Splitters and Muxers Sample

Overview

Features

Software Requirements

Package Contents

How to Build the Application

Running the software

Structure Reference

Enumerator Reference

Splitters API
Muxers API

Known Limitations

Legal Information

Overview

Splitters and Muxers Sample works with Intel® Media Server Studio 2015 for Linux
Server.

It demonstrates how to use Media Server Studio — SDK (hereinafter referred to as
"SDK") API to create a splitter and muxer using the example FFmpeg* implementation
wrapper. The splitter retrieves elementary stream from container and the muxer
encapsulates frames of elementary stream into container.

Features

Splitters and Muxers Sample supports the following container formats:

Input/output MPEG-4 Part 14 (MP4), MPEG-2 Transport Stream
(M2TS)

and codecs:

Input/output Video: H.264, MPEG-2

Audio: AAC, MP3

Software Requirements

See <install-folder>/Media Samples Guide.pdf.

*Other names and brands may be claimed as the property of others. Page 1 of 16

Copyright © 2013-2014, Intel Corporation



Package Contents

Splitters and Muxers Sample package consists of a shared and a static library. The first
one contains the actual implementation (.s0), and the second is the dispatcher, which
redirects functions calls from the application and allows to the shared library to be loaded
safely: it reports to the application if the .so was not found. The other function of the
dispatcher is to enable custom splitters and muxers with the same API. To do this, you
should change the library name to load. It is recommended for the application to use
Splitters and Muxers Sample through the dispatcher.

The dispatcher contains the following:

<install-folder>/sample spl mux/dispatcher/

CMakeLists.txt CMake file for the “Splitters and muxers” dispatcher
that controls a build process.

<install-folder>sample spl mux/dispatcher/include/

mux_exposed_functions_has_impl.h Header file with modified “Splitters and
muxers” sample muxers functions.

mux exposed functions list.h Header file with muxers functions that were
used without modifications.

spl_exposed_functions_has_impl.h Header file with modified “Splitters and
muxers” sample splitters functions.

spl_exposed_functions_list.h Header file with splitters functions that were
used without modifications.

<install-folder>/sample spl mux/dispatcher/src/

spl_mux_dispatcher.c Source file with the modified “Splitters and muxers”
functions implementations.

The shared library module contains the following:

<install-folder>/sample spl mux/

readme-splitters- This file.
muxers.pdf

<install-folder>/sample_ spl mux/api/

mfxsmstructures.h Header file with the structures definitions.

*Other names and brands may be claimed as the property of others. Page 2 of 16

Copyright © 2013-2014, Intel Corporation



mfxsplmux.h Header file with the API functions definitions.

mfxsplmux++.h Header file with the splitters and muxers classes of
c++ wrapper.

<install-folder>/sample spl mux/include/

spl_mux_defs.h Header file with definitions

adts_muxer.h Header file for the AAC ADTS header writer functions
definitions.

ffmpeg_mux_impl.h Header file for the muxers functions definitions.

ffmpeg_reader_writer.h Header file for splitters and muxers callbacks
definitions .

ffmpeg_splitter_impl.h Header file for the splitters functions definitions.

<install-folder>/sample_ spl mux/src/

adts_muxer.c Source file for the AAC ADTS header writer functions
implementations.

ffmpeg_mux_impl.c Source file for the muxers functions implementations.

ffmpeg_reader_writer.c Source file for the splitters and muxers callbacks
implementation.

ffmpeg_splitter_ impl.c Source file for the splitters functions implementation.

How to Build the Application

See <install-folder>/Media Samples Guide.pdf for general build instructions, including
how to resolve FFmpeg* dependency.

Using custom Splitters and Muxers

See <install-folder>/Media Samples Guide.pdf for general build instructions, including
how to resolve FFmpeg* dependency.

Running the Software

Splitters and Muxers Sample is a Shared Library (.so) which can be invoked from Full
Transcoding Sample during transcoding.

See <install-folder>/sample full transcode/readme-full-transcode.pdf for details.

*Other names and brands may be claimed as the property of others. Page 3 of 16

Copyright © 2013-2014, Intel Corporation



Structure Reference

The following section describes structures which are used in splitters and muxers.

mfxDatalO

Definition

typedef struct {

mfxU32 reservedl[4];

mfxHDL pthis;

mfxI32 (*Read) (mfxHDL pthis, mfxBitstream *bs);

mfxI32 (*Write) (mfxHDL pthis, mfxBitstream *bs);

mfxIocd (*Seek) (mfxHDL pthis, mfxI64 offset, mfxSeekOrigin
origin);

mfxHDL reserved2[4];

} mfxDataIO;
Description

This structure describes callback functions Read, Write and seek that should be
implemented by the application.

Members

pthis Pointer to the file or stream with the data for i/o callbacks.
Read Pointer to the function for reading.

Write Pointer for the function for writing.

Seek Pointer to the function for seeking.

Callback functions should be complied with the following interface:

Read

Syntax
mfxI32 (*Read) (mfxHDL pthis, mfxBitstream *bs);

Parameters
pthis Pointer to the file or stream with the data to be read.
bs Pointer to the output bitstream.

Description

*Other names and brands may be claimed as the property of others. Page 4 of 16

Copyright © 2013-2014, Intel Corporation



This function reads data from stream object pthis.
Return Value

The number of bytes successfully read.

Write
Syntax
mfxI32 (*Write) (mfxHDL pthis, mfxBitstream *bs);
Parameters
pthis Pointer to the file or stream to write data.
bs Pointer to the bitstream to be written.

Description
This function writes bitstream data to the stream object.
Return Value

The number of bytes successfully written.

Seek
Syntax

mfxI64 (*Seek) (mfxHDL pthis, mfxI64 offset, mfxSeekOrigin origin);
Parameters

pthis Pointer to the input file or stream.

offset Numper of bytes to offset from the position specified by

origin.
origin Relative byte position for the offset. See the

mfxSeekOrigin enumerator for all available options.

Description
This function sets the new byte position in the stream object.
Return Value

The new position or any value <0 if failed. If offset is 0 and origin is MFX_SEEK_END it
returns the file size without seeking or <0 if it is not implemented.

mfxStreamParams

Definition

*Other names and brands may be claimed as the property of others. Page 5 of 16

Copyright © 2013-2014, Intel Corporation



typedef struct mfxStreamParams ({

mfxUl6

reserved[22];

mfxSystemStreamType SystemType;

mfxU32
mfxU64
mfxUl6
mfxU16

mfxTrackInfo

} mfxStreamParams;

Description

Flags;

Duration;
NumTracks;
NumTracksAllocated;

**TrackInfo;

This structure describes stream parameters which can be used as output for
splitter or input for muxer.

Members

SystemType Container format. See the mfxSystemStreamType enumerator
for a complete list of containers.

Flags Stream flags, currently is not used.

Duration The duration of the stream in units of 90 KHz .

NumTracks Numbers of tracks in the stream.

NumTracksAllocated Number of tracks allocated by the application. Once the
application allocates TrackInfo, it sets NumTracksAllocated.
Normally, the application allocates TrackiInfo for each track and
sets NumTracksAllocated equal to NumTracks. See
MFXSplitter GetInfo for details.

TrackInfo Information about the elementary stream. See the
mfxTrackInfo description for additional details.

mfxTrackInfo

Definition

typedef struct {

mfxTrackType Type;
mfxU32 SID;
mfxUl6 Enable;
mfxUl6 HeaderLength;
mfxU8 Header [MFX TRACK HEADER MAX SIZE];
mfxUl6 reserved[16];
union {
*Qther names and brands may be claimed as the property of others. Page 6 of 16

Copyright © 2013-2014, Intel Corporation



mfxAudioInfoMFX AudioParam;

mfxInfoMFX VideoParam;

}i

} mfxTrackInfo;

Description

This structure represents the information about the elementary stream.

Members

Type

SID

Enable

HeaderLength

Header

AudioParam

VideoParam

Codec format. See the mfxTrackType enumerator for a complete list
of codecs.

Unique stream identifier.
1 if enabled, 0 otherwise.
Length in bytes of the specific codec info.

The codec-specific info. For example, for H.264 codec it must contain
SPS/PPS NAL units.

Specific audio parameters. The splitter fills the next fields:
StreamInfo.NumChannel, StreamInfo.SampleFrequency,
StreamInfo.Bitrate, StreamInfo.BitPerSample and CodecID.
The mandatory fields are: SstreamInfo.NumChannel,
StreamInfo.SampleFrequency, StreamInfo.Bitrate and
StreamInfo.BitPerSample.

Specific video parameters. The splitter fills the next fields:
FrameInfo.Width, FrameInfo.Height, CodecProfile and
CodecId. The mandatory fields are: FrameInfo.Width,
FrameInfo.Height, FramelInfo.FrameRateExtD and
FrameInfo.FrameRateExtN.

Enumerator Reference

The following section contains splitters and muxers enumerators.

mfxSeekOrigin

Description

This enumerator specifies the relative position from which the reposition will be
performed.

Name/Description

MFX_SEEK_ORIGIN_BEGIN The beginning of the file or stream.

MFX_SEEK_ORIGIN_CURRENT The current position in the file or stream.

MFX_SEEK_ORIGIN_END The end position in the file or stream.
*Other names and brands may be claimed as the property of others. Page 7 of 16

Copyright © 2013-2014, Intel Corporation



mfxTrackType

Description

This enumerator specifies audio or video codec.

Name/Description

Video codecs:
MFX_TRACK MPEG2V
MFX_ TRACK H264
MFX_TRACK VC1
MFX_TRACK VP8

MFX_ TRACK_ANY VIDEO

Audio codecs:

MFX_TRACK_AAC
MFX_ TRACK MPEGA
MFX_TRACK_ANY AUDIO

MEFX TRACK UNKNOWN

MPEG-2
H.264
VC-1
VP8

Common type for video codec.

AAC
MP3
Common type for audio codec.

Unknown codec.

mfxSystemStreamType

Description

This enumerator specifies the container format.

Name/Description
MFX_UNDEF STREAM
MFX MPEG2 TRANSPORT STREAM
MFX MPEG4 SYSTEM STREAM
MFX_ IVF STREAM

MFX ASF STREAM

Unknown format.

MPEG TS

MPEG-4

IVF

ASF

Splitters API

This part describes splitters API.

*Other names and brands may be claimed as the property of others.

Copyright © 2013-2014, Intel Corporation

Page 8 of 16



MFXSplitter_Init

Syntax

mfxStatus MFXSplitter Init (mfxDatalO *data io, mfxSplitter *spl);
Parameters

data_io Pointer to the mfxDataIO object.

spl Pointer to the output SDK splitter.

Description

This function creates and initializes SDK splitter sp1, identifies the input format and
fills the internal info. This function must be called before any other calls. pthis,

Read and seek callbacks are mandatory for data io.

Return Status

MFX_ERR_NONE The splitter was initialized successfully.
MFX_ERR_NULL_PTR NULL input parameter or mandatory mfxDataIO field.
MFX_ERR_MEMORY_ALLOC Not enough memory to allocate internal objects.
MFX_ERR_UNKNOWN Can't identify input format or invalid stream.

MFXSplitter_Close

Syntax

mfxStatus MFXSplitter Close (mfxSplitter spl);
Parameters

spl SDK splitter handle.
Description

This function closes SDK splitter and frees internal objects. This function must be
called after all of the splitter operations are finished.

Return Status
MFX_ERR_NONE The function completes successfully.

MFX_ERR_NULL_PTR Invalid splitter handle.

MFXSplitter_GetInfo

Syntax

mfxStatus MFXSplitter GetInfo (mfxSplitter spl, mfxStreamParams *par);

*Other names and brands may be claimed as the property of others. Page 9 of 16

Copyright © 2013-2014, Intel Corporation



Parameters
spl SDK splitter handle.

par Pointer to the output splitter parameters.

Description

This function retrieves and fills information about contained tracks. The TrackInfo
from par should be allocated by the application. If TrackInfo structure is NULL, this
function sets NumTracks field of the parameters to allow user allocate required number
of TrackInfo, set NumTracksAllocated and pass them in the second call. This
function must be called after MFxSplitter Init and before any other calls. Note: the
function returns MFx_ERR_NONE if codec or format is unsupported, but the fields
SystemType Of mfxStreamParams Will be MFX UNDEF STREAM or the Type field of
TrackInfo from mfxStreamParams will be MFX TRACK UNKNOWN. The function retrieves

other stream info if it is possible. The application can handle this case as an error at its
discretion.

Return Status

MFX_ERR_NONE The function identifies number of tracks or completely
fills the parameters.

MFX_ERR_NULL_PTR One of the input parameters is NULL.
MFX_ERR_MORE_DATA Not enough TrackInfo-s were allocated.
MFX_ERR_UNKNOWN The splitter can't retrieve stream info.

MFXSplitter_GetBitstream

Syntax

mfxStatus MFXSplitter GetBitstream(mfxSplitter spl, mfxU32 *track num,
mfxBitstream *bs);

Parameters
spl SDK splitter handle.
track num The index of track in the TrackInfo array. Don’t mix it
up with s1D.
bs Pointer to the output bitstream. bs Data, DatalLength

and DecodeTimeStamp fields are mandatory.
DecodeTimeStamp Value should increase monotonically.
As for TimeStamp, use MFX TIMESTAMP UNKNOWN if
TimeStamp iS unknown.

Description
This function returns the next frame and it’s track index in the input stream. The

application should call MEXSplitter ReleaseBitstream after the output bitstream
data is no longer needed.

*Other names and brands may be claimed as the property of others. Page 10 of 16

Copyright © 2013-2014, Intel Corporation



Return Status
MFX_ERR_NONE The function completes successfully.
MFX_ERR_NULL_PTR One of the input parameters is NULL.

MFX ERR_NOT_ENOUGH_BUFFE  Means that the application holds the packets and does

R not call MFxSplitter ReleaseBitstream for a long
time.
MFX_ERR MORE_DATA The splitter need more data or reached the end of the

file, bs Data should be NULL

If one of the elementary streams has finished, the
splitter returns last bs Data for this particularly stream
with MFX_BITSTREAM EOS in bs DataFlag and returns
MFX_ERR_NONE

MFX_ERR_UNKNOWN The splitter can’t get next frame.

MFXSplitter_ReleaseBitstream

Syntax
mfxStatus MFXSplitter ReleaseBitstream(mfxSplitter spl, mfxBitstream
*bs) ;
Parameters
spl SDK splitter handle.
bs Pointer to the input bitstream.

Description

This function releases resources after MFXSplitter GetBitstream call.

Return Status

MFX_ERR_NONE The function completes successfully.

MFXSplitter_Seek

Syntax

mfxStatus MFXSplitter Seek (mfxSplitter spl, mfxU64 timestamp);
Parameters

spl SDK splitter handle.

timestamp Time stamp to reposition in units of 90 KHz.

Description

This function seeks to the key frame at position specified as timestamp.

*Other names and brands may be claimed as the property of others. Page 11 of 16

Copyright © 2013-2014, Intel Corporation



Return Status

MFX_ERR_NONE The function completes successfully.

MFX_ERR_NULL_PTR Invalid splitter handle.

MFX ERR_UNKNOWN The splitter can’t seek at specified position.
Muxers API

This part describes muxers API.

MFXMuxer_Init

Syntax
mfxStatus MFXMuxer Init (mfxStreamParams* par, mfxDataIO *data io,
mfxMuxer *mux);

Parameters
par Pointer to the input muxer parameters.
data_io Pointer to the mfxDataIO object.
mux Pointer to the output SDK muxer.

Description

This function creates and initializes SDK muxer mux, sets the output format and fills

internal info. This function must be called firstly. pthis, Seek and write callbacks
are mandatory for data io.

Return Status

MFX_ERR_NONE The muxer was initialized successfully.
MFX_ERR_NULL_PTR NULL input parameter or mandatory mfxDataIo field.
MFX_ERR_MEMORY_ ALLOC Not enough memory to allocate internal objects.
MFX_ERR_UNKNOWN The muxer can’t be initialized.

MFXMuxer_Close

Syntax

mfxStatus MFXMuxer Close (mfxMuxer mux) ;
Parameters

mux SDK muxer handle.
Description

*Other names and brands may be claimed as the property of others. Page 12 of 16

Copyright © 2013-2014, Intel Corporation



This function closes SDK muxer and frees internal objects. This function must be called
after all of the muxer operations are finished.

Return Status

MFX_ERR_NONE The function completes successfully.
MFX_ERR_NULL_PTR Invalid muxer handle.
MFX_ERR_UNKNOWN Not all of the internal objects were released

successfully.

MFXMuxer_ PutBitstream

Syntax
mfxStatus MFXMuxer PutBitstream(mfxMuxer mux, mfxU32 track num,
mfxBitstream *bs, mfxU64 duration);
Parameters
mux SDK muxer handle.
track_num Stream index for the input frame.
bs Pointer to the input bitstream. The Data, Datalength,

FrameType (MFX FRAMETYPE I or not) and
DecodeTimeStamp fields are mandatory. Use
MFX TIMESTAMP UNKNOWN if TimeStamp is unknown.

duration Frame duration in units of 90 KHz or 0 if it is unknown.
Description
This function puts the next frame to the output stream.

Return Status

MFX ERR_NONE The function completes successfully.
MFX_ERR_NULL_PTR One of the input parameters is NULL.
MFX ERR_UNKNOWN The muxer can’t put the frame.

Note: See <msdk_install-folder>/ media server studio sdk release notes.pdf for
mfxStatus, mfxBitstream, mfxAudioInfoMFX and mfxInfoMFX description.

Known Limitations

e Splitters and Muxers sample does not support muxing MP3 streams at 12KHz

e MFXSplitter_GetBitstream may return not the whole frame but one field for the interlaced
streams.

*Other names and brands may be claimed as the property of others. Page 13 of 16

Copyright © 2013-2014, Intel Corporation



e Repositioning using splitters from Splitters and Muxers Sample was not fully tested.

e Currently Splitters and Muxers Sample supports only layer 1 MPEG audio, but you can
add layer 2 and 3 support.

Firstly, modify enum mfxTrackType in mfxsmstructures.h by removing of MFX_TRACK_MPEGA
and adding MFX_TRACK_MPEGA1, MFX_TRACK_MPEGA2 and MFX_TRACK_MPEGA3

For splitters, modify GetTrackTypeByCodecID function inside ffmpeg_splitter_impl.c:
remove
case AV_CODEC_ID MP3:
return MFX_TRACK_MPEGA;
and add
case AV_CODEC_ID_MP1:
return MFX_TRACK_MPEGA1,
case AV_CODEC_ID MP2:
return MFX_TRACK_MPEGA2;
case AV_CODEC_ID MP3:
return MFX_TRACK_MPEGA3;
For muxers, modify GetCodecIDByTrackType function inside ffmpeg_mux_impl.c:
remove
case MFX_TRACK_MPEGA:
return AV_CODEC_ID_MP3;
and add
case MFX_TRACK_MPEGA1:
return AV_CODEC_ID_MP1;

case MFX_TRACK_MPEGA2:
return AV_CODEC_ID MP2;

case MFX_TRACK_MPEGA3:
return AV_CODEC_ID_MP3;

*Other names and brands may be claimed as the property of others. Page 14 of 16

Copyright © 2013-2014, Intel Corporation



Legal Information

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO
LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY
RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND
CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND
INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL
PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR
PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT.

UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR
INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A
SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice.
Designers must not rely on the absence or characteristics of any features or instructions marked
"reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility
whatsoever for conflicts or incompatibilities arising from future changes to them. The information here
is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which
may cause the product to deviate from published specifications. Current characterized errata are
available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before
placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel
literature, may be obtained by calling 1-800-548-4725, or by visiting Intel's Web Site.

MPEG is an international standard for video compression/decompression promoted by ISO.
Implementations of MPEG CODECs, or MPEG enabled platforms may require licenses from various
entities, including Intel Corporation.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for
optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3,
and SSE3 instruction sets and other optimizations. Intel does not guarantee the availability,
functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel.

Microprocessor-dependent optimizations in this product are intended for use with Intel
microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more
information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

*Other names and brands may be claimed as the property of others. Page 15 of 16

Copyright © 2013-2014, Intel Corporation


http://www.intel.com/

*Other names and brands may be claimed as the property of others. Page 16 of 16

Copyright © 2013-2014, Intel Corporation



