears on the menu bar.

The QuickWin menu routines like INSERTMENUQQ and APPENDMENUQQ let you to create a single level of menu
items beneath a menu name. You cannot create submenus with the QuickWin project type.

The following code uses APPENDMENUQQ to append the menu item called Cascade Windows to the first menu
(the default File menu):
 USE IFQWIN
 LOGICAL status
 status = APPENDMENUQQ(1, $MENUCHECKED, 'Cascade Windows'C, &
 & WINCASCADE)

The $MENUCHECKED flag in the example puts a check mark next to the menu item. To remove the check
mark, you can set the flag to $MENUUNCHECKED in the MODIFYMENUFLAGSQQ function. Some predefined
routines (such as WINSTATUS) take care of updating their own check marks. However, if the routine is
registered to more than one menu item, the check marks might not be properly updated. See APPENDMENUQQ
or INSERTMENUQQ in the Language Reference for the list of callback routines and other flags.

Modifying Menu Items
MODIFYMENUSTRINGQQ can modify the string identifier of a menu item, MODIFYMENUROUTINEQQ can modify
the callback routine called when the item is selected, and MODIFYMENUFLAGSQQ can modify a menu item's
state (such as enabled, grayed out, checked, and so on).

The following example code uses MODIFYMENUSTRINGQQ to modify the menu string for the fourth item in the
first menu (the File menu by default) to Tile Windows, it uses MODIFYMENUROUTINEQQ to change the
callback routine called if the item is selected to WINTILE, and uses MODIFYMENUFLAGSQQ to put a check mark
next to the menu item:
 status = MODIFYMENUSTRINGQQ(1, 4, 'Tile Windows'C)
 status = MODIFYMENUROUTINEQQ(1, 4, WINTILE)
 status = MODIFYMENUFLAGSQQ(1, 4, $MENUCHECKED)

Creating a Menu List of Available Child Windows
By default, the Windows menu contains a list of all open child windows in your QuickWin applications.
SETWINDOWMENUQQ changes the menu which lists the currently open child windows to the menu you specify.
The list of child window names is appended to the end of the menu you choose and deleted from any other
menu that previously contained it. For example:
 USE IFQWIN
 LOGICAL status
 ...
 ! Append list of open child windows to menu 1 (the default File menu)
 status = SETWINDOWMENUQQ(1)

Simulating Menu Selections

 4 Using Intel® Visual Fortran to Create and Build Windows*-Based Applications

62

CLICKMENUQQ simulates the effect of clicking or selecting a menu command from the Window menu. The
QuickWin application behaves as though the user had clicked or selected the command. The following code
fragment simulates the effect of selecting the Tile item from the Window menu:
 USE IFQWIN
 INTEGER status
 status = CLICKMENUQQ(QWIN$TILE)

Items from the Window menu can be specified in CLICKMENUQQ. Other predefined routines such as
WINFULLSCREEN and WINSIZETOFIT (see the callback subroutine names listed in APPENDMENUQQ) can be
invoked by calling CLICKMENUQQ with an argument containing the LOC intrinsic function before the callback
routine name. For example, the following program calls WINSIZETOFIT:
! Some of the callback subroutine names listed in APPENDMENUQQ may not
! work or be useful in this context, but they will be "called."
! Run the program and note how the scroll bars disappear
 use IFQWIN
 integer result
 character*1 ch
 print *,'type a character'
 read(*,*) ch
 result = clickmenuqq(loc(WINSIZETOFIT))
 print *,'type a character'
 read(*,*) ch
 end

See Also
Related Information

Changing Status Bar and State Messages

Any string QuickWin produces can be changed by calling SETMESSAGEQQ with the appropriate message ID.
Unlike other QuickWin message functions, SETMESSAGEQQ uses regular Fortran strings, not null-terminated C
strings. For example, to change the PAUSED state message to I am waiting:
 USE IFQWIN
 CALL SETMESSAGEQQ('I am waiting', QWIN$MSG_PAUSED)
This function is useful for localizing your QuickWin applications for countries with different native languages.
A list of message IDs is given in SETMESSAGEQQ in the Language Reference in the Intel® Visual Fortran
Compiler User and Reference Guides.

Displaying Message Boxes

MESSAGEBOXQQ causes your program to display a message box. You can specify the message the box
displays and the caption that appears in the title bar. Both strings must be null-terminated C strings. You can
also specify the type of message box. Box types are symbolic constants defined in DFLIB.MOD, and can be
combined by means of the IOR intrinsic function or the .OR. operator. The available box types are listed
under MESSAGEBOXQQ in the Language Reference. For example:
 USE IFQWIN
 INTEGER response
 response = MESSAGEBOXQQ('Retry or Cancel?'C, 'Smith Chart &
 & Simulator'C, MB$RETRYCANCELQWIN .OR. MB$DEFBUTTON2)

Using QuickWin 4

63

Defining an About Box

The ABOUTBOXQQ function specifies the message displayed in the message box that appears when the user
selects the About command from a QuickWin application's Help menu. (If your program does not call
ABOUTBOXQQ, the QuickWin run-time library supplies a default string.) The message string must be a null-
terminated C string. For example:
 USE IFQWIN
 INTEGER status
 status = ABOUTBOXQQ ('Sound Speed Profile Tables Version 1.0'C)

Using Custom Icons

The QuickWin run-time library provides default icons that appear when the user minimizes the application's
frame window or its child windows. You can add custom-made icons to your executable files, and Windows
will display them instead of the default icons.

To add a custom child window icon to your QuickWin program:

1. From the File >menu, select Add New Item...
2. Select Resource and enter a new name. Click Open.
3. From the Edit menu, select Add Resource...

From the list of possible resources, select Icon. Click New. The screen becomes an icon drawing tool.
4. Draw the icon. (For more information about using the Graphics Editor in the integrated development

environment, see the Visual C++ User's Guide.)

-- or --

If your icon already exists (for example, as a bitmap) and you want to import it, not draw it, select
Resource from the Insert menu, then select Import from the buttons in the Resource dialog. You will be
prompted for the file containing your icon.

5. Display the Icon Properties dialog box by double-clicking in the icon editor area outside the icon's grid
or pressing ALT+ENTER.

In the ID field on the General tab of Icon Properties dialog box, replace the default icon name with
either "frameicon" or "childicon." The frame window's icon must have the name "frameicon," and the
child window's icon must have the name "childicon." These names must be entered with quotation
marks in order to be interpreted as strings.

Your icon will be saved in a file with the extension .ICO.
6. Create an .RC file to hold your icons. Select File>Save As. You will be prompted for the name of the file

that will contain your icons. It must end with the extension .RC; for example, myicons.rc. Using this
method, the icons and their string values will be automatically saved in the .RC file. (Alternatively, you
can create an .RC file with any editor and add the icon names and their string values by hand.)

7. Add the file to the project that contains your QuickWin application. Select Build and the .RC file will be
built into the application's executable.

When you run your application, the icon you created will take the place of the default child or frame icon.
Your custom icon appears in the upper-left corner of the window frame. When you minimize the window, the
icon appears on the left of the minimized window bar.

Using a Mouse

Your applications can detect and respond to mouse events, such as left mouse button down, right mouse
button down, or double-click. Mouse events can be used as an alternative to keyboard input or for
manipulating what is shown on the screen.

QuickWin provides two types of mouse functions:

1. Event-based functions, which call an application-defined callback routine when a mouse click occurs
2. Blocking (sequential) functions, which provide blocking functions that halt an application until mouse

input is made

 4 Using Intel® Visual Fortran to Create and Build Windows*-Based Applications

64

The mouse is an asynchronous device, so the user can click the mouse anytime while the application is
running (mouse input does not have to be synchronized to anything). When a mouse-click occurs, Windows
sends a message to the application, which takes the appropriate action. Mouse support in applications is
most often event-based, that is, a mouse-click occurs and the application does something.

However, an application can use blocking functions to wait for a mouse-click. This allows an application to
execute in a particular sequential order and yet provide mouse support. QuickWin performs default
processing based on mouse events.

To change the shape of the mouse cursor, use the SETMOUSECURSOR routine.

Event-Based Functions
The QuickWin function REGISTERMOUSEEVENT registers the routine to be called when a particular mouse
event occurs (left mouse button, right mouse button, double-click, and so on). You define what events you
want it to handle and the routines to be called if those events occur. UNREGISTERMOUSEEVENT unregisters
the routines so that QuickWin doesn't call them but uses default handling for the particular event.

By default, QuickWin typically ignores events except when mouse-clicks occur on menus or dialog controls.
Note that no events are received on a minimized window. A window must be restored or maximized in order
for mouse events to happen within it.

For example:
 USE IFQWIN
 INTEGER result
 OPEN (4, FILE= 'USER')
 ...
 result = REGISTERMOUSEEVENT (4, MOUSE$LBUTTONDBLCLK, CALCULATE)

This registers the routine CALCULATE, to be called when the user double-clicks the left mouse button while
the mouse cursor is in the child window opened as unit 4. The symbolic constants available to identify mouse
events are:

Mouse Event 1 Description

MOUSE$LBUTTONDOWN Left mouse button down

MOUSE$LBUTTONUP Left mouse button up

MOUSE$LBUTTONDBLCLK Left mouse button double-click

MOUSE$RBUTTONDOWN Right mouse button down

MOUSE$RBUTTONUP Right mouse button up

MOUSE$RBUTTONDBLCLK Right mouse button double-click

MOUSE$MOVE Mouse moved

1 For every BUTTONDOWN and BUTTONDBLCLK event there is an associated BUTTONUP event. When the
user double-clicks, four events happen: BUTTONDOWN and BUTTONUP for the first click, and
BUTTONDBLCLK and BUTTONUP for the second click. The difference between getting BUTTONDBLCLK and
BUTTONDOWN for the second click depends on whether the second click occurs in the double-click interval,
set in the system's CONTROL PANEL/MOUSE.

To unregister the routine in the preceding example, use the following code:
result = UNREGISTERMOUSEEVENT (4, MOUSE$LBUTTONDBLCLK)

If REGISTERMOUSEEVENT is called again without unregistering a previous call, it overrides the first call. A new
callback routine is then called on the specified event.

Using QuickWin 4

65

The callback routine you create to be called when a mouse event occurs should have the following prototype:
 INTERFACE
 SUBROUTINE MouseCallBackRoutine (unit, mouseevent, keystate, &
 & MouseXpos,MouseYpos)
 INTEGER unit
 INTEGER mouseevent
 INTEGER keystate
 INTEGER MouseXpos
 INTEGER MouseYpos
 END SUBROUTINE
 END INTERFACE

The unit parameter is the unit number associated with the child window where events are to be detected,
and the mouseevent parameter is one of those listed in the preceding table. The MouseXpos and the
MouseYpos parameters specify the x and y positions of the mouse during the event. The keystate
parameter indicates the state of the shift and control keys at the time of the mouse event, and can be any
ORed combination of the following constants:

Keystate Parameter Description

MOUSE$KS_LBUTTON Left mouse button down during event

MOUSE$KS_RBUTTON Right mouse button down during event

MOUSE$KS_SHIFT Shift key held down during event

MOUSE$KS_CONTROL Control key held down during event

QuickWin callback routines for mouse events should do a minimum of processing and then return. While
processing a callback, the program will appear to be non-responsive because messages are not being
serviced, so it is important to return quickly. If more processing time is needed in a callback, another thread
should be started to perform this work; threads can be created by calling the Windows API CreateThread. If a
callback routine does not start a new thread, the callback will not be re-entered until it is done processing.

NOTE
In event-based functions, there is no buffering of events. Therefore, issues such as multithreading and
synchronizing access to shared resources must be addressed. To avoid multithreading problems, use
blocking functions rather than event-based functions. Blocking functions work well in applications that
proceed sequentially. Applications where there is little sequential flow and the user jumps around the
application are probably better implemented as event-based functions.

Blocking (Sequential) Functions
The QuickWin blocking function WAITONMOUSEEVENT blocks execution until a specific mouse input is received.
This function is similar to INCHARQQ, except that it waits for a mouse event instead of a keystroke.

For example:
 USE IFQWIN
 INTEGER mouseevent, keystate, x, y, result
 ...
 mouseevent = MOUSE$RBUTTONDOWN .OR. MOUSE$LBUTTONDOWN
 result = WAITONMOUSEEVENT (mouseevent, keystate, x , y) ! Wait
 ! until right or left mouse button clicked, then check the keystate
 ! with the following:
 if ((MOUSE$KS_SHIFT .AND. keystate) == MOUSE$KS_SHIFT) then &
 & write (*,*) 'Shift key was down'
 if ((MOUSE$KS_CONTROL .AND. keystate) == MOUSE$KS_CONTROL) then &
 & write (*,*) 'Ctrl key was down'

 4 Using Intel® Visual Fortran to Create and Build Windows*-Based Applications

66

Your application passes a mouse event parameter, which can be any ORed combination of mouse events, to
WAITONMOUSEEVENT. The function then waits and blocks execution until one of the specified events occurs. It
returns the state of the Shift and Ctrl keys at the time of the event in the parameter keystate, and returns
the position of the mouse when the event occurred in the parameters x and y.

A mouse event must happen in the window that had focus when WAITONMOUSEEVENT was initially called.
Mouse events in other windows will not end the wait. Mouse events in other windows cause callbacks to be
called for the other windows, if callbacks were previously registered for those windows.

Default QuickWin Processing
QuickWin performs some actions based on mouse events. It uses mouse events to return from the FullScreen
mode and to select text and/or graphics to copy to the Clipboard. Servicing the mouse event functions takes
precedence over return from FullScreen mode. Servicing mouse event functions does not take precedence
over Cut/Paste selection modes. Once selection mode is over, processing of mouse event functions resumes.

QuickWin Programming Precautions

QuickWin Programming Precautions Overview

Two features of QuickWin programming need to be applied thoughtfully to avoid non-responsive programs
that halt an application. For example, an application may halt while waiting for a process to execute or input
to be entered in a child window.

See Also
Using Blocking Procedures
Using Callback Routines

Using Blocking Procedures

Procedures that block execution of the program until a given event occurs, such as READ or
WAITONMOUSEEVENT, both of which wait for user input, are called blocking procedures. QuickWin child
processes can contain multiple callback routines; for example, a different routine to be called for each menu
selection and each kind of mouse-click (left button, right button, double-click, and so on).

Problems can arise when a process and its callback routine, or two callback routines within the same process,
both contain blocking procedures. This is because each QuickWin child process supports a primary and
secondary thread.

As a result of selecting a menu item, a menu procedure may call a blocking procedure, while the main thread
of the process has also called a blocking procedure. For example, say you have created a file menu, which
contains an option to LOAD a file. Selecting the LOAD menu option calls a blocking function that prompts for
a filename and waits for the user to enter the name. However, a blocking call such as WAITONMOUSEEVENT
can be pending in the main process thread when the user selects the LOAD menu option, so two blocking
functions are initiated.

When QuickWin has two blocking calls pending, it displays a message in the status bar that corresponds to
the blocking call first encountered. If there are further callbacks with other blocking procedures in the two
threads, the status bar may not correspond to the actual input pending, execution can appear to be taking
place in one thread when it is really blocked in another, and the application can be confusing and misleading
to the user.

To avoid this confusion, you should try not to use blocking procedures in your callback routines. QuickWin
will not accept more than one READ or INCHARQQ request through user callbacks from the same child window
at one time. If one READ or INCHARQQ request is pending, subsequent READ or INCHARQQ requests will be
ignored and -1 will be returned to the caller.

If you have a child window that, in some user scenario, might call multiple callback routines containing READ
or INCHARQQ requests, you need to check the return value to make sure the request has been successful,
and if not, take appropriate action, for example, request again.

Using QuickWin 4

67

This protective QuickWin behavior does not guard against multiple blocking calls through mouse selection of
menu input options. As a general rule, using blocking procedures in callback routines is not advised, since
the results can lead to program flow that is unexpected and difficult to interpret.

Using Callback Routines

All callback routines run in a separate thread from the main program. As a result, all multithread issues
apply. In particular, sharing data, drawing to windows, and doing I/O must be properly coordinated and
controlled.

QuickWin callback routines, both for menu callbacks and mouse callbacks, should do a minimum of
processing and then return. While processing a callback, the program will appear to be non-responsive
because messages are not being serviced. This is why it is important to return quickly.

If more processing time is needed in a callback, another thread should be started to perform this work;
threads can be created by calling the Windows API CreateThread. If a callback routine does not start a new
thread, the callback will not be reentered until it is done processing.

Simulating Nonblocking I/O
QuickWin does not accept unsolicited input. You get beeps if you type into an active window if no READ or
GETCHARQQ has been done. Because of this, it is necessary to do a READGETCHARQQ or in order for a
character to be accepted. But this type of blocking I/O puts the program to sleep until a character has been
typed.

In Fortran Console applications, PEEKCHARQQ can be used to see if a character has already been typed.
However, PEEKCHARQQ does not work under Fortran QuickWin applications, since QuickWin has no console
buffer to accept unsolicited input. Because of this limitation, PEEKCHARQQc annot be used as it is with Fortran
Console applications to see whether a character has already been typed.

One way to simulate PEEKCHARQQ with QuickWin applications is to add an additional thread:

• One thread does a READGETCHARQQ or and is blocked until a character typed.
• The other thread (the main program) is in a loop doing useful work and checking in the loop to see if the

other thread has received input.

 4 Using Intel® Visual Fortran to Create and Build Windows*-Based Applications

68

Using Dialog Boxes for
Application Controls 5
Using Dialog Boxes for Application Controls Overview
Dialog boxes are a user-friendly way to solicit application control. As your application executes, you can
make a dialog box appear on the screen and the user can click on a dialog box control to enter data or
choose what happens next.

Using the dialog routines provided with Intel® Fortran, you can add dialog boxes to your application. These
routines define dialog boxes and their controls (scroll bars, buttons, and so on), and call your subroutines to
respond to user selections.

There are two types of dialog boxes:

• Modal dialog boxes, which you can use with any Fortran project type, including Fortran Windows, Fortran
QuickWin (multiple document), Fortran Standard Graphics (QuickWin single document), Fortran Console,
Fortran DLL, and Fortran Static library project types.

• Modeless dialog boxes, which are typically used with the Fortran Windows Application project type.

When your program displays a modal dialog box (any project type), the user must explicitly enter data and
close the dialog box before your application resumes execution.

When your program displays a modeless dialog box, your application continues executing. Unlike a modal
dialog box, the user can switch between the modeless dialog box and the other windows in the application.

There are two steps to make a dialog:

1. Specify the appearance of the dialog box and the names and properties of the controls it contains.
2. Write an application that activates those controls by recognizing and responding to user selections.

See Also
Designing a Dialog Box Overview
Writing a Dialog Application Overview
Summary of Dialog Routines
Understanding Dialog Controls Overview
Using Dialog Controls Overview
Using ActiveX* Controls Overview

Using the Resource Editor to Design a Dialog Box

Designing a Dialog Box Overview
You design the appearance of the dialog box, choose and name the dialog controls within it, and set other
control properties with the Dialog Editor. The Dialog Editor is one of the Resource Editors provided by the
Microsoft Visual Studio* integrated development environment (IDE).

NOTE
The Dialog Editor is not available from the Visual Studio Shell.

69

A program's resources are defined in a resource file (typically with an .rc extension). A Microsoft Visual
Studio project typically contains a single resource file. The contents of the resource file are displayed in the
Resource Editor by double-clicking on the .RC file. The resource file can be created by one of the following:
• When you create a project and use one of the Fortran AppWizards (for example, when using the Fortran

Windows Application AppWizard).
• When you save the resources that you define using one of the Resource Editors.
If you create the resource file from the Resource Editors, be sure to add the resource file to your project. It
is possible to include additional resource files in a project (see Including Resources Using Multiple Resource
Files).

This section describes the steps needed to design a dialog box, and uses as an example a dialog box that
converts temperatures between Celsius and Fahrenheit. The code in the example is explained as you read
through this section.

In this section, there is an example of how to include the dialog box in a Fortran Console project.

To create a Fortran Console application:
1. From the File menu, select New>Project...
2. Select the Intel(R) Fortran Projects item.
3. From the list of project types, select Console Application.
4. Enter Temp as the name for the project, verify where the project will be created, and click OK.
5. In the Fortran Console Application Wizard, click Finish.
6. The Solution View displays the solution.
7. Click the plus sign (+) next to the project name to display the categories of source files, if necessary .
To open the Dialog Editor:
1. From the File menu, select Add New Item...
2. Select Resource and change the name to Temp.rc. Click Open.
3. Right-click on the .rc file in the Solution View, select Open With>Resource Editor.
4. From the Edit >menu, select Add Resource... From the list of possible resources, select Dialog.
5. Click the New button. The Dialog Editor (one of the resource editors) appears on the screen as shown

below.
Dialog Editor Sample 1

 5 Using Intel® Visual Fortran to Create and Build Windows*-Based Applications

70

A blank dialog box appears along with a toolbox of available controls. If the toolbox does not appear, select
View>Toolbox.

The controls that are supported by Intel Visual Fortran follow:

Button Check box

Combo box
(such as a drop-down list box)

Edit box

Group box List box

Picture Progress bar

Radio button Scroll bar, horizontal

Scroll bar, vertical Slider

Spin control Static text

Tab control

You can also add ActiveX* controls to your dialog box (see Using ActiveX* Controls Overview).

To add controls to the dialog box:

1. Point at one of the available controls in the Toolbox, then hold down the left mouse button and drag the
control to the dialog box.

2. Place the dialog control where you want it on the dialog box and release the mouse button. You can
delete controls by selecting them with the mouse, then pressing the Delete (or DEL) key.

The following figure shows the dialog box after adding two Static text lines (which currently say "Static"),
two Edit boxes (which currently say "Sample edit"), a Horizontal Scroll bar, and a Group box. The Group box
is the outlined rectangular area in the dialog box that encloses the other related controls.

The OK and CANCEL buttons were added for you by the Resource Editor. You can delete (select the control
and press DEL key), move (drag the control), resize (drag one of the anchor points), or rename the OK and
CANCEL buttons or any of the controls that you add.

Dialog Editor Sample 2

To specify the names and properties of the added controls:

1. Click on one of the controls in your dialog box and select Properties from the pop-up (right-click)
menu. A Properties window appears showing the default name and properties for that control.

The following figure shows the Properties box for the Horizontal Scroll bar.

Dialog Editor Sample 3

Using Dialog Boxes for Application Controls 5

71

2. Change the control name by modifying the ID property (currently, IDC_SCROLLBAR1) to another name

(for example, IDC_SCROLLBAR_TEMPERATURE).
3. Select the available options in the left column to change the control's properties.

Repeat the same process for each control and for the dialog box itself.

To use the controls from within a program, you need symbolic names for each of them. In the previous
series of steps, the Horizontal Scroll bar symbolic name has been changed in the Properties box to
IDC_SCROLLBAR_TEMPERATURE. Use this name to refer to the control; for example:
 INTEGER slide_position
 retlog = DLGGET (dlg, IDC_SCROLLBAR_TEMPERATURE, &
 slide_position, DLG_POSITION)
To save the dialog box as a resource file:

1. Select File>Save All.

Typically, only one resource file is used with each Intel Visual Fortran project (see Including Resources
Using Multiple Resource Files).

2. When you save your resource file for the first time, the resource editor also creates a Resource.h file.
This file is included by the .RC file. To create the Fortran equivalent of this file (resource.fd), do the
following:

a. Add Resource.h to your project using File>Add Existing Item....
b. Select the Resource.h file in the Solution View and the select View>Property Pages from the

main menu bar.
c. Set the Command Line option to use the deftofd tool by entering:

deftofd resource.h resource.fd
(For more information on the deftofd tool, see The Include (.FD and .H) Files.)

d. Set the Description option to Generating Fortran include file...
e. Set the Outputs option to resource.fd.
f. Click OK.

To open an existing dialog box in the Resource Editor:

1. From the File menu, open the project .
2. Double-click the RC file.
3. Click the plus sign (+) next to Dialog.
4. Double-click the appropriate dialog name, such as IDD_DIALOG1.

 5 Using Intel® Visual Fortran to Create and Build Windows*-Based Applications

72

5. Use the Resource Editor to add a new control or modify an existing control. To modify an existing
control, use the Tab key to select the appropriate control. Now select View>Properties Window (or,
on the pop-up menu, click Properties) to view or modify its properties.

At this point, the appearance of the dialog box is finished and the controls are named, but the box cannot
function on its own. An application must be created to run it.

Not all the controls on the Resource Editor Controls toolbar are supported by Intel Visual Fortran dialog
routines. The supported dialog controls are:

• Using Buttons
• Using Check Boxes and Radio Buttons
• Using List Boxes and Combo Boxes (such as a drop-down list box)
• Using Edit Boxes
• Using Group Boxes
• Using List Boxes and Combo Boxes
• Using Pictures
• Using Progress Bars
• Using Check Boxes and Radio Buttons
• Using Scroll Bars (Horizontal and Vertical)
• Using Sliders
• Using Spin Controls
• Using Static Text
• Using Tab Controls

You can also add ActiveX controls to your dialog box. For information, see Using ActiveX* Controls Overview.

For further information on resources and control properties, see:

• Setting Control Properties
• Including Resources Using Multiple Resource Files
• The Include (.FD and .H) Files

For information on creating an application for your dialog box, see Writing a Dialog Application Overview.

Setting Control Properties
In addition to changing the properties of its individual controls, you can change the properties of the dialog
box itself. To change the dialog box properties, select the dialog box and then right-click and select
Properties from the pop-up menu in any clear area in the box. The Properties window opens for the dialog.

To specify the location of your dialog box on the screen, do one of the following:

• In the Properties window (in the Position category), you can change the X Pos and Y Pos values. These
specify the pixel position of the dialog box's upper-left corner, relative to its parent window. For a modal
or a popup modeless dialog box, the parent window is the screen. For example, specifying the X position
as 40 and Y position as 40 would place a modal dialog box in the upper-left corner of the screen.

• You can also center the dialog box by setting the Center option to True in the Position category. This
displays the dialog box in the center of its parent window. If you set the Center Mouse option to True in
the Misc category, the dialog is centered at the current mouse pointer position.

To change the size of the dialog box, hold down the left mouse button as you drag the right or lower
perimeter of the box. If you have sized your dialog window to be larger than the edit window, use the scroll
bars to move the view region.

Help is available at the bottom of the Properties window to explain the options for each of the dialog controls.

You can edit the appearance of the dialog box later. For more information, see Designing a Dialog Box
Overview.

Using Dialog Boxes for Application Controls 5

73

Including Resources Using Multiple Resource Files
Normally it is easy and convenient to work with the default arrangement of all resources in one resource
definition (.RC) file. However, you can add resources in other files to your current project at compile time by
listing them in the compile-time directives box in the Resource Includes dialog box.

There are several reasons to place resources in a file other than the main .RC file:

• To include resources that have already been developed and tested and do not need further modification.
• To include resources that are being used by several different projects, or that are part of a source code

version-control system, and thus must exist in a central location where modifications will affect all
projects.

• To include resources that are in a custom format.
• To include statements in your resource file that execute conditionally at compile time using compiler

directives, such as #ifdef and #else. For example, your project may have a group of resources that are
bracketed by #ifdef _DEBUG ... #endif and are thus included only if the constant _DEBUG is defined at
compile time.

• To include statements in your resource file that modify resource-file syntax by using the #define directive
to implement simple macros.

If you have sections in your existing .RC files that meet any of these conditions, you should place the
sections in one or more separate .RC files and include them in your project using the Resource Includes
dialog box.

To include resource files that will be added to your project at compile time:

1. Place the resources in an RC file with a unique filename. (Do not use projectname.rc, since this is the
default filename used for the main resource script file.)

2. From the Edit menu, choose Resource Includes.
3. In the Compile-time directives box, use the #include compiler directive to include the new resource file

in the main resource file in the development environment. The resources in files included in this way
are made a part of your executable file at compile time. They are not directly available for editing or
modification when you are working on your project's main .RC file. You need to open included .RC files
separately.

4. Click OK.

The Include (.FD and .H) Files
Each control in a dialog box has a unique integer identifier. When the Resource Editor creates the C language
include file (.H), it assigns each control and the dialog box an integer value. You can read the list of names
and values in your dialog boxes include file (for example, RESOURCE.H). To view and modify the named
constants, click Resource Symbols in the Edit menu.

Intel Fortran provides a tool named DEFTOFD that recognizes the definitions in a C language include file (.H)
and creates a corresponding Fortran include file (.FD). The Fortran include file uses the PARAMETER attribute
to define named constants for each resource.

The resource .H file must be added to your project and assigned a Custom Build step in order to recreate the
resource.fd file when resource.h changes. (See Designing a Dialog Box Overview for more information.)

When your application uses a control, it can refer to the control or dialog box by its name (for example,
IDC_SCROLLBAR_TEMPERATURE or IDD_TEMP), or by its integer value. If you want to rename a control or
make some other change to your dialog box, you should make the change through the Resource Editor in the
integrated development environment. Do not use a text editor to alter your .H or .FD include file because the
dialog resource will not be able to access the changes.

Writing a Dialog Application

 5 Using Intel® Visual Fortran to Create and Build Windows*-Based Applications

74

Writing a Dialog Application Overview
When creating a dialog box with the Resource Editor, you specify the types of controls that are to be included
in the box. You then must provide procedures to make the dialog box active. These procedures use both
dialog routines and your subroutines to control your program's response to the user's dialog box input.

You give your application access to your dialog resource by adding the .RC file to your project, giving your
application access to the dialog include file, and associating the dialog properties in these files with the
dialog type (see Initializing and Activating the Dialog Box).

Your application must include the statement USE IFLOGM to access the dialog routines, and it must include
the .FD file that the Resource Editor created for your dialog using DEFTOFD. For example:
 PROGRAM TEMPERATURE
 USE IFLOGM
 IMPLICIT NONE
 INCLUDE 'RESOURCE.FD'
 .
 . ! Call dialog routines, such as DlgInit, DlgModal, and DlgUninit
 .
 END PROGRAM TEMPERATURE
The following sections describe how to code a dialog application:

• Initializing and Activating the Dialog Box
• Using Dialog Callback Routines
• Using a Modeless Dialog Box
• Using Fortran AppWizards to Help Add Modal Dialog Box Coding
• Using Fortran AppWizards to Help Add Modeless Dialog Box Coding
• Using Dialog Controls in a DLL

Initializing and Activating the Dialog Box
Each dialog box has an associated variable of the derived type dialog. The dialog derived type is defined
in the IFLOGM.F90 module; you access it with USE IFLOGM. When you write your dialog application, refer to
your dialog box as a variable of type dialog. For example:
 USE IFLOGM
 INCLUDE 'RESOURCE.FD'
 TYPE (dialog) dlg
 LOGICAL return

return = DLGINIT(IDD_TEMP, dlg)
This code associates the dialog type with the dialog (IDD_TEMP in this example) defined in your resource
and include files (TEMP.RC and RESOURCE.FD in this example).

You give your application access to your dialog resource by adding the .RC file to your project. You give your
application access to the dialog include file by including the .FD file in each subprogram. You associate the
dialog properties in these files with the dialog type by calling DLGINIT with your dialog name.

An application that controls a dialog box should perform the following actions:

1. Call DLGINIT or DLGINITWITHRESOURCEHANDLE to initialize the dialog type and associate your
dialog and its properties with the type.

2. Initialize the controls with the dialog set routines, such as DLGSET.
3. Set the callback routines to be executed when a user manipulates a control in the dialog box with

DLGSETSUB.
4. Depending on whether you want a modal or modeless dialog type:

• To use a modal dialog, run the dialog with DLGMODAL.

Using Dialog Boxes for Application Controls 5

75

• To use a modeless dialog, call DLGMODELESS and use DLGISDLGMESSAGE in your message loop.
5. Retrieve control information with the dialog get functions, such as DLGGET.
6. Free resources from the dialog with DLGUNINIT.

As an example of activating a dialog box and controls, the following code initializes the temperature dialog
box and controls created in the TEMP project example. It also sets the callback routine as UpdateTemp,
displays the dialog box, and releases the dialog resources when done:
 SUBROUTINE DoDialog()
 USE IFLOGM
 IMPLICIT NONE
 INCLUDE 'RESOURCE.FD'
 INTEGER retint
 LOGICAL retlog
 TYPE (dialog) dlg
 EXTERNAL UpdateTemp
! Initialize.
 IF (.not. DlgInit(idd_temp, dlg)) THEN
 WRITE (*,*) "Error: dialog not found"
 ELSE
! Set up temperature controls.
 retlog = DlgSet(dlg, IDC_SCROLLBAR_TEMPERATURE, 200, DLG_RANGEMAX)
 retlog = DlgSet(dlg, IDC_EDIT_CELSIUS, "100")
 CALL UpdateTemp(dlg, IDC_EDIT_CELSIUS, DLG_CHANGE)
 retlog = DlgSetSub(dlg, IDC_EDIT_CELSIUS, UpdateTemp)
 retlog = DlgSetSub(dlg, IDC_EDIT_FAHRENHEIT, UpdateTemp)
 retlog = DlgSetSub(dlg, IDC_SCROLLBAR_TEMPERATURE, UpdateTemp)
! Activate the modal dialog.
 retint = DlgModal(dlg)
! Release dialog resources.
 CALL DlgUninit(dlg)
 END IF
 END SUBROUTINE DoDialog
The dialog routines, such as DLGSETDLGSETSUB and, refer to the dialog controls by the names you assigned
to them in the Properties box while creating the dialog box in the Resource Editor. For example:
 retlog = DlgSet(dlg, IDC_SCROLLBAR_TEMPERATURE, 200, DLG_RANGEMAX)
In this statement, the dialog function DLGSET assigns the control named IDC_SCROLLBAR_TEMPERATURE a
value of 200. The index DLG_RANGEMAX specifies that this value is a scroll bar maximum range. Consider the
following:
 retlog = DlgSet(dlg, IDC_EDIT_CELSIUS, "100")
 CALL UpdateTemp(dlg, IDC_EDIT_CELSIUS, DLG_CHANGE)
The preceding statements set the dialog's top Edit box, named IDC_EDIT_CELSIUS in the Resource Editor, to
an initial value of 100, and calls the routine UpdateTemp to inform the application that the value has
changed. Consider the following:
 retlog = DlgSetSub(dlg, IDC_EDIT_CELSIUS, UpdateTemp)
 retlog = DlgSetSub(dlg, IDC_EDIT_FAHRENHEIT, UpdateTemp)
 retlog = DlgSetSub(dlg, IDC_SCROLLBAR_TEMPERATURE, UpdateTemp)
The preceding statements associate the callback routine UpdateTemp with the three controls. This results in
the UpdateTemp routine being called whenever the value of any of the three controls changes.

Routines are assigned to the controls with the function DLGSETSUB. Its first argument is the dialog variable,
the second is the control name, the third is the name of the routine you have written for the control, and the
optional fourth argument is an index to select between multiple routines. You can set the callback routines
for your dialog controls anywhere in your application: before opening your dialog with either DLGMODAL or
DLGMODELESS, or from within another callback routine.

In the TEMP example, the main program calls the DoDialog subroutine to display the Temperature
Conversion dialog box.

 5 Using Intel® Visual Fortran to Create and Build Windows*-Based Applications

76

Using Dialog Callback Routines
All callback routines should have the following interface:
 SUBROUTINE callback (dlg, control_name, callbacktype)
 !DEC$ ATTRIBUTES DEFAULT:callback-routine-name
Where:

dlg Refers to the dialog box and allows the callback to change values of the dialog
controls.

control_name Is the name of the control that caused the callback.

callbacktype Indicates what callback is occurring (for example, DLG_CLICKED, DLG_CHANGE,
DLG_DBLCLICK).

In the !DEC$ ATTRIBUTES directive, the callback-routine-name is the name of the callback routine.

The last two arguments let you write a single subroutine that can be used with multiple callbacks from more
than one control. Typically, you do this for controls comprising a logical group. For example, all the controls
in the temperature dialog in the TEMP example are associated with the same callback routine, UpdateTemp.
You can also associate more than one callback routine with the same control, but you must then provide an
index parameter to indicate which callback is to be used.

The following is an example of a callback routine:
 SUBROUTINE UpdateTemp(dlg, control_name, callbacktype)
 !DEC$ ATTRIBUTES DEFAULT:UpdateTemp
 USE IFLOGM
 IMPLICIT NONE
 TYPE (dialog) dlg
 INTEGER control_name
 INTEGER callbacktype
 INCLUDE 'RESOURCE.FD'
 CHARACTER(256) text
 INTEGER cel, far, retint
 LOGICAL retlog
! Suppress compiler warnings for unreferenced arguments.
 INTEGER local_callbacktype
 local_callbacktype = callbacktype
 SELECT CASE (control_name)
 CASE (IDC_EDIT_CELSIUS)
 ! Celsius value was modified by the user so
 ! update both Fahrenheit and Scroll bar values.
 retlog = DlgGet(dlg, IDC_EDIT_CELSIUS, text)
 READ (text, *, iostat=retint) cel
 IF (retint .eq. 0) THEN
 far = (cel-0.0)*((212.0-32.0)/100.0)+32.0
 WRITE (text,*) far

retlog = DlgSet(dlg, IDC_EDIT_FAHRENHEIT, &
 & TRIM(ADJUSTL(text)))
 retlog = DlgSet(dlg, IDC_SCROLLBAR_TEMPERATURE, cel, &
 & DLG_POSITION)
 END IF
 CASE (IDC_EDIT_FAHRENHEIT)
 ! Fahrenheit value was modified by the user so
 ! update both celsius and Scroll bar values.
 retlog = DlgGet(dlg, IDC_EDIT_FAHRENHEIT, text)
 READ (text, *, iostat=retint) far
 IF (retint .eq. 0) THEN

Using Dialog Boxes for Application Controls 5

77

 cel = (far-32.0)*(100.0/(212.0-32.0))+0.0
 WRITE (text,*) cel
 retlog = DlgSet(dlg, IDC_EDIT_CELSIUS, TRIM(ADJUSTL(text)))
 retlog = DlgSet(dlg, IDC_SCROLLBAR_TEMPERATURE, cel, &
 & DLG_POSITION)
 END IF
 CASE (IDC_SCROLLBAR_TEMPERATURE)
 ! Scroll bar value was modified by the user so
 ! update both Celsius and Fahrenheit values.
 retlog = DlgGet(dlg, IDC_SCROLLBAR_TEMPERATURE, cel, &
 & DLG_POSITION)
 far = (cel-0.0)*((212.0-32.0)/100.0)+32.0
 WRITE (text,*) far
 retlog = DlgSet(dlg, IDC_EDIT_FAHRENHEIT, TRIM(ADJUSTL(text)))
 WRITE (text,*) cel
 retlog = DlgSet(dlg, IDC_EDIT_CELSIUS, TRIM(ADJUSTL(text)))
 END SELECT
 END SUBROUTINE UpdateTemp
Each control in a dialog box, except a pushbutton, has a default callback that performs no action. The default
callback for a pushbutton's click event sets the return value of the dialog to the pushbutton's name and then
exits the dialog. This makes all pushbuttons exit the dialog by default, and gives the OK and CANCEL buttons
good default behavior. A routine that calls DLGMODAL can then test to see which pushbutton caused the
modal dialog to exit.

Callbacks for a particular control are called after the value of the control has been changed by the user's
action. Calling DLGSETdoes not cause a callback to be called for the changing value of a control. In particular,
when inside a callback, performing a DLGSET on a control will not cause the associated callback for that
control to be called.

Calling DLGSET before or afterDLGMODELESS or DLGMODAL has been called also does not cause the callback to
be called. If the callback needs to be called, it can be called manually using CALL after the DLGSET is
performed.

Using a Modeless Dialog Box
When an application displays a modeless dialog box, the application does not halt, waiting for user input, but
continues executing. The user can freely switch between the modeless dialog box and the other windows in
the application.

To display a modeless dialog box, call the DLGMODELESS function. A modeless dialog box remains displayed
until the DLGEXIT routine is called, either explicitly or by a default button callback. The application must
provide a message loop to process Windows messages and must call the DLGISDLGMESSAGE function at the
beginning of the message loop.

The variable of type DIALOG passed to DLGMODELESS must remain in memory for the duration of the dialog
box (from the DLGINIT call through the DLGUNINIT call). The variable can be declared as global data in a
Fortran module, as a variable with the STATIC attribute (or statement), or in a calling procedure that is
active for the duration on the dialog box. For more information, see the Syntax for DLGMODELESS.

Modeless dialog boxes are typically used in a Fortran Windows project. A modeless dialog box can be used in
a Fortran Console, Fortran DLL, or Fortran Static Library application as long as the requirements for using a
modeless dialog box (discussed in the previous paragraphs) are met.

As an example of using a modeless dialog box, the following code is the WinMain function of an application
that displays a modeless dialog box as its main window:
 INTEGER(DWORD) function WinMain (hInstance, hPrevInstance, &
& lpszCmdLine, nCmdShow)
 !DEC$ ATTRIBUTES STDCALL, DECORATE, ALIAS:”WinMain” :: WinMain
 use IFWIN
 use IFLOGM
 INTEGER(HANDLE), INTENT(IN) :: hInstance, hPrevInstance
 INTEGER(LPVOID), INTENT(IN) :: lpszCmdLine

 5 Using Intel® Visual Fortran to Create and Build Windows*-Based Applications

78

 INTEGER(DWORD), INTENT(IN) :: nCmdShow
 ! Include the constants provided by the Resource Editor
 include 'resource.fd'
 ! A dialog box callback
 external ThermometerSub
 ! Variables
 type (dialog) dlg
 type (T_MSG) mesg
 integer ret
 logical lret
 ! Create the thermometer dialog box and set up the controls and callbacks
 lret = DlgInit(IDD_THERMOMETER, dlg_thermometer)
 lret = DlgSetSub(dlg_thermometer, IDD_THERMOMETER, ThermometerSub)
 lret = DlgSet(dlg_thermometer, IDC_PROGRESS1, 32, DLG_RANGEMIN)
 lret = DlgSet(dlg_thermometer, IDC_PROGRESS1, 212, DLG_RANGEMAX)
 lret = DlgSet(dlg_thermometer, IDC_PROGRESS1, 32)
 lret = DlgModeless(dlg_thermometer, nCmdShow)

 ! Read and process messages until GetMessage returns 0 because
 ! PostQuitMessage has been called
 do while(GetMessage (mesg, NULL, 0, 0))
 ! Note that DlgIsDlgMessage must be called in order to give
 ! the dialog box first chance at the message.
 if (DlgIsDlgMessage(mesg) .EQV. .FALSE.) then
 lret = TranslateMessage(mesg)
 ret = DispatchMessage(mesg)
 end if
 end do
 ! Cleanup dialog box memory
 call DlgUninit(dlg)
 ! The return value is the wParam of the Quit message
 WinMain = mesg.wParam
 return
 end function

Using Fortran AppWizards to Help Add Modal Dialog Box Coding
When an application displays a modal dialog box, the user must explicitly enter data and close the dialog box
before the application resumes execution. Any Fortran project type can use a modal dialog box.

The following creates a "Hello World" Fortran Console application that uses a modal dialog box to display
"Hello World!" The first step may vary, depending on your version of Visual Studio*.

1. From the list of Fortran project types, select Console Application. In the right pane, select Main
Program Code. At the bottom of the window, specify a file name (HelloDlg) and location. Your
project and source file (HelloDlg.f90) will be created for you.

2. In the File menu, select Add New Item... and select Resource. Specify a name of HelloDlg.rc and
click Open. Select Edit>Add Resource..., select Dialog, and click New. Create the box using the
dialog resource editor, as follows:

a. Delete the Cancel button (click the Cancel button and press the Delete key).
b. Add a new static text control to the dialog box.
c. Enlarge or resize the static text control if needed.
d. Select the static text control, then select View>Properties Window or (right-click and choose

Properties) to edit its properties. Change the Caption to "Hello World!." You may also want to
change the Align Text option to Center.

e. Dismiss the dialog box by clicking the x in the upper-right corner of the window.
3. In the File menu, select Save All.
4. In the Project menu, select Add Existing Item.... Change the Files of Type: selection to All Files

and select Resource.h. Click Open.

Using Dialog Boxes for Application Controls 5

79

5. Select the Resource.h file in the Solution View and the select View>Property Pages.
6. Set the options as follows:

• Command Line: deftofd resource.h resource.fd.
• Description: Generating Fortran include file...
• Outputs: resource.fd.

7. Click OK.
8. Edit the file HelloDlg.f90 as follows:

• After the program HELLODLG line, add the following line:
USE IFLOGM

• Replace the line: print *, 'Hello World'
With the following lines:
include 'resource.fd'
type (DIALOG) dlg
logical lret
integer iret
lret = DlgInit(IDD_DIALOG1, dlg)
iret = DlgModal(dlg)
call DlgUninit(dlg)

In the code above:
• The USE IFLOGM line includes the IFLOGM module interfaces to the Dialog routines.
• The line include 'resource.fd' The Include (.FD and .H) Files.
• The function reference to DLGINIT initializes the dialog box.
• The function reference to DLGMODAL displays the dialog box.
• The call to DLGUNINIT frees the dialog box resources.

9. Build the Hellodlg Fortran Console project application. When you execute the application, the dialog box
you created appears in front of the Console window:

 5 Using Intel® Visual Fortran to Create and Build Windows*-Based Applications

80

10. Click OK to dismiss the dialog box.

For Intel Visual Fortran applications using the Fortran Windows project type, you can use the Fortran
Windows Project AppWizard to help you add dialog coding for a Using Fortran AppWizards to Help Add
Modeless Dialog Box Coding.

For information about coding requirements for modal and modeless dialog boxes, see Initializing and
Activating the Dialog Box.

Using Fortran AppWizards to Help Add Modeless Dialog Box Coding
To use a Using a Modeless Dialog Box, you typically use a Fortran Windows project type. The Fortran
Windows Project AppWizard helps you add coding for using a modeless dialog box.

When you create a project by selecting Fortran Windows Application>Windowing Application, a
number of wizards are available. However, only two allow creation of a dialog box that serves as the main
window of the application. These are:

• Sample SDI (Single Document Interface) code

To create an application where a dialog box is the main window of the application with a menu bar,
choose the SDI Code wizard or ActiveX SDI Code wizard.

This also creates the skeleton of an entire application that you can immediately build and run. You can
add a dialog box to the client area of the main window (as explained later).

• Sample Dialog Code

To create an application where a dialog box is the main window of the application, without a menu bar,
choose the Dialog Code wizard or ActiveX Dialog Code wizard.

This creates the skeleton of an entire application that you can immediately build and run to display a
sample dialog box. You can add controls to the dialog box and add dialog procedure calls to manipulate
the controls and handle dialog callbacks.

Single Document Interface Sample Code
In the template-like code generated when you select the SDI Code or ActiveX SDI Code option, do the
following to add the dialog box to the client area of the main window:

1. Double-click the .rc file, select Edit>Add Resource... and create a new Dialog box. Edit the Dialog
Properties. Set Style to Child, Border to Thin, and Title Bar to False .

2. In the main source file, add the following USE statement:
USE iflogm

3. In the main source file, in the function MainWndProc, add a case to handle the WM_CREATE message.
In this case, initialize the dialog box in the normal manner. To display the dialog box, call:
lret = DlgModeless(dlg, SW_SHOWNA, hwndParent)

In this call, hwndParent is the window handle of the application's main window.
4. In the main source file, add a call to DlgIsDlgMessage to the message loop, before the call to the

Windows API routine TranslateAccelerator, as shown in the following:
! Read and process messages
do while(GetMessage (mesg, NULL, 0, 0))
if (DlgIsDlgMessage(mesg, dlg) .EQV. .FALSE.) then
if (TranslateAccelerator (mesg%hwnd, haccel, mesg) == 0) then
lret = TranslateMessage(mesg)
ret = DispatchMessage(mesg)
end if
end if
end do

5. Optionally, if you want to allow the user to resize the main window, add a case to handle the
WM_RESIZE message and change the layout of the dialog box based upon its size.

Using Dialog Boxes for Application Controls 5

81

Dialog-Based Sample Code
In the template-like code generated when you select the Dialog code or ActiveX Dialog code option, do the
following:

• Build the project and execute it. The following dialog box is displayed:

• Some of the code specific to the dialog routine interfaces and data declarations follows. For this example,

the project name is FWin. The project name is used in some of the data declarations:

use iflogm
use FWin_dialogGlobals
.
.
.
include 'resource.fd'
external FWin_dialogSub
external FWin_dialogApply
! Variables
type (T_MSG) mesg
integer ret
logical lret

The FWin_dialogGlobals module is defined in a separate source file in that project. The FWin_dialogSub and
FWin_dialogApply are subroutines defined later in the main source file that are callback routines for different
controls for the dialog box.

• The code specific to creating the dialog follows:

lret = DlgInit(IDD_FWIN_DIALOG_DIALOG, gdlg) 1
if (lret == .FALSE.) goto 99999
lret = DlgSetSub(gdlg, IDD_FWIN_DIALOG_DIALOG, FWin_dialogSub) 2
lret = DlgSetSub(gdlg, IDM_APPLY, FWin_dialogApply) 3
lret = DlgModeless(gdlg, nCmdShow) 4
if (lret == .FALSE.) goto 99999

Notes for this example:
1 DlgInit initializes the dialog box.

2 The first call to DlgSetSub assigns a callback subroutine to the Exit button. It associates the
FWin_dialogSub subroutine with the dialog box identifier IDD_FWIN_DIALOG_DIALOG (project name is
FWin_Dialog). The FWin_dialogSub routine contains code to terminate the program.
3 The second call to DlgSetSub associates FWin_dialogApply with the Apply button identifier IDM_APPLY.
The user should add code in the FWin_dialogApply subroutine to take appropriate action.

 5 Using Intel® Visual Fortran to Create and Build Windows*-Based Applications

82

4 DlgModeless displays the initialized modeless dialog box, which is ready for user input.

• The code specific to processing messages (message loop) to react to user input follows:

! Read and process messages
do while(GetMessage (mesg, NULL, 0, 0)) 1
if (DlgIsDlgMessage(mesg) .EQV. .FALSE.) then 2
lret = TranslateMessage(mesg) 3
ret = DispatchMessage(mesg) 4
end if
end do

Notes for this example:
1 The GetMessage Windows API call inside a DO WHILE loop returns a message from the calling thread's
message queue.
2 DlgIsDlgMessage determines whether the specified message is intended for one of the currently displayed
modeless dialog boxes, or a specific dialog box.
3 The TranslateMessage Windows API call translates virtual-key messages into character messages.
4 The DispatchMessage Windows API call dispatches a message to a window procedure.

• The dialog box is terminated and its resources are released by calling DlgUninit:

call DlgUninit(gdlg)

Using Dialog Controls in a DLL
You can use a dialog box that is defined in a DLL. To do so, you must inform the dialog routines that the
dialog resource is located in the DLL, rather than in the main application. The dialog routines will look for the
dialog resource in the main application by default.

To do this, initialize your dialog box using DlgInitWithResourceHandleDlgInit rather than DlgInit . As
compared to DlgInit, DlgInitWithResourceHandle takes an additional argument named "hinst". The
"hinst" argument is the module instance handle in which the dialog resource can be found. For a DLL, this
handle is passed into the DLL entry point, DllMain.

An example of a DllMain function follows:
 module dll_globals
 integer ghInst ! DLL instance handle
 end module dll_globals
 !**
 !* FUNCTION: DllMain(HANDLE, DWORD, LPVOID)
 !*
 !* PURPOSE: DllMain is called by Windows when
 !* the DLL is initialized, Thread Attached, and other times.
 !* Refer to SDK documentation, as to the different ways this
 !* may be called.
 !*
 !* The DllMain function should perform additional initialization
 !* tasks required by the DLL. DllMain should return a value of 1
 !* if the initialization is successful.
 !*
 !***
 integer(DWORD) function DllMain (hInstDLL, fdwReason, lpvReserved)
 !DEC$ ATTRIBUTES STDCALL, DECORATE, ALIAS:”DllMain” :: DllMain
 use IFWIN
 use dll_globals
 integer(HANDLE), intent(IN) :: hinstFDLL
 integer(DWORD), intent(IN) :: fswReason
 integer(LPVOID), intent(IN) :: lpvReserved
 ! Save the module instance handle in a global variable

Using Dialog Boxes for Application Controls 5

83

 ! This would typically be in a Module or a COMMON block.
 ghInst = hInst
 DllMain = 1
 return
 end
One way to use DlgInitWithResourceHandle is to build a resource-only DLL. A resource-only DLL contains
an .RC file, but no code. It is useful for building an application that supports multiple languages. You can
create a main application and several resource-only DLLs (one for each language) and call the Windows API
LoadLibrary routine at the beginning of your application to load the appropriate resource-only DLL. To use a
dialog box from the resource-only DLL, first call LoadLibrary (see the Platform SDK online documentation) to
return the instance handle that you can use when you call DlgInitWithResourceHandle.

When you create a Fortran DLL project, you can create a resource-only DLL using the Fortran Dynamic Link
Library AppWizard.

To create a resource-only DLL:

1. Select Library as the Intel(R) Fortran project type.
2. Select Dynamic-link Library in the right pane.
3. Complete creating the project.
4. In the Project menu, select Add to Project... Files to add your .RC file and the RESOURCE.H file that

defines the identifiers of the controls.
5. In the Project menu:

• Select Properties
• Select Linker>Advanced
• Set Resource Only DLL to Yes

Summary of Dialog Routines
You can use dialog routines as you would any intrinsic procedure or run-time routine.

As described in Using Dialog Boxes for Application Controls Overview, Intel Fortran supports two types of
dialog boxes: modal and modeless. You can use a modal dialog box with any Fortran project type. You can
use a modeless dialog box only with the Fortran Windows project types.

The dialog routines can:

• Initialize and close the dialog box
• Retrieve user input from a dialog box
• Display data in the dialog box
• Modify the dialog box controls

The include file (.FD) of the dialog box contains the names of the dialog controls that you specified in the
Properties Window of the Resource Editor when you created the dialog box. The module IFLOGM.MOD
contains predefined variable names and type definitions. These control names, variables, and type definitions
are used in the dialog routine argument lists to manage your dialog box.

The dialog routines are listed in the following table:

Dialog Routine Description

DLGEXIT Closes an open dialog

DLGFLUSH Updates the dialog display

DLGGET Gets the value of a control variable

DLGGETCHAR Gets the value of a character control variable

DLGGETINT Gets the value of an integer control variable

 5 Using Intel® Visual Fortran to Create and Build Windows*-Based Applications

84

Dialog Routine Description

DLGGETLOG Gets the value of a logical control variable

DLGINIT Initializes the dialog

DLGINITWITHRESOURCEHANDLE Initializes the dialog (alternative to DLGINIT)

DLGISDLGMESSAGE Determines whether a message is intended for a
modeless dialog box

DLGISDLGMESSAGEWITHDLG Determines whether a message is intended for a
modeless dialog box (alternative to
DLGISDLGMESSAGE)

DLGMODAL Displays a modal dialog box

DLGMODALWITHPARENT Displays a modal dialog box (alternative to
DLGMODAL)

DLGMODELESS Displays a modeless dialog box

DLGSENDCTRLMESSAGE Sends a message to a control

DLGSET Assigns a value to a control variable

DLGSETCHAR Assigns a value to a character control variable

DLGSETCTRLEVENTHANDLER Assigns a routine to handle an ActiveX control event

DLGSETINT Assigns a value to an integer control variable

DLGSETLOG Assigns a value to a logical control variable

DLGSETRETURN Sets the return value for DLGMODAL

DLGSETSUB Assigns a defined callback routine to a control

DLGSETTITLE Sets the dialog title

DLGUNINIT Deallocates memory for an initialized dialog

These routines are described in the Language Reference (see also Dialog Procedures: table).

Understanding Dialog Controls

Understanding Dialog Controls Overview
Each dialog control in a dialog box has a unique integer identifier and name. You specify the name in the
Properties window for each control within the Resource Editor, and the Resource Editor assigns an integer
value to each control name. You can refer to a control by its name, for example
IDC_SCROLLBAR_TEMPERATURE, or by its integer value, which you can read from the include (.FD) file.

Each dialog control has one or more variables associated with it, called control indexes. These indexes can be
integer, logical, character, or external. For example, a plain Button has three associated variables: one is a
logical value associated with its current enabled state, one is a character variable that determines its title,
and the third is an external variable that indicates the subroutine to be called if a mouse click occurs.

Dialog controls can have multiple variables of the same type. For example, the scroll bar control has four
integer variables associated with it:

• Scroll bar position

Using Dialog Boxes for Application Controls 5

85

• Scroll bar minimum range
• Scroll bar maximum range
• Position change if the user clicks on the scroll bar space next to the slide (big step)

See Also
Using Control Indexes
Available Indexes for Each Dialog Control
Specifying Control Indexes

Using Control Indexes
The value of a dialog control's index is set with the DLGSET functions: DLGSET, DLGSETSUB, and
DLGSETCHAR , DLGSETLOG, DLGSETINT. The control name and control index name are arguments to the
DLGSET functions and specify the particular control index being set. For example:
 retlog = DlgSet(dlg, IDC_SCROLLBAR_TEMPERATURE, 45, DLG_POSITION)
The index DLG_POSITION specifies the scroll bar position is set to 45. Consider the following:
 retlog = DlgSet(dlg, IDC_SCROLLBAR_TEMPERATURE, 200, DLG_RANGEMAX)
In this statement, the index DLG_RANGEMAX specifies the scroll bar maximum range is set to 200. The
DLGSET functions have the following syntax:
 result = DLGSET (dlg, control_name, value, control_index_name)
The control_index_name determines what the value in the DLGSET function means.

The control index names are declared in the module IFLOGM.MOD and should not be declared in your
routines. Available control indexes and how they specify the interpretation of the value argument are listed in
the following Control Indexes table.

Control Index How the Value is Interpreted

DLG_ADDSTRING Used with DLGSETCHAR to add an entry to a List box or Combo box

DLG_BIGSTEP The amount of change that occurs in a Scroll bar's or Slider's position when the user
clicks beside the Scroll bar's or slider's slide (default = 10)

DLG_CHANGE A subroutine called after the user has modified a control and the control has been
updated on the screen

DLG_CLICKED A subroutine called when the control receives a mouse-click

DLG_DBLCLICK A subroutine called when a control is double-clicked

DLG_DEFAULT Same as not specifying a control index

DLG_ENABLE The enable state of the control (value = .TRUE. means enabled, value = .FALSE.
means disabled)

DLG_GAINFOCUS A subroutine called when an Edit Box receives input focus.

DLG_IDISPATCH The object pointer of an ActiveX control

DLG_LOSEFOCUS A subroutine called when an Edit Box loses input focus

DLG_NUMITEMS The total number of items in a List box, Combo box, or Tab control

DLG_POSITION The current position of the Scroll bar, Spin, Slider, or Progress bar. Also, the current
cursor position in the edit box.

DLG_RANGEMIN The minimum value of a Scroll bar's, Spin's, Slider's, or Progress' position (default =
1 for scroll bar, 0 for other controls)

 5 Using Intel® Visual Fortran to Create and Build Windows*-Based Applications

86

Control Index How the Value is Interpreted

DLG_RANGEMAX The maximum value of a Scroll bar's, Spin's, Slider's, or Progress' position (default =
100)

DLG_SELCHANGE A subroutine called when the selection in a List Box or Combo Box changes

DLG_SELCHANGIN
G

A subroutine called when the selected Tab control is about to be changed. In this
subroutine, calling DLGGETINT with the index DLG_STATE refers to the Tab that was
active before the change.

DLG_SMALLSTEP The amount of change that occurs in a Slider's position when the user presses the
keyboard arrow keys (default = 1)

DLG_STATE The user changeable state of a control

DLG_TEXTLENGTH The length of text in an edit box

DLG_TICKFREQ The interval frequency for tick marks in a Slider (default = 1)

DLG_TITLE The title text associated with a control

DLG_UPDATE A subroutine called after the user has modified the control state but before the
control has been updated on the screen

The index names associated with dialog controls do not need to be used unless there is more than one
variable of the same type for the control and you do not want the default variable. For example:
 retlog = DlgSet(dlg, IDC_SCROLLBAR_TEMPERATURE, 45, DLG_POSITION)
 retlog = DlgSet(dlg, IDC_SCROLLBAR_TEMPERATURE, 45)
These statements both set the Scroll bar position to 45, because DLG_POSITION is the default control index
for the scroll bar.

Dialog Indexes
The control identifier specified in DLGSETSUB can also be the identifier of the dialog box. In this case, the
index must be one of the values listed in the Dialog Indexes table:

Dialog
Index

How the Value is Interpreted

DLG_INIT A subroutine called after the dialog box is created but before it is displayed (with
callbacktype=DLG_INIT) and immediately before the dialog box is destroyed (with
callbacktype=DLG_DESTROY).

DLG_SIZECH
ANGE

A subroutine called after the dialog box is resized.

For more information on dialog controls, see Available Indexes for Each Dialog Control.

Available Indexes for Each Dialog Control
The available indexes and defaults for each of the controls are listed in the following table:

Dialog Controls and Their Indexes

Control
Type

Integer Index Name Logical Index
Name

Character Index Name Subroutine
Index Name

Using
ActiveX
*

DLG_IDISPATCH DLG_ENABLE

Using Dialog Boxes for Application Controls 5

87

Control
Type

Integer Index Name Logical Index
Name

Character Index Name Subroutine
Index Name

Controls
Overvie
w

Using
Buttons

DLG_ENABLE DLG_TITLE DLG_CLICKED

Using
Check
Boxes
and
Radio
Buttons

DLG_STATE
(default)

DLG_ENABLE

DLG_TITLE DLG_CLICKED

Using
List
Boxes
and
Combo
Boxes

DLG_NUMITEMS

Sets or returns the total
number of items in a list

DLG_ENABLE Use DLG_STATE,
DLG_ADDSTRING, or an
index:

DLG_STATE

By default, sets or returns
the text of the selected
item or first item in the list

DLG_ADDSTRING

Used with DLGSETCHAR to
add a new item. It
automatically increments
DLG_NUMITEMS.

An index, 1 to n

Sets or returns the text of
a particular item

DLG_SELCHANG
E (default)

DLG_DBLCLICK

DLG_CHANGE

DLG_UPDATE

Using
List
Boxes
and
Combo
Boxes

Use DLG_NUMITEMS or
DLG_STATE:

DLG_NUMITEMS
(default)

Sets or returns the total
number of items in a list

DLG_STATE

Sets or returns the
index of the selected
item

DLG_ENABLE Use DLG_STATE,
DLG_ADDSTRING, or an
index:

DLG_STATE

By default, sets or returns
the text of the selected
item or first item in the
list, or you can include an
index, 1 to n, to set or
return indicates the text of
a particular item

DLG_ADDSTRING

Used with DLGSETCHAR to
add a new item. It
automatically increments
DLG_NUMITEMS.

DLG_SELCHANG
E (default)

DLG_DBLCLICK

Using
Edit
Boxes

DLG_TEXTLENGTH
(default)

Sets or returns the
length of the text in the
edit box.

DLG_POSITION

DLG_ENABLE DLG_STATE DLG_CHANGE
(default)

DLG_UPDATE

DLG_GAINFOCU
S

 5 Using Intel® Visual Fortran to Create and Build Windows*-Based Applications

88

Control
Type

Integer Index Name Logical Index
Name

Character Index Name Subroutine
Index Name

Sets or returns the
cursor position

DLG_LOSEFOCU
S

Using
Group
Boxes

DLG_ENABLE DLG_TITLE

Using
List
Boxes
and
Combo
Boxes

Use DLG_NUMITEMS or
an index:

DLG_NUMITEMS

Sets or returns the total
number of items in a list

An index, 1 to n

Determines which list
items have been
selected and their order

DLG_ENABLE Use DLG_STATE,
DLG_ADDSTRING, or an
index:

DLG_STATE

By default, returns the
text of the first selected
item

DLG_ADDSTRING

Used with DLGSETCHAR to
add a new item. It
automatically increments
DLG_NUMITEMS.

An index, 1 to n

Sets or returns the text of
a particular item

DLG_SELCHANG
E (default)

DLG_DBLCLICK

Using
Pictures

DLG_ENABLE

Using
Progres
s Bars

DLG_POSITION
(default)

DLG_RANGEMIN

DLG_RANGEMAX

DLG_ENABLE

Using
Check
Boxes
and
Radio
Buttons

DLG_STATE
(default)

DLG_ENABLE

DLG_TITLE DLG_CLICKED

Using
Scroll
Bars

DLG_POSITION
(default)

DLG_RANGEMIN

DLG_RANGEMAX

DLG_BIGSTEP

DLG_ENABLE DLG_CHANGE

Using
Sliders

DLG_POSITION
(default)

DLG_RANGEMIN

DLG_RANGEMAX

DLG_SMALLSTEP

DLG_BIGSTEP

DLG_TICKFREQ

DLG_ENABLE DLG_CHANGE

Using Dialog Boxes for Application Controls 5

89

Control
Type

Integer Index Name Logical Index
Name

Character Index Name Subroutine
Index Name

Using
Spin
Controls

DLG_POSITION
(default)

DLG_RANGEMIN

DLG_RANGEMAX

DLG_ENABLE DLG_CHANGE

Using
Static
Text

DLG_ENABLE DLG_TITLE

Using
Tab
Controls

Use DLG_NUMITEMS
(default), DLG_STATE,
or an index:

DLG_NUMITEMS

Sets or returns the total
number of tabs

DLG_STATE

Sets or returns the
currently selected tab

An index, 1 to n

Sets or returns the
dialog name of the
dialog box associated
with a particular tab

DLG_ENABLE Use DLG_STATE or an
index:

DLG_STATE

By default, sets or returns
the currently selected tab

An index, 1 to n

Sets or returns the text of
a particular Tab

DLG_SELCHANG
E (default)

DLG_SELCHANG
ING

For an overview on control indexes, see Using Control Indexes.

Specifying Control Indexes
Where there is only one possibility for a particular dialog control's index type (integer, logical, character, or
subroutine), you do not need to specify the control index name in an argument list. For example, you can set
the Static text control IDC_TEXT_CELSIUS to a new value with either of the following statements:
 retlog = DLGSETCHAR (dlg, IDC_TEXT_CELSIUS, "New Celsius Title", &
 & DLG_TITLE)
 retlog = DLGSET (dlg, IDC_TEXT_CELSIUS, "New Celsius Title")
You do not need the control index DLG_TITLE because there is only one character index for a Static text
control. The generic function DLGSET chooses the control index to change based on the argument type, in
this case CHARACTER.

For each type of index, you can use the generic DLGSET function or the specific DLGSET function for that
type: DLGSETINT, DLGSETLOG, or DLGSETCHAR.

For example, you can disable the Static text control IDC_TEXT_CELSIUS by setting its logical value
to .FALSE. with either DLGSET or DLGSETLOG:
 retlog = DLGSETLOG (dlg, IDC_TEXT_CELSIUS, .FALSE., DLG_ENABLE)
 retlog = DLGSET (dlg, IDC_TEXT_CELSIUS, .FALSE., DLG_ENABLE)
In both these cases, the control index DLG_ENABLE can be omitted because there is only one logical control
index for Static text controls.

You can query the value of a particular control index with the DLGGET functions, DLGGET, DLGGETINT,
DLGGETLOG, and DLGGETCHAR. For example:
 INTEGER current_val
 LOGICAL are_you_enabled
 retlog = DLGGET (dlg, IDC_SCROLLBAR_TEMPERATURE, current_val, &

 5 Using Intel® Visual Fortran to Create and Build Windows*-Based Applications

90

 & DLG_RANGEMAX)
 retlog = DLGGET (dlg, IDC_SCROLLBAR_TEMPERATURE, are_you_enabled, &
 & DLG_ENABLE)
This code returns the maximum range and the enable state of the scroll bar. The arguments you declare
(current_val and are_you_enabled in the preceding example) to hold the queried values must be of the
same type as the values retrieved. If you use specific DLGGET functions such as DLGGETINT or DLGGETCHAR,
the control index value retrieved must be the appropriate type. For example, you cannot use DLGGETCHAR to
retrieve an integer or logical value. The DLGGET functions return .FALSE. for illegal type combinations. You
cannot query for the name of an external callback routine.

In general, it is better to use the generic functions DLGSET and DLGGET rather than their type-specific
variations because then you do not have to worry about matching the function to the type of value set or
retrieved. DLGSET and DLGGET perform the correct operation automatically, based on the type of argument
you pass to them.

More information on these routines is available in the Language Reference.

Using Dialog Controls

Using Dialog Controls Overview
The dialog controls provided in the Resource Editor are versatile and flexible; when used together, they can
provide a sophisticated user-friendly interface for your application. This section discusses the available dialog
controls.

Any control can be disabled by your application at any time, so that it no longer changes or responds to the
user. This is done by setting the control index DLG_ENABLE to .FALSE. using DLGSET or DLGSETLOG. For
example:
 LOGICAL retlog
 retlog = DLGSET (dlg, IDC_CHECKBOX1, .FALSE., DLG_ENABLE)
This example disables the control named IDC_CHECKBOX1.

When you create your dialog box in the Resource Editor, the dialog controls are given a tab order. When the
user hits the Tab key, the dialog box focus shifts to the next control in the tab order. By default, the tab
order of the controls follows the order in which they were created. This may not be the order you want.

You can change the order by opening the Format menu and choosing Tab Order (or by pressing the key
combination Ctrl+D) in the Resource Editor. A tab number will appear next to each control. Click the mouse
on the control you want to be first, then on the control you want to be second in the tab order and so on.
Tab order also determines which control gets the focus if the user presses the Group box hotkey. (See Using
Group Boxes.)

The following sections describe the function and use of the dialog controls:

• Using Static Text
• Using Edit Boxes
• Using Group Boxes
• Using Check Boxes and Radio Buttons
• Using Buttons
• Using List Boxes and Combo Boxes
• Using Scroll Bars
• Using Pictures
• Using Progress Bars
• Using Spin Controls
• Using Sliders
• Using Tab Controls

Using Dialog Boxes for Application Controls 5

91

• Setting Return Values and Exiting

For information on using ActiveX controls in a dialog, see Using ActiveX* Controls Overview.

Using Static Text
Static text is an area in the dialog that your application writes text to. The user cannot change it. Your
application can modify the Static text at any time, for instance to display a current user selection, but the
user cannot modify the text. Static text is typically used to label other controls or display messages to the
user.

Using Edit Boxes
An Edit box is an area that your application can write text to at anytime. However, unlike Static Text, the
user can write to an Edit box by clicking the mouse in the box and typing. The following statements write to
an Edit box:
 CHARACTER(20) text /"Send text"/
 retlog = DLGSET (dlg, IDC_EDITBOX1, text)
The next statement reads the character string in an Edit box:
 retlog = DLGGET (dlg, IDC_EDITBOX1, text)
The values a user enters into the Edit box are always retrieved as character strings, and your application
needs to interpret these strings as the data they represent. For example, numbers entered by the user are
interpreted by your application as character strings. Likewise, numbers you write to the Edit box are sent as
character strings. You can convert between numbers and strings by using internal read and write statements
to make type conversions.

To read a number in the Edit box, retrieve it as a character string with DLGGET or DLGGETCHAR, and then
execute an internal read using a variable of the numeric type you want (such as integer or real). For
example:
 REAL x
 LOGICAL retlog
 CHARACTER(256) text
 retlog = DLGGET (dlg, IDC_EDITBOX1, text)
 READ (text, *) x
In this example, the real variable x is assigned the value that was entered into the Edit box, including any
decimal fraction.

Complex and double complex values are read the same way, except that your application must separate the
Edit box character string into the real part and imaginary part. You can do this with two separate Edit boxes,
one for the real and one for the imaginary part, or by requiring the user to enter a separator between the
two parts and parsing the string for the separator before converting. If the separator is a comma (,) you can
read the string with two real edit descriptors without having to parse the string.

To write numbers to an Edit box, do an internal write to a string, then send the string to the Edit box with
DLGSET. For example:
 INTEGER j
 LOGICAL retlog
 CHARACTER(256) text
 WRITE (text,'(I4)') j
 retlog = DLGSET (dlg, IDC_EDITBOX1, text)
Use the DLG_TEXTLENGTH control index to get or set the length of the characters in the edit box. The length
is automatically updated when:

• Your program calls DLGSET to set the text in the edit box (trailing blanks are stripped before setting the
edit box).

• The user modifies the text in the edit box.

 5 Using Intel® Visual Fortran to Create and Build Windows*-Based Applications

92

If you want to set the text with significant trailing blanks, call DLGSET to set the text followed by DLGSET
with the DLG_TEXTLENGTH index to set the length that you want.

Use the DLG_POSITION index to get or set the current cursor position in the edit box. Note that setting the
cursor position cancels any current selection in the edit box.

Using Group Boxes
A Group box visually organizes a collection of controls as a group. When you select Group box in Resource
Editor, you create an expanding (or shrinking) box around the controls you want to group and give the group
a title. You can add a hotkey to your group title with an ampersand (&). For example, consider the following
group title:
 &Temperature
This causes the "T" to be underlined in the title and makes it a hotkey. When the user presses the key
combination ALT+T, the focus of the dialog box shifts to the next control after the Group box in the tab
order. This control should be a control in the group. (You can view and change the tab order from the
Format>Tab Order menu option in the Resource Editor.)

Disabling the Group box disables the hotkey, but does not disable any of the controls within the group. As a
matter of style, you should generally disable the controls in a group when you disable the Group box.

Using Check Boxes and Radio Buttons
Check boxes and Radio buttons present the user with an either-or choice. A Radio button is pushed or not,
and a Check box is checked or not. You use DLGGET or DLGGETLOG to check the state of these controls.
Their state is a logical value that is .TRUE. if they are pushed or checked, and .FALSE. if they are not. For
example:
 LOGICAL pushed_state, checked_state, retlog
 retlog = DLGGET (dlg, IDC_RADIOBUTTON1, pushed_state)
 retlog = DLGGET (dlg, IDC_CHECKBOX1, checked_state)
If you need to change the state of the button, for initialization or in response to other user input, you use
DLGSET or DLGSETLOG. For example:
 LOGICAL retlog
 retlog = DLGSET (dlg, IDC_RADIOBUTTON1, .TRUE.)
 retlog = DLGSET (dlg, IDC_CHECKBOX1, .TRUE.)
Radio buttons are typically used in a group where the user can select only one of a set of options. When
using Radio buttons with the Dialog routines, use the following guidelines:

• Each Radio button should have the "Auto" style set. This is the default for a new Radio button.
• The first Radio button in a group should have the "Group" style set. This is not the default for a new Radio

button.
• The remaining Radio buttons in the group should not have the "Group" style set, and should immediately

follow the first button in the dialog box "Tab order." The default tab order is the order in which you create
the controls. You can view and change the tab order from the Format>Tab Order menu option in the
Resource Editor.

• When the user selects a Radio button in a group, its state is set to .TRUE. and the state of the other Radio
buttons in the group is set to .FALSE..

• To set the currently selected Radio button from your code, call DLGSETLOG to set the selected Radio
button to .TRUE.. Do not set the other Radio buttons to .FALSE.. This is handled automatically.

Using Dialog Boxes for Application Controls 5

93

Using Buttons
Unlike Check boxes and Radio buttons, Buttons do not have a state. They do not hold the value of being
pushed or not pushed. When the user clicks on a Button with the mouse, the Button's callback routine is
called. Thus, the purpose of a Button is to initiate an action. The external procedure you assign as a callback
determines the action initiated. For example:
 LOGICAL retlog
 EXTERNAL DisplayTime
 retlog = DlgSetSub(dlg, IDC_BUTTON_TIME, DisplayTime)
Intel Visual Fortran dialog routines do not support user-drawn Buttons.

Using List Boxes and Combo Boxes
List boxes and Combo boxes are used when the user needs to select a value from a set of many values. They
are similar to a set of Radio buttons except that List boxes and Combo boxes are scrollable and can contain
more items than a set of Radio buttons which are limited by the screen display area. Also, unlike Radio
buttons, the number of entries in a List box or Combo box can change at run-time.

The difference between a List box and a Combo box is that a List box is simply a list of items, while a Combo
box is a combination of a List box and an Edit box. A List box allows the user to choose multiple selections
from the list at one time, while a Combo box allows only a single selection, but a Combo box allows the user
to edit the selected value while a List box only allows the user to choose from the given list.

A Drop-down list box looks like a Combo box since it has a drop-down arrow to display the list. Like a Combo
box, only one selection can be made at a time in a Drop-down list box, but, like a List box, the selected value
cannot be edited. A Drop-down list box serves the same function as a List box except for the disadvantage
that the user can choose only a single selection, and the advantage that it takes up less dialog screen space.

Intel Visual Fortran dialog routines do not support user-drawn List boxes or user-drawn Combo boxes. You
must create List boxes and Combo boxes with the Resource Editor.

The following sections describe how to use List boxes and Combo boxes:

• Using List boxes
• Using Combo boxes
• Using Drop-down List boxes

Using List Boxes
For both List boxes and Combo boxes, the control index DLG_NUMITEMS determines how many items are in
the box. Once this value is set, you set the text of List box items by specifying a character string for each
item index. Indexes run from 1 to the total number of list items set with DLG_NUMITEMS. For example:

 LOGICAL retlog
 retlog = DlgSet (dlg, IDC_LISTBOX1, 3, DLG_NUMITEMS)
 retlog = DlgSet (dlg, IDC_LISTBOX1, "Moe", 1)
 retlog = DlgSet (dlg, IDC_LISTBOX1, "Larry", 2)
 retlog = DlgSet (dlg, IDC_LISTBOX1, "Curly", 3)

These function calls to DLGSET put three items in the List box. The initial value of each List box entry is a
blank string and the value becomes nonblank after it has been set.

You can change the list length and item values at any time, including from within callback routines. If the list
is shortened, the set of entries is truncated. If the list is lengthened, blank entries are added. In the
preceding example, you could extend the list length and define the new item with the following:
 retlog = DLGSET (dlg, IDC_LISTBOX1, 4)
 retlog = DLGSET (dlg, IDC_LISTBOX1, "Shemp", 4)

 5 Using Intel® Visual Fortran to Create and Build Windows*-Based Applications

94

Since List boxes allow selection of multiple entries, you need a way to determine which entries are selected.
When the user selects a List box item, it is assigned an integer index. You can test which list items are
selected by reading the selection indexes in order until a zero value is read. For example, if in the previous
List box the user selected Moe and Curly, the List box selection indexes would have the following values:

Selection Index Value

1 1 (for Moe)

2 3 (for Curly)

3 0 (no more selections)

If Larry alone had been selected, the List box selection index values would be:

Selection Index Value

1 2 (for Larry)

2 0 (no more selections)

To determine the items selected, the List box values can be read with DLGGET until a zero is encountered.
For example:
 INTEGER j, num, test
 INTEGER, ALLOCATABLE :: values(:)
 LOGICAL retlog
 retlog = DLGGET (dlg, IDC_LISTBOX1, num, DLG_NUMITEMS)
 ALLOCATE (values(num))
 j = 1
 test = -1
 DO WHILE (test .NE. 0)
 retlog = DLGGET (dlg, IDC_LISTBOX1, values(j), j)
 test = values(j)
 j = j + 1
 END DO

In this example, j is the selection index and values(j) holds the list numbers, of the items selected by the
user, if any.

To read a single selection, or the first selected item in a set, you can use DLG_STATE, since for a List Box
DLG_STATE holds the character string of the first selected item (if any). For example:

 ! Get the string for the first selected item.
 retlog = DLGGET (dlg, IDC_LISTBOX1, str, DLG_STATE)

Alternatively, you can first retrieve the list number of the selected item, and then get the string associated
with that item:
 INTEGER value
 CHARACTER(256) str
 ! Get the list number of the first selected item.
 retlog = DLGGET (dlg, IDC_LISTBOX1, value, 1)
 ! Get the string for that item.
 retlog = DLGGET (dlg, IDC_LISTBOX1, str, value)

In these examples, if no selection has been made by the user, str will be a blank string.

In the Properties Window in the Resource Editor, List boxes can be specified as sorted or unsorted. The
default is sorted, which causes List box items to be sorted alphabetically starting with A. If a List box is
specified as sorted, the items in the list are sorted whenever they are updated on the screen. This occurs
when the dialog box is first displayed and when the items are changed in a callback.

Using Dialog Boxes for Application Controls 5

95

The alphabetical sorting follows the ASCII collating sequence, and uppercase letters come before lowercase
letters. For example, if the List box in the example above with the list "Moe," "Larry," "Curly," and "Shemp"
were sorted, before a callback or after DLGMODAL returned, index 1 would refer to "Curly," index 2 to "Larry,"
index 3 to "Moe," and index 4 to "Shemp." For this reason, when using sorted List boxes, indexes should not
be counted on to be the same once the dialog is displayed and any change is made to the list items.

You can also call DLGSETCHAR with the DLG_ADDSTRING index to add items to a List box or Combo box. For
example:
 retlog = DlgSet(dlgtab, IDC_LIST, "Item 1", DLG_ADDSTRING)

When you use DLG_ADDSTRING, the DLG_NUMITEMS control index of the List or Combo box is automatically
incremented.

When adding items to a sorted list or Combo box, using DLG_ADDSTRING can be much easier than the
alternative (setting DLG_NUMITEMS and then setting items using an index value), because you need not
worry about the list being sorted and the index values changing between calls.

Using Combo Boxes
A Combo box is a combination of a List box and an Edit box. The user can make a selection from the list that
is then displayed in the Edit box part of the control, or enter text directly into the Edit box.

All dialog values a user enters are character strings, and your application must interpret these strings as the
data they represent. For example, numbers entered by the user are returned to your application as character
strings.

Because user input can be given in two ways, selection from the List box portion or typing into the Edit box
portion directly, you need to register two callback types with DLGSETSUB for a Combo box. These callback
types are dlg_selchange to handle a new list selection by the user, and dlg_update to handle text entered
by the user directly into the Edit box portion. For example:
 retlog = DlgSetSub(dlg, IDC_COMBO1, UpdateCombo, dlg_selchange)
 retlog = DlgSetSub(dlg, IDC_COMBO1, UpdateCombo, dlg_update)

A Combo box list is created the same way a List box list is created, as described in the previous section, but
the user can select only one item from a Combo box at a time. When the user selects an item from the list,
Windows automatically puts the item into the Edit box portion of the Combo box. Thus, there is no need, and
no mechanism, to retrieve the item list number of a selected item.

If the user is typing an entry directly into the Edit box part of the Combo box, again Windows automatically
displays it and you do not need to. You can retrieve the character string of the selected item or Edit box
entry with the following statement:
! Returns the character string of the selected item or Edit box entry as str. retlog = DLGGET (dlg,
IDC_COMBO1, str)

Like List boxes, Combo boxes can be specified as sorted or unsorted. The notes about sorted List boxes also
apply to sorted Combo boxes.

You have three choices for Combo box Type option in the Properties Window:

• Simple
• Drop list
• Drop-down

Simple and Drop-down are the same, except that a simple Combo box always displays the Combo box
choices in a list, while a Drop-down list Combo box has a Drop-down button and displays the choices in a
Drop-down list, conserving screen space. The Drop list type is halfway between a Combo box and a List box
and is described below.

Using Drop-Down List Boxes
To create a Drop-down list box, do the following:

 5 Using Intel® Visual Fortran to Create and Build Windows*-Based Applications

96

1. Choose a Combo box from the control toolbar and place it in your dialog.
2. Select the Combo box, then select View>Properties to open the Properties Window.
3. Choose Drop List as the control type.

A Drop-down list box has a drop-down arrow to display the list. Like a Combo box, only one selection can be
made at a time in the list, but like a List Box, the selected value cannot be edited. A Drop-down list box
serves the same function as a List box except for the disadvantage that the user can choose only a single
selection, and the advantage that it takes up less dialog screen space.

A Drop-down list box has the same control indexes as a Combo box with the addition of another INTEGER
index to set or return the list number of the item selected in the list. For example:
 INTEGER num
 ! Returns index of the selected item.
 retlog = DLGGET (dlg, IDC_DROPDOWN1, num, DLG_STATE)

Using Scroll Bars
With a Scroll bar, the user determines input by manipulating the slide up and down or right and left. Your
application sets the range for the Scroll bar, and thus can interpret a position of the slide as a number. If you
want to display this number to the user, you need to send the number (as a character string) to a Static text
or Edit Box control.

You set the lower and upper limits of the Scroll bar range by setting the control index DLG_RANGEMIN and
DLG_RANGEMAX with DLGSET or DLGSETINT. The default values are 1 and 100. For example:
 LOGICAL retlog
 retlog = DLGSET (dlg, IDC_SCROLLBAR1, 212, DLG_RANGEMAX)
You get the slide position by retrieving the control index DLG_POSITION with DLGGET or DLGGETINT. For
example:
 INTEGER slide_position
 retlog = DLGGET (dlg, IDC_SCROLLBAR1, slide_position, DLG_POSITION)
You can also set the increment taken when the user clicks in the blank area above or below the slide in a
vertical Scroll bar, or to the left or right of the slide in a horizontal Scroll bar, by setting the control index
DLG_BIGSTEP. For example:
 retlog = DLGSET (dlg, IDC_SCROLLBAR1, 20, DLG_BIGSTEP)
When the user clicks on the arrow buttons of the Scroll bar, the position is always incremented or
decremented by 1.

The maximum value (DLG_POSITION) that a scroll bar can report (that is, the maximum scrolling position)
depends on the page size (DLG_BIGSTEP). If the scroll bar has a page size greater than one, the maximum
scrolling position is less than the maximum range value (DLG_RANGEMAX or DLG_RANGE). You can use the
following formula to calculate the maximum scrolling position:
 MaxScrollPos = MaxRangeValue - (PageSize - 1)
For example, if a scroll bar has DLG_RANGEMAX = 100 (100 is the default value of DLG_RANGEMAX) and
DLG_BIGSTEP = 10 (10 is the default value of DLG_BIGSTEP), then the maximum DLG_POSITION is 91 (100
- (10 - 1)).

This allows your application to implement a "proportional" scroll bar. The size of the scroll box (or thumb) is
determined by the value of DLG_BIGSTEP and should represent a "page" of data (that is, the amount of data
visible in the window).

When the user clicks in the "shaft" of the scroll bar, the next (or previous) page is displayed. The top of the
thumb (for a vertical scroll bar) or the left edge of the thumb (for a horizontal scroll bar) represents the
position of the scroll bar (DLG_POSITION).

The size of the thumb represents the amount of data currently visible. There is a minimum thumb size so as
not to affect usability. When the scroll bar is at its maximum position, the position will represent the position
in the data such that the last "page" of data is visible in the window. When the top (or left edge) of the scroll
bar is at the mid-point of the shaft, DLG_POSITION will be the mid-point of the range and the mid-point of
the data should be displayed at the top of the window.

Using Dialog Boxes for Application Controls 5

97

Using Pictures
The Picture control is an area of your dialog box in which your application displays a picture.

The user cannot change it, since it is an output-only window. It does not respond to user input and therefore
does not support any callbacks.

The picture displayed can be set using the Properties dialog box in the Resource Editor. The options that can
be fully defined using the Resource Editor include a:

• Icon
• Bitmap
• Frame
• Rectangle

When using the Resource editor, you need to click on the border of the picture to select it, then select
View>Properties to display the Properties window. The Properties Window allows you to select the type
of picture as well as specify the image for certain picture types.

For example, to add an existing BMP (Bitmap) file to a dialog:

1. Open your project, double-click on the .rc file, and select Edit>Add Resource.
2. Select the Resource type (such as Icon or Bitmap) and then select whether it is a new resource, an

Import (existing) resource, or Custom resource. In our example, we will specify an existing Bitmap file
we have previously copied into our project directory, so will click Import.

3. After we specify the resource, its name appears in the Resource Editor under the appropriate
resource type (such as bitmap).

4. Add a picture to the dialog box, by dragging the picture icon from the Control toolbar to the appropriate
place in the dialog box. You can resize the picture as needed. The default picture type is frame.

5. Carefully click on the border of the picture area to display, then select View>Properties.
6. In the Properties Window, select the type of picture. If you select a type of Bitmap or Icon, for

example, you can select the image from the list of available project resources using the Image
property.

7. Move the picture as needed.

Using Progress Bars
The Progress bar is a window that can be used to indicate the progress of a lengthy operation. It consists of
a rectangle that is gradually filled as an operation progresses.

Your application sets the range of the Progress bar, using DLG_RANGEMIN and DLG_RANGEMAX, and the
current position, using DLG_POSITION. Both the minimum and maximum range values must be between 0
and 65535.

A Progress bar is an output-only window. It does not respond to user input and therefore does not support
any callbacks.

Using Spin Controls
The Spin control contains up and down arrows that allow the user to step through values. Your application
sets or gets the range of the Spin control's values, using DLG_RANGEMIN and DLG_RANGEMAX, and the current
value, using DLG_POSITION.

The Spin control is usually associated with a companion control that is called a "buddy window." To the user,
the Spin control and its buddy window often look like a single control. You can specify that the Spin control
automatically position itself next to its buddy window and that it automatically set the title of its buddy
window to its current value. This is accomplished by setting the "Auto buddy" and "Set buddy integer"
properties on the Spin control.

The buddy window is usually an Edit Box or Static Text control. When the "Auto buddy" style is set, the Spin
control automatically uses the previous control in the dialog box tab order as its buddy window.

 5 Using Intel® Visual Fortran to Create and Build Windows*-Based Applications

98

The Spin Control calls the DLG_CHANGE callback whenever the user changes the current value of the control.

The Spin control is named the "Up-down" control in Windows programming documentation.

Using Sliders
The Slider Control is a window that contains a slider and optional tick marks. Your application sets or gets the
range of the Slider control's values, using DLG_RANGEMIN and DLG_RANGEMAX, and the current value, using
DLG_POSITION. Your application can also set:

• The number of logical positions the slider moves in response to keyboard input from the arrow keys using
DLG_SMALLSTEP.

• The number of logical positions the slider moves in response to keyboard input, such as the PAGE UP or
PAGE DOWN keys, or mouse input, such as clicks in the slider's channel, using DLG_BIGSTEP.

• The interval frequency for tick marks on the slider using DLG_TICKFREQ.

The Slider Control calls the DLG_CHANGE callback whenever the user changes the current value of the control.

The Slider control is named the "Trackbar" control in Windows programming documentation.

Using Tab Controls
The Tab control is like the dividers in a notebook or the labels on a file cabinet. By using a Tab control, an
application can define multiple pages for the same area of a dialog box. Each page is associated with a
particular Tab and only one page is displayed at a time.

The control index DLG_NUMITEMS determines how many Tabs are contained in the Tab control. For each Tab,
you specify the label of the Tab using DLGSETCHAR and an index value from 1 to the number of Tabs set with
DLG_NUMITEMS. Each Tab has an associated dialog box that is displayed when the Tab is selected. You
specify the dialog box using DLGSETINT with the dialog name and an index value corresponding to the the
Tab. For example, the code below defines three Tabs in a Tab control. The Tab with the label "Family" is
associated with the dialog box named IDD_TAB_DIALOG1, and so on.
 ! Set initial Tabs
 lret = DlgSet(gdlg, IDC_TAB, 3)
 lret = DlgSet(gdlg, IDC_TAB, "Family", 1)
 lret = DlgSet(gdlg, IDC_TAB, "Style", 2)
 lret = DlgSet(gdlg, IDC_TAB, "Size", 3)
 lret = DlgSet(gdlg, IDC_TAB, IDD_TAB_DIALOG1, 1)
 lret = DlgSet(gdlg, IDC_TAB, IDD_TAB_DIALOG2, 2)
 lret = DlgSet(gdlg, IDC_TAB, IDD_TAB_DIALOG3, 3)
You define each of the Tab dialogs using the resource editor just as you do for the dialog box that contains
the Tab control. In the Properties Window, you must make the following style settings for each Tab dialog:

1. Set the "Style" to "Child"
2. Set "Border" to "None"
3. Set "Title Bar" to "False."

Before displaying the dialog box that contains the Tab control (using DLGMODAL or DLGMODELESS):

1. Call DLGSETSUB to define a DLG_INIT callback for the dialog box
2. Call DLGINIT for each Tab dialog

In the DLG_INIT callback of the dialog box that contains the Tab control, if the callbacktype is DLG_INIT, call
DLGMODELESS for each of the Tab dialog boxes. Specify SW_HIDE as the second parameter, and the window
handle of the Tab control as the third parameter. After calling DLGMODELESS, call DLGSET with the
DLG_STATE index to set the initial Tab. For example:
 ! When the Main dialog box is first displayed, call DlgModeless to
 ! display the Tab dialog boxes. Note the use of SW_HIDE. The
 ! Dialog Functions will "show" the proper Tab dialog box.
 if (callbacktype == dlg_init) then

Using Dialog Boxes for Application Controls 5

99

hwnd = GetDlgItem(dlg % hwnd, IDC_TAB)
lret = DlgModeless(gdlg_tab1, SW_HIDE, hwnd)
lret = DlgModeless(gdlg_tab2, SW_HIDE, hwnd)
lret = DlgModeless(gdlg_tab3, SW_HIDE, hwnd)
 ! Note that we must set the default Tab after the calls to
 ! DlgModeless. Otherwise, no Tab dialog box will be displayed
 ! initially.
lret = DlgSet(dlg, IDC_TAB, 1, dlg_state)
Call DLGUNINIT for each Tab dialog when you are done with it.

Setting Return Values and Exiting
When the user selects the dialog's OK or CANCEL button, your dialog procedure is exited and the dialog box
is closed. DLGMODAL returns the control name (associated with an integer identifier in your include (.FD) file)
of the control that caused it to exit; for example, IDOK or IDCANCEL.

If you want to exit your dialog box on a condition other than the user selecting the OK or CANCEL button,
you need to include a call to the dialog subroutine DLGEXIT from within your callback routine. For example:
SUBROUTINE EXITSUB (dlg, exit_button_id, callbacktype)
USE IFLOGM
TYPE (DIALOG) dlg
INTEGER exit_button_id, callbacktype
...
 CALL DLGEXIT (dlg)
The only argument for DLGEXIT is the dialog derived type. The dialog box is exited after DLGEXIT returns
control back to the dialog manager, not immediately after calling DLGEXIT. That is, if there are other
statements following DLGEXIT within the callback routine that contains it, those statements are executed and
the callback routine returns before the dialog box is exited.

If you want DLGMODAL to return with a value other than the control name of the control that caused the exit,
(or -1 if DLGMODAL fails to open the dialog box), you can specify your own return value with the subroutine
DLGSETRETURN. For example:
TYPE (DIALOG) dlg
INTEGER altreturn
...
altreturn = 485
CALL DLGSETRETURN (dlg, altreturn)
CALL DLGEXIT(dlg)
To avoid confusion with the default failure condition, use return values other than -1.

It is not possible to return a value when a modeless dialog box exits. However, you can call DLGSETSUB to
set the DLG_INIT callback routine to have a procedure called immediately before the dialog box is destroyed.

If you want the user to be able to close the dialog from the system menu or by pressing the ESC key, you
need a control that has the ID of IDCANCEL. When a system escape or close is performed, it simulates
pressing the dialog button with the ID IDCANCEL. If no control in the dialog has the ID IDCANCEL, then the
close command will be ignored (and the dialog can not be closed in this way).

If you want to enable system close or ESC to close a dialog, but do not want a cancel button, you can add a
button with the ID IDCANCEL to your dialog and then remove the visible property in the button's Properties
Window . Pressing ESC will then activate the default click callback of the cancel button and close the dialog.

Using ActiveX* Controls

 5 Using Intel® Visual Fortran to Create and Build Windows*-Based Applications

100

Using ActiveX* Controls Overview
The dialog routines support the use of ActiveX* controls. This means that the dialog routines can act as an
ActiveX control container.

Using an ActiveX control in a dialog box requires four steps discussed in the following sections:

1. Using the Resource Editor to Insert an ActiveX Control discusses using the resource editor to insert the
ActiveX control into the dialog box.

2. Using the Intel® Fortran Module Wizard to Generate a Module discusses using the Intel® Fortran Module
Wizard to generate a module that allows you to use the methods, properties, and events of the ActiveX
control from Fortran.

3. Adding Code to Your Application discusses adding code to your application to manipulate the ActiveX
control and respond to control events.

4. Registering an ActiveX Control describes how to ensure that the ActiveX control and the dialog
procedure ActiveX container DLL are present and registered on the target system.

Using the Resource Editor to Insert an ActiveX Control
To add ActiveX controls to a dialog box:

• In the Dialog Editor window, right click and hold to display the pop-up (shortcut) menu. Input focus must
be in the dialog box or in the window.

NOTE
To display the Dialog Editor window, follow the steps in Designing a Dialog Box Overview.

• Select Insert ActiveX Control... in the shortcut (right-click) menu. A dialog box displays the list of ActiveX
controls that are registered on your system.

• Select one of the listed controls and click OK to add it to your dialog box.

Once you insert the ActiveX control, you can modify it, just like other controls using the resource editor. You
can move, resize, and delete the ActiveX control. You can also modify its properties. ActiveX controls often
support a large set of properties.

Using the Intel® Fortran Module Wizard to Generate a Module
An ActiveX control is an Automation object. ActiveX controls typically support methods, properties, and
events. ActiveX controls use events to notify an application that something has happened to the control.
Common examples of events include clicks on the control, data entered using the keyboard, and changes in
the control's state. When these actions occur, the control issues an event to alert the application.

The application, in return, uses methods and properties to communicate with the control. Methods are
functions that perform an action on the ActiveX control. For example, you would use a method to tell an
Internet Explorer ActiveX control to load a particular URL. Properties hold information about the state of an
object, for example, the font being used by a control to draw text.

The Intel® Fortran Module Wizard generates Fortran 90 modules that simplify calling COM and Automation
objects from Fortran programs.

To run the wizard:

1. Select Tools>Intel (R) Fortran Module Wizard in the main menu bar. Select the component of interest in
the .COM tab. Select Generate code that uses Automation interfaces and click Next.

2. Select individual components of the ActiveX control to process using the module wizard or click Select
All to process all components.

3. Select either of the code generation options as desired.
4. Enter a different module name than the one displayed, if desired.

Using Dialog Boxes for Application Controls 5

101

5. Click Finish.

The module wizard now asks you for the name of the source file to be generated. Supply the name and make
sure the Add file to Project checkbox is selected. COM will now open the type library and generate a file
containing Fortran modules.

Adding Code to Your Application
The structure of your application remains the same as when using a dialog box that does not contain an
ActiveX control. See Writing a Dialog Application Overview for details. This section discusses programming
specific to ActiveX controls.

Your application must call COMINITIALIZE before calling DLGINIT with a dialog box that contains an ActiveX
control. Your application must include the statement USE IFCOM to access COMINITIALIZE. Your application
must call COMUNINITIALIZE when you are done using ActiveX controls, but not before calling DLGUNINIT for
the dialog box that contains the ActiveX control.

You can call the methods of an ActiveX control and set and retrieve its property values using the interfaces
generated by the Intel Fortran Module Wizard or by using the IFAUTO routines. To do this, you must have
the object's IDispatch interface pointer. Use the DLGGET function with the ActiveX control's name, the
DLG_IDISPATCH control index, and an integer variable to receive the IDispatch pointer. For example:
 retlog = DlgGet(dlg, IDC_ACTIVEX, idispatch, DLG_IDISPATCH)
You do not need to specify the index DLG_IDISPATCH because it is the default integer index for an ActiveX
control.

However, the control's IDispatch pointer is not available until after the control has been created and is only
valid until the dialog box is closed. The control is created during the call to DLGMODALDLGMODELESS or . If
you call DLGGET to retrieve the IDispatch pointer before calling DLGMODAL or DLGMODELESS, the value
returned will be 0.

Do not call COMRELEASEOBJECT with the iDispatch pointer returned by DLGGET. The dialog procedures use a
reference counting optimization since the lifetime of the control is guaranteed to be less than the lifetime of
the dialog box.

If you want to use a method or property of a control before the dialog box is displayed to your application's
user, you can use a DLG_INIT callback. Call DLGSETSUB using the dialog box name and the DLG_INIT index
to define the callback. For example:
 retlog = DlgSetSub(dlg, IDD_DIALOG, DlgSub, DLG_INIT)
The DLG_INIT callback is called after the dialog box is created but before it is displayed (with
callbacktype=DLG_INIT) and immediately before the dialog box is destroyed (with
callbacktype=DLG_DESTROY). The DLG_INIT callback is the soonest that the control's IDispatch pointer is
available. The DLG_DESTROY callback is the latest that this pointer is valid. After the DLG_DESTROY
callback, the ActiveX control is destroyed.

The following example shows using a DLG_INIT callback to reset the state of a control property before it is
destroyed:
 SUBROUTINE mmplayerSub(dlg, id, callbacktype)
 !DEC$ ATTRIBUTES DEFAULT :: mmplayerSub
 use iflogm
 use ifcom
 use ifauto
 implicit none
 type (dialog) dlg
 integer id, callbacktype
 include 'resource.fd'
 integer obj, iret
 logical lret
 if (callbacktype == dlg_init) then
 lret = DlgGet(dlg, IDC_ACTIVEMOVIECONTROL1, obj)
 ! Add any method or property calls here before the
 ! dialog box is displayed

 5 Using Intel® Visual Fortran to Create and Build Windows*-Based Applications

102

 else if (callbacktype == dlg_destroy) then
 ! Reset the filename to "" to "close" the current file
 lret = DlgGet(dlg, IDC_ACTIVEMOVIECONTROL1, obj)
 iret = AUTOSETPROPERTY(obj, "FileName", "")
 endif
 END SUBROUTINE mmplayerSub
The module generated by the Fortran Module Wizard for an ActiveX control contains a number of sections:

• ! CLSIDs
Parameters of derived type GUID which identify the ActiveX control class. Your application typically
doesn't need to use this parameter.

• ! IIDs
Parameters of derived type GUID which identify source (event) interfaces of the ActiveX control. Your
application can use these values in calls to DLGSETCTRLEVENTHANDLER (see below).

• ! Enums
Parameters of type integer that identify constants used in the ActiveX control's interfaces.

• ! Interfaces
Interfaces for the source (event) interfaces that are defined by the ActiveX control. There may be 0, 1, or
more source interfaces implemented by the control. A control does not have to support events.

• ! Module Procedures
Wrapper routines that make it easy to call the control's methods and get or retrieve the control's
properties.

See the Language Reference for more information on using the method and property interfaces generated by
the Intel Fortran Module Wizard.

In addition to methods and properties, ActiveX controls also define events to notify your application that
something has happened to the control. The dialog procedures provide a routine,
DLGSETCTRLEVENTHANDLER, that allows you to define a routine to be executed when an event occurs.

The DLGSETCTRLEVENTHANDLER function has the following interface:
integer DlgSetCtrlEventHandler(dlg, controlid, handler, dispid, iid)
The arguments are as follows:

dlg (Input) Derived type DIALOG. Contains dialog box parameters.

contro
lid

(Input) Integer. Specifies the identifier of a control within the dialog box (from the .FD file).

handle
r

(Input) EXTERNAL. Name of the routine to be called when the event occurs.

dispid (Input) Integer. Specifies the member id of the method in the event interface that identifies the
event

iid (Input, Optional) Derived type (GUID). Specifies the Interface identifier of the source (event)
interface. If not supplied, the default source interface of the ActiveX control is used.

Consider the following function call:
 ret = DlgSetCtrlEventHandler(dlg, IDC_ACTIVEMOVIECONTROL1, &
 ActiveMovie_ReadyStateChange, -609, IID_DActiveMovieEvents2)
In this function call:

• IDC_ACTIVEMOVIECONTROL1 identifies an ActiveMovie control in the dialog box.
• ActiveMovie_ReadyStateChange is the name of the event handling routine.
• -609 is the member id of the ActiveMovie's control ReadyStateChange event. You can get this number

from:

Using Dialog Boxes for Application Controls 5

103

• The module that the Fortran Module Wizard generated. There is a "MEMBERID = nn" comment
generated for each method in a source interface (see the example below).

• The documentation of the ActiveX control.
• A tool that allows you to examine the type information of the ActiveX control, for example, the

OLE/COM Object Viewer in the Microsoft Visual Studio* IDE.
• IID_DActiveMovieEvents2 is the identifier of the source (event) interface.

The interface generated by the Intel Fortran Module Wizard for the ReadyStateChange event follows:
 INTERFACE
 !Reports that the ReadyState property of the ActiveMovie Control
 !has changed
 ! MEMBERID = -609
 SUBROUTINE DActiveMovieEvents2_ReadyStateChange($OBJECT, ReadyState)
 INTEGER(4), INTENT(IN) :: $OBJECT ! Object Pointer
 !DEC$ ATTRIBUTES VALUE :: $OBJECT
 INTEGER(4) :: ReadyState
 !DEC$ ATTRIBUTES VALUE :: ReadyState
 !DEC$ ATTRIBUTES STDCALL :: DActiveMovieEvents2_ReadyStateChange
 END SUBROUTINE DActiveMovieEvents2_ReadyStateChange
 END INTERFACE
The handler that you define in your application must have the same interface. Otherwise, your application
will likely crash in unexpected ways because of the application's stack getting corrupted.

Note that an object is always the first parameter in an event handler. This object value is a pointer to the
control's source (event) interface, not the IDispatch pointer of the control. You can use DLGGET as described
above to retrieve the control's IDispatch pointer.

Registering an ActiveX Control
Any ActiveX control that you use must be properly installed and registered on your machine and any machine
that you distribute your application to. See the documentation for the ActiveX control for information on how
to redistribute it.

The dialog routine ActiveX control container support is implemented in the files IFDLGnnn.DLL. This DLL
must be present and registered on any machine that will run your application.

To register a DLL, use REGSVR32.EXE, located in the Windows system directory. REGSVR32 takes a single
argument: the path of the DLL.

 5 Using Intel® Visual Fortran to Create and Build Windows*-Based Applications

104

Index
.FD dialog file 75
.RC files

dialog 75
/dll compiler option 18
/libs

qwin compiler option 54

A
About box

routine defining 64
ABOUTBOXQQ

using 64
accessing window properties 27
activating a graphics mode 47
activating the dialog box 75
ActiveX* controls

inserting 101
programming practices 102
properties, methods, and events 101
system requirements 104
using (Fortran) 101

adding color 43
adding controls to dialogs 69
adding shapes 50
APPENDMENUQQ

using to append menu items 60
Application Wizard 79, 81
applications

creating Windows* 8
sample windows 13

AppWizard, see Application Wizard 8
ATTRIBUTES

DLLIMPORT option 16
available indexes for dialog controls 87
available typefaces 55

B
bitmap images 58
blocking procedures

effect in QuickWin 67
building dynamic-link library projects 15, 18
building excutables that use DLLs 20
buttons 94

C
C data types

OpenGL translated to Fortran types 13
callback routines

effect on mouse events 64
example of dialog 77

changing status bar and state messages 63
character-based text

displaying in QuickWin 53
character-font routines

using in QuickWin 33
characters

displaying font-based in QuickWin 54
routine to check input of 68

check boxes 93
checking the current graphics mode 34

child window
creating 29
keeping open 32

CLEARSCREEN
example of 39

CLICKMENUQQ
using to simulate menu selections 60

clip region 36
closing dialogs 100
color

adding to graphics 43
mixing 44
QuickWin routines for 35
text 46

color indexes
setting and getting 46

color mixing 44
color values

setting and getting 46
combo boxes 94
common blocks

in Fortran DLLs 16
comparing QuickWin with Windows-based applications 22
control indexes

specifying 90
controlling

the size and position of windows 32
conventions

in the documentation 6
coordinate graphics

sample program 39
coordinate systems

understanding 35
coordinates

setting in QuickWin 39
text 36

creating
a menu list of available child windows 60
child windows 29
Fortran DLLs 15
QuickWin windows 27

custom icons
using in QuickWin 64

customizing QuickWin applications 59

D
data types

OpenGL C translated to Fortran 13
default quickwin menus 25
defining an About box 64
DELETEMENUQQ

using to delete menu items 60
deleting menu items 60
dialog applications

using Windows APIs 8
writing 75

dialog boxes
adding controls 69
controls in 85
designing for Fortran applications 69
initializing and activating 75
saving as a resource file 69

dialog callback routines 77

Index

105

dialog controls
grouping 93
indexes 86, 87
setting properties of 73
using 91

Dialog Editor
opening 69
using to insert an ActiveX* control 101

dialog routines 84
dialogs

buttons in 94
callback routines 77
check boxes in 93
combo boxes in 94
control index in 86
control properties 73
designing for Fortran applications 69
edit boxes in 92
exiting 100
group boxes in 93
include files 74
list boxes in 94
modeless 78
pictures in 98
progress bars in 98
routines 84
scroll bars in 97
setting return values 100
sliders in 99
spin controls in 98
static text in 92
tab controls in 99
using ActiveX* controls (Fortran) 101
using Fortran AppWizards 79
using Fortran Windows Project AppWizards 81
using in a DLL 83
writing application using 75

display options
selecting in QuickWin 33

displaying character-based text 53
displaying font-based characters 54
displaying graphics output 51
displaying message boxes 63
DLG_ index names 86, 87
DLGEXIT

using 100
DLGGET

example of 90
using to check the state of dialog controls 93
using with Edit boxes 92
using with scroll bars 97

DLGGETCHAR
using with Edit boxes 92

DLGGETINT
using with scroll bars 97

DLGGETLOG
using to check the state of controls 93

DLGINIT
using to initialize dialog box 75

DLGISDLGMESSAGE
using with a modeless dialog box 78

DLGMODAL
using to indicate a dialog type 75
using to return a dialog control name 100
using with callback routines 77

DLGMODELESS
using to display a modeless dialog box 78

DLGSET
using to change the button state 93
using to disable dialog controls 91

using to set the control index 90
using to set the scroll bar range 97
using to specify value for dialog control index 86
using to write to an Edit box 92

DLGSETINT
using to set the scroll bar range 97

DLGSETLOG
using to change the button state 93
using to disable dialog controls 91

DLGSETRETURN
using to specify a return value 100

DLGUNINIT
using to free resources 75

DLL
See dynamic-link libraries (DLLs) 15

DLLEXPORT
option for ATTRIBUTES directive 15, 16
using for common blocks 16
using in modules 16

DLLIMPORT
option for ATTRIBUTES directive 15, 16

documentation
notational conventions 6

documentation, related 7
drawing a sine curve 49
drawing graphics 46, 51
drawing graphs 39
drawing lines on the screen 48
dynamic-link libraries (DLLs)

and executables 20
behavior of 15, 18
building 18
building executables using 20
checking the export table 18
creating 15
organization of 18
overview of 15
sharing data 16
using dialogs in 83

E
Edit boxes 92
editing graphics

in QuickWin 58
editing screen images from the QuickWin edit menu 57
editing text

in QuickWin 58
editing text and graphics from the QuickWin Edit menu 58
enhancing QuickWin applications 59
executables using DLLs 20

F
figure properties

setting in QuickWin 35
fill mask

QuickWin routines for 35
FLOODFILL

using for figure properties 35
FLOODFILLRGB

using for figure properties 35
focus

using QuickWin to give 31
FOCUSQQ

using to set focus 31
font

definition of 55
font-based characters

Using Intel® Visual Fortran to Create and Build Windows*-Based Applications

106

displaying in QuickWin 54
fonts

example program 56
initializing 55
setting 55
using from graphics library 54

Fortran Windowing applications
coding requirements 8
creating 8
using menus 11

frame window
controlling 60

functions
exported to other applications 15
imported from a DLL 15

G
GDI (Graphic Device Interface) program

writing 8
GETACTIVEQQ

using with active child window 31
GETBKCOLOR

using for figure properties 35
using for text colors 46

GETBKCOLORRGB
using for figure properties 35
using for text colors 46

GETCOLOR
using for figure properties 35

GETCOLORRGB
using for color mixing 44
using for figure properties 35

GETCURRENTPOSITION
using to locate graphics output position 39

GETCURRENTPOSITION_W
using to locate graphics output position 39

GETFILLMASK
using for figure properties 35

GETFONTINFO
example of 55

GETGTEXTROTATION
overview of graphic display routines 33

GETHWNDQQ
overview of windows focus routines 31
using with WIndows API routines 23

GETIMAGE
using to transfer images in memory 58

GETIMAGE_W
using to transfer images in memory 58

GETLINESTYLE
using for figure properties 35

GETPHYSCOORD
overview of graphics coordinate routines 39

GETPIXELRGB
using to return color 44

GETPIXELSRGB
using to return color 44

GETTEXTCOLOR
using to get color values 46

GETTEXTCOLORRGB
using to get color values 46

GETTEXTWINDOW
using to get text window boundaries 53

GETVIEWCOORD
overview of graphics coordinate routines 39

GETVIEWCOORD_W
overview of graphics coordinate routines 39

GETWINDOWCONFIG

using to get child window settings 34
using to get virtual window properties 27
using to get windows coordinates 39

GETWINDOWCOORD
overview of graphics coordinate routines 39

GETWRITEMODE
using to get logical write mode 35

GETWSIZEQQ
using to get size or position of window 32

giving a window focus 31
Graphic Device Interface (GDI) calls 8
Graphical User Interface (GUI) 8
graphics

adding color to 43
adding shapes to 50
coordinate systems in 35
displaying in QuickWin 51
drawing in QuickWin 51
drawing lines in 48
drawing sine curves 49
editing in QuickWin 58
mixing colors 44
OpenGL 13
physical coordinates in 36
QuickWin routines that draw 51
QuickWin routines to display 33
setting highest possible resolution 34
setting the mode of 34
text colors in 46
text coordinates in 36
using fonts from library 54
VGA color palette 45
viewport coordinates in 36
window coordinates in 36
writing programs 46

graphics applications
QuickWin 24

graphics coordinates
setting in QuickWin 39

graphics fonts
available typefaces 55
example program 56
initializing 55
setting and displaying 55

graphics mode
activating 47
checking the current 34

group boxes
using 93

GRSTATUS
using to fix font problems 55

I
I/O

simulating nonblocking 68
icons

using custom in QuickWin 64
IFOPNGL library module 13
images

loading and saving in QuickWin 58
transferring in memory 58
working with screen in QuickWin 57

IMAGESIZE
using to transfer images in memory 58

IMAGESIZE_W
using to transfer images in memory 58

import library (.lib)
for DLL 15, 18

importing and exporting data with dlls 15, 18

Index

107

Include (.FD) file
for dialog boxes 74

initial menu
controlling 60

INITIALIZEFONTS
example of 55

initializing fonts 55
initializing the dialog box 75
INITIALSETTINGS

using to define initial settings of window 60
INQFOCUSQQ

example of 31
inserting menu items 60
Intel(R) Fortran

creating Fortran Windowing applications 8
creating QuickWin applications 21
using dialogs 69

Intel(R) Fortran Module Wizard
using to generate modules 101

IOFOCUS
specifier for OPEN 31

K
keeping child windows open 32

L
labels

platform 6
language extensions

notational conventions 6
line style

QuickWin routines for 35
LINETO

example of 48
in physical coordinates 36

LINETOAR
example of 48

LINETOAREX
example of 48

list boxes 94
LOADIMAGE

using to transfer images 58
LOADIMAGE_W

using to transfer images 58
loading and saving images to files 58

M
MDI Fortran Windowing applications 8
MDI menu bar 25
menu items

use with Fortran Windowing applications 11
use with Fortran Windows applications 11

menus
default QuickWin 25
modifying in QuickWin 60

message box
displaying in QuickWin 63

MESSAGEBOXQQ
example of 63

MIDI Mapper 8
modal dialogs

using Fortran project AppWizards 79
modeless dialogs

using Fortran project AppWizards 81
modeless dialogs (Fortran) 78
MODIFYMENUFLAGSQQ

using to modify menu items 60

MODIFYMENUROUTINEQQ
using to modify a menu callback routine 60

MODIFYMENUSTRINGQQ
using to customize text 53
using to modify a menu state 60

modules
DLLEXPORT and DLLIMPORT in 16
in Fortran DLLs 16

mouse
using in QuickWin 64

mouse events
effect of callback routines on 64
in QuickWin 64

MOVETO
example of 48, 56
overview of library routines 54

MSFWIN$ prefix for graphics routines 22
multithread applications

simulating nonblocking I/O 68

N
non-blocking I/O 68

O
OPEN

FILE specifier
in QuickWin 29

OpenGL applications 13
OpenGL graphics 13
OpenGL library 13
OUTGTEXT

overview of setting display options 33
overview of setting figure properties 35

OUTTEXT
and text color routines 46
overview of character display routines 53

P
PEEKCHARQQ

simulating in QuickWin 68
pictures

using 98
program control of menus 60
programs

Quickwin and Windows* 22
Windows* GDI 8
Windows* GUI 8
writing graphics 46

progress bars 98
projects

building dynamic-link library 15, 18

Q
QuickWin

about boxes in 64
callback routines in 68
capabilities of 21
changing messages 63
character-based text in 53
child windows in 29, 32
coding guidelines 26
compared to Windows-based applications 22
controlling menus in 60

Using Intel® Visual Fortran to Create and Build Windows*-Based Applications

108

creating windows 27
custom icons in 64
customizing 59
customizing applications 59
default menus 25
displaying graphics using 51
displaying message boxes 63
drawing graphics in 51
editing text and graphics 58
enhancing applications 59
font-based characters 54
giving focus to a window 31
loading and saving images 58
overview 21
position of windows 32
precautions when programming 67
restrictions to 22
screen images in 57
selecting display options in 33
setting active window in 31
setting figure properties in 35
setting graphics coordinates in 39
size of windows 32
standard graphics applications in 24
transferring images in memory 58
user interface 25
using character-font routines in 33
using graphics routines in 33
using mouse in 64
window properties 27

QuickWin functions 21
QuickWin graphics applications

characteristics of 25
example 24
how to build 23

QuickWin graphics library 21
QuickWin procedures 21
QuickWin programming precautions 67
QuickWin programs

overview 21
QuickWin routines

naming conventions 22
QuickWin subroutines 21

R
real-coordinate graphics

sample program 39
RECTANGLE

example of 48
RECTANGLE_W

using for windows coordinates with floating-point
values 36

related documentation 7
REMAPPALETTERGB

using to set VGA color 45
Resource Editor

dialog controls in 73, 85, 91
include files 74
include files for dialog boxes 74
list boxes and combo boxes in 94
using to design Fortran dialog boxes 69
using to insert an ActiveX* control 101

resource files
using multiple 74

resources
using multiple RC files 74

RGB color values 45
routines ending in _w 58

S
samples

available on the kit 13
SAVEIMAGE

overview of routines to transfer images 58
SAVEIMAGE_W

overview of routines to transfer images 58
screen images

retrieving 57
storing 57

SCROLLTEXTWINDOW
coordinates for 36
overview of routines affecting text display 53

SDI Fortran Windowing applications 8
selecting display options 33
SETACTIVEQQ

using with active child window 31
SETBKCOLOR

using for color mixing 44
using for figure properties 35
using for text colors 46

SETBKCOLORRGB
using for color mixing 44
using for figure properties 35
using for text colors 46

SETCLIPRGN
using for graphics coordinates 36, 39

SETCOLOR
using for color mixing 44
using to set a color index 45
using to set figure properties 35

SETCOLORRGB
using for color mixing 44
using to set figure properties 35

SETFILLMASK
example of 50
using for figure properties 35

SETFONT
example of 56
using 55

SETGTEXTROTATION
overview of graphic display routines 33

SETLINESTYLE
example of 48, 50
using for figure properties 35

SETMESSAGEQQ
using to change QuickWin strings 53, 63

SETPIXELRGB
example of 49
using for color mixing 44

SETPIXELSRGB
using for color mixing 44

SETTEXTCOLOR
using for color mixing 44
using for text colors 46

SETTEXTCOLORRGB
using for color mixing 44
using for text colors 46

SETTEXTPOSITION
coordinates for 36
using for text colors 46
using to customize text 53

SETTEXTWINDOW
using to customize text 53

setting control properties 73
setting figure properties 35
setting graphics coordinates 39
setting return values and exiting 100
setting the active window 31
setting the font and displaying text 55

Index

109

setting the graphics mode 34
SETVIEWORG

example of 48
using for graphics coordinates 36, 39

SETVIEWPORT
using for graphics coordinates 36, 39
using to customize text 53

SETWINDOW
using for graphics coordinates 36, 39

SETWINDOWCONFIG
overview of graphics fonts 54
using for graphics coordinates 36
using for VGA palette 45
using to configure Windows properties 33, 34
using to display child settings 29
using to set virtual window properties 27
using to set windows coordinates 39

SETWINDOWMENUQQ
using to create a list of child windows 60

SETWRITEMODE
using to set logical write mode 35

SETWSIZEQQ
using to get size or position of window 32

sharing data using Fortran DLLs 16
SHOWFONT.F90 example 56
simulating nonblocking I/O 68
sliders

using 99
specifying control indexes 90
spin controls

using 98
standard graphics applications

characteristics of 25
how to build 23

state messages
QuickWin routine changing 63

static text
using 92

STATUS
specifier in CLOSE 32

status bar
QuickWin routine changing 63

T
tab controls

using 99
text

displaying 55
editing in QuickWin 58
QuickWin routines to check or modify 53
QuickWin routines to customize 53
QuickWin routines to define 33

text coordinates 36
text output

setting foreground and background colors for 46
trackbar control 99
transferring images

in memory 58
type size

definition of 55
type style

definition of 55
typefaces 55
types of QuickWin programs 23

U
understanding coordinate systems 35
unit numbers

converting to Windows handles 23

up-down control 98
user interface in QuickWin 25
using a mouse 64
using Activex* controls 101
using buttons 94
using check boxes and radio buttons 93
using custom icons 64
using dialog controls 91
using dialogs 69
using edit boxes 92
using fonts 55
using fonts from the graphics library 54
using graphics and character-font routines 33
using group boxes 93
using list boxes and combo boxes 94
using pictures 98
using progress bars 98
using QuickWin 21
using scroll bars 97
using sliders 99
using spin controls 98
using static text 92
using tab controls 99
using text colors 46
using the Microsoft* integrated development environment

to build dlls 15
using the Resource Editor to design a Fortran dialog 69
using Windows API Routines with QuickWin 23

V
VGA

color palette 45
display and resolution in QuickWin 45

W
WAITONMOUSEEVENT

using 67
Windowing applications

coding requirements (Fortran) 8
creating (Fortran) 8
linking (Fortran) 8
WinMain function (Fortran) 8

windows properties
routines to set or get 27

Windows*
creating and controlling QuickWin 27
creating graphics programs for 59
creating simple applications for 59
giving focus in QuickWin 31
OpenGL 13
QuickWin routines for size and position of 32
setting active in QuickWin 31

Windows* APIs
using with QuickWin 23

Windows* applications
compared to QuickWin 22

Windows* graphics routines
naming conventions 22

Windows* handles 23
WinMain function for Fortran Windowing applications 8
working with screen images 57
write mode

QuickWin routines for 35
writing a dialog application 75
writing a graphics program 46
writing a Windows* GDI program 8

Using Intel® Visual Fortran to Create and Build Windows*-Based Applications

110

	Contents
	Legal Information
	Introduction
	Overview
	Notational Conventions
	Related Information

	Creating Windowing Applications
	Creating Windowing Applications 	 Overview
	Understanding Coding Requirements for Fortran 	 Windowing Applications
	Using Menus and Dialogs in SDI and MDI Fortran 	 Windowing Applications
	Sample Fortran Windows Applications
	Advanced Graphics Using OpenGL

	Creating and Using DLLs
	Creating and Using Fortran DLLs 	 Overview
	Coding Requirements for Sharing Procedures in 	 DLLs
	Coding Requirements for Sharing Data in 	 DLLs
	Building Dynamic-Link Libraries
	Building Executables that Use DLLs

	Using QuickWin
	Using QuickWin Overview
	Special Naming Convention for Certain QuickWin and Windows* Graphics Routines
	Comparing QuickWin with Windows*-Based Applications
	Using Windows API Routines with QuickWin
	Types of QuickWin Programs
	QuickWin Programs Overview
	Fortran Standard Graphics Applications
	Fortran QuickWin Graphics Applications

	The QuickWin User Interface
	QuickWin User Interface Overview
	Default QuickWin Menus

	USE Statement Needed for Fortran QuickWin 	 Applications
	Creating QuickWin Windows
	Creating QuickWin Windows Overview
	Accessing Window Properties
	Creating Child Windows
	Giving a Window Focus and Setting the Active Window
	Keeping Child Windows Open
	Controlling Size and Position of Windows

	Using QuickWin Graphics Library Routines
	Using Graphics Library Routines
	Selecting Display Options
	Checking the Current Graphics Mode
	Setting the Graphics Mode
	Setting Figure Properties
	Understanding Coordinate Systems
	Understanding Coordinate Systems Overview
	Text Coordinates
	Graphics Coordinates
	Setting Graphics Coordinates
	Real Coordinates Sample Program

	Adding Color
	Adding Color Overview
	Color Mixing
	VGA Color Palette
	Using Text Colors

	Writing a Graphics Program
	Writing a Graphics Program Overview
	Activating a Graphics Mode
	Drawing Lines on the Screen
	Drawing a Sine Curve
	Adding Shapes

	Displaying Graphics Output
	Displaying Graphics Output Overview
	Drawing Graphics
	Displaying Character-Based Text
	Displaying Font-Based Characters
	Using Fonts from the Graphics Library
	Using Fonts from the Graphics Library Overview
	Available Typefaces
	Initializing Fonts
	Setting the Font and Displaying Text
	SHOWFONT.F90 Example

	Storing and Retrieving Images
	Working With Screen Images
	Transferring Images in Memory
	Loading and Saving Images to Files
	Editing Text and Graphics from the QuickWin Edit Menu

	Customizing QuickWin Applications
	Customizing QuickWin Applications 	 Overview
	Enhancing QuickWin Applications
	Controlling Menus
	Changing Status Bar and State Messages
	Displaying Message Boxes
	Defining an About Box
	Using Custom Icons
	Using a Mouse

	QuickWin Programming Precautions
	QuickWin Programming Precautions Overview
	Using Blocking Procedures
	Using Callback Routines

	Simulating Nonblocking I/O

	Using Dialog Boxes for Application Controls
	Using Dialog Boxes for Application Controls Overview
	Using the Resource Editor to Design a Dialog Box
	Designing a Dialog Box Overview
	Setting Control Properties
	Including Resources Using Multiple Resource 	 Files
	The Include (.FD and .H) Files

	Writing a Dialog Application
	Writing a Dialog Application Overview
	Initializing and Activating the Dialog Box
	Using Dialog Callback Routines
	Using a Modeless Dialog Box
	Using Fortran AppWizards to Help Add Modal 	 Dialog Box Coding
	Using Fortran AppWizards to Help Add Modeless 	 Dialog Box Coding
	Using Dialog Controls in a DLL

	Summary of Dialog Routines
	Understanding Dialog Controls
	Understanding Dialog Controls Overview
	Using Control Indexes
	Available Indexes for Each Dialog 	 Control
	Specifying Control Indexes

	Using Dialog Controls
	Using Dialog Controls Overview
	Using Static Text
	Using Edit Boxes
	Using Group Boxes
	Using Check Boxes and Radio Buttons
	Using Buttons
	Using List Boxes and Combo Boxes
	Using Scroll Bars
	Using Pictures
	Using Progress Bars
	Using Spin Controls
	Using Sliders
	Using Tab Controls
	Setting Return Values and Exiting

	Using ActiveX* Controls
	Using ActiveX* Controls Overview
	Using the Resource Editor to Insert an ActiveX Control
	Using the Intel® Fortran Module Wizard to 	 Generate a Module
	Adding Code to Your Application
	Registering an ActiveX Control

	Index

