Intel® Xeon Phi™ Coprocessor DEVELOPER'S QUICK START GUIDE FOR WINDOWS* HOST

intel.

White Paper

Intel Xeon Phi Coprocessor
DeVELOPER'S QUICK START GUIDE FOR WINDOWS™* HOST

Version 1.1

Intel® Xeon Phi™ Coprocessor DEVELOPER'S QUICK START GUIDE FOR WINDOWS* HOST

Contents
Introduction 4
Goals 4
This document does: 4
This document does not: 4
Terminology 4
System Configuration 5
Intel Xeon Phi Software 6
Intel Many Integrated Core Architecture Overview 8
Administrative Tasks 9
Preparing Your System for First Use 9
Steps to install the driver and start the coprocessor 9
Steps to install the Software Development tools 14
Regaining Access to the Intel Xeon Phi Coprocessor after Reboot 15
Restarting the Intel Xeon Phi Coprocessor if it Hangs 16
Working directly with the uOS Environment Intel Xeon Phi Coprocessor 16
Host File System Share 20
Useful Administrative Tools 21
Getting Started/Developing Intel Xeon Phi Coprocessor Software 22
Available SW development Tools / Environments 22
Development Environment: Available Compilers and Libraries 22
Development Environment: Available Tools 22
General Development Information 23
Development Environment Setup 23
Documentation and Sample Code 23
Build-Related Information 24
Compiler Switches 24
Debugging Offload Activity During Runtime 24
Using the Offload Compiler - Explicit Memory Copy Model 25
Reduction 25
Creating the Offload Version 26
Asynchronous Offload and Data Transfer 27
Using the Offload Compiler - Implicit Memory Copy Model 27
Native Compilation 27
Parallel Programming Options on the Intel Xeon Phi coprocessor 28

Intel® Xeon Phi™ Coprocessor DEVELOPER'S QUICK START GUIDE FOR WINDOWS* HOST

Parallel Programming on the Intel Xeon Phi coprocessor: OpenMP*

Parallel Programming on the Intel Xeon Phi coprocessor: OpenMP* + Intel Cilk Plus Extended Array
Notation

Parallel Programming on the Intel Xeon Phi coprocessor: Intel Cilk Plus

Parallel Programming on Intel Xeon Phi coprocessor: Intel TBB

Using Intel MKL

SGEMM Sample

Intel MKL Automatic Offload Model

Debugging on the Intel Xeon Phi coprocessor

Performance Analysis on the Intel Xeon Phi coprocessor

Appendix A: Basic Linux Commands

About the Author

Notices

Optimization Notice

29

29
30
31
33
33
34
35
35
36
38
39
40

Intel® Xeon Phi™ Coprocessor DEVELOPER'S QUICK START GUIDE FOR WINDOWS* HOST

Introduction

This document will help developers get started writing code and running applications on a system running
Microsoft* Windows that includes the Intel® Xeon Phi™ coprocessor based on the Intel® Many Integrated Core
Architecture (Intel® MIC Architecture). It describes the available tools and includes simple examples to show
how to get C/C++ and Fortran-based programs up and running. For now, the developer will have to cut/paste
the examples provided in the document to their system.

Note that there is a public document “Intel Xeon Phi Coprocessor Developer’s Quick Start Guide” at
http://software.intel.com/mic-developer under the “Overview” tab which is the official document for use with
host systems running Linux*; this document is for a restricted list of customers who are early testers for
Windows on the host. Most documents pertaining to early access and programming can be found here;
http://software.intel.com/en-us/articles/windows-early-enabling-for-intelr-xeon-phitm-coprocessor.

Goals

This document does:

1. Walk you through the system registration and Intel® MPSS installation.

2. Introduce the build environment for Intel MIC Architecture software.

3. Give an example of how to write code for Intel Xeon Phi coprocessor and build using Intel® Composer
XE 2013 SP1for Windows.

4. Demonstrate the use of Intel libraries like the Intel®* Math Kernel Library (Intel® MKL).

5. Point you to information on how to debug and profile programs running on an Intel Xeon Phi
COprocessor.

6. Share some best known methods (BKMs) developed by users at Intel.

This document does not:
1. Cover each tool in detail. Please refer to the user guides for the individual tools.
2. Provide in-depth training.

Terminology

Host - The Intel® Xeon® platform containing the Intel Xeon Phi coprocessor installed in a PCle* slot. The
operating systems (0S) supported and validated on the host are: Windows 7 Enterprise SP1 (64-bit), Windows
8 Enterprise (64-bit), Windows Server 2008 R2 SP1 (64-bit), Windows Server 2012 (64-bit)

Target - The Intel Xeon Phi coprocessor and corresponding runtime environment installed inside the
COprocessor.

u0S - Micro Operating System - the Linux-based operating system and tools running on the Intel Xeon Phi
COprocessor.
ISA - Instruction Set Architecture - part of the computer architecture related to programming, including the

native data types, instructions, registers, addressing modes, memory architecture, interrupt and exception
handling, and external I/0 (Input/Output).’

1 Intel acronyms dictionary, 8/6/2009, http://library.intel.com/Dictionary/Details.aspx?id=5600

http://software.intel.com/mic-developer
http://software.intel.com/en-us/articles/windows-early-enabling-for-intelr-xeon-phitm-coprocessor

Intel® Xeon Phi™ Coprocessor DEVELOPER'S QUICK START GUIDE FOR WINDOWS* HOST

VPU - Vector Processing Unit- the portion of a CPU responsible for the execution of SIMD (single instruction,
multiple data) instructions.

NAcc - Native Acceleration - a mode or form of Intel MKL in which the data being processed and the MKL
function processing the data reside on the Intel Xeon Phi coprocessor.

Offload Compilers - The Intel® C/C++ Compiler XE 14.0 for Windows and Intel® Visual Fortran Compiler XE 14.0
for Windows compilers, which can generate binaries for both the host system and the Intel Xeon Phi
coprocessor. The offload compilers can generate binaries that will run only on the host, only on the Intel Xeon
Phi coprocessor, or paired binaries that run on both the host and the Intel Xeon Phi coprocessor and
communicate with each other.

SDP - Software Development Platform - the combination of the host platform and the Intel Xeon Phi
COprocessor.

KNC - an abbreviation for Intel Xeon Phi Coprocessor (codename: Knights Corner), the first Intel Xeon Phi
product.

Intel®* MPSS - Intel® Manycore Platform Software Stack - the user- and system-level software that allows
programs to run on and communicate with the Intel Xeon Phi coprocessor.

SCIF - Symmetric Communications Interface - the mechanism for inter-node communication within a single
platform, where a node is a Intel Xeon Phi coprocessor or an Intel Xeon processor-based host processor
complex. In particular, SCIF abstracts the details of communicating over the PCle bus (and controlling related
Intel Xeon Phi coprocessor hardware) while providing an API that is symmetric between all types of nodes

System Configuration

We tested these instructions on an Intel-Software Development Platform consisting of an Intel Workstation
containing two Intel Xeon processors, one or two Intel Xeon Phi coprocessors attached to a PCle* x16 bus,
and a GPU for graphics display. A list of systems supporting Intel Xeon Phi coprocessors can be found here:
http://software.intel.com/en-us/articles/which-systems-support-the-intel-xeon-phi-coprocessor.

http://software.intel.com/en-us/articles/which-systems-support-the-intel-xeon-phi-coprocessor

Intel® Xeon Phi™ Coprocessor DEVELOPER'S QUICK START GUIDE FOR WINDOWS* HOST

Intel Xeon Phi Software

Windows* Host

level driver, user-

accessible APIs and

Intel® Xeon Phi™ coprocessor

Offload libraries, user-
-accessible APis and
libraries

Standard OS libraries
plus any s'gparty or
intel libraries

f User-level code

J System-level code

Intel® Xeon Phi™ coprocessor
communication and application-launching
support

Intel® Xeon Phi™ coprocessor support
Hibraries, tools and drivers

ey

Figure 1: Software Stack

The Intel Xeon Phi coprocessor software stack consists of layered software architecture as noted below and
depicted in Figure 1.

Driver Stack:
The Windows software for the Intel Xeon Phi coprocessor consists of a number of components:

e Device Driver: At the bottom of the software stack in kernel space is the Intel Xeon Phi coprocessor
device driver. The device driver is responsible for managing device initialization and communication
between the host and target devices.

e Libraries: The libraries live on top of the device driver in user and system space. The libraries provide basic
card management capabilities such as enumeration of cards in a system, buffer management, and host-to-
card communication. The libraries also provide higher-level functionality such as loading and unloading the
user executable onto the Intel Xeon Phi coprocessor, invoking functions from the executable on the card,
and providing a two-way notification mechanism between host and card. The libraries are responsible for
buffer management and communication over the PCle* bus.

e Tools: Various tools that help maintain the software stack. Examples include <MPSS-install-dir>
\bin\MicInfo.exe for querying system information, <MPSS-install-dir>\bin\MicFlash.
exe for updating the card's flash, <MPSS-install-dir>\bin\micctrl.exe to help administrators

Intel® Xeon Phi™ Coprocessor DEVELOPER'S QUICK START GUIDE FOR WINDOWS* HOST

configure the card, <MPSS-install-dir>\bin\micsmc.exe to monitor platform status, <MpSS-
install-dir>\bin\micras.exe to collect and log RAS events, where <MPSS-install-dir>
iSs “c:\Program Files\Intel\MPSS” by default.

e (ard OS (uOS): The Linux-based operating system running on the Intel Xeon Phi coprocessor.

NOTE: Linux source for relatively recent versions of the u0S, the device driver, and the low-level SCIF library
interface can be found at http://software.intel.com/en-us/articles/intel-manycore-platform-software-stack-
mpss. Some of the other low level interfaces (COI, MYQ) are used only by Intel tools and are currently
available for general use. These low level interfaces may be deprecated or exposed in the future.

http://software.intel.com/en-us/articles/intel-manycore-platform-software-stack-mpss
http://software.intel.com/en-us/articles/intel-manycore-platform-software-stack-mpss

Intel® Xeon Phi™ Coprocessor DEVELOPER'S QUICK START GUIDE FOR WINDOWS* HOST

Intel Many Integrated Core Architecture Overview

The Intel Xeon Phi coprocessor has more than 50 in-order Intel MIC Architecture processor cores running at
1GHz (up to 1.3GHz). The Intel MIC Architecture is based on the x86 ISA, extended with 64-bit addressing and
new 512-bit wide SIMD vector instructions and registers. Each core supports 4 hardware threads. In addition
to the cores, there are multiple on-die memory controllers and other components.

Instruction Decode
Vector
Unit
—
Scalar Vector
Registers Registers

32K L1 I-cache
32K L1 D-cache

512K L2 Cache

!

Figure 2; Architecture overview of an Intel MIC Architecture core

Each core includes a newly-designed Vector Processing Unit (VPU). Each vector unit contains 32 512-bit
vector registers. To support the new vector processing model, a new 512-bit SIMD ISA was introduced.

The VPU is a key feature of the Intel MIC Architecture-based cores. Fully utilizing the vector unit is critical for
the best Intel Xeon Phi coprocessor performance. It is important to note that Intel MIC Architecture cores do
not support other SIMD ISAs (such as MMX™, Intel® SSE, or Intel® AVX).

Each core has a 32KB L1 data cache, a 32KB L1 instruction cache, and a 512KB L2 cache. The L2 caches of all
cores are interconnected with each other and the memory controllers via a bidirectional ring bus, effectively
creating a shared last-level cache of up to 32MB. The design of each core includes a short in-order pipeline.
There is no latency in executing scalar operations and low latency in executing vector operations. Due to the
short in-order pipeline, the overhead for branch misprediction is low.

For more details on the machine architecture, please refer to the Intel Xeon Phi Coprocessor Software
Developers Guide posted at http://software.intel.com/mic-developer under “Tools & Downloads” or
“Programming” tabs.

http://software.intel.com/mic-developer

Intel® Xeon Phi™ Coprocessor DEVELOPER'S QUICK START GUIDE FOR WINDOWS* HOST

Administrative Tasks

Details on obtaining drivers and beta software development licenses are available here:
http://software.intel.com/en-us/articles/beta-windows-enabled-drivers-and-development-tools-for-intelr-
xeon-phitm-coprocessor.

A Composer XE 2013 SP1 serial number is provided to you as a result of registering from the URL:
http://software.intel.com/en-us/articles/intelr-composer-xe-2013-beta-registration-for-intelr-xeon-phitm-
coprocessor

Note that you will need to acquire your own copy and license of VTune Amplifier XE 2013 for Windows
(Update 5 or later).

Refer to http://software.intel.com/en-us/articles/windows-early-enabling-for-intelr-xeon-phitm-coprocessor
for step-by-step instructions on submitting Intel® Premier Support issues.

Preparing Your System for First Use

Steps to install the driver and start the coprocessor
1. Before you can download drivers and Beta compilers, you will need to reqister for access to the
compilers
2. Download the “Readme file for the Intel MPSS release”, from http://software.intel.com/en-
us/articles/beta-windows-enabled-drivers-and-development-tools-for-intelr-xeon-phitm-coprocessor
(look for and download Readme and Release Notes).
3. Install one of the following supported Operating Systems:
e Microsoft* Windows 7 Enterprise SP1 (64-bit),
e Microsoft* Windows 8 Enterprise (64-bit)
e Microsoft* Windows Server 2008 R2 SP1 (64-bit)
e Microsoft* Windows Server 2012 (64-bit)

4. Login as "administrator”
5. Install NET Framework 4.0 or higher on the system (http://www.microsoft.com/net/download) Be
sure to install PUTTY* and PuTTYgen*, which is used to log in to the card’s uOS (see later)

6. Execute the following sequence in a command window (select Run as Administrator)
prompt> bcdedit -set loadoptions DISABLE INTEGRITY CHECKS
prompt> bcdedit -set TESTSIGNING ON

7. Restart the system.

8. Download the drivers package mpss beta-2.1.*-windows.zip for your Windows operating
system.

9. Unzip the zip file to get the Windows Installer file (Intel Xeon Phi.msi).

10. Install the Windows Installer file “Intel Xeon Phi.msi” as detailed in section 1 of the Readme file. Note
that if a previous version of the Intel Xeon Phi stack is already installed, use Windows Control Panel to

http://software.intel.com/en-us/articles/beta-windows-enabled-drivers-and-development-tools-for-intelr-xeon-phitm-coprocessor
http://software.intel.com/en-us/articles/beta-windows-enabled-drivers-and-development-tools-for-intelr-xeon-phitm-coprocessor
http://software.intel.com/en-us/articles/intelr-composer-xe-2013-beta-registration-for-intelr-xeon-phitm-coprocessor
http://software.intel.com/en-us/articles/intelr-composer-xe-2013-beta-registration-for-intelr-xeon-phitm-coprocessor
http://software.intel.com/en-us/intel-vtune-amplifier-xe
http://software.intel.com/en-us/articles/windows-early-enabling-for-intelr-xeon-phitm-coprocessor
http://software.intel.com/en-us/articles/intelr-composer-xe-2013-beta-registration-for-intelr-xeon-phitm-coprocessor
http://software.intel.com/en-us/articles/intelr-composer-xe-2013-beta-registration-for-intelr-xeon-phitm-coprocessor
http://software.intel.com/en-us/articles/beta-windows-enabled-drivers-and-development-tools-for-intelr-xeon-phitm-coprocessor
http://software.intel.com/en-us/articles/beta-windows-enabled-drivers-and-development-tools-for-intelr-xeon-phitm-coprocessor
http://www.microsoft.com/net/download
http://software.intel.com/en-us/articles/beta-windows-enabled-drivers-and-development-tools-for-intelr-xeon-phitm-coprocesso

Intel® Xeon Phi™ Coprocessor DEVELOPER'S QUICK START GUIDE FOR WINDOWS* HOST

uninstall it prior to installing the current version. Confirm the new Intel MPSS stack is successfully
installed by looking at Control Panel -> Program and Features: Intel Xeon Phi (see illustrations that
follows). By default, Intel MPSS is installed in “c:\Program Files\Intel\MPSS”. Select “Always
trust software from Intel® VPG MIC" check box during the installation.

Programs and Features !E

‘;(= D ~ Control Panel ~ All Control Panel Items ~ Programs and Features I Search Programs and Features

Control Panel Home Uninstall or change a program

View installed updates To uninstall a program, select it from the lisk and then click Uninstall, Change, or Repair.

¥y Turn Windows features on or off

Organize - = -
Mame = | -| Fublisher | -| Inskall... | v| Size | v| \er: &
“B¥ 4 dobe Reader #1(11.0.02) adobe Systems Incorporated 312013 126 MB 111
‘AVG Safecuard toolbar AYG Technologies 2/7jz013 14,1
Crystal Reports Basic For Yisual Studio 2008 Business Objects 1z/14/z012 173ME 10.!
B Crystal Reports Basic Runtime For Yisual Studio 2008 (x64) Business Objects 12]14/2012 64.6 ME 10.!
@ Google Chrome Google Inc, 1/18[2013 25,1
Elntel Composer ¥E 2013 SP1 Pre-Release (Alpha) For Windows* Intel Corporation afjeola 39066 201
B8 Intel(R) Network Connections 16.7.166.0 Intel 1z)5/z012 15.3MB 16,
ﬂlntel(R} seon PR(TM) Intel Corporation 3f1jzo13 MEME 2.1
8 Matrox Graphics Software (remove only) izlalzoiz
&t Microsoft \MET Compact Framework 2.0 5PZ Microsoft Corporation 1z/14f2012 93.2ME 2.0
FEt Microsoft \WET Compact Framework 3.5 Micrasaft Corporation 12[14f2012 81.5ME 3.5
" Micrasoft \WET Framewark 4 Mulki-Targeting Pack. Micrasoft Corporation 1z2)15/2012 63.4ME 4.0
Microsoft Corporation 1z)5/z012 36.6ME 4.5
= Microsoft Device Emulator (64 bit) wersion 3.0 - ENU Micrasaft Corporation 12/14f2012 Z,29ME 9.0
ﬁlMicrosoft Diocumnent Explarer 2008 Micrasoft Corporation 1z/14/z012
ﬁlMi[rnsnft Help Wiewer 1.0 Microsoft Corporation 121512012 397 ME 1.0
& Microsoft OFfice Professional Plus 2010 Micrasaft Corporation 12/14f2012 14,1
[Microsoft SQL Server 2005 Micrasoft Corporation 1z/14/z012 L |
[0 Microsoft SQL Server 2008 RZ Management Objects Microsoft Corporation 121512012 15.1ME 10.!
I 'j\Mlcrosoft SOL Server Compact 3.5 for Devices ENU Micrasaft Corporation 12[14f2012 46,.0ME 3.5
['j\Microsoft SOL Server Compact 3.5 SP1 Design Tools English Micrasoft Corporation 1z/14f2012 8.62ME 3.5
[Microsaft SQL Server Compact 3.5 5P1 English Microsaft Carporation 12}14}2012 Z59ME 3.5
ﬂMlcrosoft SOL Server Database Publishing Wizard 1.3 Micrasaft Corporation 12[14f2012 10,3ME 104
[Microsoft SQL Server Mative Client Micrasoft Corporation 1z/14f2012 S.TOME 9.0
[Microsoft SQL Server Setup Support Files (English) Microsoft Corporation 12]14/2012 Z0.6ME 9.00
(3 Microsoft SOL Server System CLR Types Micrasaft Corporation 12/18f2012 252 ME 10!
[Microsaft SQL Server Y55 Writer Micrasoft Corporation 1z/14f2012 1.10ME Q.00
B Microsoft Yisual C++ 2008 Redistributable - x&6 9.0.30729.4... Microsoft Corporation 121512012 S99KE 9.0
m | Microsoft Wisual C++ 2010 %86 Runtime - 10,0,30319 Micrasaft Corporation 12/15f2012 Z5.9ME 104
PR T PP [P TION P_T Yoo Y JURR S [N TR S AT] X TP T R £ EETER Pt T i
iL ! of

- Currently installed programs Total size: 5.90 GB
} 46 programs installed

Figure 3: Intel MPSS is installed as shown in “Program and Features” Panel

11. Update the flash according to section 3 of the Readme-windows.pdf file.

12. Reboot the system.

13. Login to the host and verify that the Intel Xeon Phi coprocessors are detected by the Device Manager
(Control Panel -> Device Manager, and click on “System devices"):

Intel® Xeon Phi™ Coprocessor DEVELOPER'S QUICK START GUIDE FOR WINDOWS* HOST

Device Manager

Eile Acktion Vew Help
e ANesl) 7 B
=M System devices ;I
4 ACPI Fixed Feature Buttan
4 ACPI Module Device
4 ACPT Moduls Device
d Composite Bus Enumerator
d Direct memory access controller
i High precision event timer
i| InteliR) 82801 PCI Bridge - 244E
A InkeliR) 52802 Firmware Hub Device
A Intel{R) CAO00/%73 series chipset High Definition Audio Cantraller - 1020
d Inkel{R) CRO0/%79 series chipset LPC Controller - 1041
d Intel{R) CA00/%79 series chipset PCI Express Root Part 1 - 1010
d Intel{R) CA00/%79 series chipset PCI Express Rook Port 6 - 1014
i InkeliR) CRO0/%79 series chipset PCI Express Rook Port 7 - 1D1C
d InteliR) CA00/%79 series chipset PCT Express Rook Port & - 1D1E
d InkeliR) CRO00/%79 series chipset PCI Express Yirtual Rook Port - 1D3E
1M Intel(R) C600/%79 series chipset SMBus Controller O - 1070

i Intel{R) CA00/x79 series chipset SMEus Host Controller - 1022

4 Intel{R) ®eon PhilTM)
d Intel{R) ®eoniR) Processor ES Product Family/Core i7 Address Map, WTd_Misc, System Management - 3025
4 InkeliR) ¥eoniR) Processor ES Product Family/Core i7 Address Map, ¥Td_Misc, System Management - 3C28
d IntellR) ®eon{R) Processor ES Product Family/Core i7 Contral Status and Global Errors - 3C24
d Intel{R) ®eoniR) Processor ES Product Family/Core i7 Control Status and Global Errors - 3024
i IntelfR) ®eon{R) Processor ES Product Family/Core i7 DDRIO - 3CBS
d Intel{R) ®eoniR) Processor ES Product Family/Core i7 DDRIO - 3CES
i InkeliR) ¥eoniR) Processor ES Product Family/Core i7 DMA Channel 1 - 3C21
i Intel{R) meon{R) Processor ES Product Family/Core i7 DMA Channel 5 - 3C25
i Inkel{R) XeoniR) Processor ES Produck FamilyfCore i7 DMA Channel 1 - 3C21
i IntelfR) meon{R) Processor ES Product Family/Core i7 DMA Channel 5 - 3225
K| IntelfR) xeoniR) Processor ES Product Familv/Core i7 DMA Channel 2 - 3C22 LI

Figure 4: Intel(R) Xeon Phi(TM) is detected by “Device Manager”

Also, verify that Intel MPSS is a Windows service (Control Panel -> System and Security ->
Administration Tools ->Services):

Intel® Xeon Phi™ Coprocessor DEVELOPER'S QUICK START GUIDE FOR WINDOWS* HOST

=3 - (O]]
File Action Wiew Help
N EE »rE D
+, Services (Lacal) £} Services (Local)

Select anitem to view its description, Name =+ | Description | status | Startup Type [togonas |]

£ Distributed Link. Tracking Client Maintains lnks be... Started Automatic Local System

& Distributed Transaction Coordin,,, Coordinates tran,., Started Aukomatic (D, Network 5.,

‘£.DNS Client The DNS Client ... Started Automatic Netwark 5.

ChEncrypting File System (EFS) Provides the cor... Manual Local System

“£xExtensible Authentication Protocal The Extensible &... Manual Local System

‘ELFLE¥net Licensing Service This service perf... Manual Lacal System

LE%net Licensing Service 64 This service perf... Manual Local System

‘£xFunction Discovery Pravider Host The FDPHOST se... Manual Local Sarvice

© L Function Discovery Resource P.., Publishes this co.., Manual Local Service

£ Google Update Service {gupdate) Keeps your Goog, .. Automatic {D... Local System

‘£ Google Update Service (qupdat... Keeps your Goog... anual Lacal System

& Group Policy Client The service is res... Started Automatic Local System

ealth Key and Certificate Man... Provides X.509c... Manual Lacal System

£ Human Interface Device Access Enables generic i... Manual Local System

ELIKE and AuthIP IPsec Keying M., The IKEEXT servi.. Started Automatic Local System

‘£ InkeliR) PROSet Monitoring Ser... The Intel(R) PRO.., Started Automatic Lacal System

CrInteliR) ¥eon PRI(TM) coprocessar Ackivates the Int,., Manual Lacal System

L Inkeractive Services Detection Enables user noti.,, Maral Local System

‘£ Inkernet Connection Sharing (ICS) Provides netwark. ., Disabled Lacal System

Helper Provides tunnel c... Started Aukomatic Local Syskem

£ IPsec Policy Agent Internet Protocol.., Started Manual Network. 5.,

‘LhKemRm For Distributed Transacti... Coordinates tran... Manual Network 5.

‘Selink-Layer Topology Discovery ... Creates a Netwo, ., Manual Local Service

“£:Microsoft \MET Framework NGE... Microsoft MET Fr... Disabled Local System
‘£ Microsoft \MET Framework MGE... Microsoft MET Fr... Disabled Local System LI

Extended A Standard 7
|

Figure 5: Intel MPSS is shown in “Services” and it is not started yet

14. Start the Intel Xeon Phi coprocessor (while you can set up the card to start with the host system, it
will not do so by default). Launch a command prompt windows and start Intel MPSS stack:

prompt> micctrl --start

15. Run the command “micinfo” to verify thatitis set up properly:

prompt> micinfo.exe

Intel® Xeon Phi™ Coprocessor DEVELOPER'S QUICK START GUIDE FOR WINDOWS* HOST

Administrator: Command Prompt

C:\UsershAdministrator>nicinfo.exe

MicInfo.exe
Uepsion: 6720-12

Copyright 2011-2013 Intel Corporation All Rights Reserved.

MicInfo Utility Log
Created Thu Hay B2 Iﬁ 00:47 2013

Systen Info
Host 08
0% Uersion
Driver U
MPSS U on
Host Physical Memory

a,

rsion

Device No: Device Mame:
Uersion

Flash Version

u08 Uersion

Device Serial Number

Board

Uendor ID
Device ID
Subsysten ID
Coprocessor Stepping 1D
PCle Width
PCle Speed
PCle Max payload size
PCle Max read req size
Coprocessor Model

r Model Ext
Coprocessor Type
Goprocessor Family
GCoprocessor Family Ext
GCoprocessor Stepping
Board SKU
ECC Mode
SMC HW Rewision

Core
Total No of Active Cores :
Uoltage
Frequency

Thermal
Fan Speed Control
SMC Firmware Uersion
FSC Strap
Fan RPM
Fan PUM
Die Temp

GDDR
GDDR Vendor
GDDR Version
GDDR Dengity
GDDR Size
GDDR Technology
GDDR Speed
GDDR Frequency
GDDR Uoltage

: Windows Server 2008 R2 x64
: Microsoft Windouws
1 2.1.6720.12

1 2.1.6720.12

: 51496 MB

Intel{R> Heon Phi{IM) Goprocessor

6.1.7601.2

1 2.1.81.8372
1 2.6.38.8-g5F2543d
¢ NotAvailahle

: 8686

@ 225¢

: 25688

H |

: xlb

: b Gl/s

: 256 hytes

: 4896 hytes

H:

H

1 Bx88

: Bx@h

H]

H

: ES2-P/A/sK 1758
: Enabled

¢ Peoduct 386Y Active C§

61

: 1051008 ul
1 1898989 kHz

: 2750808 kHz
: 1561068 wl

Figure 6: Output of the command “micinfo.exe”

e \Verify that the driver version is 2.1.*
e \erify that the Intel MPSS version is 2.1.*
e Verify that the Flash Version is 2.1.*.*

16. Install “Binutils”, the binary utilities for the Intel Xeon® Phi™ coprocessor native compiler, as detailed in
section 2.2.5 of the Readme file.

We can check the Windows Services to verify that the Intel MPSS service is started:

Intel® Xeon Phi™ Coprocessor DEVELOPER'S QUICK START GUIDE FOR WINDOWS* HOST

'q, Services =] 3
File Action Yiew Help
S EEEI R
", Services {Local) q Services {Local)
Select an item bo view its description, Mame = | Drescription | Stakus | Startup Type | Log On As :I
. Function Discovery Provider Host The FDPHOST service h... Manual Local Service
& Function Discovery Resource Publicat,,. Publishes this computer ... Manual Local Service
L1 Google Update Service {gupdate) Keeps your Google soft. .. Automatic (D... Local System
£ Google Update Service (gupdatem) Keeps your Google saft... Manual Lacal System
Lk Group Policy Clisnk The service is respansibl... Started Automatic Lacal System
L Health Key and Certificate Management Provides X.509 certificat. .. Mariual Local System
£ Human Interface Device Access Enables generic input ac... Manual Local System
ELIKE and AuthIP IPsec Keying Modules The IKEEXT setvice hast.., Started Automatic Lacal System
£ Intel(R) PROSet Monitaring Service The Intel{R) PROSet Ma,.. Started Autarnatic Lacal System
LhInteliR) ®eon Phi{TM) copracessor Activates the Intel(R) ®... Started Manual Local System
Sl Interactive Services Detection Enables user notification, ., Manual Local System
LhInternet Connection Sharing (ICS) Provides netwark addre... Disabled Lacal System
S5 1P Helper Provides tunnel connecti,., Started Automatic Local System
LhIPsec Policy Agent Internet Protocol securit,,, Started TManual Metwork Service
ZhktmRm For Distributed Transaction Co,.. Coordinates transaction... Mariual Network Service
Lhlink-Layer Topology Discovery Mapper Creates a Metwork Map, ... Manual Local Service
S Microsaft MET Framework NGEM v2.... Microsaft JNET Framewo, .. Disabled Local System
S Micrasaft MET Framework NGEM v2.... Microsaft JMET Framewa, .. Disabled Local System
S Microsoft JMET Framework NGEN v4.... Microsoft JMET Framewo, .. Automatic (D.,, Local System
ShMicrosoft MET Framework NGEM v4.... Microsaft JMET Framewo, .. Automatic (D... Local System
L1 Microsaft Fibre Channel Platform Regi... Redisters the platform w... Manual Lacal Service
£ Microsaft iSCSI Initiator Service Manages Internet SCSI ... Manual Lacal System
Sk Microsoft SharePoint Workspace Audi.,. Manual Local Service
EhMicrosoft Software Shadow Copy Pro,.. Manages software-base... Manual Local System >
il o
Extended A Standard /
| |

Figure 7: Intel MPSS was started as shown in “Services” panel

Steps to install the Software Development tools

As mentioned before, you will need to register for access to use the early builds of the Beta Intel®
[C++|Fortran] Composer XE 2013 SP1 for Windows package (debugger, MKL, etc. all included).

After registering at this URL, you can download the product and you will receive an email containing the tool
serial number (and a license file) for the Beta Intel [C++|Fortran] Composer XE 2013 SP1 for Windows package.

Should you need access to analysis tools to look for performance bottlenecks, you will need to acquire a copy
of Intel® VTune Amplifier X€ 2013 for Windows Update 5.

e If you use the Intel C++ Composer XE 2013 SP1 Beta for Windows or the Intel Visual Fortran
Composer XE 2013 SP1 Beta for Windows, read the corresponding readme file to install
these packages.

e For first time installations, be sure to get the product license number provided to you at
registration, as it is required to activate the product, and then provide the license number
during installation. Subsequent installations can select the “Use existing license” option.

e Read the readme file carefully.

e Double click on the executable file ((EXE) to begin installation. You don't need to uninstall
previous versions or updates before installing a newer version of Composers. The new
version can update the existing version or coexist with the older versions.

http://software.intel.com/en-us/articles/intelr-composer-xe-2013-beta-registration-for-intelr-xeon-phitm-coprocessor

1.

Intel® Xeon Phi™ Coprocessor DEVELOPER'S QUICK START GUIDE FOR WINDOWS* HOST

Install the software tools.

Verify that the card is working by running a sample program (located in <install-

dir>\Samples\en_US\C++\mic_samples or <install-dir>\Samples\en_US\Fortran\mic_samples) with

“set OFFLOAD REPORT=3"to display the dialog between the Host and Intel Xeon Phi coprocessor

(messages from the processor will be prefixed with "MIC"). If you do see a dialog then everything is

running fine and the system is ready for general use. For a description of these samples please refer

to http://software.intel.com/en-us/articles/offload-programming-fortran-and-c-code-examples .

If you intend to collect and analyze performance data using SEP and Intel® Vtune Amplifier XE 2013

Update 5, after acquiring the software, unzip the package you've obtained. You should get two

separate packages: “VTune_Amplifier_XE_2013_update5_setup” and a zip file "sep*_win_mic.zip".

Install VTune_Amplifier_XE_2013_update5_setup to get VTune. To install SEP:

a) Create a folder where you want to install SEP (e.g. c:\sep). Unzip the SEP install package
sep*_win_mic.zip into this folder. For more information, read the document “<sep-install-
dir>\docsSEP_Install_Instruction_Windows_MIC". Load the data collection driver after starting
the coprocessor by going to <sep-install-dir>\klom\” and running:

prompt> .\sep mic install.cmd

b) Start (or restart) the Intel MIC architecture service (this also starts the sampling driver once the
files are copied in the previous step):

prompt> micctrl --start

prompt> micctrl -w

The coprocessor has successfully restarted when micctrl -w reports “micx: online”

c) The sampling driver will now start every time the coprocessor is restarted
d) If you ever need to uninstall the sampling driver, it can be done as follows:

prompt> micctrl --stop
prompt> .\sep mic uninstall.cmd
prompt> micctrl --start

prompt> micctrl -w

Regaining Access to the Intel Xeon Phi Coprocessor after Reboot

The Intel Xeon Phi coprocessor will not start when the host system reboots. So you will need to manually
start the Intel Xeon Phi coprocessor, and then run “micinfo” to verify that it started properly. You need to
have administrator permissions to run this command. First click Start, then click All Programs, and Accessories.
In Accessories, right-click on Command Prompt, and click Run as administrator. After entering the password for
Administrator, a command line windows pops up

prompt> micctrl --start
prompt> micctrl -w

prompt> micinfo

http://software.intel.com/en-us/articles/offload-programming-fortran-and-c-code-examples

Intel® Xeon Phi™ Coprocessor DEVELOPER'S QUICK START GUIDE FOR WINDOWS* HOST

Restarting the Intel Xeon Phi Coprocessor if it Hangs

If a process running on the Intel Xeon Phi coprocessor hangs, but the coprocessor is otherwise responsive, log
into the card via PuTTY* and kill the process like any other Linux process.

When a coprocessor hangs, and is inaccessible or unresponsive via PUuTTY*, there are two ways to restart it.
But first, see if you can tell what is happening:

prompt> micctrl -s <micx>

Assuming that the Intel MPSS service is still functioning properly, you can try to restart the coprocessor
without affecting any attached coprocessors as follows:

prompt> micctrl -r <micx>
prompt> micctrl -w
prompt> micctrl -b <micx>
prompt> micctrl -w

prompt> micinfo

If the Intel MPSS service is not running properly, then we need to restart the driver and all connected
COprocessors:

prompt> micctrl --stop
prompt> micctrl --start
prompt> micctrl -w

prompt> micinfo

Working directly with the uOS Environment Intel Xeon Phi Coprocessor

The default IP address for the coprocessor as seen from the hostis 192.168.<coprocessor>.100, while
the coprocessor sees the host at 192.168.<coprocessor>. 99 by default. The coprocessor can also be
referred to from the host by the alias mic<coprocessor>. For example, the first coprocessor you install in
your system is called “mic0” and is located at 192.168.1.100. It sees the hostat 192.168.1.99. The
second is called “mic1” andis located at 192.168.2.100, seeing the hostat 192.168.2.99.

Since the coprocessor is running Linux and is effectively a separate network node, root or non-root users can
log into it via PUTTY* and issue many common Linux commands. Files are transferred to/from the coprocessor
using “pscp . exe” or other means.

Intel® Xeon Phi™ Coprocessor DEVELOPER'S QUICK START GUIDE FOR WINDOWS* HOST

e From http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html download the third party

software PuTTY*. After downloading this tool, place it under the host folder “<MPSS-install-
dir>\bin". To create SSH keys, download the PuTTYgen* utility from the same link and also place it
under the host folder ”<MPSS-install-dir>\bin";

9\ ;lvl + Computer = Local Disk(C:) ~ Program Files + Intel ~ MPSS + bin - \‘njl Search hin O]
Organize ¥ @ Open Mew Falder = - E] ﬂ
' Favories =1 Mame * Date modified Type Size |
B Desktop | coi_daemon 2/28/2013241PM Fle Z3BKE
& Downloads [id_rsa.ppk 3172013 2:18 PM PPK File 1KB
51 Recent Pl .
& Recent Places micemd 2i28/20139:22 P Windows Batch File 2KB
3 Lrarios 57 micctrl 2(28/20139:27PM Application KB
%] Documents [57 MicFlash 2(28/2013 10:00 PM Application WIKE
& Music 57 Mictnfo 2/28/2013 10:01 PM Application 205 K8
=] Fictures micput 2/28/20139:22PM Windows Batch File 2KB
8 videos] micsetup.dil 2/78/2013 9:27 PM Application extension S9KE
N ¥ micsatup 2{28/20139:27PM Cbiect File Library 3KB
1% Computer
& micssh 2{28/20139:22PM Windows Batch File 2KB
i Local Disk (€1
al 57 mpssboot 2{28/20139:27 PM Application 12K8
a0 4| MpssLib.di 2{28/20139:27 P Application extension KB
drivers %] oDMDebug di 2{28/2013 10:00 M Application extension 9 KB
. iag4 | P M Application
inetpub B
Tntel E puttygen File description: 55H, Telnet and Rlogin disnt HZTPM Application 176 K8
#|usciFdl |Campany: Simon Tatham 9:27 PM Application extension 85 KB
Lang File version: 0.62.0.0
Diate created: 3/1/2013 2:14 PM
. mhCopy Size: 472 KB
[MY_NFS_TEST
o5 NFs
PerfLogs
. platfarm

. Program Files
| Business Objec
Common Files
. Intsl
. Internet Explor
| Microsoft Anals sl

PUTTY Date modfied: 11/9/Z012 12:10 PM Date created: 3{1/2013 2:14 PM
Application Size: 472 KB

Figure 8: Placing PuTTY* and PuTTgen* in “<MPSS-install-dir>\bin”

e Launch PuTTYgen* and click the button “Generate” to generate the SSH public and private keys.
Follow the instructions to generate the public key as displayed in the following screen

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

Intel® Xeon Phi™ Coprocessor DEVELOPER'S QUICK START GUIDE FOR WINDOWS* HOST

&' PuTTY Key Generator []

File Key Conversions Help

ke
Public key for pasting into DpenSSH authorized_keys file:

zbirza AdAARIMzaCye2EAAAARDALAIE AvBEB pSHRg2UsGSRTINE 2999081 2yC ﬂ
+00F Oy

+ZhiG frmHEWDLIST g QperdB 493l R GjstRim3R hfH aul B CHR Uk 3wl vk 3w« 0 CiF glh
Zqw2u/DE T iZbevnd oot 202d2FomHT M7 2L AZB M deHS cdR G)1 gl

+L AV aTERUz= rza-key-201 30305 LI
E.ey fingerprint: |ssh-rsa 1024 82 78:5c: a5 78:e4:38:07: 2d:c4:df.d7: e1:b8: 36: 91

K.y comment; Jrsarkey-20130305

key pazzphrase: I

Caonfirm passphrase: I

- Actions

Generate a public/private key pair
Load an existing private key file Load |

Sawe the generated key Save public key | Save private key |

~ Parameters

Type of key to generate:
 55H-1 (RS54 {* S5H-2RSA (" S5H-2DSA

Mumber of bitz in a generated key: |1 024

Figure 9: PuTTYgen*

e Using Notepad, create a file named authorized keys (NOTE: with no .txt file extension) and
place it in the folder “<MPSS-install-dir>\bin”.

e Copy the text appearing in “Public key pasting into OpenSSH authorized_keys file” and paste it into
the file authorized keys.

o Click the button “Save private key” to save the private key to the file named id rsa.ppk. Move
this file id rsa.ppk t0 ”<MPSS-install-dir>\bin”.

e Open a command prompt windows (using Run as Administrator), and change directory into ”<MPSS-
install-dir>\bin”, then execute the following command:

prompt> micctrl --addssh root —-f ”"<MPSS-install-dir>\bin\authorized keys”

e Restart the coprocessor by typing “micctrl --stop”andthen"micctrl--start”
prompt> micctrl --stop

prompt> micctrl --start

At this step, we can login to the coprocessor using PuTTY*

e Launch the PuTTY* tool.
e Set the box “Host Name (or IP address)” t0 root@192.168.1.100 for micO (and
root@192.168.2.100 for mic1 if available).

mailto:root@192.168.1.100
mailto:root@192.168.2.100

Intel® Xeon Phi™ Coprocessor DEVELOPER'S QUICK START GUIDE FOR WINDOWS* HOST

2 PuTTY Configuration

Cateqgorny:
=B Slession | B asic options for your PuT T session |
= T:"" L.oglglng — Specify the destination you want to connect to
= Terminal
- Kepbaard Host Hame [or IP address) Port
- Bell JrootE 52.168.1.100 22
- Features Caonnection type:
- Windaw " Raw 1 Telet Rlogin @ S5H Segial
- hppearance)
. Behaviour rLoad, zave or delete a stored seszion
- Tranglation Saved Sessions
- Selection
B E"" I:culctn.urs Default Settings Load |
=] Connection
- Data Seae |
- Prosy
- Telmet Delete |
- Rlogin
- 55H
- Serial Close window on exit:
 dlways O Mewer % Only on clean exit
About | Open I Cancel |

Figure 10: Login onto the coprocessor using PUuTTY*

Expand Connection->SSH and click on Auth. In the box “Private key file for authentication”, use
Browse to select the private key file id_rsa.ppk.

2 PuTTY Configuration

Categony:
- Terminal :I | Options controling S5H authentication |
- F.eyboard
- Bell ™ Bypass authentication entirely [$5H-2 only)
.. Features ¥ Display pre-authentication banner [SSH-2 only]
B ngow ~ Authentication methods
- Appearance
. Behaviour v &ttempt authentication using Pageant
- Translation ™ Atternpt TIS or CryptoCard auth [S5H-1]
- Selection v &ttempt "kevboard-interactive' auth [35H-2)
- Colours L
o Connection ~ Authentication parameters
. Data ™ Allaw agent fonwarding
- Progy [Allow attempted changes of usemname in S5H-2
- Telnet Private key file for authentication:
-~ Rlogin [:\Program FilestintelMPS S \bintid_rsa.
[=-55H
Ken
7 Auth
L TTY
-1
i Tunnels
. Bugs ;I
About | Open | Cancel

Figure 11: Selecting the private key file

Intel® Xeon Phi™ Coprocessor DEVELOPER'S QUICK START GUIDE FOR WINDOWS* HOST

e C(lick Open to connect to the coprocessor. A window pops up that allows the user to login into the
coprocessor (without being challenged for a password).

& 192.168.1.100 - PuTTY¥ =1

Tsing froot™.

th public key "rsa-key-20130301"

Figure 12: Root directory of micO

e The utility “pscp” allows users to copy files from the host to the coprocessor(s). To use this third-
party utility, users need to download the command-line secure file copy PSCP application from

http://www.chiark.greenend.org.uk/~sqgtatham/putty/download.html to “<MPSS-install-
dir>\bin”

For example, you can copy a file compiled for the coprocessor (called application.mic) from the
host to the micO coprocessor by typing the following command from the host:

prompt>pscp —i id rsa.ppk “application.mic” root@192.168.1.100:/tmp/
application.mic

You can verify that the file is successfully transferred into the /tmp directory on the coprocessor by
log in on the coprocessor and issue the command “1s /tmp”.

Host File System Share

Instead of transferring your native Intel Xeon Phi coprocessor executable to a coprocessor, you can set up a
shared directory between the host and a coprocessor. After completing this setup, any file in the shared
directory can be accessed by both the host and the coprocessor.

For detailed information on mounting an NFS file system exported by the host for use on the Intel Xeon Phi
coprocessor, please see section 5 of Readme-windows.pdf.

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
mailto:root@192.168.1.100:/tmp/

Intel® Xeon Phi™ Coprocessor DEVELOPER'S QUICK START GUIDE FOR WINDOWS* HOST

It is worth noting that if you want to share a folder across the host and all available coprocessors, then from

the Provision a Shared Folder Wizard window, click Edit to change Access field to Read-Write and Root Access
field to Allowed.

% Provision a Shared Folder Wizard H=] E3
. NFS Permissions
Rl
Steps:

Specify share permizzions for NFS-bazed access ta the shared folder. Far netwark access
Shared Folder Location to a shared folder, the more restrictive of the share permissions and NTFS pemissions
determine the level of access granted to users or groups.
MTFS Pemmissions

Share Protocals Share path;
MFS Authentication WEMIGHTSCORMER4VSHARED _FOLDER

NFS Permnissions Groups and host permissions:

Review Settings and Create Mame | Encoding | Access | Root Access
Share Default
Canfirmation .
ALL MACHINES ANSI Fead-wiite Allowed
Add... Edit... g Do Hemaove

For more information about sharing and permizsions, see Managing Permissions
fiar Shared Folders.

< Previous | Mest > I Cancel

Figure 13: Sharing a folder with all coprocessors

Useful Administrative Tools

This product ships the following administrative tools, which are found in the “<MPSS-install-dir>\bin"
folder. Root, and users needing to use these tools, should add this folder to their default path:
e micinfo - provides information about host and coprocessor system configuration.

e micflash - updates the flash on the coprocessor; saves and retrieves the version and other
information for each section of the flash.

e micctrl - a tool to help the system administrator configure and restart the coprocessor.

e micras - this tool runs on the host, collects and logs RAS events generated by the Intel Xeon Phi
coprocessor. This tool is also responsible for handling test and repair by kicking the coprocessor into
Maintenance mode upon detecting a fatal RAS event.

micsmc - a tool used to monitor core utilization, temperature, memory usage, power usage statistics,
and error logs. It can function in two modes: graphical user interface or command-line interface mode.

Intel® Xeon Phi™ Coprocessor DEVELOPER'S QUICK START GUIDE FOR WINDOWS* HOST

Please see section 6 in Readme-windows.pdf for details on these tools and their arguments.

Getting Started/Developing Intel Xeon Phi Coprocessor Software

You develop applications for the Intel MIC Architecture using your existing knowledge of multi-core and SIMD
programming. The offload language extensions allow you to port sections of your code (written in C/C++ or
FORTRAN) to run on the Intel Xeon Phi coprocessor, or you can port your entire application to the Intel MIC
Architecture. Best performance will only be attained with highly parallel applications that also use SIMD
operations (generated by the compiler or using compiler intrinsics) for most of their execution.

Available SW development Tools / Environments

You can start programming for the Intel Xeon Phi coprocessor using your existing parallel programming
knowledge and the same techniques you use to develop parallel applications on the host. New tools were not
created to support development directly on the Intel Xeon Phi coprocessor; rather, the familiar host-based
Intel tools have been extended to add support for the Intel MIC Architecture via a few additions to standard
languages and APIs. However, to make best use of the development tools and to get best performance from
the Intel Xeon Phi coprocessor, it is important to understand the Intel MIC Architecture.

Development Environment: Available Compilers and Libraries
e Compilers

o Beta Intel C++ Composer XE 2013 SP1 for Windows for building applications that run on Intel
64 Architecture and Intel MIC Architecture

o Beta Intel® Visual Fortran Composer XE 2013 SP1 for Windows for building applications that
run on Intel 64 Architecture and Intel MIC Architecture

e Libraries packaged with the compilers include:
o Intel® Math Kernel Library (Intel MKL) optimized for the Intel MIC Architecture
o Intel® Threading Building Blocks (Intel® TBB)
o Intel® Integrated Performance Primitive (Intel® IPP)

Development Environment: Available Tools

In addition to the standard compilers and Intel libraries, the following tools are available to help you debug and
optimize software running on the Intel Xeon Phi coprocessor.

e Debugger
o GDB for applications running on the Intel 64 and Intel MIC Architecture
e Profiling
o Intel VTune Amplifier X€ 2013 for Windows Update 5, which is used on the host Windows 0S
to collect and view performance data collected on the Intel Xeon Phi coprocessor

Intel® Xeon Phi™ Coprocessor DEVELOPER'S QUICK START GUIDE FOR WINDOWS* HOST

General Development Information

Development Environment Setup
* In this beta version, Microsoft * Visual Studio integration is supported for Microsoft* Visual Studio
2008 and above versions. Our instructions show the compiler command line interface to compile for
offload. To set up your development environment for use with the Intel tools, you need to source the
following script (the default install locations are assumed):
o Intel® C++ and Visual Fortran Composer XE 2013 SP1 Beta for Windows:

Open a command prompt window: Start > All Programs > Intel Parallel Studio XE 2013 >
Command Prompt > Parallel Studio XE with Intel Compiler XE v14.0 > Intel 64 Visual Studio XXXX
mode.

Documentation and Sample Code
+ The most useful documentation can be found in <install-dir>\Documentation\en_US\
including:

o compiler c\cl\compiler ug_c and compiler_ f\cl\compiler ug f -
complete documentation for Intel® C++ Compiler XE 14.0 Beta for Windows and the Intel®
Visual Fortran Compiler XE 14.0 Beta for Windows (or simply Start > All Programs > Intel
Parallel Studio XE 2013 > Documentation)

e Most information on how to build for the Intel MIC Architecture can be found in the “Key
Features” section under “Intel MIC Architecture / Programming for the Intel MIC
Architecture”

e Information on Intel MIC Architecture intrinsics can be found in the “Compiler
Reference/Intrinsics” section under “Intrinsics for Intel MIC Architecture”

O Release Notes-C-2013SP1_W_EN.pdf and Release_ Notes-F-
2013SP1_W_EN.pdf - please read these carefully for known issues and their workarounds,
plus installation instructions, for all the tools with Intel MIC Architecture support. You'll find
Intel MIC Architecture-specific information primarily in section 3.

e Note: For various reasons, this document can miss some last-minute updates. The
Release Notes-*-2013SP1_W_EN.pdf documents from the C++/Fortran compiler
can be downloaded from the IRC and will always have the most recent version of this
document (see Section “Installation”).

o <install-dir>\Documentation\en_ US\debugger\gdb\gdb.pdf - Information on
how to use the debugger. In the beta release, Windows Visual Studio can be used to debug
offload on Intel Xeon Phi coprocessor with the underlying GDB..

» Other documentation that includes sections on using the Intel Xeon Phi coprocessor:

o The Intel MKL User’s Guide, which can be accessed via mkl_documentation.htm foundin
<install-dir>\Documentation\en_ US\mk1, contains a section called “Using the
Intel Math Kernel Library on Intel MIC Core Architecture Coprocessors” which describes both
“Automatic Offload” and “Compiler Assisted Offload” of Intel MKL functions (or simply Start >
All Programs > Intel Parallel Studio XE 2013 > Documentation > Math Kernel Library)

o Information on collecting performance data on the Intel Xeon Phi coprocessor using SEP can
be found in sep_spec_mic, located in <sep-install-dir>\docs.

Intel® Xeon Phi™ Coprocessor DEVELOPER'S QUICK START GUIDE FOR WINDOWS* HOST

» Useful documentation on the Web (for Linux host but still useful):

o 0On the website http://software.intel.com/mic-developer you will find a wide range of
documentation that can be downloaded, most notably the Intel Xeon Phi Software
Developers Guide under “Software Development” tab. Here you will also find user forums,
tools, and case studies.

o Navigating down from http://software.intel.com/en-us/blogs/2012/06/05/knights-corner-
open-source-software-stack/, you will find the source code for the Intel Xeon Phi
coprocessor's uQS, a native Intel MIC Architecture version of gdb, and documentation
including the Intel Xeon Phi Coprocessor Instruction Set Reference Manual, ABI document
System V Application Binary Interface K10M Architecture Processor Supplement, and Intel
Xeon Phi Performance Monitor Units under the “Resources” link.

« Some sample offload code using the explicit memory copy model can be found in:
o Intel C++: <install-dir>\Samples\en US\C++\mic samples

o Intel Fortran: <install-dir>\Samples\en US\Fortran\mic samples\

» Some sample offload code using the implicit memory copy model can be found in:
o C <install-dir>\Samples\en US\C++\mic sample\LEO tutorial

Build-Related Information

+ The offload compiler produces “fat” binaries and .d11 files that contain code for both host and the
Intel Xeon Phi coprocessor.

* The offload compiler produces code that examines the runtime execution environment for the
presence of an Intel Xeon Phi coprocessor. If a coprocessor is not present and the offload fails, the
program will exit with an error message.

* A number of workarounds and hints can be found in release-notes-*-2013-w-en.pdf.

Compiler Switches

When building applications that offload some of their code to the Intel Xeon Phi coprocessor, it is possible to
cause the offloaded code to be built with different compiler options from the host code. The method of
passing these options to the compiler is documented in the compiler documentation under the “Compiler
Reference/Compiler Options/Compiler Option Categories and Descriptions” section. Look for the
/Qoffload-option compiler switch. In that same section, also look up the /Qoffload-attribute-
target compiler switch, which provides an alternative to editing your source files in some situations (applies
to the pragma-based offload methods). Finally, /Qoffload- (or /Qoffload:none) provides a way to
make the compiler ignore the Language Extensions for Offload (which cause it by default to build a
heterogeneous binary).

Debugging Offload Activity During Runtime

To debug offload activity, the OFFLOAD_REPORT environment variable is available:
e Tolearn whether offload potions of the program are running on the host or coprocessor and

receive debug information
prompt> set OFFLOAD REPORT=3

http://software.intel.com/mic-developer
http://software.intel.com/en-us/blogs/2012/06/05/knights-corner-open-source-software-stack/
http://software.intel.com/en-us/blogs/2012/06/05/knights-corner-open-source-software-stack/

Intel® Xeon Phi™ Coprocessor DEVELOPER'S QUICK START GUIDE FOR WINDOWS* HOST

e Avalue of 1 reports just the time the offload took measured by the host, and the amount of
computation time done by the coprocessor. A value of 2 adds information on how much data was

transferred in either direction.
prompt> set OFFLOAD REPORT=<1 or 2>

Details can be found in the compiler documentation in the “Compilation/Setting Environment Variables” section.

Using the Offload Compiler - Explicit Memory Copy Model

In this section, a reduction is used as an example to show a step-by-step approach for developing applications
for the Intel Xeon Phi coprocessor using the offload compiler. The offload compiler is a heterogeneous?
compiler, with both host CPU and target compilation environments. Code for both the host CPU and Intel Xeon
Phi coprocessor is compiled within the host environment, and offloaded code is automatically run within the
target environment. The offload behavior is controlled by compiler directives: pragmas in C/C++, and
directives in Fortran.

Some common libraries, such as the Intel Math Kernel Library (Intel MKL), are available in host versions as well
as target versions. When an application executes its first offload and the target is available, the runtime loads
the target executable onto the Intel Xeon Phi coprocessor. At this time, it also initializes the libraries linked
with the target code. The loaded target executable remains in the target memory until the host program
terminates. Thus, any global state maintained by the library is maintained across offload instances.

Note: Although, the user may specify the region of code to run on the target, there is no guarantee of
execution on the Intel Xeon Phi coprocessor. Depending on the presence of the target hardware or the
availability of resources on the Intel Xeon Phi coprocessor when execution reaches the region of code marked
for offload, the code can run on the Intel Xeon Phi coprocessor or may fall back to executing on the host.

The following code samples show several versions of porting reduction code to the Intel Xeon Phi coprocessor
using the offload pragma directive.

Reduction

The operation refers to computing the expression:

ans = a[0] + a[l] + .. + a[n-1]

Host Version:

The following sample code shows the C code to implement this version of the reduction.

float reduction serial (float *data, int size)

{
float ret = 0.f;
for (int i=0; i<size; ++1)

{

2 http://dictionary.reference.com/browse/heterogeneous

http://dictionary.reference.com/browse/heterogeneous

Intel® Xeon Phi™ Coprocessor DEVELOPER'S QUICK START GUIDE FOR WINDOWS* HOST

ret += datali];
}

return ret;

Code Example 1: Implementing Reduction Code in C/C++

Creating the Offload Version

Serial Reduction with Offload

The programmer uses #pragma offload target(mic) (as shown in the example below) to mark statements
(offload constructs) that should execute on the Intel Xeon Phi coprocessor. The offloaded region is defined as
the offload construct plus the additional regions of code that run on the target as the result of function calls.
Execution of the statements on the host will resume once the statements on the target have executed and
the results are available on the host (i.e. the offload will block, although there is a version of this pragma that
allows asynchronous execution). The in, out, and inout clauses specify the direction of data to be transferred
between the host and the target.

Variables used within an offloaded construct that are declared outside the scope of the construct (including
the file-scope) are copied (by default) to the target before execution on the target begins and copied back to
the host on completion.

For example, in the code below, the variable ret is automatically copied to the target before execution on the
target and copied back to the host on completion. The offloaded code below is executed by a single thread on
a single Intel MIC Architecture core.

float reduction offload(float *data, int size)
{
float ret = 0.f;
#pragma offload target(mic) in(data:length(size))
for (int i=0; i<size; ++i)
{
ret += datal[i];
}

return ret;

Code Example 2: Serial Reduction with Offload

Vector Reduction with Offload

Each core on the Intel Xeon Phi coprocessor has a VPU. The auto vectorization option is enabled by default on
the offload compiler. Alternately, as seen in the example below, the programmer can use the Intel® Cilk™ Plus
Extended Array Notation to maximize vectorization and take advantage of the Intel MIC Architecture core's 32

Intel® Xeon Phi™ Coprocessor DEVELOPER'S QUICK START GUIDE FOR WINDOWS* HOST

512-bit registers. The offloaded code is executed by a single thread on a single core. The thread uses the
built-in reduction function __sec_reduce_add() to use the core's 32 512-bit vector registers to reduce the
elements in the array sixteen at a time.

float reduction vectorreduction (float *data, int size)
{
float ret = 0;
#ipragma offload target(mic) in(data:length(size))
ret = _ sec _reduce add(data[0O:size]); //Intel Cilk Plus
//Extended Array Notation
return ret;

Code Example 3: Vector Reduction with Offload in C/C++

Asynchronous Offload and Data Transfer

Asynchronous offload and data transfer between the host and the Intel Xeon Phi coprocessor is available. For
details see the “About Asynchronous Computation” and “About Asynchronous Data Transfer” sections in the
Intel®* C++ Compiler User and Reference Guide (under “Key Features/Programming for the Intel MIC
Architecture”).

For an example showing the use of asynchronous offload and transfer, refer to

c:\Program Files (x86)\Intel\Composer XE\Samples\en US\C++\mic samples\
intro_ sampleC\sampleCl3.c

Note that when using the Explicit Memory Copy Model in C/C++, arrays are supported provided the array
element type is scalar or a bitwise copyable struct or class. Arrays of pointers are not supported. For C/C++
complex data structure, use the Implicit Memory Copy Model. Please consult the section “Restrictions on
Offload Code Using a Pragma” in the document “Intel® C++ Compiler XE 13.0 User and Reference Guide” for
more information.

Using the Offload Compiler - Implicit Memory Copy Model

The Implicit Memory Copy model is not currently available. It will be available in a future release.

Native Compilation

Applications can also be run natively on the Intel Xeon Phi coprocessor, in which case the coprocessor will be
treated as a standalone multicore computer. Once the binary is built on the host system, copy the binary and
other related binaries or data to the Intel Xeon Phi coprocessor's filesystem (or make them visible on the
coprocessor via NFS).

Intel® Xeon Phi™ Coprocessor DEVELOPER'S QUICK START GUIDE FOR WINDOWS* HOST

Example;
1. Unzip <install-dir>\Samples\en US\C++\openmp samples.zip and copy <install-
dir>\Samples\en US\C++\openmp samples\openmp sample.c toyour home directory.

2. Build the application with the /omi c flag:

icl /Qmic -openmp openmp sample.c

3. Upload the binary to the coprocessor mic0:

pscp -1 id rsa.ppk a.out root@192.168.1.100:/tmp/a.out

4. Copy over any shared libraries required by your application, in this case the OpenMP* runtime library:

pscp —-i id rsa.ppk “c:\Program Files (x86)\Common Files\Intel\Shared
Libraries\compiler\lib\mic\1lib\libiomp5.s0” root@192.168.1.100:/tmp/
libiomp5.so

5. Connect to the coprocessor with PuTTY* and export the local directory so that the application can find
any shared libraries it uses (in this case the OpenMP* runtime library):

export LD LIBRARY PATH=/tmp

6. This application may generate a segmentation fault if the stacksize is not set correctly. To modify the
stacksize use:

ulimit -s unlimited

7. Goto/tmpandruna.out:

cd /tmp

./a.out

Parallel Programming Options on the Intel Xeon Phi coprocessor

Most of the parallel programming options available on the host systems are available for the Intel Xeon Phi
coprocessor. These include the following:

1. Intel Threading Building Blocks (Intel TBB)

2. OpenMP*

3. Intel® Cilk Plus

4. pthreads*

mailto:root@192.168.1.100:/tmp/

Intel® Xeon Phi™ Coprocessor DEVELOPER'S QUICK START GUIDE FOR WINDOWS* HOST

The following sections will discuss the use of these parallel programming models in code using the offload
extensions. Code that runs natively on the Intel Xeon Phi coprocessor can use these parallel programming
models just as they would on the host, with no unusual complications beyond the larger number of threads.

Parallel Programming on the Intel Xeon Phi coprocessor: OpenMP*

There is no correspondence between OpenMP threads on the host CPU and on the Intel Xeon Phi coprocessor.
Because an OpenMP parallel region within an offload/pragma is offloaded as a unit, the offload compiler
creates a team of threads based on the available resources on Intel Xeon Phi coprocessor. Since the entire
OpenMP construct is executed on the Intel Xeon Phi coprocessor, within the construct the usual OpenMP
semantics of shared and private data apply.

Multiple host CPU threads can offload to the Intel Xeon Phi coprocessor at any time. If a CPU thread attempts
to offload to the Intel Xeon Phi coprocessor and resources are not available on the coprocessor, the code
meant to be offloaded may be executed on the host. When a thread on the coprocessor reaches the “omp
parallel” directive, it creates a team of threads based on the resources available on the coprocessor. The
theoretical maximum number of hardware threads that can be created is 4 times the number of cores in your
Intel Xeon Phi coprocessor. The practical limit is four less than this (for offloaded code) because a core is
reserved for the uOS and its services.

The code shown below is an example of a single host CPU thread attempting to offload the reduction code to
the Intel Xeon Phi coprocessor using OpenMP in the offload construct.

float OMP reduction OMP (float *data, int size)
{
float ret = 0;
#pragma offload target(mic) in(size) in(data:length(size))
{
#pragma omp parallel for reduction (+:ret)
for (int i=0; i<size; ++i)
{
ret += data[i];
}
}

return ret;

Code Example 4: C/C++: Using OpenMP* in Offloaded Reduction Code

For a Fortran example showing the use of OpenMP* in Offload Reduction Code, please refer to <install-
dir>\samples\en US\Fortran\mic samples\LEO Fortran intro

Parallel Programming on the Intel Xeon Phi coprocessor: OpenMP* + Intel Cilk Plus Extended
Array Notation

The following code sample further extends the OpenMP example to use Intel Cilk Plus Extended Array
Notation. In the following code sample, each thread uses the Intel Cilk Plus Extended Array Notation

Intel® Xeon Phi™ Coprocessor DEVELOPER'S QUICK START GUIDE FOR WINDOWS* HOST

__sec_reduce_add() built-in reduction function to use all 32 of the Intel MIC Architecture’s 512-bit vector
registers to reduce the elements in the array.

float OMPnthreads CilkPlusEAN reduction(float *data, int size)
{
float ret=0;
#fpragma offload target (mic) in(data:length (size))
{
int nthreads = omp get max threads();
int ElementsPerThread = size/nthreads;
#pragma omp parallel for reduction (+:ret)
for (int i=0;i<nthreads;i++)
{
ret = sec_reduce_add(
data[i*ElementsPerThread:ElementsPerThread]) ;
}
//rest of the array
for (int i=nthreads*ElementsPerThread; i<size; 1i++)
{
ret+=datalil];
}
}

return ret;

Code Example 5: Array Reduction Using Open MP and Intel Cilk Plus in C/C++

Parallel Programming on the Intel Xeon Phi coprocessor: Intel Cilk Plus

Intel Cilk Plus header files are not available on the target environment by default. To make the header files
available to an application built for the Intel MIC Architecture using Intel Cilk Plus, wrap the header files with
#pragma offload_attribute(push,target(mic)) and #pragma offload_attribute(pop) as follows:

#pragma offload attribute (push, target (mic))
#include <cilk/cilk.h>

#include <cilk/reducer opadd.h>

#pragma offload attribute (pop)

Code Example 6: Wrapping the Header Files in C/C++

In the following example, the compiler converts the cilk_for loop into a recursively called function using an
efficient divide-and-conquer strategy.

float ReduceCilk (float*data, int size)

{
float ret = 0;
#pragma offload target (mic) in(data:length(size))

Intel® Xeon Phi™ Coprocessor DEVELOPER'S QUICK START GUIDE FOR WINDOWS* HOST

cilk::reducer opadd<int> total;
cilk for (int i=0; i<size; ++1)
{
total += datal[il];
}
ret = total.get value();
}

return ret;

Code Example 7: Creating a Recursively Called Function by Converting the “cilk_for" Loop

Parallel Programming on Intel Xeon Phi coprocessor: Intel TBB

Like Intel Cilk Plus, the Intel TBB header files are not available on the target environment by default. They are
made available to the Intel MIC Architecture target environment using similar techniques:

#pragma offload attribute (push,target (mic))
#include "tbb/task scheduler init.h"
#include "tbb/blocked range.h"

#include "tbb/parallel reduce.h"

#include "tbb/task.h"

#pragma offload attribute (pop)

using namespace tbb;

Code Example 8: Wrapping the Intel TBB Header Files in C/C++

Functions called from within the offloaded construct and global data required on the Intel Xeon Phi
coprocessor should be prepended by the special function declspec (target (mic))

As an example, parallel_reduce recursively splits an array into subranges for each thread to work on. The
parallel_reduce uses a splitting constructor to make one or more copies for each thread. For each split, the
method join is invoked to accumulate the results.

1. Prefix the class by the macro M1C and the class name by declspec (target (mic)) if you
want them to be generated for the coprocessor.

#ifdef _ MIC__
class __declspec (target(mic)) ReduceTBB
{
private:
float *my data;
public:
float sum;

Intel® Xeon Phi™ Coprocessor DEVELOPER'S QUICK START GUIDE FOR WINDOWS* HOST

void operator () (const blocked range<size t>& r)
{
float *data = my data;
for(size t i=r.begin(); i!=r.end(); ++1i)
{
sum += datal[i];

}
ReduceTBB (ReduceTBB& x, split) : my data(x.my data), sum(0) {}
void join(const ReduceTBB& y) { sum += y.sum; }
ReduceTBB(float datal[]) : my data(data), sum(0) {}

I 2
#endif

Code Example 9: Prefixing an Intel TBB Class for Intel MIC Architecture code generation in C/C++

2. Prefix the function to be offloaded to the Intel Xeon Phi coprocessor by declspec (target (mic))

__declspec (target(mic))
float MICReductionTBB (float *data, int size)
{
ReduceTBB redc (data) ;
// initializing the library
task scheduler init init;
parallel reduce (blocked range<size t>(0, size), redc);
return redc.sum;

Code Example 10: Prefixing an Intel TBB Function for Intel MIC Architecture code generation in C/C++

3. Use #pragma offload target(mic) to offload the parallel code using Intel TBB to the coprocessor

float MICReductionTBB (float *data, int size)
{
float ret(0.f);
#pragma offload target (mic) in(size) in(data:length(size)) out (ret)
ret = MICReductionTBB(data, size);
return ret;

Code Example 11: Offloading Intel TBB Code to the coprocessor in C/C++

NOTE: Codes using Intel TBB with an offload should be compiled with /0tbb flag

Intel® Xeon Phi™ Coprocessor DEVELOPER'S QUICK START GUIDE FOR WINDOWS* HOST

Using Intel MKL

For offload users, Intel MKL is most commonly used in Native Acceleration (NAcc) mode on the Intel Xeon Phi
coprocessor. In NAcc, all data and binaries reside on the Intel Xeon Phi coprocessor. Data is transferred by the
programmer through offload compiler pragmas and semantics to be used by Intel MKL calls within an offloaded
region or function. NAcc functionality contains BLAS, LAPACK, FFT, VML, VSL, (Sparse Matrix Vector), and
required Intel MKL Service functions. Please see the Intel MKL release documents for details on which
functions are optimized and which are not supported.

The Native Acceleration Mode can also be used in native Intel MIC Architecture code - in this case the Intel
MKL shared libraries must be copied to the Intel Xeon Phi coprocessor before execution.

Host Intel® Xeon Phi™ coprocessor

Intel® MIC > Intel® MIC
Software __ Software

Figure 6: Using MKL Native Acceleration with Offload

SGEMM Sample
Using SGEMM routine from BLAS library

Sample Code - sgemm

Step 1: Initialize the matrices, which in this example need to be global variables to make use of data
persistence.

Step 2: Send the data over to the Intel Xeon Phi coprocessor using #pragma offload. In this
example, the free if (0) qualifier is used to make the data persistent on the Intel Xeon Phi
COprocessor.

#define PHI DEV 0

#pragma offload transfer target (mic:PHI DE
in(A:length (matrix elements) free if (0
in(B:length(matrix elements) free if (0
in(C:length(matrix elements) free if (0

m
m

V) A\
)) A\
)) A\
))

Code Example 12: Sending the Data to the Intel Xeon Phi coprocessor

Intel® Xeon Phi™ Coprocessor DEVELOPER'S QUICK START GUIDE FOR WINDOWS* HOST

Step 3: Call sgemm inside the offload section to use the “Native Acceleration” version of Intel MKL on

the Intel Xeon Phi coprocessor. The nocopy () qualifier causes the data copied to the card in step 2 to
be reused.

#pragma offload target (mic:PHI DEV) \
in(transa, transb, N, alpha, beta) \
nocopy (A: alloc if(0) free if(0)) nocopy(B: alloc if(0) free if(0)) \
out (C:length (matrix elements) alloc if(0) free if(0)) // output data
{
sgemm (&transa, &transb, &N, &N, &N, &alpha, A, &N, B, &N,
&beta, C, &N);

Code Example 13: Calling sgemm Inside the Offload Section

Step 4: Free the memory you copied to the card in step 2. The alloc if (0) qualifier is used to reuse
the data on the card on entering the offload section, and the free if (1) qualifier is used to free the
data on the card on exit.

#pragma offload transfer target (mic:PHI DEV) \
nocopy (A:length (matrix elements) alloc if (0) free if (1)) \
nocopy (B:length (matrix elements) alloc if (0) free if (1)) \
nocopy (C:length (matrix elements) alloc if (0) free if (1))

Code Example 14: Set the Copied Memory Free

As with Intel MKL on any platform, it is possible to limit the number of threads it uses by setting the number
of allowed OpenMP threads before executing the MKL function within the offloaded code.

#pragma offload target (mic:PHI DEV) \

in(transa, transb, N, alpha, beta) \
nocopy (A: alloc if (0) free if(0)) nocopy(B: alloc if(0) free if(0))
out (C:length (matrix elements) alloc if(0) free if(0)) // output data
{

omp set num threads(64); // set num threads in openmp

sgemm (&transa, &transb, &N, &N, &N, &alpha, A, &N, B, &N,

&beta, C, &N);

Code Example 15: Controlling Threads on the Intel Xeon Phi coprocessor Using omp_set_num_threads()

Intel MKL Automatic Offload Model

MKL Automatic Offload Model is not available, but it will be supported in a near future.

Intel® Xeon Phi™ Coprocessor DEVELOPER'S QUICK START GUIDE FOR WINDOWS* HOST

Debugging on the Intel Xeon Phi coprocessor

You will find information specific to debugging Intel MIC Architecture applications in <install-
dir>\Documentation\en_ US\debugger\gdb\gdb.pdf

Performance Analysis on the Intel Xeon Phi coprocessor

Users can refer to the document “Optimization - Part 2: Hardware Events” for optimizing applications on the
Intel Xeon Phi coprocessor using VTune™ Amplifier X€ 2013 for Windows. This document can be found at
http://software.intel.com/mic-developer under “Programming” tab, and “Optimization” section.

http://software.intel.com/mic-developer

Intel® Xeon Phi™ Coprocessor DEVELOPER'S QUICK START GUIDE FOR WINDOWS* HOST

Appendix A: Basic Linux Commands

This appendix shows some common Linux commands for use on the Intel Xeon Phi coprocessor.

1. Logout of the coprocessor:
User can log out by using “exit"” command in coprocessor terminal. User is logged out and the

terminal disappears.
> exit

2. List files and directories in the current directory: “1s”
“1s” can be used to list all files and directories
“1s -1”is used to list all files and directories with all attributes.
> 1s
a.out
libioomp5.so

3. Retrieve the path of the current directory: “pwd”
> pwd
/root

4. To Navigate to a certain directory: “cd <path>"
> cd /tmp

5. List all current running processes: “ps”
> ps
5847 root 0:00 /sbin/sshd
5914 micuser 2:47 /bin/coi daemon -coiuser=micuser

6. Kill a process by its process identification: “ki11 -9 <pid>"
> kill -9 4555

7. List the processes which consume the most CPU: “top”
> top

8. Copy afile: “cp <sourcefilename> <destinationfilename>"
> cp filel file2

9. Remove (delete) a file: “rm <filename>"
> rm filel

Intel® Xeon Phi™ Coprocessor DEVELOPER'S QUICK START GUIDE FOR WINDOWS* HOST

10. Review the content of a file: “1ess <filename>"
> less file2

11. Search a line that matches a pattern: “grep <pattern>". For example, to search any process that

have name with “coi”, you can combine grep and ps.
> ps | grep coi
5914 micuser 2:47 /bin/coi daemon -coiuser=micuser

12. Use "export” to set a specific environment variable

> export LD LIBRARY PATH=/tmp

13. Use “ctrl key” and “C" to terminate the current running task.

Intel® Xeon Phi™ Coprocessor DEVELOPER'S QUICK START GUIDE FOR WINDOWS* HOST

About the Author

Loc Q Nguyen received an MBA from University of Dallas, a master's degree in Electrical
Engineering from McGill University, and a bachelor’s degree in Electrical Engineering
from Ecole Polytechnique de Montréal. He is currently a software engineer with Intel
Corporation’s Software and Services Group. His areas of interest include computer
networking, computer graphics, and parallel processing.

Intel® Xeon Phi™ Coprocessor DEVELOPER'S QUICK START GUIDE FOR WINDOWS* HOST

Notices

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO
LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY
RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND
CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND
INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF
INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR
OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or
indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY
SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS
SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND
EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND
REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF
PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION
CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN
THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must
not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined".
Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or
incompatibilities arising from future changes to them. The information here is subject to change without notice.
Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may
cause the product to deviate from published specifications. Current characterized errata are available on
request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing
your product order.

Copies of documents which have an order number and are referenced in this document, or other
Intel literature, may be obtained by calling 1-800-548-4725, or go

to: http://www.intel.com/design/literature.htm

Intel, the Intel logo, Cilk, Xeon and Intel Xeon Phi are trademarks of Intel Corporation in the U.S.
and other countries.

*QOther names and brands may be claimed as the property of others

Copyright© 2013 Intel Corporation. All rights reserved.

http://www.intel.com/design/literature.htm

Intel® Xeon Phi™ Coprocessor DEVELOPER'S QUICK START GUIDE FOR WINDOWS* HOST

Optimization Notice

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for
optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3,
and SSE3 instruction sets and other optimizations. Intel does not guarantee the availability,
functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel.

Microprocessor-dependent optimizations in this product are intended for use with Intel
microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more
information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

