

Reference Manual

For Audio Processing

API Version 1.15

ii Reference Manual for Audio Processing API Version 1.15

LEGAL DISCLAIMER

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO

LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL

PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S

TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY

WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO

SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO

FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY

PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT

DESIGNED NOR INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL

PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions

marked "reserved" or "undefined." Intel reserves these for future definition and shall have no

responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The information here is subject to change without notice. Do not finalize a design with this

information.

The products described in this document may contain design defects or errors known as errata

which may cause the product to deviate from published specifications. Current characterized

errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and

before placing your product order.

Copies of documents which have an order number and are referenced in this document, or

other Intel literature, may be obtained by calling 1-800-548-4725, or by visiting Intel's Web

Site.

MPEG is an international standard for video compression/decompression promoted by ISO.

Implementations of MPEG CODECs, or MPEG enabled platforms may require licenses from

various entities, including Intel Corporation.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its

subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2013-2015, Intel Corporation. All Rights reserved.

http://www.intel.com/
http://www.intel.com/

iii Reference Manual for Audio Processing API Version 1.15

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for

optimizations that are not unique to Intel microprocessors. These optimizations include SSE2,

SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the

availability, functionality, or effectiveness of any optimization on microprocessors not

manufactured by Intel.

Microprocessor-dependent optimizations in this product are intended for use with Intel

microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for

Intel microprocessors. Please refer to the applicable product User and Reference Guides for

more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

iv Reference Manual for Audio Processing API Version 1.15

Table of Contents

Overview .. 1

Document Conventions ... 1

Acronyms and Abbreviations .. 1

Related Documents ... 1

Architecture .. 2

Audio Data .. 2

Audio Decoding .. 3

Audio Encoding .. 3

Audio Processing .. 3

Custom plugins support (New!) ... 4

Programming Guide ... 5

Status Codes ... 5

Audio Session .. 6

Multiple Sessions .. 6

Decoding Procedures .. 6

Bitstream Repositioning .. 7

Encoding Procedures ... 7

Configuration Change ... 8

Transcoding Procedures .. 8

Asynchronous Pipeline .. 8

Pipeline Error Reporting .. 9

Function Reference .. 10

v Reference Manual for Audio Processing API Version 1.15

Global Functions ... 10

MFXInit ... 10

MFXClose .. 11

MFXQueryIMPL... 11

MFXQueryVersion ... 11

MFXJoinSession .. 11

MFXDisjoinSession.. 12

MFXCloneSession ... 12

MFXSetPriority ... 12

MFXGetPriority ... 13

MFXAudioCORE .. 13

MFXAudioCORE_SyncOperation .. 13

MFXAudioENCODE .. 14

MFXAudioENCODE_Query .. 14

MFXAudioENCODE_QueryIOSize ... 15

MFXAudioENCODE_Init ... 16

MFXAudioENCODE_Reset .. 17

MFXAudioENCODE_Close ... 18

MFXAudioENCODE_GetAudioParam ... 18

MFXAudioENCODE_EncodeFrameAsync ... 19

MFXAudioDECODE .. 20

MFXAudioDECODE_Query .. 21

MFXAudioDECODE_QueryIOSize ... 22

MFXAudioDECODE_DecodeHeader .. 23

MFXAudioDECODE_Init ... 23

MFXAudioDECODE_Reset .. 24

vi Reference Manual for Audio Processing API Version 1.15

MFXAudioDECODE_Close ... 25

MFXAudioDECODE_GetAudioParam... 26

MFXAudioDECODE_DecodeFrameAsync ... 26

Structure Reference ... 28

mfxVersion .. 28

mfxBitstream ... 28

mfxAudioAllocRequest ... 30

mfxAudioInfoMFX ... 30

mfxAudioParam .. 32

mfxAudioFrame .. 33

Enumerator Reference .. 35

CodecFormatFourCC ... 35

CodecProfile ... 35

CodingOptionValue ... 36

Corruption ... 36

mfxIMPL .. 36

mfxPriority .. 37

mfxStatus ... 37

1 Reference Manual for Audio Processing API Version 1.15

Overview

This document describes API for audio processing. The API is similar to video processing API

implemented in video library from Intel® Media Server Studio 2015 – SDK (hereinafter

SDK).

The API is implemented in Intel® Media Server Studio 2015 - Audio Encoder & Decoder

(hereinafter Audio).

Document Conventions

The API uses the Verdana typeface for normal prose. With the exception of section headings

and the table of contents, all code-related items appear in the Courier New typeface

(mxfStatus and MFXInit). All class-related items appear in all cap boldface, such as DECODE

and ENCODE. Member functions appear in initial cap boldface, such as Init and Reset, and

these refer to members of all three classes, DECODE, ENCODE and VPP. Hyperlinks appear in
underlined boldface, such as mfxStatus.

Acronyms and Abbreviations

MP3 MPEG-1 Audio Layer 3

AAC Advanced Audio Coding

Related Documents

SDK Reference

manual

SDK API

Reference

manual

(Extensions for

User-Defined

Functions)

2 Reference Manual for Audio Processing API Version 1.15

Architecture

Audio library supports next functionality:

DECODE Decode compressed audio streams into raw samples

ENCODE Encode raw audio samples into compressed bitstreams

CORE Auxiliary functions for synchronization

USER User-defined functions for plugins loading (New!)

Misc Global auxiliary functions

With the exception of the global auxiliary functions, SDK and Audio functions are named after

their functioning domain and category, as illustrated in Figure 1.

MFXVideoDECODE_DecodeFrameAsync

Prefix Class NameDomain

Figure 1: SDK Function Naming Convention

Applications use Audio functions by linking with the SDK dispatcher library, as illustrated in

Figure 2. The dispatcher library identifies the most suitable library, and then redirects function

calls.

SDK API Dispatcher Library

(ENCODE/DECODE)

SDK Library 1

(CPU Optimized)

SDK Library 2

(Platform 1)

SDK Library 3

(Platform 2)

Application

Figure 2: SDK Dispatching Mechanism

Audio Data

Audio processes audio data by small chunks of samples also known as audio frames. One

frame of audio data consists of predefined by standard number of audio samples. If audio

3 Reference Manual for Audio Processing API Version 1.15

stream consists of more than one channel, all channels are interleaved in the same audio

frame. Number and order of channels in the data buffers are defined by the Audio components

configuration.

Audio uses two different data structures to hold audio frames, mfxBitstream, that is used for

compressed audio data and mfxAudioFrame that holds raw audio samples. Both structures may

hold partial audio frame, complete frame or several audio frames.

Term frame is used for both compressed and uncompressed audio data.

Audio Decoding

The DECODE class of functions takes a compressed bitstream as input and converts it to audio

samples as output.

DECODE processes only pure or elementary audio streams. The library cannot process

bitstreams that reside in a container format, such as MP4 or MPEG. The application must first

de-multiplex the bitstreams. De-multiplexing extracts pure audio streams out of the container

format.

For MP3 standard the application can provide the input bitstream as one complete frame of

data, less than one frame (a partial frame), or multiple frames. If only a partial frame is

provided, DECODE internally constructs one frame of data before decoding it. For AAC

standard, DECODE accepts only complete audio frame.

The time stamp of a compressed buffer must be accurate to the first byte of the frame data.

This time stamp will be assigned to uncompressed audio frame at decoder output and later may

be used for audio video synchronization.

DECODE supports repositioning of the bitstream at any time during decoding. The application

should use Reset function before starting decoding from new position to clear internal decoder

history.

Audio Encoding

The ENCODE class of functions takes audio samples as input and compresses them into a

bitstream.

An encoder may receive partial frame as input, complete frame or several frames in the same

input data buffer.

An ENCODE output consists of compressed audio frame with correspondent time stamp.

Encoder uses timestamp provided by the application together with input audio samples. The

time stamp is used for multiplexing audio and video. Audio library provides only pure audio

stream encoding. The application must provide its own multiplexing.

Audio Processing

Audio does not support audio processing like sampling rate conversion, denoising and so on.

4 Reference Manual for Audio Processing API Version 1.15

Custom plugins support (New!)

New API for custom codec plugins support was added to Audio library starting from API 1.15. A

set of new API functions allows a user to add custom codec support to audio transcoding

pipeline. Plugins architecture, API and a guide for audio plugins creation is described in SDK API

Reference Manual (Extensions for User-Defined Functions).

5 Reference Manual for Audio Processing API Version 1.15

Programming Guide

This chapter describes the concepts used in programming the API.

The application must use the include file, mfxaudio.h (for C programming), or mfxaudio++.h

(for C++ programming), and link the SDK static dispatcher library, libmfx.lib.

Status Codes

Audio functions organize into classes for easy reference. The classes include ENCODE

(encoding functions) and DECODE (decoding functions).

Init, Reset and Close are member functions within the ENCODE and DECODE classes that

initialize, restart and de-initialize specific operations defined for the class. Call all other member

functions (except Query and QueryIOSurf) within the Init … Reset (optional) … Close

sequence.

The Init and Reset member functions both set up necessary internal structures for media

processing. The difference between the two is that the Init functions allocate memory while the

Reset functions only reuse allocated internal memory. Therefore, Reset can fail if Audio needs

to allocate additional memory. Reset functions can also fine-tune ENCODE parameters during

processing or reposition a bitstream during DECODE.

All Audio functions return status codes to indicate whether an operation succeeded or failed.

See the mfxStatus enumerator description for all defined status codes. The status code

MFX_ERR_NONE indicates that the function successfully completed its operation. Status codes are

less than MFX_ERR_NONE for all errors and greater than MFX_ERR_NONE for all warnings.

If an Audio function returns a warning, it has sufficiently completed its operation, although the

output of the function might not be strictly reliable. The application must check the validity of

the output generated by the function.

If an Audio function returns an error (except MFX_ERR_MORE_DATA or

MFX_ERR_MORE_BITSTREAM), the function aborts the operation. The application must call either

the Reset function to put the class back to a clean state, or the Close function to terminate the

operation. The behavior is undefined if the application continues to call any class member

functions without a Reset or Close. To avoid memory leaks, always call the Close function

after Init.

Include these files:

#include “mfxaudio.h” /* The SDK include file */

#include “mfxaudio++.h” /* Optional for C++ development */

Link this library:

 libmfx.lib /* The SDK static dispatcher library */

6 Reference Manual for Audio Processing API Version 1.15

Audio Session

Before calling any Audio functions, the application must initialize Audio library and create an

Audio session. An Audio session maintains context for the use of any of DECODE and

ENCODE functions.

The function MFXInit starts (initializes) a session. MFXClose closes (de-initializes) the session.

To avoid memory leaks, always call MFXClose after MFXInit.

Multiple Sessions

Each Audio session can run exactly one instance of DECODE or ENCODE functions. This is

good for a simple transcoding operation. If the application needs more than one instance of

DECODE or ENCODE in a complex transcoding setting, or needs more simultaneous

transcoding operations, the application can initialize multiple sessions.

The application can use multiple sessions independently or run a “joined” session.

Independently operated sessions cannot share data unless the application explicitly

synchronizes session operations (to ensure that data is valid and complete before passing from

the source to the destination session.)

To join two sessions together, the application can use the function MFXJoinSession.

Alternatively, the application can use the function MFXCloneSession to duplicate an existing

session. Joined sessions work together as a single session, sharing all session resources,

threading control and prioritization operations. When joined, one of the sessions (the first join)

serves as a parent session, scheduling execution resources, with all others child sessions

relying on the parent session for resource management.

With joined sessions, the application can set the priority of session operations through the
MFXSetPriority function. A lower priority session receives less CPU cycles.

After the completion of all session operations, the application can use the function
MFXDisjoinSession to remove the joined state of a session. Do not close the parent session

until all child sessions are disjoined or closed.

Decoding Procedures

The application should use the following decoding procedure:

 The application can use the MFXAudioDECODE_DecodeHeader function to retrieve

decoding initialization parameters from the bitstream. This step is optional if such

parameters are retrievable from other sources such as an audio/video splitter.

 The application uses the MFXAudioDECODE_QueryIOSize function to obtain the

recommended sizes of input and output data buffers.

 The application calls the MFXAudioDECODE_Init function to initialize decoder.

 The application calls the MFXAudioDECODE_DecodeFrameAsync function for a decoding

operation. If decoding output is not available, the function returns a status code

MFX_ERR_MORE_DATA requesting additional bitstream input.

7 Reference Manual for Audio Processing API Version 1.15

 Upon successful decoding, the MFXAudioDECODE_DecodeFrameAsync function returns

MFX_ERR_NONE. However, the decoded data is not yet available because the

MFXAudioDECODE_DecodeFrameAsync function is asynchronous. The application must

use the MFXAudioCORE_SyncOperation function to synchronize the decoding operation

before retrieving the decoded data.

Bitstream Repositioning

The application can use the following procedure for bitstream reposition during decoding:

1. Use the MFXAudioDECODE_Reset function to reset the decoder.

2. Append the bitstream from the new location to the bitstream buffer.

3. Resume the decoding procedure.

Encoding Procedures

The application should use the following encoding procedure:

 The application uses the MFXAudioENCODE_QueryIOSize function to obtain the

recommended sizes of input and output data buffers.

 The application calls the MFXAudioENCODE_Init function to initialize encoder.

 The application calls the MFXAudioENCODE_EncodedFrameAsync function for the

encoding operation. Because input frame size may differ from compressed frame

size, there are three possible outcomes of this call:

o if the input buffer contains exactly one audio frame, the function starts

asynchronous encoding operation and returns MFX_ERR_NONE status. The

application should use new audio frame and new compressed bitstream buffer

in next function call.

o if the input buffer contains part of audio frame, the function does not start

asynchronous encoding operation and returns MFX_ERR_MORE_DATA status.

The application should use new audio frame and the same compressed

bitstream buffer in next function call.

o if the input buffers contains more than one audio frame, the function starts

asynchronous encoding operation and returns MFX_ERR_MORE_BITSTREAM

status. The application should use the same audio frame and new compressed

bitstream buffer in next function call.

 Upon successful start of encoding operation, the function returns either

MFX_ERR_NONE or MFX_ERR_MORE_BITSTREAM status. However, the encoded bitstream

is not yet available because the MFXAudioENCODE_EncodeFrameAsync function is

asynchronous. The application must use the MFXAudioCORE_SyncOperation function

to synchronize the encoding operation before retrieving the encoded bitstream.

8 Reference Manual for Audio Processing API Version 1.15

 At the end of the stream, the application should retrieve data cached by the encoder

by continuously calling the MFXAudioENCODE_EncodeFrameAsync function with NULL

pointer as input, until the function returns MFX_ERR_MORE_DATA.

Configuration Change

Audio does not support any dynamic configuration changes. The application should close and

then reinitialize Audio component to change any parameters.

Transcoding Procedures

The application can use the encoding and decoding functions together for transcoding

operations. This section describes the key aspects of connecting two or more functions

together.

Asynchronous Pipeline

The application passes the output of an upstream Audio function to the input of the

downstream Audio function to construct an asynchronous pipeline. Such pipeline construction

is done at runtime and can be dynamically changed.

The Audio simplifies the requirement for asynchronous pipeline synchronization. The

application only needs to synchronize after the last function. Explicit synchronization of

intermediate results is not required and in fact can slow performance.

The Audio tracks the dynamic pipeline construction and verifies dependency on input and

output parameters to ensure the execution order of the pipeline function. In Example 1, the
Audio will ensure MFXAudioENCODE_EncodeFrameAsync does not begin its operation until

MFXAudioDECODE_DecodeFrameAsync has finished.

During the execution of an asynchronous pipeline, the application must consider output data

unavailable until the execution has finished. From the moment when the function reported

successful beginning of asynchronous operation and until corresponded sync operation

indicated that asynchronous operation had been completed. I.e. from the moment when
MFXAudioENCODE_EncodeFrameAsync or MFXAudioDECODE_DecodeFrameAsync functions returned

ERR_NONE status until the moment when MFXAudioCORE_SyncOperation completed waiting and

returned ERR_NONE status.

The encoder can cache input audio frames and keep them in use even after correspondent

output bitstream buffer has been encoded. To signal that frame is in use the encoder increases

its lock counter. The application should not reuse audio frame until its lock counter will became

equal to zero. It is not recommended to directly modify lock counter.

The Audio checks pipeline dependencies by comparing the pointers to input and output

parameters of each function in the pipeline. Do not modify them before the previous

asynchronous operation finishes. Doing so will break the dependency check and can result in

undefined behavior.

9 Reference Manual for Audio Processing API Version 1.15

Example 1: Asynchronous Pipeline

Pipeline Error Reporting

During asynchronous pipeline construction, on each stage Audio function will return a

synchronization point (sync point). These synchronization points are useful in tracking errors

during the asynchronous pipeline operation.

Assume the pipeline is ABC. The application synchronizes on sync point C. If the error occurs

in function C, then the synchronization returns the exact error code. If the error occurs before

function C, then the synchronization returns MFX_ERR_ABORTED. The application can then try to

synchronize on sync point B. Similarly, if the error occurs in function B, the synchronization

returns the exact error code, or else MFX_ERR_ABORTED. Same logic applies if the error occurs in

function A.

mfxSyncPoint sp;

MFXAudioDECODE_DecodeFrameAsync(session, in_d, out_d, &sp_d);

MFXAudioENCODE_EncodeFrameAsync(session, out_d, out_e, &sp_e);

MFXAudioCORE_SyncOperation (session, sp_e, INFINITE);

10 Reference Manual for Audio Processing API Version 1.15

Function Reference

This section describes Audio functions and their operations.

In each function description, only commonly used status codes are documented. The function

may return additional status codes, such as MFX_ERR_INVALID_HANDLE or MFX_ERR_NULL_PTR, in

certain case. See the mfxStatus enumerator for a list of all status codes.

For plugin-related functions (introduced in API 1.9) please refer to SDK API reference manual

(mediasdkusr-man.pdf)

Global Functions

Global functions initialize and de-initialize the Audio library and perform query functions on a

global scale within an application. Functions described in this chapter are common for audio and

video libraries. Only audio specific functionality is described in this manual. For complete

description, see “SDK Reference Manual”.

Member Functions Description

MFXInit Initializes a session

MFXClose De-initializes a session

MFXQueryIMPL Queries the implementation type

MFXQueryVersion Queries the implementation version

MFXJoinSession Join two sessions together

MFXDisjoinSession Remove the join state of the current session

MFXCloneSession Clone the current session

MFXSetPriority Set session priority

MFXGetPriority Obtain session priority

MFXInit

Syntax

 mfxStatus MFXInit(mfxIMPL impl, mfxVersion *ver, mfxSession *session);

11 Reference Manual for Audio Processing API Version 1.15

Description

 See “SDK Reference Manual”.

The audio library supports only SW implementation and impl should be equal to

MFX_IMPL_AUDIO | MFX_IMPL_SOFTWARE.

MFXClose

Syntax

 mfxStatus MFXClose(mfxSession session);

Description

 See “SDK Reference Manual”.

MFXQueryIMPL

Syntax

 mfxStatus MFXQueryIMPL(mfxSession session, mfxIMPL *impl);

Description

 See “SDK Reference Manual”.

MFXQueryVersion

Syntax

 mfxStatus MFXQueryVersion(mfxSession session, mfxVersion *version);

Description

 See “SDK Reference Manual”.

MFXJoinSession

Syntax

12 Reference Manual for Audio Processing API Version 1.15

 mfxStatus MFXJoinSession(mfxSession session, mfxSession child);

Description

 See “SDK Reference Manual”.

The application could join several audio sessions together, but joining of audio and

video sessions are not supported.

MFXDisjoinSession

Syntax

 mfxStatus MFXDisjoinSession(mfxSession session);

Description

 See “SDK Reference Manual”.

MFXCloneSession

Syntax

 mfxStatus MFXCloneSession(mfxSession session, mfxSession *clone);

Description

 See “SDK Reference Manual”.

MFXSetPriority

Syntax

 mfxStatus MFXSetPriority(mfxSession session, mfxPriority priority);

Description

 See “SDK Reference Manual”.

13 Reference Manual for Audio Processing API Version 1.15

MFXGetPriority

Syntax

 mfxStatus MFXGetPriority(mfxSession session, mfxPriority *priority);

Description

 See “SDK Reference Manual”.

MFXAudioCORE

This class of functions consists of auxiliary functions that all functions of the implementation

can call.

Member Functions

MFXAudioCORE_SyncOperation This function checks status or waits for completion of

the given sync point and returns a status code.

MFXAudioCORE_SyncOperation

Syntax

 mfxStatus MFXAudioCORE_SyncOperation(mfxSession session, mfxSyncPoint

syncp, mfxU32 wait);

Parameters

 session session handle

 syncp Sync point

 wait Wait time in milliseconds

Description

 This function checks status or wait for completion of an asynchronous operation and

returns the status code after the specified asynchronous operation completes. If wait

is zero, the function returns immediately.

Return Status

14 Reference Manual for Audio Processing API Version 1.15

 MFX_ERR_NONE The function completed successfully.

 MFX_WRN_IN_EXECUTION The specified asynchronous function is in execution.

 MFX_ERR_ABORTED The specified asynchronous function aborted due to

data dependency on a previous asynchronous

function that did not complete.

Remarks

 See status codes for specific asynchronous functions.

MFXAudioENCODE

This class of functions performs the entire encoding process from the input audio samples to

the output bitstream.

Member Functions

MFXAudioENCODE_Query Queries the encoder capability

MFXAudioENCODE_QueryIOSize Queries input and output buffer sizes required for

encoding

MFXAudioENCODE_Init Initializes the encoding operation

MFXAudioENCODE_Reset Resets the current encoding operation and prepares

for the next encoding operation

MFXAudioENCODE_Close Terminates the encoding operation and de-allocates

any internal memory

MFXAudioENCODE_GetAudioParam Obtains the current working parameter set

MFXAudioENCODE_EncodeFrameAsync Performs the encoding and returns the compressed

bitstream

MFXAudioENCODE_Query

Syntax

15 Reference Manual for Audio Processing API Version 1.15

 mfxStatus MFXAudioENCODE_Query(mfxSession session, mfxAudioParam *in,

mfxAudioParam *out);

Parameters

 session session handle

 in Pointer to the mfxAudioParam structure as input

 out Pointer to the mfxAudioParam structure as output

Description

 This function works in either of two modes:

1. If the in pointer is zero, the function returns the class configurability in the

output mfxAudioParam structure. A non-zero value in each field of the output

structure indicates that the implementation can configure the field with Init.

2. If the in parameter is non-zero, the function checks the validity of the fields in

the input mfxAudioParam structure. Then the function returns the corrected

values in the output mfxAudioParam structure. If there is insufficient

information to determine the validity or correction is impossible, the function

zeroes the fields. This feature can verify whether the implementation supports

certain profiles, levels or bitrates.

The application can call this function before or after it initializes the encoder. The
CodecId field of the output mfxAudioParam structure is a mandated field (to be filled

by the application) to identify the coding standard.

Return Status

 MFX_ERR_NONE The function completed successfully.

 MFX_ERR_UNSUPPORTED The function failed to identify a specific

implementation for the required features.

 MFX_WRN_INCOMPATIBLE_AUDIO_P

ARAM
The function detected some audio parameters

were incompatible with others; incompatibility

resolved.

MFXAudioENCODE_QueryIOSize

Syntax

16 Reference Manual for Audio Processing API Version 1.15

 mfxStatus MFXAudioENCODE_QueryIOSize(mfxSession session, mfxAudioParam

*par, mfxAudioAllocRequest *request);

Parameters

 session session handle

 par Pointer to the mfxAudioParam structure as input

 request Pointer to the mfxAudioAllocRequest structure

as output

Description

 This function returns input and output buffer sizes required for encoding.

The CodecId field of the mfxAudioParam structure is a mandated field (to be filled by

the application) to identify the coding standard.

This function does not validate I/O parameters except those used in calculating of the

buffer sizes.

Return Status

 MFX_ERR_NONE The function completed successfully.

 MFX_ERR_INVALID_AUDIO_PARAM The function detected invalid audio parameters.

These parameters may be out of the valid range,

or the combination of them resulted in

incompatibility. Incompatibility not resolved.

 MFX_WRN_INCOMPATIBLE_AUDIO_P

ARAM
The function detected some audio parameters

were incompatible with others; incompatibility

resolved.

MFXAudioENCODE_Init

Syntax

 mfxStatus MFXAudioENCODE_Init(mfxSession session, mfxAudioParam *par);

Parameters

 session session handle

17 Reference Manual for Audio Processing API Version 1.15

 par Pointer to the mfxAudioParam structure

Description

 This function allocates memory and initializes the encoder. This function also does

extensive validation to ensure if the configuration, as specified in the input

parameters, is supported.

Return Status

 MFX_ERR_NONE The function completed successfully.

 MFX_ERR_INVALID_AUDIO_PARAM The function detected invalid audio parameters.

These parameters may be out of the valid range,

or the combination of them resulted in

incompatibility. Incompatibility not resolved.

 MFX_WRN_INCOMPATIBLE_AUDIO_P

ARAM
The function detected some audio parameters

were incompatible with others; incompatibility

resolved.

 MFX_ERR_UNDEFINED_BEHAVIOR The function is called twice without a close

MFXAudioENCODE_Reset

Syntax

 mfxStatus MFXAudioENCODE_Reset(mfxSession session, mfxAudioParam *par);

Parameters

 session session handle

 par Pointer to the mfxAudioParam structure

Description

 This function stops the current encoding operation and restores internal structures or

parameters for a new encoding operation, possibly with new parameters.

Return Status

 MFX_ERR_NONE The function completed successfully.

18 Reference Manual for Audio Processing API Version 1.15

 MFX_ERR_INVALID_AUDIO_PARAM The function detected that audio parameters are

wrong or they conflict with initialization

parameters. Reset is impossible.

 MFX_ERR_INCOMPATIBLE_AUDIO_P

ARAM
The function detected that provided by the

application audio parameters are incompatible

with initialization parameters. Reset requires

additional memory allocation and cannot be

executed. The application should close the

component and then reinitialize it.

 MFX_WRN_INCOMPATIBLE_AUDIO_P

ARAM
The function detected some audio parameters

were incompatible with others; incompatibility

resolved.

MFXAudioENCODE_Close

Syntax

 mfxStatus MFXAudioENCODE_Close(mfxSession session);

Parameters

 session session handle

Description

 This function terminates the current encoding operation and de-allocates any internal

tables or structures.

Return Status

 MFX_ERR_NONE The function completed successfully.

MFXAudioENCODE_GetAudioParam

Syntax

19 Reference Manual for Audio Processing API Version 1.15

 mfxStatus MFXAudioENCODE_GetAudioParam(mfxSession session, mfxAudioParam

*par);

Parameters

 session session handle

 par Pointer to the corresponding parameter structure

Description

 This function retrieves current working parameters to the specified output structure.

If extended buffers are to be returned, the application must allocate those extended

buffers and attach them as part of the output structure.

Returned information

 MFX_ERR_NONE The function completed successfully.

MFXAudioENCODE_EncodeFrameAsync

Syntax

 mfxStatus MFXAudioENCODE_EncodeFrameAsync(mfxSession session,

mfxAudioFrame *frame, mfxBitstream *bs, mfxSyncPoint *syncp);

Parameters

 Session Session handle

 frame Pointer to input audio frame.

 bs Pointer to the output compressed bitstream.

 syncp Pointer to the returned sync point associated

with this operation.

Description

 This function takes input audio samples and encodes them in compressed bitstream.

The application should provide new output buffer for each compressed frame. I.e.

each sync operation should correspond to separate output buffer. It is not required to

provide empty data buffer as output, but the application should ensure that there is

sufficient space in the output buffer. The function MFXAudioENCODE_QueryIOSize

20 Reference Manual for Audio Processing API Version 1.15

returns required output buffer sizes.

This function is asynchronous.

See Encoding Procedures and Asynchronous Pipeline for more details.

Return Status

 MFX_ERR_NONE The function completed successfully.

 MFX_ERR_MORE_DATA The function requires more data to generate

any output.

 MFX_ERR_MORE_BITSTREAM The function requires more bitstream buffers

to store output.

 MFX_ERR_NOT_ENOUGH_BUFFER The output bitstream buffer size is

insufficient.

MFXAudioDECODE

This class of functions implements a complete decoder that decompresses input bitstream to

audio samples.

Member Functions

MFXAudioDECODE_Query Queries the feature capability

MFXAudioDECODE_DecodeHeader Parses the bitstream to obtain the audio parameters

for initialization

MFXAudioDECODE_Init Initializes the decoding operation

MFXAudioDECODE_Reset Resets the current decoding operation and prepares

for the next decoding operation

MFXAudioDECODE_Close Terminates the decoding operation and de-allocates

any internal memory

MFXAudioDECODE_QueryIOSize Queries the number of frames required for decoding

21 Reference Manual for Audio Processing API Version 1.15

MFXAudioDECODE_GetAudioParam Obtains the current working parameter set

MFXAudioDECODE_DecodeFrameAsync Performs decoding from the input bitstream to the

output frame surface

MFXAudioDECODE_Query

Syntax

 mfxStatus MFXAudioDECODE_Query(mfxSession session, mfxAudioParam *in,

mfxAudioParam *out);

Parameters

 session Session handle

 in Pointer to the mfxAudioParam structure as input

 out Pointer to the mfxAudioParam structure as output

Description

 This function works in one of two modes:

1. If the in pointer is zero, the function returns the class configurability in the

output mfxAudioParam structure. A non-zero value in each field of the output

structure indicates that the field is configurable by the implementation with the
MFXAudioDECODE_Init function).

2. If the in parameter is non-zero, the function checks the validity of the fields in

the input mfxAudioParam structure. Then the function returns the corrected

values to the output mfxAudioParam structure. If there is insufficient

information to determine the validity or correction is impossible, the function

zeros the fields. This feature can verify whether the implementation supports

certain profiles, levels or bitrates.

The application can call this function before or after it initializes the decoder. The
CodecId field of the output mfxAudioParam structure is a mandated field (to be filled

by the application) to identify the coding standard.

Return Status

 MFX_ERR_NONE The function completed successfully.

 MFX_ERR_UNSUPPORTED The function failed to identify a specific

implementation.

 MFX_WRN_INCOMPATIBLE_AUDIO_P

ARAM
The function detected some audio parameters

were incompatible with others; incompatibility

resolved.

22 Reference Manual for Audio Processing API Version 1.15

MFXAudioDECODE_QueryIOSize

Syntax

 mfxStatus MFXAudioDECODE_QueryIOSurf(mfxSession session, mfxAudioParam

*par, mfxAudioAllocRequest *request);

Parameters

 session session handle

 par Pointer to the mfxAudioParam structure as input

 request Pointer to the mfxAudioAllocRequest structure

as output

Description

 This function returns input and output buffer sizes required for decoding.

The CodecId field of the mfxAudioParam structure is a mandated field (to be filled by

the application) to identify the coding standard.

This function does not validate I/O parameters except those used in calculating of the

buffer sizes.

Return Status

 MFX_ERR_NONE The function completed successfully.

 MFX_ERR_INVALID_AUDIO_PARAM The function detected invalid audio parameters.

These parameters may be out of the valid range,

or the combination of them resulted in

incompatibility. Incompatibility not resolved.

 MFX_WRN_INCOMPATIBLE_ AUDIO

_PARAM
The function detected some audio parameters

were incompatible with others; incompatibility

resolved.

23 Reference Manual for Audio Processing API Version 1.15

MFXAudioDECODE_DecodeHeader

Syntax

 mfxStatus MFXAudioDECODE_DecodeHeader(mfxSession session, mfxBitstream

*bs, mfxAudioParam *par);

Parameters

 session session handle

 bs Pointer to the bitstream

 par Pointer to the mfxAudioParam structure

Description

 This function parses the input bitstream and fills the mfxAudioParam structure with

appropriate values, such as number of channels and sample frequency, for the Init
function. The application can then pass the resulting mfxAudioParam structure to the

MFXAudioDECODE_Init function for decoder initialization.

An application can call this function at any time before or after decoder initialization.

The CodecId field of the mfxAudioParam structure is a mandated field (to be filled by

the application) to identify the coding standard.

Return Status

 MFX_ERR_NONE The function successfully filled mfxAudioParam

structure. It does not mean that the stream can

be decoded by the Audio. The application should
call MFXAudioDECODE_Query function to check if

decoding of the stream is supported.

 MFX_ERR_MORE_DATA The function requires more bitstream data.

MFXAudioDECODE_Init

Syntax

 mfxStatus MFXAudioDECODE_Init(mfxSession session, mfxAudioParam *par);

Parameters

24 Reference Manual for Audio Processing API Version 1.15

 session session handle

 par Pointer to the mfxAudioParam structure

Description

 This function allocates memory and initializes the decoder. This function also does

extensive validation to determine whether the configuration is supported as specified

in the input parameters.

Return Status

 MFX_ERR_NONE The function completed successfully.

 MFX_ERR_INVALID_AUDIO_PARAM The function detected invalid audio parameters.

These parameters may be out of the valid range,

or the combination of parameters resulted in an

incompatibility error. Incompatibility was not

resolved.

 MFX_WRN_INCOMPATIBLE_AUDIO_

PARAM
The function detected some audio parameters

were incompatible; Incompatibility resolved.

 MFX_ERR_UNDEFINED_BEHAVIOR The function is called twice without a close.

MFXAudioDECODE_Reset

Syntax

 mfxStatus MFXAudioDECODE_Reset(mfxSession session, mfxAudioParam *par);

Parameters

 session session handle

 par Pointer to the mfxAudioParam structure

Description

 This function stops the current decoding operation and restores internal structures or

parameters for a new decoding operation.

Reset serves two purposes:

 It recovers the decoder from errors.

25 Reference Manual for Audio Processing API Version 1.15

 It restarts decoding from a new position.

Return Status

 MFX_ERR_NONE The function completed successfully.

 MFX_ERR_INVALID_AUDIO_PARAM The function detected that audio parameters are

wrong or they conflict with initialization

parameters. Reset is impossible.

 MFX_ERR_INCOMPATIBLE_ AUDIO

_PARAM
The function detected that provided by the

application audio parameters are incompatible

with initialization parameters. Reset requires

additional memory allocation and cannot be

executed. The application should close the

component and then reinitialize it.

 MFX_WRN_INCOMPATIBLE_ AUDIO

_PARAM
The function detected some audio parameters

were incompatible; Incompatibility resolved.

MFXAudioDECODE_Close

Syntax

 mfxStatus MFXAudioDECODE_Close(mfxSession session);

Parameters

 session session handle

Description

 This function terminates the current decoding operation and de-allocates any internal

tables or structures.

Return Status

 MFX_ERR_NONE The function completed successfully.

26 Reference Manual for Audio Processing API Version 1.15

MFXAudioDECODE_GetAudioParam

Syntax

 mfxStatus MFXAudioDECODE_GetAudioParam(mfxSession session, mfxAudioParam

*par);

Parameters

 session session handle

 par Pointer to the corresponding parameter structure

Description

 This function retrieves current working parameters to the specified output structure.

If extended buffers are to be returned, the application must allocate those extended

buffers and attach them as part of the output structure.

Return Status

 MFX_ERR_NONE The function completed successfully.

MFXAudioDECODE_DecodeFrameAsync

Syntax

 mfxStatus MFXAudioDECODE_DecodeFrameAsync(mfxSession session,

mfxBitstream *bs, mfxAudioFrame *frame, mfxSyncPoint *syncp);

Parameters

 session session handle

 bs Pointer to the compressed bitstream

 frame Pointer to the buffer containing decoded audio

frame

 syncp Pointer to the sync point associated with this

operation

Description

27 Reference Manual for Audio Processing API Version 1.15

 This function decodes the compressed bitstream to the raw audio samples.

Depending on audio standard, the decoder accepts different amount of data as input.

For AAC it should be exactly one frame. For MP3 it may be part of frame, complete

frame or several frames. If there is not enough data to decode an audio frame, the
function returns MFX_ERR_MORE_DATA, and consumes all input bits except the case

when a start code or header is located at the end of the buffer. In this case, the

function leaves the last few bytes in the bitstream buffer. If there is more incoming

bitstream, the application should append the incoming bitstream to the bitstream

buffer.

If the application appends additional data to the bitstream buffer, it is possible that

the bitstream buffer will contain more than one frame. It is recommended that the

application invoke the function repeatedly until the function returns

MFX_ERR_MORE_DATA, before appending any more data to the bitstream buffer.

The application should provide separate output buffer for each audio frame. I.e. each

sync operation should correspond to separate output buffer. It is not required to

provide empty data buffer as output, but the application should ensure that there is
sufficient space in the output buffer. The function MFXAudioDECODE_QueryIOSize

returns required output buffer sizes.

If function has successfully started asynchronous decoding, it returns MFX_ERR_NONE

status and fills in output audio frame. The application can immediately access output

audio frame to read time stamp, data size, number of channels and other

information. However, the application should not access actual audio samples until

decoding is finished.

This function is asynchronous.

See Decoding Procedures and Asynchronous Pipeline for more details.

Return Status

 MFX_ERR_NONE The function completed successfully and the

output bitstream is ready for decoding.

 MFX_ERR_MORE_DATA The function requires more bitstream at input

before decoding can proceed.

28 Reference Manual for Audio Processing API Version 1.15

Structure Reference

In the following structure references, all reserved fields must be zero.

mfxVersion

Definition

 typedef union _mfxVersion {

 struct {

 mfxU16 Minor;

 mfxU16 Major;

 };

 mfxU32 Version;

} mfxVersion;

Description

 See “SDK Reference Manual”.

mfxBitstream

Definition

 typedef struct {

 union {

 struct {

 mfxEncryptedData* EncryptedData;

 mfxExtBuffer **ExtParam;

 mfxU16 NumExtParam;

 };

 mfxU32 reserved[6];

 };

 mfxI64 DecodeTimeStamp;

 mfxU64 TimeStamp;

 mfxU8* Data;

29 Reference Manual for Audio Processing API Version 1.15

 mfxU32 DataOffset;

 mfxU32 DataLength;

 mfxU32 MaxLength;

 mfxU16 PicStruct;

 mfxU16 FrameType;

 mfxU16 DataFlag;

 mfxU16 reserved2;

} mfxBitstream;

Description

 The mfxBitstream structure defines the buffer that holds compressed audio bitstream.

Reserved fields either intended for future extension or have no meaning for audio data.

Members

 EncryptedData Reserved and must be zero.

 ExtParam Reserved and must be zero.

 NumExtParam Reserved and must be zero.

 DecodeTimeStamp Reserved and must be zero.

 TimeStamp Time stamp of the compressed bitstream or audio samples in units of
90KHz. A value of MFX_TIMESTAMP_UNKNOWN indicates that there is no

time stamp.

 Data Bitstream buffer pointer—32-bytes aligned

 DataOffset Next reading or writing position in the bitstream buffer

 DataLength Size of the actual bitstream data in bytes

 MaxLength Allocated bitstream buffer size in bytes

 PicStruct Reserved and must be zero.

 FrameType Reserved and must be zero.

 DataFlag Reserved and must be zero.

30 Reference Manual for Audio Processing API Version 1.15

mfxAudioAllocRequest

Definition

 typedef struct {

 mfxU32 SuggestedInputSize;

 mfxU32 SuggestedOutputSize;

 mfxU32 reserved[6];

} mfxAudioAllocRequest;

Description

 The mfxAudioAllocRequest structure describes buffer sizes required for decoding and

encoding. These are minimum required numbers. The application may allocate bigger

buffers.

Members

 SuggestedInputSize Suggested input buffer size in byte.

 SuggestedOutputSize Suggested output buffer size in byte.

mfxAudioInfoMFX

Definition

typedef struct {

 mfxU32 CodecId;

 mfxU16 CodecProfile;

 mfxU16 CodecLevel;

 mfxU32 Bitrate;

 mfxU32 SampleFrequency;

 mfxU16 NumChannel;

31 Reference Manual for Audio Processing API Version 1.15

 mfxU16 BitPerSample;

 mfxU16 reserved1[22];

 union {

 struct { /* AAC Decoding Options */

 mfxU16 Layer;

 mfxU16 reserved2[14];

 mfxU16 AACHeaderDataSize;

 mfxU8 AACHeaderData[64];

 };

 struct { /* AAC Encoding Options */

 mfxU16 OutputFormat;

 mfxU16 StereoMode;

 };

 };

} mfxAudioInfoMFX;

Description

 This structure specifies configurations for decoding and encoding processes.

Members

 CodecId Specifies the codec format identifier in the FOURCC code; see
the CodecFormatFourCC enumerator for details. This is a

mandated input parameter for Query, QueryIOSize and Init

functions.

 CodecProfile Specifies the codec profile; see the CodecProfile enumerator

for details. Specify the codec profile explicitly or the functions

will determine the correct profile from other sources.

 CodecLevel Codec level; see the CodecLevel enumerator for details.

Specify the codec level explicitly or the functions will

determine the correct level from other sources.

 Bitrate Bitrate of compressed audio stream in bits per second. It may

be arbitrary value for AAC and one of the predefined by

standard values for MP3.

 SampleFrequency Sample frequency of audio data.

 NumChannel Number of channels in bitstream.

 BitPerSample Number of bits per audio sample.

32 Reference Manual for Audio Processing API Version 1.15

 AAC decoding options

 Layer Audio layer. It is not set by MFXAudioDECODE_DecodeHeader

function and should be set by application.

 AACHeaderDataSize ADIF or ADTS or ESDS header size.

 AACHeaderData[64] ADIF or ADTS or ESDS header. It is mandatory as input

parameter for bitstreams extracted from MP4 container.

 AAC encoding options

 OutputFormat Specifies header type. It is one of the next values:

 MFX_AUDIO_AAC_ADTS – use ADTS header

 MFX_AUDIO_AAC_ADIF – use ADIF header

 MFX_AUDIO_AAC_RAW – don’t add header to compressed

bitstream

 StereoMode Specifies stereo mode. It is one of the next values:

 MFX_AUDIO_AAC_MONO – encode as mono

 MFX_AUDIO_AAC_LR_STEREO – encode as two separate

channels

 MFX_AUDIO_AAC_MS_STEREO – encodes as sum and

difference of stereo channels

 MFX_AUDIO_AAC_JOINT_STEREO - encode as joint stereo

mfxAudioParam

Definition

 typedef struct {

 mfxU16 AsyncDepth;

 mfxU16 Protected;

 mfxU16 reserved[14];

 mfxAudioInfoMFX mfx;

 mfxExtBuffer** ExtParam;

33 Reference Manual for Audio Processing API Version 1.15

 mfxU16 NumExtParam;

} mfxAudioParam;

Description

 The mfxAudioParam structure contains configuration parameters for encoding, decoding

and transcoding.

Members

 AsyncDepth Specifies how many asynchronous operations an application performs

before the application explicitly synchronizes the result. If zero, the

value is not specified.

 Protected Reserved and must be zero.

 mfx Configurations related to encoding, decoding and transcoding; see the

definition of the mfxAudioInfoMFX structure for details.

 NumExtParam Reserved and must be zero.

 ExtParam Reserved and must be zero.

mfxAudioFrame

Definition

 typedef struct {

 mfxU64 TimeStamp;

 mfxU16 Locked;

 mfxU16 NumChannel;

 mfxU32 SampleFrequency;

 mfxU16 BitPerSample;

 mfxU16 reserved1[7];

 mfxU8* Data;

 mfxU32 reserved2;

34 Reference Manual for Audio Processing API Version 1.15

 mfxU32 DataLength;

 mfxU32 MaxLength;

 mfxU32 NumExtParam;

 mfxExtBuffer **ExtParam;

} mfxAudioFrame;

Description

 The mfxAudioFrame structure defines buffer that holds raw audio samples. It is used to

store decoder output or encoder input.

Members

 TimeStamp Time stamp of the audio frame in units of 90KHz. A value of
MFX_TIMESTAMP_UNKNOWN indicates that there is no time stamp.

 Locked Lock counter. If this field is greater than zero, then audio frame is

used by the Audio and the application should not access its content.

It is not recommended to directly change this field.

 NumChannel Number of audio channels in buffer

 SampleFrequency Sample frequency of audio data in buffer

 BitPerSample Number of bits per audio sample

 Data Pointer to data buffer

 DataLength Size of the actual audio data in bytes

 MaxLength Allocated data buffer size in bytes

 NumExtParam Reserved and must be zero.

 ExtParam Reserved and must be zero.

35 Reference Manual for Audio Processing API Version 1.15

Enumerator Reference

CodecFormatFourCC

Description

 The CodecFormatFourCC enumerator itemizes codecs in the FourCC format.

Name/Description

 MFX_CODEC_AAC

 MFX_CODEC_MP3

CodecProfile

Description

 The CodecProfile enumerator itemizes codec profiles for all codecs.

Name/Description

 MFX_PROFILE_UNKNOWN Unspecified profile

MFX_PROFILE_AAC_LC

MFX_PROFILE_AAC_LTP

MFX_PROFILE_AAC_MAIN

MFX_PROFILE_AAC_SSR

MFX_PROFILE_AAC_HE

MFX_PROFILE_AAC_ALS

MFX_PROFILE_AAC_BSAC

MFX_PROFILE_AAC_PS

AAC profiles:

 LC - low complexity

 LTP - long term prediction

 MAIN - main

 SSR - scalable sample rate

 HE - high efficiency

 ALS - audio lossless coding

 BSAC - bit slice arithmetic coding

 PS - parametric stereo

Different implementation of the Audio library may

support different sets of profiles. The application has

to use Query function to determine if particular profile

is supported.

36 Reference Manual for Audio Processing API Version 1.15

Generally, AAC decoder supports all profiles specified

above. Encoder usually supports LC, LTP, HE, PS and

MAIN profiles.

MFX_MPEG1_LAYER1_AUDIO

MFX_MPEG1_LAYER2_AUDIO

MFX_MPEG1_LAYER3_AUDIO

MFX_MPEG2_LAYER1_AUDIO

MFX_MPEG2_LAYER2_AUDIO

MFX_MPEG2_LAYER3_AUDIO

MP3 layers.

CodingOptionValue

Description

 See “SDK Reference Manual”.

Corruption

Description

 See “SDK Reference Manual”. The audio decoders support next values:

Name/Description

 MFX_CORRUPTION_MINOR Minor corruption in decoding certain audio

samples

 MFX_CORRUPTION_MAJOR Major corruption in decoding the frame

mfxIMPL

Description

37 Reference Manual for Audio Processing API Version 1.15

 See “SDK Reference Manual”. The audio library supports only next values:

Name/Description

 MFX_IMPL_SOFTWARE Use the software implementation

 MFX_IMPL_AUDIO Load audio library. It can be used only together with

MFX_IMPL_SOFTWARE, any other combinations lead to

error.

mfxPriority

Description

 See “SDK Reference Manual”.

mfxStatus

Description

 See “SDK Reference Manual” for complete list of statuses. The audio library may

returns most of those statuses plus several audio specific described below.

Name/Description

 MFX_ERR_INVALID_AUDIO_

PARAM
Invalid audio parameters detected. Init and Reset

functions return this status code to indicate either that

mandated input parameters are unspecified, or the

functions failed to correct them.

 MFX_ERR_INCOMPATIBLE_A

UDIO_PARAM
Incompatible audio parameters detected. If a Reset

function returns this status code, a component—decoder or

encoder — cannot process the specified configuration with

existing structures and buffers. If the function

MFXAudioDECODE_DecodeFrameAsync returns this status

code, the bitstream contains an incompatible audio

parameter configuration that the decoder cannot follow.

 MFX_WRN_INCOMPATIBLE_A Incompatible audio parameters detected. Functions return

38 Reference Manual for Audio Processing API Version 1.15

UDIO_PARAM this status code to indicate that there was incompatibility

in the specified parameters and has resolved it.

