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Introduction 

This document will help developers get started writing code and running applications on a system running 

Microsoft* Windows that includes the Intel® Xeon Phi™ coprocessor based on the Intel® Many Integrated Core 

Architecture (Intel® MIC Architecture). It describes the available tools and includes simple examples to show 

how to get C/C++ and Fortran-based programs up and running. For now, the developer will have to cut/paste 

the examples provided in the document to their system. 

 

Note that there is a public document “Intel Xeon Phi Coprocessor Developer’s Quick Start Guide” at  

http://software.intel.com/mic-developer under the “Overview” tab which is the official document for use with 

host systems running Linux*; this document is for a restricted list of customers who are early testers for 

Windows on the host.  Most documents pertaining to early access and programming can be found here:  

http://software.intel.com/en-us/articles/windows-early-enabling-for-intelr-xeon-phitm-coprocessor. 

 

Goals 

This document does: 

1. Walk you through the system registration and Intel® MPSS installation. 

2. Introduce the build environment for Intel MIC Architecture software. 

3. Give an example of how to write code for Intel Xeon Phi coprocessor and build using Intel® Composer 

XE 2013 SP1for Windows. 

4. Demonstrate the use of Intel libraries like the Intel® Math Kernel Library (Intel® MKL). 

5. Point you to information on how to debug and profile programs running on an Intel Xeon Phi 

coprocessor. 

6. Share some best known methods (BKMs) developed by users at Intel. 

This document does not: 

1. Cover each tool in detail. Please refer to the user guides for the individual tools. 

2. Provide in-depth training. 

Terminology 

Host – The Intel® Xeon® platform containing the Intel Xeon Phi coprocessor installed in a PCIe* slot. The 

operating systems (OS) supported and validated on the host are:  Windows 7 Enterprise SP1 (64-bit), Windows 

8 Enterprise (64-bit), Windows Server 2008 R2 SP1 (64-bit), Windows Server 2012 (64-bit) 

Target – The Intel Xeon Phi coprocessor and corresponding runtime environment installed inside the 

coprocessor. 

uOS – Micro Operating System – the Linux-based operating system and tools running on the Intel Xeon Phi 

coprocessor.  

ISA – Instruction Set Architecture – part of the computer architecture related to programming, including the 

native data types, instructions, registers, addressing modes, memory architecture, interrupt and exception 

handling, and external I/O (Input/Output).1 

                                           
1 Intel acronyms dictionary, 8/6/2009, http://library.intel.com/Dictionary/Details.aspx?id=5600 

http://software.intel.com/mic-developer
http://software.intel.com/en-us/articles/windows-early-enabling-for-intelr-xeon-phitm-coprocessor
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VPU – Vector Processing Unit- the portion of a CPU responsible for the execution of SIMD (single instruction, 

multiple data) instructions. 

NAcc – Native Acceleration – a mode or form of Intel MKL in which the data being processed and the MKL 

function processing the data reside on the Intel Xeon Phi coprocessor. 

Offload Compilers – The Intel® C/C++ Compiler XE 14.0 for Windows and Intel® Visual Fortran Compiler XE 14.0 

for Windows compilers, which can generate binaries for both the host system and the Intel Xeon Phi 

coprocessor.  The offload compilers can generate binaries that will run only on the host, only on the Intel Xeon 

Phi coprocessor, or paired binaries that run on both the host and the Intel Xeon Phi coprocessor and 

communicate with each other. 

SDP – Software Development Platform – the combination of the host platform and the Intel Xeon Phi 

coprocessor. 

KNC – an abbreviation for Intel Xeon Phi Coprocessor (codename: Knights Corner), the first Intel Xeon Phi 

product. 

Intel® MPSS – Intel® Manycore Platform Software Stack – the user- and system-level software that allows 

programs to run on and communicate with the Intel Xeon Phi coprocessor. 

SCIF - Symmetric Communications Interface – the mechanism for inter-node communication within a single 

platform, where a node is a Intel Xeon Phi coprocessor or an Intel Xeon processor-based host processor 

complex.  In particular, SCIF abstracts the details of communicating over the PCIe bus (and controlling related 

Intel Xeon Phi coprocessor hardware) while providing an API that is symmetric between all types of nodes 

System Configuration 

We tested these instructions on an  Intel-Software Development Platform consisting of an Intel Workstation 

containing two Intel Xeon processors, one or two Intel Xeon Phi coprocessors attached to a PCIe* x16 bus, 

and a GPU for graphics display.   A list of systems supporting Intel Xeon Phi coprocessors can be found here:  

http://software.intel.com/en-us/articles/which-systems-support-the-intel-xeon-phi-coprocessor.  

 

http://software.intel.com/en-us/articles/which-systems-support-the-intel-xeon-phi-coprocessor
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Intel Xeon Phi Software 

 

 

Figure 1: Software Stack 

 

The Intel Xeon Phi coprocessor software stack consists of layered software architecture as noted below and 

depicted in Figure 1. 

 
Driver Stack: 
The Windows software for the Intel Xeon Phi coprocessor consists of a number of components: 

 
 Device Driver: At the bottom of the software stack in kernel space is the Intel Xeon Phi coprocessor 

device driver. The device driver is responsible for managing device initialization and communication 

between the host and target devices. 

 Libraries: The libraries live on top of the device driver in user and system space. The libraries provide basic 

card management capabilities such as enumeration of cards in a system, buffer management, and host-to-

card communication. The libraries also provide higher-level functionality such as loading and unloading the 

user executable onto the Intel Xeon Phi coprocessor, invoking functions from the executable on the card, 

and providing a two-way notification mechanism between host and card. The libraries are responsible for 

buffer management and communication over the PCIe* bus. 

 Tools: Various tools that help maintain the software stack. Examples include <MPSS-install-dir> 

\bin\MicInfo.exe for querying system information, <MPSS-install-dir>\bin\MicFlash. 

exe for updating the card’s flash, <MPSS-install-dir>\bin\micctrl.exe to help administrators 
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configure the card, <MPSS-install-dir>\bin\micsmc.exe to monitor platform status, <MPSS-

install-dir>\bin\micras.exe to collect and log RAS events, where <MPSS-install-dir> 

is ”c:\Program Files\Intel\MPSS” by default. 

 Card OS (uOS): The Linux-based operating system running on the Intel Xeon Phi coprocessor.   

NOTE: Linux source for relatively recent versions of the uOS, the device driver, and the low-level SCIF library 

interface can be found at http://software.intel.com/en-us/articles/intel-manycore-platform-software-stack-

mpss.  Some of the other low level interfaces (COI, MYO) are used only by Intel tools and are currently 

available for general use. These low level interfaces may be deprecated or exposed in the future. 

  

http://software.intel.com/en-us/articles/intel-manycore-platform-software-stack-mpss
http://software.intel.com/en-us/articles/intel-manycore-platform-software-stack-mpss
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Intel Many Integrated Core Architecture Overview 

The Intel Xeon Phi coprocessor has more than 50 in-order Intel MIC Architecture processor cores running at 

1GHz (up to 1.3GHz). The Intel MIC Architecture is based on the x86 ISA, extended with 64-bit addressing and 

new 512-bit wide SIMD vector instructions and registers. Each core supports 4 hardware threads. In addition 

to the cores, there are multiple on-die memory controllers and other components. 

 

 

Figure 2: Architecture overview of an Intel MIC Architecture core 

 

Each core includes a newly-designed Vector Processing Unit (VPU). Each vector unit contains 32 512-bit 

vector registers. To support the new vector processing model, a new 512-bit SIMD ISA was introduced.  

The VPU is a key feature of the Intel MIC Architecture-based cores. Fully utilizing the vector unit is critical for 

the best Intel Xeon Phi coprocessor performance. It is important to note that Intel MIC Architecture cores do 

not support other SIMD ISAs (such as MMX™, Intel® SSE, or Intel® AVX). 

Each core has a 32KB L1 data cache, a 32KB L1 instruction cache, and a 512KB L2 cache. The L2 caches of all 

cores are interconnected with each other and the memory controllers via a bidirectional ring bus, effectively 

creating a shared last-level cache of up to 32MB. The design of each core includes a short in-order pipeline. 

There is no latency in executing scalar operations and low latency in executing vector operations. Due to the 

short in–order pipeline, the overhead for branch misprediction is low. 

For more details on the machine architecture, please refer to the Intel Xeon Phi Coprocessor Software 

Developers Guide posted at http://software.intel.com/mic-developer under “Tools & Downloads” or 

“Programming” tabs.    

  

http://software.intel.com/mic-developer
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Administrative Tasks 

 

Details on obtaining drivers and beta software development licenses are available here:   

http://software.intel.com/en-us/articles/beta-windows-enabled-drivers-and-development-tools-for-intelr-

xeon-phitm-coprocessor.   

 

A  Composer XE 2013 SP1 serial number is provided to you as a result of registering from the URL:  

http://software.intel.com/en-us/articles/intelr-composer-xe-2013-beta-registration-for-intelr-xeon-phitm-

coprocessor 

 

Note that you will need to acquire your own copy and license of VTune Amplifier XE 2013 for Windows 

(Update 5 or later).    

 

Refer to http://software.intel.com/en-us/articles/windows-early-enabling-for-intelr-xeon-phitm-coprocessor  

for step-by-step instructions on submitting Intel® Premier Support issues. 

 

Preparing Your System for First Use 

 

Steps to install the driver and start the coprocessor 

1. Before you can download drivers and Beta compilers, you will need to register for access to the 

compilers 

2. Download the “Readme file for the Intel MPSS release”, from http://software.intel.com/en-

us/articles/beta-windows-enabled-drivers-and-development-tools-for-intelr-xeon-phitm-coprocessor  

(look for and download Readme and Release Notes). 

3. Install one of the following supported Operating Systems:  

 Microsoft* Windows 7 Enterprise SP1 (64-bit),   

 Microsoft* Windows 8 Enterprise (64-bit)  

 Microsoft* Windows Server 2008 R2 SP1 (64-bit) 

 Microsoft* Windows Server 2012  (64-bit) 

 

4. Log in as “administrator” 

5. Install .NET Framework 4.0 or higher on the system (http://www.microsoft.com/net/download) Be 

sure to install PuTTY* and PuTTYgen*, which is used to log in to the card’s uOS (see later) 

6. Execute the following sequence in a command window (select Run as Administrator)  
prompt> bcdedit -set loadoptions DISABLE_INTEGRITY_CHECKS 

prompt> bcdedit -set TESTSIGNING ON 

7. Restart the system. 

8. Download the drivers package mpss_beta-2.1.*-windows.zip for your Windows operating 

system.  

9. Unzip the zip file to get the Windows Installer file (Intel Xeon Phi.msi). 

10. Install the Windows Installer file “Intel Xeon Phi.msi” as detailed in section 1 of the Readme file. Note 

that if a previous version of the Intel Xeon Phi stack is already installed, use Windows Control Panel to 

http://software.intel.com/en-us/articles/beta-windows-enabled-drivers-and-development-tools-for-intelr-xeon-phitm-coprocessor
http://software.intel.com/en-us/articles/beta-windows-enabled-drivers-and-development-tools-for-intelr-xeon-phitm-coprocessor
http://software.intel.com/en-us/articles/intelr-composer-xe-2013-beta-registration-for-intelr-xeon-phitm-coprocessor
http://software.intel.com/en-us/articles/intelr-composer-xe-2013-beta-registration-for-intelr-xeon-phitm-coprocessor
http://software.intel.com/en-us/intel-vtune-amplifier-xe
http://software.intel.com/en-us/articles/windows-early-enabling-for-intelr-xeon-phitm-coprocessor
http://software.intel.com/en-us/articles/intelr-composer-xe-2013-beta-registration-for-intelr-xeon-phitm-coprocessor
http://software.intel.com/en-us/articles/intelr-composer-xe-2013-beta-registration-for-intelr-xeon-phitm-coprocessor
http://software.intel.com/en-us/articles/beta-windows-enabled-drivers-and-development-tools-for-intelr-xeon-phitm-coprocessor
http://software.intel.com/en-us/articles/beta-windows-enabled-drivers-and-development-tools-for-intelr-xeon-phitm-coprocessor
http://www.microsoft.com/net/download
http://software.intel.com/en-us/articles/beta-windows-enabled-drivers-and-development-tools-for-intelr-xeon-phitm-coprocesso
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uninstall it prior to installing the current version. Confirm the new Intel MPSS stack is successfully 

installed by looking at Control Panel -> Program and Features: Intel Xeon Phi (see illustrations that 

follows). By default, Intel MPSS is installed in “c:\Program Files\Intel\MPSS”. Select “Always 

trust software from Intel® VPG MIC” check box during the installation. 

 

Figure 3: Intel MPSS is installed as shown in “Program and Features” Panel 

 

11. Update the flash according to section 3 of the Readme-windows.pdf file. 

12. Reboot the system.  

13. Login to the host and verify that the Intel Xeon Phi coprocessors are detected by the Device Manager 

(Control Panel -> Device Manager, and click on “System devices”): 



Intel® Xeon Phi™ Coprocessor DEVELOPER’S QUICK START GUIDE FOR WINDOWS* HOST 

 

 

 

Figure 4: Intel(R) Xeon Phi(TM) is detected by “Device Manager” 

 

Also, verify that Intel MPSS is a Windows service (Control Panel -> System and Security -> 

Administration Tools ->Services): 
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Figure 5: Intel MPSS is shown in “Services” and it is not started yet 

 

14. Start the Intel Xeon Phi coprocessor (while you can set up the card to start with the host system, it 

will not do so by default). Launch a command prompt windows and start Intel MPSS stack:   

prompt> micctrl --start 

 

15. Run the command “micinfo” to verify that it is set up properly: 

prompt> micinfo.exe 
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Figure 6: Output of the command “micinfo.exe” 

 

 Verify that the driver version is 2.1.* 

 Verify that the Intel MPSS version is 2.1.* 

 Verify that the Flash Version is 2.1.*.* 

 

16. Install “Binutils”, the binary utilities for the Intel Xeon® Phi™ coprocessor native compiler, as detailed in 

section 2.2.5 of the Readme file. 

We can check the Windows Services to verify that the Intel MPSS service is started: 
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Figure 7: Intel MPSS was started as shown in “Services” panel 

 

Steps to install the Software Development tools 

 

As mentioned before, you will need to register for access to use the early builds of the Beta Intel® 

[C++|Fortran] Composer XE 2013 SP1 for Windows package (debugger, MKL, etc. all included).  

After registering at this URL, you can download the product and you will receive an email containing the tool 

serial number (and a license file) for the Beta Intel [C++|Fortran] Composer XE 2013 SP1 for Windows package.  

Should you need access to analysis tools to look for performance bottlenecks, you will need to acquire a copy 

of Intel® VTune Amplifier XE 2013 for Windows Update 5. 

 

 If you use the Intel C++ Composer XE 2013 SP1 Beta for Windows or the Intel Visual Fortran 

Composer XE 2013 SP1 Beta for Windows, read the corresponding readme file to install 

these packages. 

 For first time installations, be sure to get the product license number provided to you at 

registration, as it is required to activate the product, and then provide the license number 

during installation. Subsequent installations can select the “Use existing license” option. 

 Read the readme file carefully. 

 Double click on the executable file (.EXE) to begin installation. You don’t need to uninstall 

previous versions or updates before installing a newer version of Composers. The new 

version can update the existing version or coexist with the older versions. 

 

 

http://software.intel.com/en-us/articles/intelr-composer-xe-2013-beta-registration-for-intelr-xeon-phitm-coprocessor
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1. Install the software tools. 

2. Verify that the card is working by running a sample program (located in <install-

dir>\Samples\en_US\C++\mic_samples or <install-dir>\Samples\en_US\Fortran\mic_samples) with 

“set OFFLOAD_REPORT=3” to display the dialog between the Host and Intel Xeon Phi coprocessor 

(messages from the processor will be prefixed with “MIC:”).  If you do see a dialog then everything is 

running fine and the system is ready for general use. For a description of these samples please refer 

to http://software.intel.com/en-us/articles/offload-programming-fortran-and-c-code-examples . 

3. If you intend to collect and analyze performance data using SEP and Intel® Vtune Amplifier XE 2013 

Update 5, after acquiring the software,  unzip the package you’ve obtained.   You should get two 

separate packages: “VTune_Amplifier_XE_2013_update5_setup” and a zip file “sep*_win_mic.zip”. 

Install VTune_Amplifier_XE_2013_update5_setup to get VTune. To install SEP:  

a) Create a folder where you want to install SEP (e.g. c:\sep). Unzip the SEP install package 

sep*_win_mic.zip into this folder. For more information, read the document “<sep-install-

dir>\docsSEP_Install_Instruction_Windows_MIC”.  Load the data collection driver after starting 

the coprocessor  by going to <sep-install-dir>\k1om\” and running: 

prompt> .\sep_mic_install.cmd  

 

b) Start (or restart) the Intel MIC architecture service (this also starts the sampling driver once the 

files are copied in the previous step):  

prompt> micctrl --start  

prompt> micctrl -w  

 

The coprocessor has successfully restarted when micctrl –w reports “micx: online” 

c) The sampling driver will now start every time the coprocessor is restarted 

d) If you ever need to uninstall the sampling driver, it can be done as follows: 

prompt> micctrl --stop 

prompt> .\sep_mic_uninstall.cmd 

prompt> micctrl --start  

prompt> micctrl –w 

 

Regaining Access to the Intel Xeon Phi Coprocessor after Reboot 

The Intel Xeon Phi coprocessor will not start when the host system reboots. So you will need to manually 

start the Intel Xeon Phi coprocessor, and then run “micinfo” to verify that it started properly.  You need to 

have administrator permissions to run this command. First click Start, then click All Programs, and Accessories. 

In Accessories, right-click on Command Prompt, and click Run as administrator. After entering the password for 

Administrator, a command line windows pops up  

prompt> micctrl --start 

prompt> micctrl -w  

prompt> micinfo 

http://software.intel.com/en-us/articles/offload-programming-fortran-and-c-code-examples
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Restarting the Intel Xeon Phi Coprocessor if it Hangs 

If a process running on the Intel Xeon Phi coprocessor hangs, but the coprocessor is otherwise responsive, log 

into the card via PuTTY* and kill the process like any other Linux process. 

 

When a coprocessor hangs, and is inaccessible or unresponsive via PuTTY*, there are two ways to restart it.  

But first, see if you can tell what is happening: 

 

prompt> micctrl -s <micx> 

 

Assuming that the Intel MPSS service is still functioning properly, you can try to restart the coprocessor 

without affecting any attached coprocessors as follows: 

 

prompt> micctrl –r <micx> 

prompt> micctrl -w  

prompt> micctrl –b <micx> 

prompt> micctrl -w  

prompt> micinfo 

 

If the Intel MPSS service is not running properly, then we need to restart the driver and all connected 

coprocessors: 

 

prompt> micctrl --stop  

prompt> micctrl --start 

prompt> micctrl -w  

prompt> micinfo 

 

Working directly with the uOS Environment Intel Xeon Phi Coprocessor 

The default IP address for the coprocessor as seen from the host is 192.168.<coprocessor>.100, while 

the coprocessor sees the host at 192.168.<coprocessor>.99 by default.  The coprocessor can also be 

referred to from the host by the alias mic<coprocessor>.  For example, the first coprocessor you install in 

your system is called “mic0” and is located at 192.168.1.100.  It sees the host at 192.168.1.99.  The 

second is called “mic1” and is located at 192.168.2.100, seeing the host at 192.168.2.99. 

 

Since the coprocessor is running Linux and is effectively a separate network node, root or non-root users can 

log into it via PuTTY* and issue many common Linux commands.  Files are transferred to/from the coprocessor 

using “pscp.exe” or other means.  
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 From http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html download the third party 

software PuTTY*. After downloading this tool, place it under the host folder ”<MPSS-install-

dir>\bin”. To create SSH keys, download the PuTTYgen* utility from the same link and also place it 

under the host folder ”<MPSS-install-dir>\bin”: 

 

 

Figure 8: Placing PuTTY* and PuTTgen* in ”<MPSS-install-dir>\bin” 

 

 Launch PuTTYgen* and click the button “Generate” to generate the SSH public and private keys. 

Follow the instructions to generate the public key as displayed in the following screen 

 

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
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Figure 9: PuTTYgen*  

 

 Using Notepad, create a file named authorized_keys (NOTE:  with no .txt  file extension) and 

place it in the folder ”<MPSS-install-dir>\bin”.  

 Copy the text appearing in “Public key pasting into OpenSSH authorized_keys file” and paste it into 

the file authorized_keys. 

 Click the button “Save private key” to save the private key to the file named id_rsa.ppk. Move 

this file id_rsa.ppk to ”<MPSS-install-dir>\bin”. 

 Open a command prompt windows (using Run as Administrator), and change directory into ”<MPSS-

install-dir>\bin” , then execute the following command: 

prompt> micctrl --addssh root –f ”<MPSS-install-dir>\bin\authorized_keys”  

 

 Restart the coprocessor by typing “micctrl --stop” and then “micctrl--start” 

prompt> micctrl --stop 

prompt> micctrl --start  

 

At this step, we can login to the coprocessor using PuTTY*  

 

 Launch the  PuTTY* tool. 

 Set the box “Host Name (or IP address)” to root@192.168.1.100 for mic0 (and 

root@192.168.2.100 for mic1 if available). 

 

mailto:root@192.168.1.100
mailto:root@192.168.2.100
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Figure 10: Login onto the coprocessor using PuTTY* 

 

 Expand Connection->SSH and click on Auth. In the box “Private key file for authentication”, use 

Browse to select the private key file id_rsa.ppk.   

 

Figure 11: Selecting the private key file 
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 Click Open to connect to the coprocessor. A window pops up that allows the user to login into the 

coprocessor (without being challenged for a password). 

 

Figure 12: Root directory of mic0   

 

 The utility “pscp” allows users to copy files from the host to the coprocessor(s). To use this third-

party utility, users need to download the command-line secure file copy PSCP application from 

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html to “<MPSS-install-

dir>\bin” 

 

For example, you can copy a file compiled for the coprocessor (called application.mic) from the 

host to the mic0 coprocessor by typing the following command from the host:   

prompt>pscp –i id_rsa.ppk “application.mic” root@192.168.1.100:/tmp/ 

application.mic 

 

You can verify that the file is successfully transferred into the /tmp directory on the coprocessor by 

log in on the coprocessor and issue the command “ls /tmp”. 

 

 

Host File System Share 

Instead of transferring your native Intel Xeon Phi coprocessor executable to a coprocessor, you can set up a 

shared directory between the host and a coprocessor. After completing this setup, any file in the shared 

directory can be accessed by both the host and the coprocessor.  

 

For detailed information on mounting an NFS file system exported by the host for use on the Intel Xeon Phi 

coprocessor, please see section 5 of Readme-windows.pdf.  

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
mailto:root@192.168.1.100:/tmp/
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It is worth noting that if you want to share a folder across the host and all available coprocessors, then from 

the Provision a Shared Folder Wizard window, click Edit to change Access field to Read-Write and Root Access 

field to Allowed. 

 

 

Figure 13: Sharing a folder with all coprocessors  

 

Useful Administrative Tools 

This product ships the following administrative tools, which are found in the “<MPSS-install-dir>\bin” 

folder.  Root, and users needing to use these tools, should add this folder to their default path: 

 micinfo - provides information about host and coprocessor system configuration. 

 micflash - updates the flash on the coprocessor; saves and retrieves the version and other 

information for each section of the flash. 

 micctrl – a tool to help the system administrator configure and restart the coprocessor. 

 micras – this tool runs on the host, collects and logs RAS events generated by the Intel Xeon Phi 

coprocessor. This tool is also responsible for handling test and repair by kicking the coprocessor into 

Maintenance mode upon detecting a fatal RAS event. 

 micsmc – a tool used to monitor core utilization, temperature, memory usage, power usage statistics, 

and error logs. It can function in two modes: graphical user interface or command-line interface mode. 
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Please see section 6 in Readme-windows.pdf for details on these tools and their arguments. 

 

 

Getting Started/Developing Intel Xeon Phi Coprocessor Software 

You develop applications for the Intel MIC Architecture using your existing knowledge of multi-core and SIMD 

programming. The offload language extensions allow you to port sections of your code (written in C/C++ or 

FORTRAN) to run on the Intel Xeon Phi coprocessor, or you can port your entire application to the Intel MIC 

Architecture.  Best performance will only be attained with highly parallel applications that also use SIMD 

operations (generated by the compiler or using compiler intrinsics) for most of their execution. 

Available SW development Tools / Environments 

You can start programming for the Intel Xeon Phi coprocessor using your existing parallel programming 

knowledge and the same techniques you use to develop parallel applications on the host. New tools were not 

created to support development directly on the Intel Xeon Phi coprocessor; rather, the familiar host-based 

Intel tools have been extended to add support for the Intel MIC Architecture via a few additions to standard 

languages and APIs. However, to make best use of the development tools and to get best performance from 

the Intel Xeon Phi coprocessor, it is important to understand the Intel MIC Architecture.  

Development Environment: Available Compilers and Libraries 

 Compilers 

o Beta Intel C++ Composer XE 2013 SP1 for Windows for building applications that run on Intel 

64 Architecture and Intel MIC Architecture 

o Beta Intel® Visual Fortran Composer XE 2013 SP1 for Windows for building applications that 

run on Intel 64 Architecture and Intel MIC Architecture 

 Libraries packaged with the compilers include: 

o Intel® Math Kernel Library (Intel MKL) optimized for the Intel MIC Architecture 

o Intel® Threading Building Blocks (Intel® TBB) 

o Intel® Integrated Performance Primitive (Intel® IPP) 

Development Environment: Available Tools 

In addition to the standard compilers and Intel libraries, the following tools are available to help you debug and 

optimize software running on the Intel Xeon Phi coprocessor. 

 Debugger 

o GDB for applications running on the Intel 64 and Intel MIC Architecture 

 Profiling  

o Intel VTune Amplifier XE 2013 for Windows Update 5, which is used on the host Windows OS 

to collect and view performance data collected on the Intel Xeon Phi coprocessor 
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General Development Information 

Development Environment Setup 

• In this beta version, Microsoft * Visual Studio integration is  supported for Microsoft* Visual Studio 

2008 and above versions.  Our instructions show the compiler command line interface to compile for 

offload. To set up your development environment for use with the Intel tools, you need to source the 

following script (the default install locations are assumed): 

o Intel® C++ and Visual Fortran Composer XE 2013 SP1 Beta for Windows:  

Open a command prompt window: Start > All Programs > Intel Parallel Studio XE 2013 > 

Command Prompt > Parallel Studio XE with Intel Compiler XE v14.0 > Intel 64 Visual Studio XXXX 

mode.  

Documentation and Sample Code 

• The most useful documentation can be found in <install-dir>\Documentation\en_US\ 

including: 

o compiler_c\cl\compiler_ug_c and compiler_f\cl\compiler_ug_f  - 

complete documentation for Intel® C++ Compiler XE 14.0  Beta for Windows and the Intel® 

Visual Fortran Compiler XE 14.0 Beta for Windows (or simply Start > All Programs > Intel 

Parallel Studio XE 2013 > Documentation) 

 Most information on how to build for the Intel MIC Architecture can be found in the “Key 

Features” section under “Intel MIC Architecture / Programming for the Intel MIC 

Architecture”  

 Information on Intel MIC Architecture intrinsics can be found in the “Compiler 

Reference/Intrinsics” section under “Intrinsics for Intel MIC Architecture”  

o Release_Notes-C-2013SP1_W_EN.pdf and Release_Notes-F-

2013SP1_W_EN.pdf - please read these carefully for known issues and their workarounds, 

plus installation instructions, for all the tools with Intel MIC Architecture support.  You’ll find 

Intel MIC Architecture-specific information primarily in section 3. 

 Note:  For various reasons, this document can miss some last-minute updates.  The 

Release_Notes-*-2013SP1_W_EN.pdf documents from the C++/Fortran compiler 

can be downloaded from the IRC and will always have the most recent version of this 

document (see Section “Installation”). 

o <install-dir>\Documentation\en_US\debugger\gdb\gdb.pdf – Information on 

how to use the debugger.  In the beta release, Windows Visual Studio can be used to debug 

offload on Intel Xeon Phi coprocessor with the underlying GDB.. 

• Other documentation that includes sections on using the Intel Xeon Phi coprocessor: 

o The Intel MKL User’s Guide, which can be accessed via mkl_documentation.htm found in 

<install-dir>\Documentation\en_US\mkl, contains a section called “Using the 

Intel Math Kernel Library on Intel MIC Core Architecture Coprocessors” which describes both 

“Automatic Offload” and “Compiler Assisted Offload” of Intel MKL functions (or simply  Start > 

All Programs > Intel Parallel Studio XE 2013 > Documentation > Math Kernel Library) 

o Information on collecting performance data on the Intel Xeon Phi coprocessor using SEP can 

be found in sep_spec_mic, located in <sep-install-dir>\docs.  
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• Useful documentation on the Web (for Linux host but still useful):  

o On the website http://software.intel.com/mic-developer  you will find a wide range of 

documentation that can be downloaded, most notably the Intel Xeon Phi Software 

Developers Guide under “Software Development” tab.   Here you will also find user forums, 

tools, and case studies. 

o Navigating down from http://software.intel.com/en-us/blogs/2012/06/05/knights-corner-

open-source-software-stack/, you will find the source code for the Intel Xeon Phi 

coprocessor’s uOS, a native Intel MIC Architecture version of gdb, and documentation 

including  the Intel Xeon Phi Coprocessor Instruction Set Reference Manual, ABI document 

System V Application Binary Interface K1OM Architecture Processor Supplement, and Intel 

Xeon Phi Performance Monitor Units under the “Resources” link. 

• Some sample offload code using the explicit memory copy model can be found in: 

o Intel C++:  <install-dir>\Samples\en_US\C++\mic_samples  

o Intel Fortran:  <install-dir>\Samples\en_US\Fortran\mic_samples\ 

• Some sample offload code using the implicit memory copy model can be found in: 

o C:   <install-dir>\Samples\en_US\C++\mic_sample\LEO_tutorial  

Build-Related Information 

• The offload compiler produces “fat” binaries and .dll files that contain code for both host and the 

Intel Xeon Phi coprocessor. 

• The offload compiler produces code that examines the runtime execution environment for the 

presence of an Intel Xeon Phi coprocessor.  If a coprocessor is not present  and the offload fails, the 

program will exit with an error message. 

• A number of workarounds and hints can be found in release-notes-*-2013-w-en.pdf. 

 

Compiler Switches  

When building applications that offload some of their code to the Intel Xeon Phi coprocessor, it is possible to 

cause the offloaded code to be built with different compiler options from the host code.  The method of 

passing these options to the compiler is documented in the compiler documentation under the “Compiler 

Reference/Compiler Options/Compiler Option Categories and Descriptions” section.  Look for the 

/Qoffload-option compiler switch.   In that same section, also look up the /Qoffload-attribute-

target compiler switch, which provides an alternative to editing your source files in some situations (applies 

to the pragma-based offload methods).  Finally, /Qoffload- (or  /Qoffload:none) provides a way to 

make the compiler ignore the Language Extensions for Offload (which cause it by default to build a 

heterogeneous binary). 

Debugging Offload Activity During Runtime 

To debug offload activity, the OFFLOAD_REPORT environment variable is available: 

 To learn whether offload potions of the program are running on the host or coprocessor and 

receive debug information 

prompt> set OFFLOAD_REPORT=3 

http://software.intel.com/mic-developer
http://software.intel.com/en-us/blogs/2012/06/05/knights-corner-open-source-software-stack/
http://software.intel.com/en-us/blogs/2012/06/05/knights-corner-open-source-software-stack/


Intel® Xeon Phi™ Coprocessor DEVELOPER’S QUICK START GUIDE FOR WINDOWS* HOST 

 

 

 A value of 1 reports just the time the offload took measured by the host, and the amount of 

computation time done by the coprocessor.  A value of 2 adds information on how much data was 

transferred in either direction.  

prompt> set OFFLOAD_REPORT=<1 or 2> 

 

Details can be found in the compiler documentation in the “Compilation/Setting Environment Variables” section. 

 

Using the Offload Compiler – Explicit Memory Copy Model 

In this section, a reduction is used as an example to show a step-by-step approach for developing applications 

for the Intel Xeon Phi coprocessor using the offload compiler. The offload compiler is a heterogeneous2 

compiler, with both host CPU and target compilation environments. Code for both the host CPU and Intel Xeon 

Phi coprocessor is compiled within the host environment, and offloaded code is automatically run within the 

target environment.  The offload behavior is controlled by compiler directives: pragmas in C/C++, and 

directives in Fortran. 

 

Some common libraries, such as the Intel Math Kernel Library (Intel MKL), are available in host versions as well 

as target versions. When an application executes its first offload and the target is available, the runtime loads 

the target executable onto the Intel Xeon Phi coprocessor.   At this time, it also initializes the libraries linked 

with the target code. The loaded target executable remains in the target memory until the host program 

terminates. Thus, any global state maintained by the library is maintained across offload instances. 

 

Note: Although, the user may specify the region of code to run on the target, there is no guarantee of 

execution on the Intel Xeon Phi coprocessor. Depending on the presence of the target hardware or the 

availability of resources on the Intel Xeon Phi coprocessor when execution reaches the region of code marked 

for offload, the code can run on the Intel Xeon Phi coprocessor or may fall back to executing on the host. 

 

The following code samples show several versions of porting reduction code to the Intel Xeon Phi coprocessor 

using the offload pragma directive.  

Reduction 

The operation refers to computing the expression: 

ans = a[0] + a[1] + … + a[n-1] 

 

Host Version: 

The following sample code shows the C code to implement this version of the reduction. 

 

float reduction_serial(float *data, int size) 

{ 

    float ret = 0.f; 

    for (int i=0; i<size; ++i) 

    { 

                                           
2 http://dictionary.reference.com/browse/heterogeneous 

http://dictionary.reference.com/browse/heterogeneous
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        ret += data[i]; 

    } 

    return ret; 

} 

 

Code Example 1: Implementing Reduction Code in C/C++ 

 

 

Creating the Offload Version 

Serial Reduction with Offload 

The programmer uses #pragma offload target(mic) (as shown in the example below) to mark statements 

(offload constructs) that should execute on the Intel Xeon Phi coprocessor. The offloaded region is defined as 

the offload construct plus the additional regions of code that run on the target as the result of function calls. 

Execution of the statements on the host will resume once the statements on the target have executed and 

the results are available on the host (i.e. the offload will block, although there is a version of this pragma that 

allows asynchronous execution). The in, out, and inout clauses specify the direction of data to be transferred 

between the host and the target. 

 

Variables used within an offloaded construct that are declared outside the scope of the construct (including 

the file-scope) are copied (by default) to the target before execution on the target begins and copied back to 

the host on completion. 

 

For example, in the code below, the variable ret is automatically copied to the target before execution on the 

target and copied back to the host on completion. The offloaded code below is executed by a single thread on 

a single Intel MIC Architecture core. 

 
 

float reduction_offload(float *data, int size) 

{ 

    float ret = 0.f; 

    #pragma offload target(mic) in(data:length(size)) 

    for (int i=0; i<size; ++i) 

    { 

        ret += data[i]; 

    } 

    return ret; 

} 

 

Code Example 2: Serial Reduction with Offload 

 

Vector Reduction with Offload  

Each core on the Intel Xeon Phi coprocessor has a VPU. The auto vectorization option is enabled by default on 

the offload compiler. Alternately, as seen in the example below, the programmer can use the Intel® Cilk™ Plus 

Extended Array Notation to maximize vectorization and take advantage of the Intel MIC Architecture core’s 32 
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512-bit registers. The offloaded code is executed by a single thread on a single core. The thread uses the 

built-in reduction function __sec_reduce_add() to use the core’s 32 512-bit vector registers to reduce the 

elements in the array sixteen at a time. 

 

 

float reduction_vectorreduction(float *data, int size) 

{ 

    float ret = 0; 

    #pragma offload target(mic) in(data:length(size)) 

    ret = __sec_reduce_add(data[0:size]); //Intel Cilk Plus  

                                          //Extended Array Notation 

    return ret; 

} 

 

Code Example 3: Vector Reduction with Offload in C/C++ 

 

Asynchronous Offload and Data Transfer  

Asynchronous offload and data transfer between the host and the Intel Xeon Phi coprocessor is available.  For 

details see the “About Asynchronous Computation” and “About Asynchronous Data Transfer” sections in the 

Intel® C++ Compiler User and Reference Guide (under “Key Features/Programming for the Intel MIC 

Architecture”). 

 

For an example showing the use of asynchronous offload and transfer, refer to  

c:\Program Files (x86)\Intel\Composer XE\Samples\en_US\C++\mic_samples\ 

intro_sampleC\sampleC13.c 

 

Note that when using the Explicit Memory Copy Model in C/C++, arrays are supported provided the array 

element type is scalar or a bitwise copyable struct or class. Arrays of pointers are not supported.  For C/C++ 

complex data structure, use the Implicit Memory Copy Model. Please consult the section “Restrictions on 

Offload Code Using a Pragma” in the document “Intel® C++ Compiler XE 13.0 User and Reference Guide” for 

more information.  

 

Using the Offload Compiler – Implicit Memory Copy Model  
 

The Implicit Memory Copy model is not currently available. It will be available in a future release. 

 

 

Native Compilation  

Applications can also be run natively on the Intel Xeon Phi coprocessor, in which case the coprocessor will be 

treated as a standalone multicore computer. Once the binary is built on the host system, copy the binary and 

other related binaries or data to the Intel Xeon Phi coprocessor’s filesystem (or make them visible on the 

coprocessor via NFS).  
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Example: 

1. Unzip <install-dir>\Samples\en_US\C++\openmp_samples.zip and copy  <install-

dir>\Samples\en_US\C++\openmp_samples\openmp_sample.c to your home directory. 

 

2. Build the application with the /Qmic flag:  

icl /Qmic -openmp openmp_sample.c 

 

3. Upload the binary to the coprocessor mic0: 

pscp –i id_rsa.ppk a.out root@192.168.1.100:/tmp/a.out 

 

4. Copy over any shared libraries required by your application, in this case the OpenMP* runtime library: 

pscp –i id_rsa.ppk “c:\Program Files (x86)\Common Files\Intel\Shared 

Libraries\compiler\lib\mic\lib\libiomp5.so” root@192.168.1.100:/tmp/ 

libiomp5.so 

  

5. Connect to the coprocessor with PuTTY* and export the local directory so that the application can find 

any shared libraries it uses (in this case the OpenMP* runtime library): 

export LD_LIBRARY_PATH=/tmp  

 

6. This application may generate a segmentation fault if the stacksize is not set correctly. To modify the 

stacksize use:  

 
ulimit –s unlimited 

 

7. Go to /tmp and run a.out: 

cd /tmp  

./a.out 

 

Parallel Programming Options on the Intel Xeon Phi coprocessor 

Most of the parallel programming options available on the host systems are available for the Intel Xeon Phi 

coprocessor. These include the following: 

1. Intel Threading Building Blocks (Intel TBB) 

2. OpenMP* 

3. Intel® Cilk Plus 

4. pthreads* 

mailto:root@192.168.1.100:/tmp/
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The following sections will discuss the use of these parallel programming models in code using the offload 

extensions.  Code that runs natively on the Intel Xeon Phi coprocessor can use these parallel programming 

models just as they would on the host, with no unusual complications beyond the larger number of threads. 

Parallel Programming on the Intel Xeon Phi coprocessor: OpenMP* 

There is no correspondence between OpenMP threads on the host CPU and on the Intel Xeon Phi coprocessor.  

Because an OpenMP parallel region within an offload/pragma is offloaded as a unit, the offload compiler 

creates a team of threads based on the available resources on Intel Xeon Phi coprocessor.  Since the entire 

OpenMP construct is executed on the Intel Xeon Phi coprocessor, within the construct the usual OpenMP 

semantics of shared and private data apply. 

 

Multiple host CPU threads can offload to the Intel Xeon Phi coprocessor at any time. If a CPU thread attempts 

to offload to the Intel Xeon Phi coprocessor and resources are not available on the coprocessor, the code 

meant to be offloaded may be executed on the host.  When a thread on the coprocessor reaches the “omp 

parallel” directive, it creates a team of threads based on the resources available on the coprocessor. The 

theoretical maximum number of hardware threads that can be created is 4 times the number of cores in your 

Intel Xeon Phi coprocessor. The practical limit is four less than this (for offloaded code) because a core is 

reserved for the uOS and its services. 

 

The code shown below is an example of a single host CPU thread attempting to offload the reduction code to 

the Intel Xeon Phi coprocessor using OpenMP in the offload construct. 

 
 

float OMP_reduction_OMP(float *data, int size) 

{ 

    float ret = 0; 

    #pragma offload target(mic) in(size) in(data:length(size)) 

    { 

        #pragma omp parallel for reduction(+:ret) 

        for (int i=0; i<size; ++i) 

        { 

            ret += data[i]; 

        } 

    } 

    return ret; 

} 

 

Code Example 4: C/C++:  Using OpenMP* in Offloaded Reduction Code 

 

For a Fortran example showing the use of OpenMP* in Offload Reduction Code, please refer to <install-

dir>\Samples\en_US\Fortran\mic_samples\LEO_Fortran_intro 

Parallel Programming on the Intel Xeon Phi coprocessor: OpenMP* + Intel Cilk Plus Extended 

Array Notation 

The following code sample further extends the OpenMP example to use Intel Cilk Plus Extended Array 

Notation. In the following code sample, each thread uses the Intel Cilk Plus Extended Array Notation 
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__sec_reduce_add() built-in reduction function to use all 32 of the Intel MIC Architecture’s 512-bit vector 

registers to reduce the elements in the array. 

 
 

float OMPnthreads_CilkPlusEAN_reduction(float *data, int size) 

{ 

    float ret=0; 

    #pragma offload target(mic) in(data:length(size)) 

    { 

        int nthreads = omp_get_max_threads(); 

        int ElementsPerThread = size/nthreads; 

        #pragma omp parallel for reduction(+:ret) 

        for(int i=0;i<nthreads;i++) 

        { 

            ret =__sec_reduce_add( 

                   data[i*ElementsPerThread:ElementsPerThread]); 

        } 

        //rest of the array 

        for(int i=nthreads*ElementsPerThread; i<size; i++) 

        { 

            ret+=data[i]; 

        } 

    } 

    return ret; 

} 

 

Code Example 5: Array Reduction Using Open MP and Intel Cilk Plus in C/C++ 

 

Parallel Programming on the Intel Xeon Phi coprocessor: Intel Cilk Plus 

Intel Cilk Plus header files are not available on the target environment by default. To make the header files 

available to an application built for the Intel MIC Architecture using Intel Cilk Plus, wrap the header files with 

#pragma offload_attribute(push,target(mic)) and #pragma offload_attribute(pop) as follows: 

 
 

#pragma offload_attribute(push,target(mic)) 

#include <cilk/cilk.h> 

#include <cilk/reducer_opadd.h> 

#pragma offload_attribute(pop) 

 

Code Example 6: Wrapping the Header Files in C/C++ 

 

In the following example, the compiler converts the cilk_for loop into a recursively called function using an 

efficient divide-and-conquer strategy. 

 
 

float ReduceCilk(float*data, int size) 

{ 

    float ret = 0; 

    #pragma offload target(mic) in(data:length(size)) 
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    { 

        cilk::reducer_opadd<int> total; 

        cilk_for (int i=0; i<size; ++i) 

        { 

            total += data[i]; 

        } 

        ret = total.get_value(); 

    } 

    return ret; 

} 

 

Code Example 7: Creating a Recursively Called Function by Converting the “cilk_for” Loop 

 

Parallel Programming on Intel Xeon Phi coprocessor: Intel TBB 

Like Intel Cilk Plus, the Intel TBB header files are not available on the target environment by default. They are 

made available to the Intel MIC Architecture target environment using similar techniques: 

 
 

#pragma offload_attribute (push,target(mic)) 

#include "tbb/task_scheduler_init.h" 

#include "tbb/blocked_range.h" 

#include "tbb/parallel_reduce.h" 

#include "tbb/task.h" 

#pragma offload_attribute (pop) 

 

using namespace tbb; 

 

Code Example 8: Wrapping the Intel TBB Header Files in C/C++ 

 

Functions called from within the offloaded construct and global data required on the Intel Xeon Phi 

coprocessor should be prepended by the special function  __declspec(target(mic)) . 

 

As an example, parallel_reduce recursively splits an array into subranges for each thread to work on. The 

parallel_reduce uses a splitting constructor to make one or more copies for each thread. For each split, the 

method join is invoked to accumulate the results.  

 

1. Prefix the class by the macro __MIC__ and the class name by __declspec(target(mic)) if you 

want them to be generated for the coprocessor. 

 
 

#ifdef __MIC__ 

class __declspec(target(mic)) ReduceTBB 

{ 

private: 

    float *my_data; 

public: 

    float sum; 
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    void operator()( const blocked_range<size_t>& r ) 

    { 

        float *data = my_data; 

        for( size_t i=r.begin(); i!=r.end(); ++i) 

        { 

            sum += data[i]; 

        } 

    } 

 

   ReduceTBB( ReduceTBB& x, split) : my_data(x.my_data), sum(0) {} 

 

   void join( const ReduceTBB& y) { sum += y.sum; } 

 

   ReduceTBB( float data[] ) : my_data(data), sum(0) {} 

}; 

#endif 

 

Code Example 9: Prefixing an Intel TBB Class for Intel MIC Architecture code generation in C/C++ 

 

2. Prefix the function to be offloaded to the Intel Xeon Phi coprocessor by __declspec(target(mic)) 

 
 

__declspec(target(mic)) 

float MICReductionTBB(float *data, int size) 

{ 

    ReduceTBB redc(data); 

    // initializing the library 

    task_scheduler_init init; 

    parallel_reduce(blocked_range<size_t>(0, size), redc); 

    return redc.sum; 

} 

 

Code Example 10: Prefixing an Intel TBB Function for Intel MIC Architecture code generation in C/C++ 

 

3. Use #pragma offload target(mic) to offload the parallel code using Intel TBB to the coprocessor 

 
 

float MICReductionTBB(float *data, int size) 

{ 

    float ret(0.f); 

    #pragma offload target(mic) in(size) in(data:length(size)) out(ret) 

    ret = _MICReductionTBB(data, size);  

    return ret; 

} 

 

Code Example 11: Offloading Intel TBB Code to the coprocessor in C/C++ 

 

NOTE: Codes using Intel TBB with an offload should be compiled with /Qtbb flag  
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Using Intel MKL 

For offload users, Intel MKL is most commonly used in Native Acceleration (NAcc) mode on the Intel Xeon Phi 

coprocessor. In NAcc, all data and binaries reside on the Intel Xeon Phi coprocessor.  Data is transferred by the 

programmer through offload compiler pragmas and semantics to be used by Intel MKL calls within an offloaded 

region or function. NAcc functionality contains BLAS, LAPACK, FFT, VML, VSL, (Sparse Matrix Vector), and 

required Intel MKL Service functions. Please see the Intel MKL release documents for details on which 

functions are optimized and which are not supported.   

The Native Acceleration Mode can also be used in native Intel MIC Architecture code – in this case the Intel 

MKL shared libraries must be copied to the Intel Xeon Phi coprocessor before execution. 

 

 

Figure 6: Using MKL Native Acceleration with Offload 

 

SGEMM Sample 

Using SGEMM routine from BLAS library 

 

Sample Code – sgemm  

 

Step 1: Initialize the matrices, which in this example need to be global variables to make use of data 

persistence. 

 

Step 2: Send the data over to the Intel Xeon Phi coprocessor using #pragma offload. In this 

example, the free_if(0) qualifier is used to make the data persistent on the Intel Xeon Phi 

coprocessor. 

 

 

#define PHI_DEV 0 

#pragma offload_transfer target(mic:PHI_DEV) \ 
    in(A:length(matrix_elements) free_if(0)) \ 
    in(B:length(matrix_elements) free_if(0)) \ 
    in(C:length(matrix_elements) free_if(0)) 

     

Code Example 12: Sending the Data to the Intel Xeon Phi coprocessor 
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Step 3: Call sgemm inside the offload section to use the “Native Acceleration” version of Intel MKL on 

the Intel Xeon Phi coprocessor. The nocopy() qualifier causes the data copied to the card in step 2 to 

be reused. 

 
 

#pragma offload target(mic:PHI_DEV) \ 

    in(transa, transb, N, alpha, beta) \ 

    nocopy(A: alloc_if(0) free_if(0)) nocopy(B: alloc_if(0) free_if(0)) \ 

    out(C:length(matrix_elements) alloc_if(0) free_if(0)) // output data  

    { 

        sgemm(&transa, &transb, &N, &N, &N, &alpha, A, &N, B, &N, 

            &beta, C, &N); 

    } 

 

Code Example 13: Calling sgemm Inside the Offload Section 

 

Step 4: Free the memory you copied to the card in step 2. The alloc_if(0) qualifier is used to reuse 

the data on the card on entering the offload section, and the free_if(1) qualifier is used to free the 

data on the card on exit. 

 
 

#pragma offload_transfer target(mic:PHI_DEV) \ 

        nocopy(A:length(matrix_elements) alloc_if(0) free_if(1)) \ 

        nocopy(B:length(matrix_elements) alloc_if(0) free_if(1)) \ 

        nocopy(C:length(matrix_elements) alloc_if(0) free_if(1)) 

  

Code Example 14: Set the Copied Memory Free 

 

As with Intel MKL on any platform, it is possible to limit the number of threads it uses by setting the number 

of allowed OpenMP threads before executing the MKL function within the offloaded code. 

 

 

#pragma offload target(mic:PHI_DEV) \ 

    in(transa, transb, N, alpha, beta) \ 

    nocopy(A: alloc_if(0) free_if(0)) nocopy(B: alloc_if(0) free_if(0)) 

    out(C:length(matrix_elements) alloc_if(0) free_if(0)) // output data 

    { 

        omp_set_num_threads(64); // set num threads in openmp 

        sgemm(&transa, &transb, &N, &N, &N, &alpha, A, &N, B, &N, 

            &beta, C, &N);  

    } 

 

Code Example 15: Controlling Threads on the Intel Xeon Phi coprocessor Using omp_set_num_threads() 

 

Intel MKL Automatic Offload Model  

MKL Automatic Offload Model is not available, but it will be supported in a near future.  
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Debugging on the Intel Xeon Phi coprocessor  

You will find information specific to debugging Intel MIC Architecture applications in <install-
dir>\Documentation\en_US\debugger\gdb\gdb.pdf 

Performance Analysis on the Intel Xeon Phi coprocessor  

Users can refer to the document “Optimization – Part 2: Hardware Events” for optimizing applications on the 

Intel Xeon Phi coprocessor using VTune™ Amplifier XE 2013 for Windows. This document can be found at 

http://software.intel.com/mic-developer under “Programming” tab, and “Optimization” section. 

 

http://software.intel.com/mic-developer
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Appendix A: Basic Linux Commands  

This appendix shows some common Linux commands for use on the Intel Xeon Phi coprocessor.  

 

1. Logout of the coprocessor: 

User can log out by using “exit” command in coprocessor terminal. User is logged out and the 

terminal disappears. 

> exit  

 

2. List files and directories in the current directory: “ls” 

“ls” can be used to list all files and directories 

“ls –l” is used to list all files and directories with all attributes.  

> ls 

a.out 

libioomp5.so 

……… 

 

3. Retrieve the path of the current directory:  “pwd”  

> pwd 

/root 

 

4. To Navigate to a certain directory:  “cd <path>”  

> cd /tmp 

 

5. List all current running processes:  “ps”  

> ps 

5847 root    0:00 /sbin/sshd 

5914 micuser 2:47 /bin/coi_daemon –coiuser=micuser 

……… 

 

6. Kill a process by its process identification: “kill -9 <pid>”  

> kill -9 4555 

 

7. List the processes which consume the most CPU: “top” 

> top 

 

8. Copy a file: “cp <sourcefilename> <destinationfilename>” 

> cp file1 file2 

 

9. Remove (delete) a file: “rm <filename>” 

> rm file1 
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10. Review the content of a file: “less <filename>” 

> less file2 

 

11. Search a line that matches a pattern: “grep <pattern>”. For example, to search any process that 

have name with “coi”, you can combine grep and ps.   

> ps | grep coi 

5914 micuser 2:47 /bin/coi_daemon –coiuser=micuser 

 

12. Use “export”  to set a specific environment variable 

> export LD_LIBRARY_PATH=/tmp   

 

13. Use “ctrl key” and “C” to terminate the current running task. 
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Notices 

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO 

LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY 

RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND 

CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND 

INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF 

INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A 

PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR 

OTHER INTELLECTUAL PROPERTY RIGHT.  

 

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or 

indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY 

SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS 

SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND 

EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND 

REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF 

PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION 

CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN 

THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.  

 

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must 

not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined". 

Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or 

incompatibilities arising from future changes to them. The information here is subject to change without notice. 

Do not finalize a design with this information.  

 

The products described in this document may contain design defects or errors known as errata which may 

cause the product to deviate from published specifications. Current characterized errata are available on 

request.  

 

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing 

your product order. 

Copies of documents which have an order number and are referenced in this document, or other 

Intel literature, may be obtained by calling 1-800-548-4725, or go 

to:  http://www.intel.com/design/literature.htm 

Intel, the Intel logo, Cilk, Xeon and Intel Xeon Phi are trademarks of Intel Corporation in the U.S. 

and other countries. 

*Other names and brands may be claimed as the property of others 

Copyright© 2013 Intel Corporation. All rights reserved. 

  

http://www.intel.com/design/literature.htm
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Optimization Notice 

 

 

Optimization Notice 

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for 

optimizations that are not unique to Intel microprocessors.  These optimizations include SSE2, SSE3, 

and SSE3 instruction sets and other optimizations.  Intel does not guarantee the availability, 

functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. 

 

Microprocessor-dependent optimizations in this product are intended for use with Intel 

microprocessors.  Certain optimizations not specific to Intel microarchitecture are reserved for Intel 

microprocessors.  Please refer to the applicable product User and Reference Guides for more 

information regarding the specific instruction sets covered by this notice.   

 

Notice revision #20110804 


