
*Other names and brands may be claimed as the property of others. Page 1 of 16

Copyright © 2013-2014, Intel Corporation

Splitters and Muxers Sample

Overview

Features

Software Requirements

Package Contents

How to Build the Application

Running the software

Structure Reference

Enumerator Reference

Splitters API

Muxers API

Known Limitations

Legal Information

Overview

Splitters and Muxers Sample works with Intel® Media Server Studio 2015 for Linux

Server.

It demonstrates how to use Media Server Studio – SDK (hereinafter referred to as

"SDK") API to create a splitter and muxer using the example FFmpeg* implementation

wrapper. The splitter retrieves elementary stream from container and the muxer

encapsulates frames of elementary stream into container.

Features

Splitters and Muxers Sample supports the following container formats:

Input/output MPEG-4 Part 14 (MP4), MPEG-2 Transport Stream

(M2TS)

and codecs:

Input/output Video: H.264, MPEG-2

Audio: AAC, MP3

Software Requirements

See <install-folder>/Media Samples Guide.pdf.

*Other names and brands may be claimed as the property of others. Page 2 of 16

Copyright © 2013-2014, Intel Corporation

Package Contents

Splitters and Muxers Sample package consists of a shared and a static library. The first

one contains the actual implementation (.so), and the second is the dispatcher, which

redirects functions calls from the application and allows to the shared library to be loaded

safely: it reports to the application if the .so was not found. The other function of the

dispatcher is to enable custom splitters and muxers with the same API. To do this, you

should change the library name to load. It is recommended for the application to use

Splitters and Muxers Sample through the dispatcher.

The dispatcher contains the following:

<install-folder>/sample_spl_mux/dispatcher/

CMakeLists.txt CMake file for the “Splitters and muxers” dispatcher

that controls a build process.

<install-folder>sample_spl_mux/dispatcher/include/

mux_exposed_functions_has_impl.h Header file with modified “Splitters and

muxers” sample muxers functions.

mux_exposed_functions_list.h Header file with muxers functions that were

used without modifications.

spl_exposed_functions_has_impl.h Header file with modified “Splitters and

muxers” sample splitters functions.

spl_exposed_functions_list.h Header file with splitters functions that were

used without modifications.

<install-folder>/sample_spl_mux/dispatcher/src/

spl_mux_dispatcher.c Source file with the modified “Splitters and muxers”

functions implementations.

The shared library module contains the following:

<install-folder>/sample_spl_mux/

readme-splitters-

muxers.pdf

This file.

<install-folder>/sample_spl_mux/api/

mfxsmstructures.h Header file with the structures definitions.

*Other names and brands may be claimed as the property of others. Page 3 of 16

Copyright © 2013-2014, Intel Corporation

mfxsplmux.h Header file with the API functions definitions.

mfxsplmux++.h Header file with the splitters and muxers classes of

c++ wrapper.

<install-folder>/sample_spl_mux/include/

spl_mux_defs.h Header file with definitions

adts_muxer.h Header file for the AAC ADTS header writer functions

definitions.

ffmpeg_mux_impl.h Header file for the muxers functions definitions.

ffmpeg_reader_writer.h Header file for splitters and muxers callbacks

definitions .

ffmpeg_splitter_impl.h Header file for the splitters functions definitions.

<install-folder>/sample_spl_mux/src/

adts_muxer.c Source file for the AAC ADTS header writer functions

implementations.

ffmpeg_mux_impl.c Source file for the muxers functions implementations.

ffmpeg_reader_writer.c Source file for the splitters and muxers callbacks

implementation.

ffmpeg_splitter_impl.c Source file for the splitters functions implementation.

How to Build the Application

See <install-folder>/Media Samples Guide.pdf for general build instructions, including

how to resolve FFmpeg* dependency.

Using custom Splitters and Muxers

See <install-folder>/Media Samples Guide.pdf for general build instructions, including

how to resolve FFmpeg* dependency.

Running the Software

Splitters and Muxers Sample is a Shared Library (.so) which can be invoked from Full

Transcoding Sample during transcoding.

See <install-folder>/sample_full_transcode/readme-full-transcode.pdf for details.

*Other names and brands may be claimed as the property of others. Page 4 of 16

Copyright © 2013-2014, Intel Corporation

Structure Reference

The following section describes structures which are used in splitters and muxers.

mfxDataIO

Definition

typedef struct {

 mfxU32 reserved1[4];

 mfxHDL pthis;

 mfxI32 (*Read) (mfxHDL pthis, mfxBitstream *bs);

 mfxI32 (*Write) (mfxHDL pthis, mfxBitstream *bs);

 mfxI64 (*Seek) (mfxHDL pthis, mfxI64 offset, mfxSeekOrigin

origin);

 mfxHDL reserved2[4];

} mfxDataIO;

Description

 This structure describes callback functions Read, Write and Seek that should be

implemented by the application.

Members

pthis Pointer to the file or stream with the data for i/o callbacks.

Read Pointer to the function for reading.

Write Pointer for the function for writing.

Seek Pointer to the function for seeking.

Callback functions should be complied with the following interface:

Read

Syntax

 mfxI32 (*Read) (mfxHDL pthis, mfxBitstream *bs);

Parameters

 pthis Pointer to the file or stream with the data to be read.

 bs Pointer to the output bitstream.

Description

*Other names and brands may be claimed as the property of others. Page 5 of 16

Copyright © 2013-2014, Intel Corporation

 This function reads data from stream object pthis.

Return Value

 The number of bytes successfully read.

Write

Syntax

 mfxI32 (*Write) (mfxHDL pthis, mfxBitstream *bs);

Parameters

 pthis Pointer to the file or stream to write data.

 bs Pointer to the bitstream to be written.

Description

 This function writes bitstream data to the stream object.

Return Value

 The number of bytes successfully written.

Seek

Syntax

 mfxI64 (*Seek) (mfxHDL pthis, mfxI64 offset, mfxSeekOrigin origin);

Parameters

 pthis Pointer to the input file or stream.

 offset Number of bytes to offset from the position specified by
origin.

 origin Relative byte position for the offset. See the

mfxSeekOrigin enumerator for all available options.

Description

 This function sets the new byte position in the stream object.

Return Value

 The new position or any value <0 if failed. If offset is 0 and origin is MFX_SEEK_END it

returns the file size without seeking or <0 if it is not implemented.

mfxStreamParams

Definition

*Other names and brands may be claimed as the property of others. Page 6 of 16

Copyright © 2013-2014, Intel Corporation

typedef struct mfxStreamParams {

 mfxU16 reserved[22];

 mfxSystemStreamType SystemType;

 mfxU32 Flags;

 mfxU64 Duration;

 mfxU16 NumTracks;

 mfxU16 NumTracksAllocated;

 mfxTrackInfo **TrackInfo;

} mfxStreamParams;

Description

 This structure describes stream parameters which can be used as output for

splitter or input for muxer.

Members

SystemType Container format. See the mfxSystemStreamType enumerator

for a complete list of containers.

Flags Stream flags, currently is not used.

Duration The duration of the stream in units of 90 KHz .

NumTracks Numbers of tracks in the stream.

NumTracksAllocated Number of tracks allocated by the application. Once the

application allocates TrackInfo, it sets NumTracksAllocated.

Normally, the application allocates TrackInfo for each track and

sets NumTracksAllocated equal to NumTracks. See

MFXSplitter_GetInfo for details.

TrackInfo Information about the elementary stream. See the

mfxTrackInfo description for additional details.

mfxTrackInfo

Definition

typedef struct {

 mfxTrackType Type;

 mfxU32 SID;

 mfxU16 Enable;

 mfxU16 HeaderLength;

 mfxU8 Header[MFX_TRACK_HEADER_MAX_SIZE];

 mfxU16 reserved[16];

 union {

*Other names and brands may be claimed as the property of others. Page 7 of 16

Copyright © 2013-2014, Intel Corporation

 mfxAudioInfoMFX AudioParam;

 mfxInfoMFX VideoParam;

 };

} mfxTrackInfo;

Description

 This structure represents the information about the elementary stream.

Members

Type Codec format. See the mfxTrackType enumerator for a complete list

of codecs.

SID Unique stream identifier.

Enable 1 if enabled, 0 otherwise.

HeaderLength Length in bytes of the specific codec info.

Header The codec-specific info. For example, for H.264 codec it must contain

SPS/PPS NAL units.

AudioParam Specific audio parameters. The splitter fills the next fields:
StreamInfo.NumChannel, StreamInfo.SampleFrequency,

StreamInfo.Bitrate, StreamInfo.BitPerSample and CodecID.

The mandatory fields are: StreamInfo.NumChannel,
StreamInfo.SampleFrequency, StreamInfo.Bitrate and

StreamInfo.BitPerSample.

VideoParam

Specific video parameters. The splitter fills the next fields:
FrameInfo.Width, FrameInfo.Height, CodecProfile and

CodecId. The mandatory fields are: FrameInfo.Width,

FrameInfo.Height, FrameInfo.FrameRateExtD and
FrameInfo.FrameRateExtN.

Enumerator Reference

The following section contains splitters and muxers enumerators.

mfxSeekOrigin

Description

 This enumerator specifies the relative position from which the reposition will be

performed.

Name/Description

 MFX_SEEK_ORIGIN_BEGIN The beginning of the file or stream.

 MFX_SEEK_ORIGIN_CURRENT The current position in the file or stream.

 MFX_SEEK_ORIGIN_END The end position in the file or stream.

*Other names and brands may be claimed as the property of others. Page 8 of 16

Copyright © 2013-2014, Intel Corporation

mfxTrackType

Description

 This enumerator specifies audio or video codec.

Name/Description

Video codecs:

 MFX_TRACK_MPEG2V MPEG-2

 MFX_TRACK_H264 H.264

 MFX_TRACK_VC1 VC-1

 MFX_TRACK_VP8 VP8

 MFX_TRACK_ANY_VIDEO Common type for video codec.

Audio codecs:

 MFX_TRACK_AAC AAC

 MFX_TRACK_MPEGA MP3

 MFX_TRACK_ANY_AUDIO Common type for audio codec.

 MFX_TRACK_UNKNOWN Unknown codec.

mfxSystemStreamType

Description

 This enumerator specifies the container format.

Name/Description

 MFX_UNDEF_STREAM Unknown format.

 MFX_MPEG2_TRANSPORT_STREAM MPEG TS

 MFX_MPEG4_SYSTEM_STREAM MPEG-4

 MFX_IVF_STREAM IVF

 MFX_ASF_STREAM ASF

Splitters API

This part describes splitters API.

*Other names and brands may be claimed as the property of others. Page 9 of 16

Copyright © 2013-2014, Intel Corporation

MFXSplitter_Init

Syntax

 mfxStatus MFXSplitter_Init(mfxDataIO *data_io, mfxSplitter *spl);

Parameters

 data_io Pointer to the mfxDataIO object.

 spl Pointer to the output SDK splitter.

Description

 This function creates and initializes SDK splitter spl, identifies the input format and

fills the internal info. This function must be called before any other calls. pthis,

Read and Seek callbacks are mandatory for data_io.

Return Status

 MFX_ERR_NONE The splitter was initialized successfully.

 MFX_ERR_NULL_PTR NULL input parameter or mandatory mfxDataIO field.

 MFX_ERR_MEMORY_ALLOC Not enough memory to allocate internal objects.

 MFX_ERR_UNKNOWN Can’t identify input format or invalid stream.

MFXSplitter_Close

Syntax

 mfxStatus MFXSplitter_Close(mfxSplitter spl);

Parameters

 spl SDK splitter handle.

Description

 This function closes SDK splitter and frees internal objects. This function must be

called after all of the splitter operations are finished.

Return Status

 MFX_ERR_NONE The function completes successfully.

 MFX_ERR_NULL_PTR Invalid splitter handle.

MFXSplitter_GetInfo

Syntax

 mfxStatus MFXSplitter_GetInfo(mfxSplitter spl, mfxStreamParams *par);

*Other names and brands may be claimed as the property of others. Page 10 of 16

Copyright © 2013-2014, Intel Corporation

Parameters

 spl SDK splitter handle.

 par Pointer to the output splitter parameters.

Description

 This function retrieves and fills information about contained tracks. The TrackInfo

from par should be allocated by the application. If TrackInfo structure is NULL, this

function sets NumTracks field of the parameters to allow user allocate required number

of TrackInfo, set NumTracksAllocated and pass them in the second call. This

function must be called after MFXSplitter_Init and before any other calls. Note: the

function returns MFX_ERR_NONE if codec or format is unsupported, but the fields

SystemType of mfxStreamParams will be MFX_UNDEF_STREAM or the Type field of

TrackInfo from mfxStreamParams will be MFX_TRACK_UNKNOWN. The function retrieves

other stream info if it is possible. The application can handle this case as an error at its

discretion.

Return Status

 MFX_ERR_NONE The function identifies number of tracks or completely

fills the parameters.

 MFX_ERR_NULL_PTR One of the input parameters is NULL.

 MFX_ERR_MORE_DATA Not enough TrackInfo-s were allocated.

 MFX_ERR_UNKNOWN The splitter can’t retrieve stream info.

MFXSplitter_GetBitstream

Syntax

 mfxStatus MFXSplitter_GetBitstream(mfxSplitter spl, mfxU32 *track_num,

mfxBitstream *bs);

Parameters

 spl SDK splitter handle.

 track_num The index of track in the TrackInfo array. Don’t mix it

up with SID.

 bs Pointer to the output bitstream. bs Data, DataLength

and DecodeTimeStamp fields are mandatory.

DecodeTimeStamp value should increase monotonically.

As for TimeStamp, use MFX_TIMESTAMP_UNKNOWN if

TimeStamp is unknown.

Description

 This function returns the next frame and it’s track index in the input stream. The

application should call MFXSplitter_ReleaseBitstream after the output bitstream

data is no longer needed.

*Other names and brands may be claimed as the property of others. Page 11 of 16

Copyright © 2013-2014, Intel Corporation

Return Status

 MFX_ERR_NONE The function completes successfully.

 MFX_ERR_NULL_PTR One of the input parameters is NULL.

 MFX_ERR_NOT_ENOUGH_BUFFE

R
Means that the application holds the packets and does

not call MFXSplitter_ReleaseBitstream for a long

time.

 MFX_ERR_MORE_DATA The splitter need more data or reached the end of the

file, bs Data should be NULL

If one of the elementary streams has finished, the

splitter returns last bs Data for this particularly stream
with MFX_BITSTREAM_EOS in bs DataFlag and returns
MFX_ERR_NONE

 MFX_ERR_UNKNOWN The splitter can’t get next frame.

MFXSplitter_ReleaseBitstream

Syntax

 mfxStatus MFXSplitter_ReleaseBitstream(mfxSplitter spl, mfxBitstream

*bs);

Parameters

 spl SDK splitter handle.

 bs Pointer to the input bitstream.

Description

 This function releases resources after MFXSplitter_GetBitstream call.

Return Status

 MFX_ERR_NONE The function completes successfully.

MFXSplitter_Seek

Syntax

 mfxStatus MFXSplitter_Seek(mfxSplitter spl, mfxU64 timestamp);

Parameters

 spl SDK splitter handle.

 timestamp Time stamp to reposition in units of 90 KHz.

Description

 This function seeks to the key frame at position specified as timestamp.

*Other names and brands may be claimed as the property of others. Page 12 of 16

Copyright © 2013-2014, Intel Corporation

Return Status

 MFX_ERR_NONE The function completes successfully.

 MFX_ERR_NULL_PTR Invalid splitter handle.

 MFX_ERR_UNKNOWN The splitter can’t seek at specified position.

Muxers API

This part describes muxers API.

MFXMuxer_Init

Syntax

 mfxStatus MFXMuxer_Init(mfxStreamParams* par, mfxDataIO *data_io,

mfxMuxer *mux);

Parameters

 par Pointer to the input muxer parameters.

 data_io Pointer to the mfxDataIO object.

 mux Pointer to the output SDK muxer.

Description

 This function creates and initializes SDK muxer mux, sets the output format and fills

internal info. This function must be called firstly. pthis, Seek and Write callbacks

are mandatory for data_io.

Return Status

 MFX_ERR_NONE The muxer was initialized successfully.

 MFX_ERR_NULL_PTR NULL input parameter or mandatory mfxDataIO field.

 MFX_ERR_MEMORY_ALLOC Not enough memory to allocate internal objects.

 MFX_ERR_UNKNOWN The muxer can’t be initialized.

MFXMuxer_Close

Syntax

 mfxStatus MFXMuxer_Close(mfxMuxer mux);

Parameters

 mux SDK muxer handle.

Description

*Other names and brands may be claimed as the property of others. Page 13 of 16

Copyright © 2013-2014, Intel Corporation

 This function closes SDK muxer and frees internal objects. This function must be called

after all of the muxer operations are finished.

Return Status

 MFX_ERR_NONE The function completes successfully.

 MFX_ERR_NULL_PTR Invalid muxer handle.

 MFX_ERR_UNKNOWN Not all of the internal objects were released

successfully.

MFXMuxer_PutBitstream

Syntax

 mfxStatus MFXMuxer_PutBitstream(mfxMuxer mux, mfxU32 track_num,

mfxBitstream *bs, mfxU64 duration);

Parameters

 mux SDK muxer handle.

 track_num Stream index for the input frame.

 bs Pointer to the input bitstream. The Data, DataLength,

FrameType (MFX_FRAMETYPE_I or not) and

DecodeTimeStamp fields are mandatory. Use

MFX_TIMESTAMP_UNKNOWN if TimeStamp is unknown.

 duration Frame duration in units of 90 KHz or 0 if it is unknown.

Description

 This function puts the next frame to the output stream.

Return Status

 MFX_ERR_NONE The function completes successfully.

 MFX_ERR_NULL_PTR One of the input parameters is NULL.

 MFX_ERR_UNKNOWN The muxer can’t put the frame.

Note: See <msdk_install-folder>/ media_server_studio_sdk_release_notes.pdf for

mfxStatus, mfxBitstream, mfxAudioInfoMFX and mfxInfoMFX description.

Known Limitations

 Splitters and Muxers sample does not support muxing MP3 streams at 12KHz

 MFXSplitter_GetBitstream may return not the whole frame but one field for the interlaced

streams.

*Other names and brands may be claimed as the property of others. Page 14 of 16

Copyright © 2013-2014, Intel Corporation

 Repositioning using splitters from Splitters and Muxers Sample was not fully tested.

 Currently Splitters and Muxers Sample supports only layer 1 MPEG audio, but you can

add layer 2 and 3 support.

Firstly, modify enum mfxTrackType in mfxsmstructures.h by removing of MFX_TRACK_MPEGA

and adding MFX_TRACK_MPEGA1, MFX_TRACK_MPEGA2 and MFX_TRACK_MPEGA3

For splitters, modify GetTrackTypeByCodecID function inside ffmpeg_splitter_impl.c:

remove

 case AV_CODEC_ID_MP3:

 return MFX_TRACK_MPEGA;

and add

 case AV_CODEC_ID_MP1:

 return MFX_TRACK_MPEGA1;

 case AV_CODEC_ID_MP2:

 return MFX_TRACK_MPEGA2;

 case AV_CODEC_ID_MP3:

 return MFX_TRACK_MPEGA3;

For muxers, modify GetCodecIDByTrackType function inside ffmpeg_mux_impl.c:

remove

 case MFX_TRACK_MPEGA:

 return AV_CODEC_ID_MP3;

and add

 case MFX_TRACK_MPEGA1:

 return AV_CODEC_ID_MP1;

 case MFX_TRACK_MPEGA2:

 return AV_CODEC_ID_MP2;

 case MFX_TRACK_MPEGA3:

 return AV_CODEC_ID_MP3;

*Other names and brands may be claimed as the property of others. Page 15 of 16

Copyright © 2013-2014, Intel Corporation

Legal Information

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO

LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY

RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND

CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND

INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL

PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR

PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER

INTELLECTUAL PROPERTY RIGHT.

UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR

INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A

SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked

"reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility

whatsoever for conflicts or incompatibilities arising from future changes to them. The information here

is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which

may cause the product to deviate from published specifications. Current characterized errata are

available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before

placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel

literature, may be obtained by calling 1-800-548-4725, or by visiting Intel's Web Site.

MPEG is an international standard for video compression/decompression promoted by ISO.

Implementations of MPEG CODECs, or MPEG enabled platforms may require licenses from various

entities, including Intel Corporation.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its

subsidiaries in the United States and other countries.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for

optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3,

and SSE3 instruction sets and other optimizations. Intel does not guarantee the availability,

functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel.

Microprocessor-dependent optimizations in this product are intended for use with Intel

microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel

microprocessors. Please refer to the applicable product User and Reference Guides for more

information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

http://www.intel.com/

*Other names and brands may be claimed as the property of others. Page 16 of 16

Copyright © 2013-2014, Intel Corporation

