

Building Linux* Kernel

with

Intel® C++ Compiler for

Linux*

White Paper
Feilong Huang

Developer Products Division

Intel Corporation

White Paper Building Linux Kernel with Intel® C++ Compiler for Linux

Introduction

Intel® C++ Compilers have been in the market for over ten years. More and more
software developers are interested in using Intel® C++ compilers to optimize their
applications on Windows*, Linux* and Mac OS* X.

As the most essential part of a Linux operating system, the Linux kernel is highly-
optimized by kernel developers. Additionally there are many GNU C Language
extensions, programming tricks and inline assembly code in it. This makes it
challenging for compilers other than GNU C compiler, to compile and optimize the
kernel. Building the Linux kernel with the Intel C++ Compiler (icc) is an ongoing project
at Intel. The goal is to improve gcc source compatibility with the Intel C++ Compiler
and to find opportunities to improve kernel performance.

Red Flag* Software Co., Ltd started to use the Intel C++ Compiler for Linux to compile
the Linux kernel in its commercial version of Linux operating system in 20041.
While this is not a how-to guide, this document provides extensive hints for the
readers to build the Linux kernel using the Intel C++ Compiler.

Compiler Options Compatibility

icc supports most gcc options, but not all of them, therefore, unsupported options
must either be replaced with icc equivalent options, or removed. Most of them are not
critical and can be removed without breaking the Linux kernel. For example, the
following unsupported options can be removed without any risks.

-frename-registers

-fno-unit-at-a-time

-msoft-float

-mfloat-abi

-gstabs

Ignoring the following options may break the Linux kernel. Replacing them with icc
equivalent options is a must.

-mno-mmx

-mno-sse2

-mno-sse3

Table 1 summarizes some gcc options and support in Intel C++ Compiler 11.1, 12.x
and 13.0.1

Table 1. Some GCC Options and Support in Intel

®
 C++ Compiler for Linux*

GCC Options Intel C++ Compiler
11.1

Intel C++ Compiler
12.x

Intel C++ Compiler

13.0

-ffreestanding Yes Yes Yes

1 URL of Red Flag’s announcement in 2004: http://www.redflag-linux.com/news/today/1000000565.html

http://www.redflag-linux.com/news/today/1000000565.html

White Paper Building Linux Kernel with Intel® C++ Compiler for Linux

-fno-asynchronous-unwind-tables No No Yes

-fno-optimize-sibling-calls No No Yes

-fno-strict-overflow No Yes Yes

-fno-unit-at-a-time No No No

-m32 Yes Yes Yes

-m64 Yes Yes Yes

-maccumulate-outgoing-args No No No

-mfixed-range Yes
1
 Yes

1
 Yes

1

-mregparam Yes Yes Yes
1
Partially implemented.

The Intel C++ Compiler is stricter with syntax checking and reports more warnings

than the GNU compiler. As a result, the -Werror option may cause the compilation

to stop due syntax errors, and therefore should be removed.

To compile the Linux kernel with icc, setting environment variables HOSTCC and CC to

icc is required.

make menuconfig

make HOSTCC=icc CC=icc

make modules_install

Optionally, user may create a simple wrapper script to remove unsupported compiler
options or replace them with equivalent icc options and then invoke icc. In this case,

environment variables HOSTCC and CC need to be set to the name of the wrapper

script.

make menuconfig

make HOSTCC=<name_of_wrapper> CC=<name_of_wrapper>

make modules_install

For an example of wrapper script, see Appendix A.

Source Compatibility

The Intel C++ Compiler does not support a few gcc’s builtin functions and IA-64 inline
assembly code. Workarounds are needed.

 Inline assembly code

The Intel C++ Compiler supports inline assembly code on IA-32 and Intel 64. IA-64
compilers do not support inline assembly. Instead intrinsics that are C-like functions
are recommended. Assembly code on IA-64 needs to be rewritten using
corresponding intrinsics. The Intel C++ Compiler documentation includes a mapping
of assembly instructions to intrinsics. Most of these changes have been checked into
the Linux kernel source tree.

White Paper Building Linux Kernel with Intel® C++ Compiler for Linux

Linux Kernel Source Defects

Some Linux kernel source defects were observed during compilation of the Linux
kernel with the Intel C++ Compiler. These defects may have been fixed in the newer
Linux kernel already.

 volatile attribute

Look at the following code snippet from include/asm-ia64/spinlock.h

define _raw_spin_lock(x) \

do { \

 __u32 *ia64_spinlock_ptr = (__u32 *) (x); \

 __u64 ia64_spinlock_val; \

 … \

 if (unlikely(ia64_spinlock_val)) { \

 do { \

 while (*ia64_spinlock_ptr) \

 ia64_barrier(); \

 … \

 } while (ia64_spinlock_val); \

 } \

} while (0)

In the above code snippet, ia64_spinlock_ptr points to a 32-bit volatile data in

memory. Without a volatile keyword here, the compiler may generate the

following asm code (shown in pseudo code) for the while loop when optimization
option is turned on:

 load ia64_spinlock_ptr, register

label: test register

 jump-if-not-zero label

Unfortunately, the above code results in a dead lock of the Linux kernel because the

32-bit data pointed to by ia64_spinlock_ptr is not reloaded. The GNU compiler

happens to generate the “right” code, which is what kernel developers want:

label: load ia64_spinlock_ptr, register

 test register

 jump-if-not-zero label

In this case, a “volatile” attribute is needed for the variable ia64_spinlock_ptr, to

make sure other compilers do not fail.

 inline keyword

The inline keyword is just a hint to the compiler. Compilers may or may not inline a

function declared as inline. For example, in some applications gettimeofday() is

White Paper Building Linux Kernel with Intel® C++ Compiler for Linux

done very often like when the kernel is timestamping all transactions. It would help
performance if it could be implemented with very low overhead.

One way of obtaining a fast gettimeofday() is by writing the current time in a fixed

place on a page mapped into the memory of all applications and updating this location
on each clock interrupt. These applications could then read this fixed location with a
single instruction - no system call required.

There might be other data that the kernel could make available in a read-only way to

the process, like perhaps the current process ID. A vsyscall is a "system" call that

avoids crossing the userspace-kernel boundary.

vsyscall() and do_vgettimeofday() are in a special page, which can be

accessed in user mode.

The Intel C++ Compiler doesn’t inline the function sync_core(), which is marked as

an inline function in include/asm-x86_64/processor.h. Thus, the function is

compiled as a separate function in the kernel image. vsyscall() calls

do_vgettimeofday() and do_vgettimeofday() calls sync_core(). The first

two functions are called by user applications while sync_core() is a kernel

function. This will cause a page fault. The following illustrates the call-graph of these
3 functions.

 vsyscall()

 |

 do_vgettimeofday() user space

 | --------------------------

 sync_core() kernel space

gcc inlines sync_core. As a result, gcc avoids the page fault. To fix this source

defect, adding a always_inline attribute to sync_core().

Conclusion

Intel® C++ Compiler is highly compatible with the GNU Compiler. With a small
wrapper script and a limited number of temporary source patches, we’ve successfully
compiled Linux kernels 2.4.21, 2.6.9, 2.6.18 and 2.6.32 with the Intel C++ Compilers

on IA-32, Intel® 64 and IA-64. Since newer Linux kernels may have fewer source
compatibility issues, we recommend that you build newer Linux kernels with the latest
Intel C++ Compiler.

Additional Information and Links

Intel® Compilers for Linux*: Compatibility with GNU Compilers White Paper:
http://software.intel.com/en-us/articles/intel-c-compiler-for-linux-compatibility-with-the-
gnu-compilers/

http://software.intel.com/en-us/articles/intel-c-compiler-for-linux-compatibility-with-the-gnu-compilers/
http://software.intel.com/en-us/articles/intel-c-compiler-for-linux-compatibility-with-the-gnu-compilers/

White Paper Building Linux Kernel with Intel® C++ Compiler for Linux

Appendix A: An Example Wrapper Script

The following is an example of wrapper script.

#--

This is a wrapper script for icc 13.0 on Intel 64

#--

ARGS=$@

ICCARGS=""

For loop to change options of icc

for ARG in $@

do

case $ARG in

-Wno-pointer-sign | -Werror)

 ;;

*)

 ICCARGS="$ICCARGS $ARG"

 ;;

esac

done

icc $ICCARGS

exit $?

White Paper Building Linux Kernel with Intel® C++ Compiler for Linux

For product and purchase information visit:

www.intel.com/software/products

Intel, the Intel logo, Intel. Leap ahead. and Intel. Leap ahead. logo, Pentium, and Itanium are

trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States

and other countries.

*Other names and brands may be claimed as the property of others.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO

LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY

RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND

CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND

INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF

INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A

PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR

OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life

saving, life sustaining applications. Intel may make changes to specifications and product

descriptions at any time, without notice.

Copyright © 2008, Intel Corporation. All Rights Reserved.

White Paper Building Linux Kernel with Intel® C++ Compiler for Linux

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors

for optimizations that are not unique to Intel microprocessors. These optimizations include

SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the

availability, functionality, or effectiveness of any optimization on microprocessors not

manufactured by Intel. Microprocessor-dependent optimizations in this product are intended

for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture

are reserved for Intel microprocessors. Please refer to the applicable product User and

Reference Guides for more information regarding the specific instruction sets covered by this

notice.

Notice revision #20110804

