Intended Audience: Software
Developers

®nterested in performance optimizing your
application

>Don’t need to be a performance expert

>But should be an expert in the application!

®\Working on a platform with an Intel® Xeon® E5
Family processor

eUsing Intel® VTune™ Amplifier XE performance
analyzer

>The performance information here applies to other tools (PTU,
etc) but is focused on VTune Amplifier XE

Software and Services Group ‘ i nte | )

1



How to Use this Presentation

® Read through the slides once, then again while
collecting data

® Remember performance analysis is a process that
may take several iterations

® Software Optimization should begin after you
have:
>Utilized any compiler optimization options (/02, /QXxSSE4.2, etc)
>Chosen an appropriate workload
>Measured baseline performance

Software and Services Group ‘ i nte | )
2




intel)

Using Intel® VTune™ Amplifier XE
to Tune Software on the

Intel® Xeon® Processor

E5 Family

Software and Services Group

Ver. 1.0

For single-socket (desktop/client) systems containing Intel®
microarchitecture code name Sandy Bridge processors, see our
guide here: http://software.intel.com/en-us/articles/using-intel-
vtune-amplifier-xe-to-tune-software-on-the-2nd-generation-
intel-core-processor-family/



Legal Disclaimer

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTE PRODUCTS. NO LICENSE, EXPRESS OR
IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRAN HIS DOCUMENT. EXCEPT
AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LTABILITY
WHATSOEVER, INTEL MS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL
PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY,
OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY
SEZI%S‘?*TAQ%E:%[‘J‘\EHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR

* Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on
the absence or characteristics of any features or instructions marked "reserved"” or "undefined." Intel reserves these for future
de d shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The information here is subject to change without notice. Do not finalize a design with this information.

® The products described in this document may contain design defects or errors known as errata which may cause the product
to deviate from published specifications. Current characterized errata are available on request.

. dContact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product
order.

*® Copies of documents which have an order number and are referenced in this document or other Intel literature may be
obtained by calling 1-800-548-4725 or by visiting Intel’s website,
® Intel® Hyper-Threading Technology requires a computer system with a processor supporting HT Technology and an HT

Technology-enabled chipset, BIOS and operating system. Performance will vary depending on the specific hardware and
software you use. For more information including details on which processors support HT Technology, see here

® Intel® Virtualization Technology requires a computer system with an enabled Intel® processor, BIOS, virtual machine
monito: and, for some uses, certain computer system software enabled for it. Functionality, performance or other
benefits will vary de_gendm on hardware and software configurations and may require a BIOS update. Software applications
may not be compatible with all operating systems. Please check with your application vendor.

® 64-bit computing on Intel architecture r_eqeuwres a computer system with a processor, chipset, BIOS, operating system, device
drivers and applications enabled for Intel 4 architecture. Performance will vary depending on your hardware and software
configurations. Consult with your system vendor for more information.

Turbo Boost Technology requires a PC with a processor with Intel Turbo Boost Technology capability. Intel Turbo
Boost Technology performance varies dependm? on hardware, software and overall system configiration. Check with your PC
manuf; r on whether you stem delivers Intel Turbo Boost Technolegy. For mare information, see

el, éhe Intel Iogoh Xeon, Xeon Inside, VTune, inTru, and Core are trademarks or registered trademarks of Intel Corporation

or its su aries in the United States and other countries.
® *Other names and brands are the property of their respective owners.
® Copyright © 2012, Intel Corporation

Software and Services Group




Optimization Notice

Intel’s compilers may or may not optimize to the same degree
for non-Intel microprocessors for optimizations that are not
unigue to Intel microprocessors. These optimizations include
SSE2, SSE3, and SSSE3 instruction sets and other
optimizations. Intel does not guarantee the availability,
functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-
dependent optimizations in this product are intended for use
with Intel microprocessors. Certain optimizations not specific to
Intel microarchitecture are reserved for Intel microprocessors.
Please refer to the applicable product User and Reference
Guides for more information regarding the specific instruction
sets covered by this notice.

Notice revision #20110804

Software and Services Group ‘ i nte | )
5




Agenda

—The Intel® Xeon® Processor E5 Family

—The new Intel® VTune™ Amplifier XE

—The Software Optimization Cycle
>Hotspots

>Methods for Determining Efficiency
>Common Architectural Causes of Inefficiency:

Cache Misses

Other Data Access Issues
Execution Stalls

Branch Mispredicts

Front End Stalls

Software and Services Group ‘ i nte | )
[]




Intel® Xeon® Processor E5 Family

40 lanes
4 lanes DMI 2 PCle 3.0
/PCle 2.0 (8 GT/s)
(5 GT/s)

QPI 18 GT/s
Integrated 1/0 ’Q-m 2-8GT/s
p o— .

7

SNB-E Core , SNB-E Core 1 or 2 QPI links
to other

SNB-E Core L| SNB-E Core processor

socket

SNB-E Core L C SNB-E Core

SNB-E Core SNB-E Core
" S——

Configurations

Core Speed Up to 3.6GHz

Number of Cores Upto8

3-4 channels L3 Cache Size Up to 20M
2B QPI Speed Up to 8GT/s
DDR3 Speed Up to 1600
Number of Sockets 1,2, 0r4

For all available options, see http://ark.intel.com/products/family/59138

Software and Services Group ‘ intel
7

Intel® Xeon® E5-2400 Family — (formerly known as SNB-EN) -
dual-socket, with only 1 QPI link and 3 mem channels (LGA1356
socket)

Intel® Xeon® E5-26xx Family — (formerly known as SNB-EP 2S)
- dual socket, with 2 QPI links and 4 mem channels (LGA2011
socket)

Intel® Xeon® E5-46xx Family — (formerly known as SNB-EP 4S)
- quad-socket, with 2 QPI links and 4 mem channels (LGA2011
socket)

Also available is the E3-1200 family, single-socket server
processors based on Intel® microarchitecture code name Ivy
Bridge. These are covered in the single-socket tuning guide for
Intel® microarchitecture code name Sandy Bridge.



Some Performance Features of the Intel®
Xeon® Processor E5 Family

® Manufactured on Intel® 32nm process technology - delivering a
performance and energy boost

®ntel® Turbo Boost 2.0 Technology

e Intel® Hyper-Threading Technology

® Intel® Advanced Vector Extensions (AVX) Instructions
e Intel® Integrated I/O

®Intel® Data Direct I/O

® Intel® Intelligent Power Technology

Uses Intel® Microarchitecture code name Sandy Bridge

Software and Services Group ‘ i nte | )
8

For a complete listing of SKUs, see
http://ark.intel.com/products/family/59138



http://ark.intel.com/products/family/59138

The New Intel® VTune™ Amplifier XE |

VTune Amplifier XE 2013 features:

— Multiple Collection Types [P s
[Fomcttavotar X
>Hotspots (statistical call tree) [EE
>Thread Concurrency

>Locks and Waits Analysis
>Event-based Sampling

— Timeline View Integrated

into all Analysis Types
— Source/Assembly Viewing

Vewng 4 1cF33 D seected stack(s)

3 T

anahze locks exmignd_ntersect - 9.9 2
andyee lodks eveiitersect_objects+x.

css. [l anayoe Jodks.exelshader 40357 - sh.

— Compatible with C/C++,

Fortran, Java, Assembly,
.NET

— Visual Studio Integration,
Command-line, or
Standalone interface for Windows* or Linux*

Software and Services Group




New in Amplifier XE: Pre-Configured Profiles!

p] ey Tl =T
‘wekome | New Amplifier Result

The Intel® Microarchitecture Codename Sandy Bridge: General
Exploration profile should be used for a top-level analysis of potential
issues on the Xeon Processor E5 Family. It is the subject of this guide.

- Sandy Bridge / Ivy Bridge Copy
= -":5'9""""‘““'"” Anaiyzs general issues affacting the parformance of your applcation. This analysis typa is based on the hardware
- ﬂtm. t Hotspots event-based samping collection, Press F1 for more details,
spots
A Concurrency I Collect stacks =
A Locks and Waks ™ Andlyze memory bandwidth
@) {2 Inkel Core 2 Processor Anflysis
B (L Mehalem [ Westmere Andysis @ Details

g 42"‘”5"”““ Events CPU: InteklR, E5-20x series

i Choose Analysis Type

A Bandwidth NOTE: For analysis purpases, Intel VTune Amplfier XE 2013 may adjst the Sample After valuesinthe - |
A Access Contention table below by a mutipler. The multiplier depends on the value of the Duration time estimate option
A Branch Anslysis specified in the Profect Properties ddog. =l
A Client Analysis Everk
4 e i e -
A Loop Anslysis BR_MISP_RETIRED.ALL_BRANCHES_PS
A Memary Access CPU_CLK_UNHALTED.REF_TSC
A Port Saturation CPU_CLK_UNHALTED. THREAD
) (25 Inkel Abom Processar Anslysis DIBZMITE_SWITCHES PENALTY_CYCLES
@) {5 Knights Corner PistForm Analysis DTLB_LOAD_MISSES. STLB_HIT
81 L7 Power Analysis DILB_LOAD_MISSES. WALK_DURATI
1 (2 Custom Analysis ICACHE MISSES

All the events required are pre-
configured - no research needed!
Simply click Start to run the analysis.

Software and Services Group ingel
10

The logic for identifying issues on Microarchitecture Codename Sandy Bridge
is embedded into the interface. All the formulas and metrics used are the
same as the ones given in this guide. You no longer have to apply formulas
and rules to the data yourself to figure out what it means - using this guide
and the interface tuning features, you can easily pinpoint problems and
possible solutions.

The formulas and metrics are only applied to the General Exploration profile,
and the General Exploration viewpoint (which is automatic). For the other
profiles, it will just show the raw data.

Also view our video demo of this interface at:
http://software.intel.com/en-us/videos/the-intel-vtune-amplifier-

xe-analysis-and-results-interface-for-intel-microarchitecture

10



Enhanced General Exploration View for Intel®
Microarchitecture Codename Sandy Bridge

Wekome | r000ge | r0Dige < | 1003ge | New Ampifier Resuk | r002bw

The enhanced view is present when running the
General Exploration profile with the General

Exploration viewpoint selected (the default).
Grouping: [Function j Cal Stack ~T

® General Exploratioit ral Exploration /& @

@ Analysis Target Analysis Type | | B8 Collection Log | | K1 Summary

0.129 o

0.034 analyze_locks.exe

0.080 analyze_locks.exe

0.087 gdiphus.dil

0.705 thb.di thb sinternals custom_scheduler <strun
0.053 analyze_locks.exe posZgrid

0.477 rdpdd.dl [rdpdd.dI]

0.038 analyze locks.exe tri_intersect

0.028 analyze_locks.exe shader(struct ray *)

0.091 analyze_locks.exe Raypot(struct ray *,double)
0.233 analyze locks.exe intersect_objects(struct ray *)
0.000 analyze_locks.exe VNorm(struct vector *)

S :;; ntaskrel. e KeSunchennizef xerution.

All collected data is presented in hierarchical
format (see next slide), with helpful metrics
already calculated (see issue slides).

11



Enhanced General Exploration View for Intel®
Microarchitecture Codename Sandy Bridge

- § Hierarchical data display
% General Exploration - Ge Ext /O corresponds to how available
O cxecution slots in each core’s
pipeline are utilized.

@ Analysis Target Analysis Type | | B Collection Log | | ¥ Summary | LY itin

Grouping: Ichbon | Call Stack

Function / Call Stack

B grid_intersect

sphere_intersect
#grid_bounds_intersect
# GdipCreateSolidFil

142,000,000
270,000,000

breakdown of issues pertaining to
its category of pipeline utilization:
Retiring, Bad Speculation, Back-
end Bound, or Front-end Bound
Pipeline Slots

Ware and Services Group inte '

12

12



Enhanced General Exploration View for Intel®
Microarchitecture Codename Sandy Bridge

™ General Exploration - General Exploration /4 Intel VTune /

@ Analysis Target Analysis Type | | E1 Summary | B latug] ** Top-down Tree | B Tasks and Frames

Grouping: IFm:bun | Call Stack

[#sphere_intersect
#grid_bounds_intersect
[#GdipCreateSolidFil ,000, 000, 15670 X 0.628 0.073 gdiplus.dil
[#pas2grid ,000, 4 . . 0.563 0,071 analyze_locks.exe pos2grid
#[rdpdd.dil] 226,000,000 d . . 0,226 0.232 rdpdd.di [rdpdd.di
[#shader 208,000,000 pa i .00 0.760 0.108 analyze_locks.exe shader(sy
#[TBB Scheduler Internals] 000, . .0 0.441 0.000 tbb.di thb: inte
FRaypnt f ),000, . I 0.548 0.015 analyze_locks.exe Raypnt(s|
Selected 1 row(s): 3 B p. L 0,458 0.125

et FOI @ given hotspot, if a cell is
e |l | pighlighted pink, it means the value for
c that metric is over VTune Amplifier XE's
Pre-computed metrics for each pre-determined threshold and should
category of pipeline utilization saves be investigated.
users analysis time.

Note that issue highlighting occurs under 2 conditions:

1. The value for the metric is over VTune’s pre-determined
threshold

2. The associated function uses 5% or greater of the CPU
clockticks sampled

Software and Services Group ‘ intel
13

13



Complexities of Performance
Measurement

® Two features of the Intel Xeon Processor E5 Family family
have a significant effect on performance measurement:
—Intel® Hyper-Threading Technology
—Intel® Turbo Boost 2.0 Technology

® \Vith these features enabled, it is more complex to measure
and interpret performance data

—Most events are counted per thread, some events per core
—See VTune Amplifier XE Help for specific events

® Some experts prefer to analyze performance with these
features disabled, then re-enable them once optimizations are
complete

Software and Services Group ‘ i nte | )

14

Both Intel® Hyper-Threading Technology and Intel® Turbo Boost 2.0
Technology can be enabled or disabled through BIOS on most platforms.

Contact with the system vendor or manufacturer for the specifics of any
platform before attempting this. Incorrectly modifying bios settings
from those supplied by the manufacturer can result in rendering the
system completely unusable and may void the warranty.

Don't forget to re-enable these features once you are through with the
software optimization process!

14



A Note About Data Collection on
the Xeon Processor E5 Family

® There is a performance impact when measuring some events
on the Xeon Processor E5 Family

® See this article for more information:
http://software.intel.com/en-us/articles/performance-impact-when-
sampling-certain-lic-events-on-snb-ep-with-vtune

® We recommend using VTune Amplifier XE 2013 Update 3 or
later for correct sampling of the affected events (with impact)

Software and Services Group ‘ i nte | )

156

Both Intel® Hyper-Threading Technology and Intel® Turbo Boost 2.0
Technology can be enabled or disabled through BIOS on most platforms.

Contact with the system vendor or manufacturer for the specifics of any
platform before attempting this. Incorrectly modifying bios settings
from those supplied by the manufacturer can result in rendering the
system completely unusable and may void the warranty.

Don't forget to re-enable these features once you are through with the
software optimization process!

15



The “"Software on Hardware"”
Tuning Process

1. Identify Hotspots

— Determine efficiency of hotspots

> If inefficient, identify architectural reason for
inefficiency

2. Optimize the issue
3. Repeat from step 1!

Software and Services Group ‘ i nte | )

16

Note: While VTune Amplifier XE’s Concurrency, Timeline and Locks and Waits
features can also be helpful in threading an application, this slideset is not
aimed at the process of introducing threads.

The process described here could be used either before or after threading.
However, we *do* recommend that you follow a top-down process when
optimizing: beginning with system tuning (if appropriate), then algorithmic
tuning, then microarchitectural tuning. The name of Software on Hardware
tuning just means we are tuning software for specific hardware.

Remember for all upcoming slides - that you should only focus on hotspots!
Only try to determine efficiency, identify causes, and optimize in hotspots!

16



Step 1) Identify the Hotspots

® What: Hotspots are where your application
spends the most time

® Why: You should aim your optimization
efforts there!

>Why improve a function that only takes 2% of your
application’s runtime?

® How: VTune Amplifier XE Hotspots or
Lightweight Hotspots analysis type

>Usually hotspots are defined in terms of the
CPU_CLK_UNHALTED.THREAD event (aka “clockticks™)

Software and Services Group ‘ i nte | )

17

For the Xeon processor E5 family, the CPU_CLK_UNHALTED.THREAD counter
measures unhalted clockticks on a per thread basis. So for each tick of the
CPU's clock, the counter will count 2 ticks if Hyper-Threading is enabled, 1
tick if Hyper-Threading is disabled. There is no per-core clocktick counter.

There is also a CPU_CLK_UNHALTED.REF counter, which counts unhalted
clockticks per thread, at the reference frequency for the CPU. In other words,
the CPU_CLK_UNHALTED.REF counter should not increase or decrease as a
result of frequency changes due to Turbo Mode 2.0 or Speedstep Technology.



Step 1) Determine Efficiency

® Determine efficiency of the hotspot using one of
three methods:

— % Pipeline Slots Retiring

— Changes in CPI

— Code Examination

® Note: Some of these methods are more appropriate for
certain codes than others... see notes on the following
slides

Software and Services Group ‘ i nte | )

18

% Pipeline Slots Retired and Changes in CPI methods rely on VTune Amplifier
XE’s event-based sampling. The Code Examination method relies on using
VTune Amplifier XE’s capability as a source/disassembly viewer.



Efficiency Method 1: % Retiring Pipeline
Slots

® Why: Helps you understand how efficiently your app is using
the processors

® How: General Exploration profile, Metric: Retiring

xploration - General Exploration /& @
® What Now:
® analysTa Tt Setion Log || I sinreeey

« For a given hotspot: ovping: [Fancton ot ok

» In general, > 75% retiring

(.8 or higher) is good. Go |
to efficiency method 3. sohers

e,
lgrid_bounds_intersect
EGdipCreatesolidFill

+ < 75% for client or HPC LTS Sk ]
apps - Consider :
investigating stall 00000 27000000 0511

B 58,000,000 1.483

jeeledlel LS ks Srom— R
following issue slides. -~ o

» < 50% for server apps - consider investigating stall reduction.

Software and Services Group ‘ intel
19

Formula:
(UOPS_RETIRED.RETIRE_SLOTS/ (4*CPU_CLK_UNHALTED.THREAD))

Thresholds: Investigate if -
% Retiring < .5

This metric is based on the fact that when operating at peak performance, the
pipeline on a Xeon E5 Family CPU should be able to retire 4 micro-operations
per clock cycle (or “clocktick”). The formula looks at “slots” in the pipeline for
each core, and sees if the slots are filled, and if so, whether they contained a
micro-op that retired.

The thresholds are general guidelines. Depending on the domain, some

applications can run with less slots allocated retiring than the thresholds
above and still be very efficient. For example, it is common for database
workloads to be running with only 20-25% of allocated slots retiring per

clocktick (due to heavy 1/0).



Efficiency Method 2: Changes in Cycles
per Instruction (CPI)

® Why: Another measure of efficiency that can be useful when
comparing 2 sets of data

>Shows average time it takes one of your workload’s instructions
to execute

® How: General Exploration profile, Metric: CPI
® What Now: General Exploratio

>CPI can vary widely
depending on the
application and platform!

>If code size stays
constant, optimizations
should focus on
reducing CPI

m
K rSvnchonnizef xerutinn.

Formula:
CPU_CLK_UNHALTED.THREAD/INST_RETIRED.ANY

Threshold:

In the interface, CPI will be highlighted if > 1. This is a very general rule based on the
fact that some very well tuned apps achieve CPIs of 1 or below. However, many apps
will naturally have a CPI of over 1 - it is very dependent on workload and platform. It
is best used as a comparison factor — know your app’s CPI and see if over time it is
moving upward (that is bad) or reducing (good!).

Note that CPI is a ratio! Cycles per instruction. So if the code size changes for a
binary, CPI will change. In general, if CPI reduces as a result of optimizations, that is
good, and if it increases, that is bad. However there are exceptions! Some code can
have a very low CPI but still be inefficient because more instructions are executed than
are needed. This problem is discussed using the Code Examination method for
determining efficiency.

Another Note: CPI will be doubled if using Intel® Hyper-threading. With Intel® Hyper-
Threading enabled, there are actually 2 different definitions of CPI. We call them "Per
Thread CPI" and "Per Core CPI". The Per Thread CPI will be twice the Per Core CPI.
Only convert between per Thread and per Core CPI when viewing aggregate CPIs
(summed for all logical threads).

Note: Optimized code (i.e: SSE instructions) may actually lower the CPI, and increase
stall % - but it will increase the performance. CPI is just a general efficiency metric -
the real measure of efficiency is work taking less time.



Efficiency Method 3: Code Examination

® Why: Methods 1 and 2 measure how long it takes
instructions to execute. The other type of inefficiency is
executing too many instructions.

® How: Use VTune Amplifier XE’s capability as a source and
disassembly viewe

® What Now:  [EXIEEERTT]

® Faijlure to
utilize modern
instructions
results in
larger code
size
See next 2
slides for
potential
issues

W

Software and Services Group ‘ i nte | )
21

This method involves looking at the disassembly to make sure the most
efficient instruction streams are generated. This can be complex and can
require an expert knowledge of the Intel instruction set and compiler
technology. What we have done is describe how to find 2 easy-to-detect
issues and suggest how they may be fixed using new features of Intel®
Microarchitecture Codename Sandy Bridge.



Code Study 1: Convert Legacy Floating Point or
Integer Code to SIMD

® Why: Using SIMD instructions can greatly increase
performance. For existing FP SSE code, converting to Intel®
Advanced Vector Extensions (AVX) instructions has several
advantages.

® How: Examine your assembly code for existing SSE instructions
(using xmm registers), MMX instructions (using mmx registers),
or for floating point instructions that are not packed (such as
faddp, fmul, or scalar SSE instructions like addss)

® What Now:
—Vectorize applicable code - See http://software.intel.com/en-
us/articles/vectorization-toolkit
—Convert applicable instructions to AVX automatically
>Intel Compiler: /QxAVX or /QaxAVX (Windows*), -xAVX or -axAVX (Linux)
>GCC: -march="corei7-avx' (no dispatching for non-AVX systems)
>MSVS: /arch:avx (no dispatching for non-AVX systems)
—0ptimize to AVX - See the Intel® 64 and IA-32 Architectures
Optimization Reference Manual, chapter 11 Coftuare and SenicesGroup i@

22

For more on AVX, see: http://software.intel.com/en-us/articles/intel-avx-new-
frontiers-in-performance-improvements-and-energy-efficiency/

A few notes:

Integer vector code is not supported by AVX in the first generation, but
integer code can still use 128-bit SSE instructions.

The /Qax and -ax versions of the Intel Compiler switches support automatic
dispatching, to create a AV-optimized codepath for appropriate systems and a
default codepath otherwise.

22



Code Study 2: Take Advantage of Improvements
in Intel® Advanced Encryption Standard (AES)

Instructions

e Why: Existing AES instruction throughput has been improved on Sandy
Bridge microarchitecture, which can result in significant performance
increases in parallel encryption/decryption.

* How: If the application’s functionality is in the domain of
encryption/decryption, check to see if AES instructions are being used.
Blocks of aes instructions with xmm registers as operands may be using
parallel modes:

cmm5 ,
esenc rmmb5 ,
* What Now:
* If AES is being used in parallel modes (such as ECB, CTR, and CBC-
Decrypt), increase performance by redefining the number of blocks to be
processed in parallel. (8 on Sandy Bridge compared to 4 on Westmere).
« If AES is not being used and the application does any encryption or
decryption, try it! See the Intel® Advanced Encryption Standard (AES
New Instructions Set

Software and Services Group ‘ i nte | )

23

23



Step 1) Identify architectural reason for
inefficiency
oIf Methods 1 or 2 are used to determine code is
inefficient, investigate potential issues in rough
order of likelihood
Cache Misses Back-End Bound
Contested Accesses

Other Data Access Issues

. Blocked Loads, Cache Line Splits, 4K Aliasing Conflicts, DTLB
Misses

Other Stalls

Microcode Assists Retiring
Branch Mispredicts, Machine Clears Bad Speculation
Front End Stalls Front-End Bound

Software and Services Group ( intel

24

These are issues that result in inefficient pipeline use and high CPI. In
addition to being in rough order of likelihood, these issues have been
classified into the 4 categories of pipeline slot usage identified in the Intel®
64 and IA-32 Architectures Optimization Reference Manual .
The General Exploration profile also groups metrics according to these 4
categories. If desired, you can see how your application used the available
pipeline slots per cycle using the first 4 metrics to the right of CPI: Retired
Pipeline Slots, Cancelled Pipeline Slots, Back-End Bound Pipeline Slots, and
Front-End Pipeline Slots.



http://www.intel.com/Assets/PDF/manual/248966.pdf
http://www.intel.com/Assets/PDF/manual/248966.pdf
http://www.intel.com/Assets/PDF/manual/248966.pdf
http://www.intel.com/Assets/PDF/manual/248966.pdf
http://www.intel.com/Assets/PDF/manual/248966.pdf

Issue Classification

® The General Exploration View for Intel® Microarchitecture
Codename Sandy Bridge uses the methodology outlined in the
Optimization Reference Manual to analyze performance by
studying “Slots” in a core’s execution pipeline

® Performance issues are classified according to what happened
for each possible slot in the pipeline, per cycle:

Micro-op
Issued?

Allocation Did Micro-op
Stall? Retire?

Front-End Back-End Bad

Bound Bound Speculation Al

25

Software and Services Group ‘ i nte | )

Note that the way this methodology allows us to classify what percentage of
all pipeline slots end up in each category, for each cycle and for each core. It
is possible that for a given dataset, there may be a significant percentage of
pipeline slots in multiple categories that merit investigation. Ideally a large
percentage of slots will fall into the “Retired” category, but even then, it may
be possible to make your code more efficient.

For a complete description of this methodology, see the _Intel® 64 and IA-32
Architectures Optimization Reference Manual, Appendix B.3. You can also
view our 10-minute video, which describes the methodology in more detail,
here: http://www.youtube.com/watch?v=n8ALDNh4Zes.

25


http://www.intel.com/Assets/PDF/manual/248966.pdf
http://www.intel.com/Assets/PDF/manual/248966.pdf
http://www.intel.com/Assets/PDF/manual/248966.pdf
http://www.intel.com/Assets/PDF/manual/248966.pdf
http://www.intel.com/Assets/PDF/manual/248966.pdf

The Pipeline Slot Methodology,
Illustrated

Front-End Back-End

Execution Retirement
Fetch & Core

Decode @ ——— -

Instruc.tlons, 2 _Re-Order & __ [T
Predict Execute Results

Branches Instructions to Memory

@ -

Case 1: Front-End does not provide micro-operations
for all 4 pipeline slots, and the back-end is not stalled

Front-End Bound

Software and Services Group ‘ intel

26

The Front-End consists of several different structures. It is responsible for
fetching instructions, decoding them into micro-operations, and then
delivering those micro-operations to the Back-End of the pipeline. For Intel®
Microarchitecture Codename Sandy Bridge, a maximum of 4 micro-operations
can be delivered to the Back-End portion of the pipeline per cycle (per core).

Front-End issues are generally caused by delays in fetching code (due to
caching or ITLB issues) or in decoding instructions (due to specific instruction
types or queueing issues). Front-End issues are generally resolved by
compiler techniques.



The Pipeline Slot Methodology,
Illustrated

Front-End Back-End

Execution Retirement
Core

Fetch &
Decode
Instructions,
Predict
Branches

Re-Qr_d_er_@__ Commit

~ " Execute Results
Instructions to Memory

VLL/ILL1 1411441114

Case 2: Back-End cannot accept micro-operations
for all 4 pipeline slots

Back-End Bound

Software and Services Group ‘ intel

27

The Back-End of the pipeline is responsible for accepting micro-operations
from the Front-End, then re-ordering them as necessary to schedule their
execution in the various execution units, retrieving needed operands from
memory, executing the operations, then committing the results to memory.
If the Back-End is not able to accept micro-operations from the Front-End, it
is generally because internal queues are full. Most of the time this is due to
data access issues - the Back-End'’s structures are being taken up by micro-
operations that are waiting on data from the caches.

27



The Pipeline Slot Methodology,
Illustrated

Front-End Back-End
- u_op —-—
Execution Retirement
Fetch &
Decode
Instructions :
! Commit

Predict i = 7 Results
Branches i to Memory

Case 3: Micro-operations make it to the Back-End,
but then get cancelled from the pipeline

Bad Speculation

Software and Services Group ‘ intel

28

Micro-operations that are removed from the Back-End most likely happen
because the Front-End mis-predicted a branch. This is discovered in the
Back-End when the branch operation is executed. At this point, if the target
of the branch was incorrectly predicted, the micro-operation and all
subsequent incorrectly predicted operations are cancelled and the Front-End
is re-directed to begin fetching instructions from the correct target.

28



The Pipeline Slot Methodology,
Illustrated

Front-End Back-End

— - H_Op

Execution Retirement
Fetch & Core

Decode . H-op

Instrucpons, Re-Order &
Predict ““BExecute

Branches Instructions to Memary
H-0p

Case 4: Micro-operations make it to the Back-End,
Execute, and then Retire (Good!)

Retiring

Software and Services Group ‘ intel

29

In general, having as many pipeline slots retiring per cycle as possible is the
goal. Only one issue is identified for this category - which deals with how to
get micro-operations to this stage faster.

29



Step 2) Optimize the Issue

® For each potential issue, there are several important pieces of
information:

—Why? - Why you should be concerned about this potential
problem.

—How? — Which profile and metric to use in the Amplifier XE
interface. If the data is highlighted, then it should be investigated.

—What Now? - Helps you move to Step 2 of the Tuning Process
(Optimize the Issue). Gives suggestions for follow-up
investigations or optimizations to try.

—Event Names and Metric Formulas are given in the Notes. These
are not included on the slide because they are already embedded
in the Amplifier XE logic. You only need to use the pre-configured
profiles and metrics pointed out in order to know if you may have
a problem.

Software and Services Group ‘ i nte | )

30

30



Back-End Bound

Cache Misses

® Why: Cache misses raise the CPI of an application

® Focus on long-latency data accesses coming from 2nd and 3rd
level misses

® How: General Exploration profile, Metrics: LLC Hit, LLC Miss

® What Now:
® If either metric is highlighted for your hotspot, consider
reducing misses:
® Change your algorithm to reduce data storage
® Block data accesses to fit into cache
® Check for sharing issues (See Contested Accesses)
® Align data for vectorization (and tell your compiler)

® Use the cacheline replacement analysis outlined in section
B.3.4.2 of Intel® 64 and IA-32 Architectures Optimization
Reference Manual, section B.3.4.2

® Use streaming stores /—)
e Use software prefetch instructions ~ Smwremdsenicescrowe — (iNke

31

Formulas:
% of cycles spent on memory access (LLC misses):
(MEM_LOAD_UOPS_MISC_RETIRED.LLC_MISS_PS * 210) / CPU_CLK_UNHALTED.THREAD

% of cycles spent on last level cache access (2nd level misses that hit in LLC):
((MEM_LOAD_RETIRED.L3_HIT_PS * 40) + (MEM_LOAD_UOPS_LLC_HIT_RETIRED.XSNP_HIT_PS
* 88) +

(MEM_LOAD_UOPS_LLC_HIT_RETIRED.XSNP_HITM_PS * 99)) / CPU_CLK_UNHALTED.THREAD

Thresholds: Investigate if -
% cycles for LLC miss = .2,
% cycles for LLC Hit > .2

LLC stands for “last level cache”, and is the L3 cache on the Xeon processor E5 family. All
accesses that miss the L3 cache are counted here as an LLC miss, regardless of whether the data
was found in local memory, remote memory, or a remote cache. For the LLC hit formula, it
includes standard hits to the L3 as well as hits that required snoops of local L2 caches.



Back-End Bound

Remote Memory Accesses

® Why: With a Non-Uniform Memory Access (NUMA)
architecture, loading from memory can have varying latency.
Remote memory loads cost more.

® How: General Exploration profile, Metrics: LLC Load Misses
Serviced by Remote DRAM

® What Now:

® If this metric is highlighted for your hotspot, improve NUMA
affinity:

® Ensure that memory is first touched (accessed, not allocated) by
the thread that will be using it

® If thread migration is a problem, try affinitizing or pinning
threads to cores

® Use affinity environment variable for OpenMP

® Use NUMA-aware options for supporting applications if available
(for example, softnuma for SQL Server)

® Use a NUMA-efficient thread scheduler (such as Intel®
Threading Building Blocks or Intel® Cilk™ Plus)

Software and Services Group ‘ i nte | )

32

Formulas:
% of cycles spent on memory access (LLC misses):

108 *
(OFFCORE_RESPONSE.ALL_DEMAND_MLC_PREF_READS.LLC_MISS.ANY_RESP
ONSE_1 -
OFFCORE_RESPONSE.ALL_DEMAND_MLC_PREF_READS.LLC_MISS.LOCAL_DR
AM_O -
OFFCORE_RESPONSE.ALL_DEMAND_MLC_PREF_READS.LLC_MISS.REMOTE_H
ITM_HIT_FORWARD_1 ) / CPU_CLK_UNHALTED.THREAD

Thresholds: Investigate if -
% cycles for remote access = .2,

Malloc() or VirtualAlloc() is not touching memory. The o/s only reserves a
virtual address for the request. Physical memory is not allocated until the
address is accessed. Each 4K page will be physically allocated on the node
where the thread makes the first reference. Note that this metric measures
only remote memory (DRAM) accesses, and does not include data found in
cache in the remote socket.

32



Back-End Bound

Contested Accesses

® Why: Sharing modified data among cores (at L1/L2 level) can
raise the latency of data access

® How: General Exploration profile, Metrics: Contested Accesses
® What Now:

® If this metric is highlighted for your hotspot, locate the source
code line(s) that is generating HITMs by viewing the source. Look
for the MEM_LOAD_UOPS_LLC_HIT_RETIRED.XSNP_HITM_PS event
which will tag to the next instruction after the one that generated the
HITM.

® Then use knowledge of the code to determine if real or false
sharing is taking place. Make appropriate fixes:

® For real sharing, reduce sharing requirements
® For false sharing, pad variables to cacheline boundaries

Software and Services Group ‘ i nte | )

33

Formula:
% of cycles spent accessing data modified by another core:
(MEM_LOAD_UOPS_LLC_HIT_RETIRED.XSNP_HITM_PS * 60) / CPU_CLK_UNHALTED.THREAD

Thresholds: Investigate if -
% cycles accessing modified data > .05

This metric is also called write sharing. It occurs when one core needs data that is found in a
modified state in another core’s cache. This causes the line to be invalidated in the holding core’s
cache and moved to the requesting core’s cache. If it is written again and another core requests
it, the process starts again. The cacheline ping pong-ing between caches causes longer access
time than if it could be simply shared amongst cores (as with read-sharing).

Write sharing can be caused by true sharing, as with a lock or hot shared data structure, or by
false sharing, meaning that the cores are modifying 2 separate pieces of data stored on the same
cacheline. This metric measures write sharing at the L2 level only - that is, within one socket. If
write sharing is observed at this level it is possible it is occurring across sockets as well.

Note that in the case of real write sharing that is caused by a lock, Amplifier XE’s Locks and Waits

analysis should also indicate a problem. This hardware-level analysis will detect other cases as
well though (such as false sharing or write sharing a hot data structure).



Back-End Bound

Data Sharing

® Why: Sharing clean data (read sharing) among cores (at L1/L2
level) has a penalty at least the first time due to coherency

® How: General Exploration profile, Metrics: Data Sharing
® What Now:

® Jf this metric is highlighted for your hotspot, locate the source
code line(s) that is generating HITMs by viewing the source. Look
for the MEM_LOAD_UOPS_LLC_HIT_RETIRED.XSNP_HIT_PS event
which will tag to the next instruction after the one that generated the
HITM.

® Then use knowledge of the code to determine if real or false
sharing is taking place. Make appropriate fixes:

® For real sharing, reduce sharing requirements
® For false sharing, pad variables to cacheline boundaries

34 3/20/2

n42

34

Software and Services Group ‘ i nte | )

Formula:
% of cycles spent accessing data modified by another core:
(MEM_LOAD_UOPS_LLC_HIT_RETIRED.XSNP_HITM_PS * 43) / CPU_CLK_UNHALTED.THREAD

Thresholds: Investigate if -
% cycles accessing clean shared data > .05

This metric measures read sharing, or sharing of “clean” data, across L2 caches within 1 CPU
socket. The L3 cache has a set of “core valid” bits that indicate whether each cacheline could be
found in any L2 caches on the same socket, and if so, which ones. The first time a line is brought
into the L3 cache, it will have core valid bits set to 1 for whichever L2 cache it went into. If that
line is then read by a different core, then it will be fetched from L3, where the core valid bits will
indicate it is present in one other core. The other L2 will have to be snooped, resulting in a
longer latency access for that line. This metric measures the impact of that additional access
time, when the cacheline in question is only being read-shared. In the case of read-sharing, the
line can co-exist in multiple L2 caches in shared state, and for future accesses more than one
core valid bit will be set. Then when other cores request the line, no L2 caches will need to be
snooped, because the presence of 2 or more core valid bits tells the LLC that the line is shared
(for reading) and ok to serve. Thus the impact of this only happens the first time a cacheline is
requested for reading by a second L2 after it has already been placed in the L3 cache. The
impact of sharing modified data across L2s is different and is measured with the “"Contested
Accesses” metric.

34



Back-End Bound

Other Data Access Issues: Blocked
Loads Due to No Store Forwarding

® Why: If it is not possible to forward the result of a store
through the pipeline, dependent loads may be blocked

® How: General Exploration profile, Metric: Loads Blocked by
Store Forwarding

® What Now:

® If the metric is highlighted for your hotspot, investigate:

® View source and look at the LD_BLOCKS_STORE_FORWARD event.
Usually this event tags to next instruction after the attempted load
that was blocked. Locate the load, then try to find the store that
cannot forward, which is usually within the prior 10-15 instructions.
The most common case is that the store is to a smaller memory
space than the load. Fix the store by storing to the same size or
larger space as the ensuing load.

35

Software and Services Group ‘ i nte | )

Formula:
Blocked Store Forwarding Cost = (LD_BLOCKS.STORE_FORWARD * 13) /
CPU_CLK_UNHALTED.THREAD

Threshold: Investigate if -
Cost > .05

Store forwarding occurs when there are two memory instructions in the pipeline, a store followed
by a load from the same address. Instead of waiting for the data to be stored to the cache, it is
“forwarded” back along the pipeline to the load instruction, saving a load from the cache. Store
forwarding is the desired behavior, however, in certain cases, the store may not be able to be
forwarded, so the load instruction becomes blocked waiting for the store to write to the cache and
then to load it. For more information on what types of stores can forward and which can't, see
the _Intel® 64 and IA-32 Architectures Optimization Reference Manual, section 2.3.5.2.

35


http://www.intel.com/Assets/PDF/manual/248966.pdf
http://www.intel.com/Assets/PDF/manual/248966.pdf
http://www.intel.com/Assets/PDF/manual/248966.pdf
http://www.intel.com/Assets/PDF/manual/248966.pdf

Back-End Bound

Other Data Access Issues: Cache
Line Splits
® Why: Multiple cache line splits can result in load penalties.

® How: General Exploration profile, Metric: Split Loads, Split
Stores

® What Now:

® If the metric is highlighted for your hotspot, investigate by viewing
the metrics at the sourcecode level. The split load event,
MEM_UOP_RETIRED.SPLIT_LOADS_PS, should tag to the next
executed instruction after the one causing the split. If the split store
ratio is greater than .01 at any source address, it is worth
investigating.

® To fix these issues, ensure your data is aligned. Especially watch
out for mis-aligned 256-bit AVX store operations.

Software and Services Group ‘ i nte | )

36

A cacheline split is any load or store that traverses a 64-byte boundary.

Formulas:
Split Load Cost = (MEM_UOP_RETIRED.SPLIT_LOADS_PS * 5) / CPU_CLK_UNHALTED.THREAD

Split Store Ratio = MEM_UOP_RETIRED.SPLIT_STORES_PS /
MEM_UOP_RETIRED.ANY_STORES_PS

Thresholds: Investigate if -
Split load cost > .1 or
Split store ratio is > 0.01

Beginning with the Intel® Core™ architecture, the penalty for cacheline splits has been reduced
to only 5 cycles. However, if there are repeated splits occurring, the penalty can grow, and even
just a 5-cycle increase in latency can make a difference in application performance.

36



Back-End Bound

Other Data Access Issues: 4K
Aliasing

® Why: Aliasing conflicts result in having to re-issue loads.
® How: General Exploration profile, Metric: 4K Aliasing
¢ What Now:

e If this metric is highlighted for your hotspot, investigate at the
sourcecode level.

® Fix these issues by changing the alignment of the load. Try
aligning data to 32 bytes, changing offsets between input and output
buffers (if possible), or using 16-Byte memory accesses on memory
that is not 32-Byte aligned.

Software and Services Group ‘ i nte | )

37

Formula:

Aliasing Conflicts Cost = (LD_BLOCKS_PARTIAL.ADDRESS_ALIAS * 5) /
CPU_CLK_UNHALTED.THREAD

Threshold: Investigate if
Aliasing conflicts cost > .1

This occurs when a load is issued after a store and their memory addresses are offset by (4K).
When the load is processed in the pipeline, part of the address is compared to the addresses of
other memory operations in flight (the store). Since only part of the address is used for the
comparison, the issue of the load will match the previous store. Then the load will be blocked
until another check is performed on the full addresses. After the full check determines that the
addresses are distinct, the load can proceed. The additional check has a 5-cycle penalty in the
normal case, but could be worse in certain situations, like with un-aligned loads that span 2 cache
lines.

37



Back-End Bound

Other Data Access Issues: DTLB
Misses

® Why: First-level DTLB Load misses (Hits in the STLB) incur a
latency penalty. Second-level misses require a page walk that
can affect your application’s performance.

® How: General Exploration profile, Metric: DTLB Overhead
® What Now:

® If this metric is highlighted for your hotspot, investigate at the
sourcecode level.

® To fix these issues, target data locality to TLB size, use the
Extended Page Tables (EPT) on virtualized systems, try large
pages (database/server apps only), increase data locality by using
better memory allocation or Profile-Guided Optimization

Software and Services Group ‘ i nte | )

38

Formula:
DTLB Overhead = ((DTLB_LOAD_MISSES.STLB_HIT * 7) +
DTLB_LOAD_MISSES.WALK_DURATION) / CPU_CLK_UNHALTED.THREAD

Threshold: Investigate if-
DTLB Overhead = .1

On target data locality to TLB size: this is accomplished via data blocking and trying to minimize
random access patterns.

Note: this is more likely to occur with server applications or applications with a large random
dataset



Back-End Bound

Other Stalls

® Why: Certain types of instructions can cause partial stalls
because they take longer to retire. These increase latencies
overall.

® How: General Exploration Profile, Metric: LEA Stalls, Flags
Merge Stalls

® What Now:

® If this metric is highlighted for your hotspot, investigate at the
sourcecode level.

® Try to eliminate uses of 3-operand LEA instructions, Look for certain
uses of an LEA instruction (see section 3.5.1.3 of Intel® 64 and IA-

32 Architectures Optimization Reference Manual) or partial register
use (see section 3.5.2.4 of Intel® 64 and IA-32 Architectures

Optimization Reference Manual) and fix.

Software and Services Group ‘ i nte | )

39

Formulas:

Flags Merge Stalls =
PARTIAL_RAT_STALLS.FLAGS_MERGE_UOP_CYCLES/CPU_CLK_UNHALTED.TH
READ

LEA Stalls =
PARTIAL_RAT_STALLS.SLOW_LEA_WINDOW/CPU_CLK_UNHALTED.THREAD

Threshold: Investigate if-
Flags Merge Stalls > .05
LEA Stalls > .05

Long-latency instructions cause the Back-end to refuse instructions from the
front-end (allocation stalls).

39



Back-End Bound
Bonus Issue: Memory Bandwidth
Limitations

® Why: Bandwidth bottlenecks increase the latency at which
cache misses are serviced

® How: Bandwidth Profile
® What Now:

® Compute the maximum theoretical memory bandwidth per socket
for your platform in GB/s: (<MT/s> * 8 Bytes/clock * <num
channels>) / 1000

® Run bandwidth analysis on your application. If total bandwidth
per socket is > 75% of the maximum theoretical bandwidth, your
application may be experiencing loaded (higher) latencies

® If appropriate, make system tuning adjustments (upgrading /
balancing DIMMs, disabling HW prefetchers)

® Reduce bandwidth usage if possible: remove ineffective SW
prefetches, make algorithmic changes to reduce data
storage/sharing, reduce data updates, and balance memory access
across sockets

Software and Services Group ‘ i nte | )
40

Max theoretical bandwidth, per socket, for Xeon E5 processor
family: 51.2GB/s with 4 memory channels, 38.4 GB/s with 3
memory channels

40



Bandwidth Analysis

A4 C:\Users \sgcepeda\Documents\Amplifier\ Projects\matrix - Intel VTune

Back-End Bou

Resd Bandwicth, GBjfsec  ~ _ Bandwidth, GBjsec

il

Grouping: [Function / Call Stack.

r
View both total and read memory
bandwidth per socket, over time.

SExfAcqurePushLockExchisive.
SeAccessCheck WRhHIt

L

KeSetTimer
KeSynchronizeExecution
PsGetCurentThreadWin32Thresd
KeUpdateRunTime
KeRemoveQueueEx
ExfAcqurePushLockExchusive
SeAccessCheckWihHINt

41



Retiring

Microcode Assists

® Why: Assists from the microcode sequencer can have long
latency penalties.

® How: General Exploration Profile, Metric: Assists
¢ What Now:

® If this metric is highlighted for your hotspot, re-sample using the
additional assist events to determine the cause.

® If FP_ASSISTS.ANY / INST_RETIRED.ANY is significant, check for
denormals. To fix enable FTZ and/or DAZ if using SSE/AVX
instructions or scale your results up or down depending on the
problem

o If ((OTHER_ASSISTS.AVX_TO_SSE_NP*75) /
CPU_CLK_UNHALTED.THREAD) or
((OTHER_ASSISTS.SSE_TO_AVX_NP*75) /
CPU_CLK_UNHALTED.THREAD) is greater than .1, reduce transitions
between SSE and AVX code

42

Software and Services Group ‘ i nte | )

Formula:
Assist % = IDQ.MS_CYCLES / CPU_CLK_UNHALTED.THREAD

Threshold: Investigate if -
Assist Cost = .05

There are many instructions that can cause assists when there is no
performance problem. If you see MS_CYCLES it doesn’t necessarily mean
there is an issue, but whenever you do see a significant amount of
MS_CYCLES, check the other metrics to see if it's one of the problems we
mention.

42



Bad Speculation

Branch Mispredicts

® Why: Mispredicted branches cause pipeline inefficiencies due to
wasted work or instruction starvation (while waiting for new
instructions to be fetched)

® How: General Exploration Profile, Metric: Branch Mispredict
¢ What Now:

® [f this metric is highlighted for your hotspot try to reduce
misprediction impact:

® Use compiler options or profile-guided optimization (PGO) to
improve code generation

® Apply hand-tuning by doing things like hoisting the most popular
targets in branch statements.

Software and Services Group ‘ i nte | )

43

Formula:

Mispredicted branch cost: (20* BR_MISP_RETIRED.ALL_BRANCHES_PS)/
CPU_CLK_UNHALTED.THREAD

Threshold: Investigate if -
Cost is = .2

Note that all applications will have some branch mispredicts - it is not the
number of mispredicts that is the problem but the impact.

To do hand-tuning, you need to locate the branch causing the mispredicts.
This can be difficult to track down due to the fact that this event will normally
tag to the first instruction in the correct path that the branch takes.



Bad Speculation

Machine Clears

® Why: Machine clears cause the pipeline to be flushed and the
store buffers emptied, resulting in a significant latency penalty.

® How: General Exploration Profile, Metric: Machine Clears
® Now What:

® If this metric is highlighted for your hotspot try to determine the
cause using the specific events:

® If MACHINE_CLEARS.MEMORY_ORDERING is significant, investigate
at the sourcecode level. This could be caused by 4K aliasing conflicts
or contention on a lock (both previous issues).

e If MACHINE_CLEARS.SMC is significant, the clears are being caused
by self-modifying code, which should be avoided.

Software and Services Group ‘ i nte | )
44

Formula:

Machine Clear cost: ((MACHINE_CLEARS.MEMORY_ORDERING +
MACHINE_CLEARS.SMC + MACHINE_CLEARS.MASKMOV ) * 100 )/
CPU_CLK_UNHALTED.THREAD

Threshold: Investigate if -
Cost is = .02

Machine clears are generally caused by either contention on a lock, or failed
memory disambiguation from 4k aliasing (both earlier issues). The other
potential cause is self-modifying code (SMC).



Front-End Bound

Front-end Stalls

® Why: Front-end stalls (at the Issue stage of the pipeline) can
cause instruction starvation, which may lead to stalls at the
execute stage in the pipeline.

® How: General Exploration profile, Metrics: Front-end Bound
Pipeline Slots: ITLB Overhead, ICache Misses, DSB to Mite Switch
Cost

¢ What Now:

® If this metric is highlighted for your hotspot, try using better code
layout and generation techniques:

— Try using profile-guided optimizations (PGO) with your compiler

— Use linker ordering techniques (/ORDER on Microsoft’s linker or
a linker script on gcc)

— Use switches that reduce code size, such as /O1 or /Os

Software and Services Group ‘ i nte | )

45

Formula:
IDQ_UOPS_NOT_DELIVERED.CORE / (CPU_CLK_UNHALTED.THREAD * 4 )

Threshold: Investigate if -
Front-End Bounc uOps = .15

Assists or excessive Branch Mispredicts, all on previous slides, could be the
reason for front-end issues, so check for and resolve those problems first.
This issue may also be caused by instruction cache misses (on server apps),
which are generally fixed by better code layout.



Good Luck!
For more information:

VTune User Forums:
http://software.intel.com/en-us/forums/
intel-vtune-amplifier-xe-and-vtune-performance-analyzer

VTune Amplifier XE Videos:
http://software.intel.com/en-us/articles/intel-vtune-amplifier-xe/

Intel® 64 and IA-32 Architecture Software Developer’s Manuals:
hitp://www.intel.com/products/processor/manuals/index.htm

Optimization Guide for Intel® Microarchitecture Code name Nehalem:
hitp://software.intel.com/file/15529

Optimization Guide for Intel® Microarchitecture Code name Sandy Bridge:

http://software.intel.com/en-us/articles/using-intel-vtune-amplifier
-xe-to-tune-software-on-the-2nd-generation-intel-core-processor-family/

For optimization of the integrated graphics controller on
Intel® Microarchitecture Codename Sandy Bridge:

www.intel.com/software/gpa

Software and Services Group ‘ i nte | )

46

46






