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1 Introduction 
Intel® Software Guard Extensions (Intel® SGX) is an Intel® CPU based Trusted Execution Environment 

(TEE) technology. It consists of a set of processor extensions that allow a user-space application to 

create a Trusted Computing Base (TCB) called an enclave in its address space [6] [7]. An enclave has the 

CPU package boundary as its security perimeter and provides confidentiality and integrity protection, 

even in the presence of privileged malware or external memory bus snoops. Intel SGX provides support 

of enclave attestation to a 3rd party service, so the latter can verify the security properties of the Intel 

CPU and the enclave software before provisioning secrets. Intel SGX allows an enclave to seal its secrets 

using a hardware-derived sealing key that is unique to the CPU and the enclave identities. 

Many security usages can be implemented using Intel SGX technology to protect their secrets. Examples 

include digital rights management, online banking and e-commerce, protection of private keys for 

secure communication, protection of symmetric keys for disk encryption, etc. 

However, some security usages require other security capabilities in addition to protection of their 

secrets. For example, digital rights management not only requires protection of its encryption keys in its 

media playback licenses, but also requires trusted time and monotonic counters in order to enforce 

expiration date and playback count limits in its license policies.  

Trusted services such as timer and monotonic counters are not supported by the Intel SGX technology 

itself. They need to be provided by a separate TEE, and securely made available to Intel SGX enclaves. 

The Intel SGX software provides an implementation of these services, called Intel SGX Platform Services, 

leveraging the security capabilities of the Intel Converged Security and Management Engine (CSME). The 

CSME is an embedded engine running its dedicated firmware in the Platform Control Hub (PCH) on Intel 

platforms, and is separate from the CPU [5], though on some Intel platforms the PCH and the CPU are 

physically in the same package. The Intel SGX software consists of two packages: the Platform Software 

(PSW) with architectural enclaves, drivers, and user-space service applications; and the SDK with 

libraries and software development tools. For convenience, in this paper, when there is no ambiguity, 

the PSW and the SDK are collectively referred to as the Intel SGX SDK. 

This paper explains the Intel SGX Platform Services implemented with the CSME. It covers the Intel SGX 

SDK version 1.8 for Linux* OS and Microsoft* Windows* OS on the 6th and 7th generations of Intel SGX-

enabled processors. Section 2 provides an overview of the supported platform services, architecture, 
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and software / firmware stack. Section 3 introduces the APIs in the Intel SGX SDK for setting up and 

using the trusted platform services. Section 4 presents an in-depth discussion on architecture topics 

including how the components establish their identities and how they verify mutual trust and 

establishes secure sessions between them. Finally Section 5 summarizes and wraps up the paper. 

2 Overview 

2.1 Trusted Platform Services 
The trusted platform services implemented by the Intel SGX Platform Services software and made 

available to application enclaves through the Intel SGX SDK include the following two features: 

 Trusted time – for timer-based policy enforcement on offline platforms that don’t have access 

to remote time servers for trusted calendar time. 

 Monotonic counter – for replay protection of offline storage, enforcement of counter-based 

policies, etc. 

The Intel SGX Platform Services architecture and the Intel SGX SDK implementation protect the integrity 

of the platform services, and provide mechanisms for application enclaves to detect in case the integrity 

of the services is disrupted, for example, when the battery powered real-time clock is reset. 

2.2 Architecture Overview 
Figure 1 shows a high-level architecture diagram of the Intel SGX Platform Services, including the TCB 

components and the relationship between them. 

CPU

Platform Service 
Enclave (PSE)

Converged Security 
and Management 

Engine (CSME)

PCH

Secure 
Channels Secure 

Channel
Application Enclave 

(AppEnclave)

Application Enclave 
(AppEnclave)

Application Enclave 
(AppEnclave)

 

Figure 1 Platform Services Overall Architecture 

The CSME in the PCH provides a set of security capabilities including battery backed real-time-clock 

(RTC) and replay-protected storage, and exposes an interface for trusted software running in the CPU to 

securely access these capabilities. 

On the CPU side, the Platform Service Enclave (PSE) implements the trusted time and monotonic 

counter services by leveraging the CSME security capabilities. It enables a large number of application 

enclaves to access the platform services, in spite of limited resources in the CSME. 

The PSE and the CSME use a key-exchange protocol called SIGMA to pair with each other (to verify 

mutual trust and establish shared secrets), and to create an ephemeral secure session between them. 

The SIGMA protocol requires the PSE to be provisioned a certificate of a type called Elliptic Curve Digital 

Signature Algorithm (ECDSA), and the CSME to be provisioned a certificate of a scheme called Intel 
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Enhanced Privacy ID (EPID).  Further discussions on EPID, SIGMA, and PSE – CSME pairing and ephemeral 

session establishment are covered later in the architecture deep dive section (Section 4). 

To access trusted platform services, an Application Enclave (AppEnclave) establishes a secure session 

with the PSE using an SGX report based key exchange protocol. More details about AppEnclave – PSE 

secure session establishment is presented in the architecture deep dive section (Section 4). Typically, an 

AppEnclave relies on a remote server to provision secrets to it, and needs to attest to the server its 

security properties. To allow attestation by the remote server of the trust-worthiness of platform 

services that the AppEnclave uses, the PSE provides its security information as well as that of the paired 

CSME to the AppEnclave, to be forwarded to the remote server for verification. 

2.3 Software / Firmware Stack 
The security-oriented architecture diagram in Figure 1 only shows the TCB components involved and 

their relationship. In implementation, each TCB requires support of untrusted software to provide non-

security related functionalities and to expose interfaces for interaction with other components. Figure 2 

shows an implementation-oriented software / firmware stack diagram. 
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Figure 2 Platform Services Software / Firmware Stack 

The CSME consists of the embedded CSME hardware engine in the PCH and the firmware running in it. 

To support flexibility for adding new features without having to modify the firmware image itself, the 

CSME firmware has a module called the Dynamic Application Loader (DAL). This DAL module allows the 

host software to dynamically load and execute a Java applet (called DAL applet) in the CSME at runtime, 

and to establish a secure session with it. To support flexibility without compromising security, all DAL 

applets must be signed properly [5]. 
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For communication between DAL applets and host software, two components in the host software stack 

are involved: a kernel-space Management Engine Interface (MEI) driver, and a user-space DAL host 

interface service. These components are typically pre-installed along with other Intel software on an 

Intel platform [5]. 

The Intel SGX Platform Services related features in the CSME are provided by a DAL applet called the 

Platform Services DAL Applet (PSDA). The PSDA securely exposes the CSME security capabilities 

including battery backed RTC and replay-protected storage to the PSE. 

A background service process called the Intel SGX Architectural Enclave Service Manager (AESM) hosts 

the PSE enclave. During runtime, when the AESM starts, it automatically loads and starts the PSDA 

applet. It also reloads the PSDA upon platform events such as resume from standby or hibernation. 

For modular software development, optimized use of limited Intel SGX resources, and improved security 

by reducing complexity of individual enclaves, the PSE is implemented as two separate enclaves: an 

enclave for provisioning of a PSE certificate and pairing with the CSME (called PSE-pr), and another 

enclave for platform services operations (called PSE-op). These two enclaves are designed so that sealed 

secrets can be shared between them, and there is no need to run both enclaves at the same time. The 

AESM invokes the PSE-pr for PSE certificate provisioning and PSE – CSME pairing only if a pairing 

between the PSE and the CSME does not exist yet. 

An application enclave (AppEnclave) is hosted in a user-space application. The enclave and the hosting 

application can use the libraries provided in the Intel SGX SDK to establish secure session with the PSE 

through inter-process communication, to retrieve Intel SGX Platform Services security information, and 

to access the supported services. 

3 Programming with Platform Services 

3.1 Secure Session Establishment between Application Enclave and the PSE 
Before an application enclave can access any trusted platform services, it needs to establish a secure 

session with the PSE. For the session establishment process to be successful, the PSE needs to be 

provisioned with a valid certificate, successfully paired with the CSME and established an ephemeral 

secure session with the latter. The Intel SGX Platform Services software is designed so that the 

application enclave – PSE secure session establishment flow automatically triggers these pre-requisite 

flows if they are not already completed.  

The Intel SGX SDK provides several API functions in its trusted libraries for application enclaves to create 

and close secure sessions with the PSE, and retrieve security information for remote attestation. The 

functions in the trusted libraries of the SDK are intended to be invoked from within an enclave. This 

section provides a brief summary of these functions. More detailed descriptions can be found in [2] and 

[3]. The functions are: 

 sgx_create_pse_session() – creates a secure session with the PSE.  

- Upon receiving a request from an application enclave, the PSE checks if the pre-requisite 

flows are completed. The AESM initiates these flows automatically if needed. 
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 sgx_close_pse_session() – closes the existing secure session with the PSE. 

 sgx_get_pse_sec_prop() – retrieves security information for the PSE and the paired 

CSME (including the PSDA), for remote attestation. 

- The retrieved security information is returned as an opaque byte-stream, to be interpreted 

by the remote attestation server 

3.2 Trusted Time Service 
For trusted time service, the PSE provides a CSME Protected Real-Time Clock (PRTC) based timer to 

application enclaves. This trusted time service can be used by an application enclave running on an 

offline platform (that does not have access to trusted calendar time from a remote time server) to track 

the amount of time passed since a previous read of the timer. Note that the trusted time service 

provides coarse-grain timer values in units of seconds relative to a reference point. It does not provide 

trusted calendar (or wall clock) time. An application enclave that requires trusted wall-clock time needs 

to retrieve it from a trusted remote time server, which is outside of the scope of the Intel SGX SDK. 

The trusted time service uses an epoch value (called timer source epoch) to enable an application 

enclave to detect if there is discontinuity between different timer reads. A change of the timer source 

epoch value between two reads indicates that either the PRTC in the paired CSME has been reset due to 

events like battery replacement, or the PSE has paired with a different CSME due to unexpected event 

such as software attack. In this case, the application should not trust the calculated duration between 

the two reads, and handle the error condition properly. More discussion on the architecture for the 

trusted time service is presented in the architecture deep dive section (Section 4.6). 

The Intel SGX SDK provides a trusted library API function, sgx_get_trusted_time(), for 

application enclaves to retrieve the current timer value and the timer source epoch. 

3.3 Monotonic Counter Service 
The PSE is capable to simultaneously support multiple monotonic counters for multiple application 

enclaves. Each monotonic counter is assigned a cryptographically unique identifier (called monotonic 

counter ID), and includes an access control policy based on the signing key and / or measurement of the 

requesting application enclave. 

Internally the PSE maintains a secure database to manage all the active monotonic counters, and uses 

the replay-protected storage in the CSME for integrity and replay protection of the database. In case the 

PSE detects unexpected events – such as loss of pairing with the CSME or corruption of the database – 

that void the integrity and replay protection of the database, it will re-initialize the database, causing all 

existing monotonic counters to be lost. More discussion on the architecture for the monotonic counter 

service is presented in the architecture deep dive section (Section 4.7). 

An application enclave can request the PSE to create a new monotonic counter, increment an existing 

one, read its value, or delete it. The application enclave should be designed to detect unexpected loss of 

a monotonic counter and handle the error condition properly. 

The Intel SGX SDK provides a set of trusted library API functions for application enclaves to access the 

monotonic counter service provided by the PSE, as follows: 
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 sgx_create_monotonic_counter(), sgx_create_monotonic_counter_ex() – 

creates a new monotonic counter with a default initial counter value and returns its ID. The 

extended version function allows specification of a custom access control policy.  

 sgx_increment_monotonic_counter() – increments the value of the monotonic 

counter with the provided ID. 

 sgx_read_monotonic_counter() – reads the current value of the monotonic counter 

with the provided ID. 

 sgx_destroy_monotonic_counter() – deletes the monotonic counter with the 

provided ID. 

3.4 Sample Code - SealedData 
To demonstrate how the Intel SGX Platform Services can be used, the Intel SGX SDK includes a sample 

project called SealedData. This sample project shows how an application can use the monotonic counter 

and trusted time to enforce policies based on number of uses (called replay protected policy) or 

expiration time (called time-based policy). These types of policies are enforced in applications such as 

digital rights management (DRM). 

The sample project includes an enclave and a hosting application. For the replay protected policy, the 

sample project shows how to initialize, update, and verify a policy, as well as how to detect when the 

number of uses has reached the pre-defined limit, and how to detect when integrity of the policy is 

compromised. For the time-based policy, the sample project shows how to initialize and use the policy, 

and how to detect timer expiration [2] [4]. 

4 Architecture Deep Dive 
As discussed in the architecture overview section (Section 2.2), the PSE and the CSME use a SIGMA 

protocol to pair with each other, then use their shared pairing secret to establish an ephemeral secure 

session. The SIGMA protocol requires the PSE to be provisioned an ECDSA certificate, and the CSME to 

be provisioned with an EPID certificate. In addition, the application enclave uses the SGX report based 

protocol to establish secure session with the PSE. This section provides an in-depth discussion of these 

architecture topics. 

4.1 SGX and CSME Identities for Platform Services 
Before pairing, the PSE and the CSME are required be provisioned with valid certificates for mutual 

authentication. Provisioning of the PSE certificate in turn requires that the Intel SGX platform is 

provisioned with an EPID attestation key. 

The EPID algorithm is an asymmetric key signature scheme that allows a platform to attest to a remote 

server before receiving services from the latter, while preserving its privacy. Many platforms become 

members of an EPID group. Each member has a unique private key, while the EPID group has a group ID 

and a single public key. The remote server has the group ID and public key. An entity called the EPID 

authority is responsible for management of EPID groups, public and private key provisioning, and 

platform revocation. A platform uses its own private key to sign messages for the remote server. While 
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the remote server uses the group public key to verify signed messages, the EPID is designed so that it is 

not able to determine which specific private key is used to create the signature [5]. 

The provisioning of an EPID attestation key to an Intel SGX platform is performed by an enclave in the 

Intel SGX SDK called the Provisioning Enclave (PvE) working with an Intel provisioning server. The PvE 

demonstrates to the provisioning server that it runs on an authentic Intel SGX CPU and has an up to date 

TCB. Then it joins an EPID group selected by the server, and is provisioned its EPID private key. After 

EPID provisioning, the PvE shares its EPID credential (including the private key, the group ID, and the 

group public key) with another enclave called the Quoting Enclave (QE). An application enclave performs 

remote attestation to a remote application server using the QE’s EPID signing capability.  The QE uses 

the SGX report based protocol to verify that the application enclave runs on the same local SGX platform 

as the QE itself.  Then the QE signs the security properties of the application enclave – contained in the 

application enclave’s SGX report – with its EPID private key into a data structure called SGX quote. The 

remote application server works with an Intel attestation server to verify the validity of the SGX quote, 

then verifies the application enclave security information in the signed SGX report. More information 

about Intel SGX EPID provisioning and remote attestation can be found in white paper [9]. 

The CSME is provisioned with its own EPID private key during Intel’s manufacturing process, as well as 

the rest of its EPID credential (including the EPID certificate with the group public key) through other 

means, before PSE – CSME pairing is invoked the first time [5].   

4.2 PSE Certificate Provisioning and PSE – CSME Pairing 
The PSE and the CSME use a SIGMA protocol to pair with each other. SIGMA is a key exchange protocol 

between two end points, with one called the SIGMA prover and the other the SIGMA verifier.  This 

SIGMA protocol requires the prover to be in an EPID group and provisioned with an EPID private key and 

its EPID certificate, and requires the verifier to be provisioned with an ECDSA certificate. The prover and 

verifier verify each other’s’ certificates and signatures and use Elliptic Curve Diffie-Hellman (ECDH) 

algorithm to establish shared session keys between them for secure message exchange [5] [8]. 

In the SIGMA protocol for PSE – CSME pairing, the CSME functions as the SIGMA prover, and the PSE 

functions as the SIGMA verifier. 

Before pairing with the CSME, the PSE needs to be provisioned with its ECDSA certificate by an Intel 

server. In the provisioning flow, the PSE performs SGX remote attestation with the Intel server to prove 

that it is a PSE instance with up to date TCB running on an authentic Intel SGX platform. Upon successful 

attestation, the Intel server signs the ECDSA public key from the PSE into a certificate. Figure 3 depicts a 

high-level view of the PSE certificate provisioning flow. 
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Figure 3 PSE Certificate Provisioning Flow 

a. In steps 1 and 2, the PSE sends the SGX EPID group ID to the Intel server, and receives the 

signature revocation list for the SGX EPID group. 

b. In step 3 and 4, the PSE generates an ECDSA private / public key pair, puts the public key in a 

data structure called Certificate Signing Request (CSR). It then works with the quoting enclave 

(QE, described in Section 4.1) to sign its SGX report that contains the PSE security properties and 

a hash of the CSR into an SGX quote. The QE also checks the revocation list the PSE received in 

step 2 to verify that its EPID private key is not revoked. By inspecting the received SGX quote 

and the signed SGX report and CSR, the Intel server verifies the PSE security properties and the 

CSR integrity, and signs the ECDSA public key in the CSR into a certificate. 

Upon successful completion of the PSE certificate provisioning flow, the PSE has its ECDSA private key 

and a certificate for its ECDSA public key. 

With the PSE provisioned its ECDSA certificate and the CSME having its EPID credential, they can pair 

with each other using the SIGMA protocol, to verify mutual trust and to establish shared pairing secrets. 

Figure 4 shows a high-level view of the SIGMA based PSE – CSME pairing flow.  

2: OCSP Requests

PSE

OCSP 
Responder3: OCSP Responses

1. CSME EPID Group ID, CSME ECDH public key ga, 
OCSP Nonce

CSME

4. PSE cert chain, PSE ECDH public key gb, OSCP responses, 
CSE EPID signature revocation list, ECDSA signature of (ga||gb) 

5. CSME EPID group cert, EPID signature of (ga||gb)

 

Figure 4 PSE – CSME SIGMA-based Pairing Flow 

a. In step 1, the CSME generates an ECDH private key a and calculates the public key ga. It also 

generates a nonce for use in OCSP requests (called OCSP nonce). The CSME sends its EPID group 

ID, its ECDH public key ga, and the OCSP nonce to the PSE. 
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b.  In steps 2 and 3, the PSE retrieves an OCSP response for every cert in its ECDSA cert chain, using 

the CSME OCSP nonce in its OCSP requests. It verifies the OCSP responses and triggers re-

provisioning of its ECDSA cert if its existing cert is revoked. 

c. In step 4, the PSE finds the signature revocation list for the CSME EPID group, generates its 

ECDSA key pair (b, gb), derives shared secret gab from its private key b and the CSME public key 

ga, and signs the two ECDH public keys (ga||gb) with its ECDSA private key. From the shared 

secret gab, the PSE uses a Keyed-Hash Message Authentication Code (HMAC) algorithm to derive 

shared keys (called SMK, SK, and MK). Finally the PSE sends its ECDSA cert chain, OCSP 

responses, its ECDH public key gb, the CSME EPID signature revocation list, and the ECDSA 

signature of (ga||gb) to the CSME. 

d. In step 5, the CSME verifies the PSE cert chain and the OCSP responses, verifies the ECDSA 

signature of (ga||gb) using the public key in the PSE cert, signs (ga||gb) using its EPID private key 

and the received EPID signature revocation list, and derives the same shared secret SMK, SK, 

and MK from shared secret gab. Finally the CSME sends its EPID group cert and the EPID 

signature of (ga||gb) to the PSE. 

e. The PSE, upon receiving the message from the CSME in step 5, verifies the received EPID group 

cert and the EPID signature of (ga||gb). 

Upon successful completion of the PSE – CSME pairing flow, the PSE and the CSME have verified each 

other’s certificates, and are in possession of the same shared secrets SK and MK.  They use the SK and 

MK to derive additional values as their identities (called PSE ID and CSME ID). In addition, the PSE 

generates a nonce, called Pairing-Nonce, to uniquely identify this pairing. The PSE also collects security 

information of the paired CSME (see Section 4.5 for details). The PSE and the CSME only need to 

perform pairing for one time. They securely save their pairing secrets in their persistent storage. 

4.3 PSE – CSME Ephemeral Session Establishment 
With the PSE – CSME pairing in place, upon startup, the PSE initiates a flow to establish an ephemeral 

secure session with the CSME using their shared pairing secrets, as shown in Figure 5. 

1. Start Session

PSE CSME

2. CSME ID, Nonce_CSME

3. (PSE ID, Nonce_PSE, CSME ID, Nonce_CSME) protected 
by shared MK

4. (CSME ID, Nonce_CSME) protected by shared MK

 

Figure 5 PSE and CSME Ephemeral Session Establishment Flow 

a. The PSE and the CSME generate their nonce, Nonce_PSE and Nonce_CSME respectively.  

b. In step 2 and 3, the PSE and the CSME exchange their IDs and nonce. 
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c. In steps 3 and 4, messages between the PSE and the CSME are integrity-protected by shared 

pairing key MK, so the PSE and the CSME can verify the integrity of their exchanged messages 

and m the IDs in the messages against their locally-saved pairing secrets 

Upon successful completion of the PSE – CSME ephemeral session establishment flow, the PSE and the 

CSME use an HMAC algorithm with their shared pairing key SK and nonce Nonce_PSE and Nonce_CSME 

to derive session specific symmetric keys. The established session only lasts until the PSE stops and is 

thus called an ephemeral session. 

4.4 Application Enclave – PSE Secure Session Establishment 
Before an application enclave (AppEnclave) can use the trusted platform services, it establishes a secure 

session with the PSE using an SGX report based key exchange protocol. A high-level view of the secure 

session establishment flow is shown in Figure 6. 

1. Start Session

App 
Enclave

PSE

2. PSE ECDH public key ga, PSE TARGETINFO

3. (AppEnlave SGX report, AppEnclave ECDH public key gb) 
protected by shared key derived from gab

4. (PSE SGX report, CSME Security information) protected 
by shared key derived from gab

 

Figure 6 Application Enclave - PSE Secure Session Establishment Flow 

a. The AppEnclave and the PSE generate their ECDH private keys a and b, and calculate their 

corresponding public keys ga and gb respectively. 

b. In steps 2 and 3, they exchange their public keys and calculate their shared ECDH secret gab for 

integrity protection of their message exchange in steps 3 and 4. 

c. In steps 3 and 4, the AppEnclave and the PSE send their SGX reports to each other for 

verification that both enclaves run on the same SGX platform. The PSE also passes the security 

information of the paired CSME to the AppEnclave. The AppEnclave retrieves the security 

information of the PSE from its SGX report. 

Upon successful completion of the AppEnclave – PSE secure session establishment flow, the AppEnclave 

and the PSE use a Cipher-based Message Authentication Code (CMAC) algorithm with their shared ECDH 

secret gab to derive session keys for protection of follow-up messages between them. The AppEnclave 

also has the security information of the PSE and the paired CSME. 

4.5 PSE and CSME Security Information for Remote Attestation 
Before an application enclave (AppEnclave) can receive secrets such as private keys from a remote 

server, it needs to attest its security properties to the latter. If the enclave uses trusted platform 

services, the Intel SGX Platform Services subsystem becomes part of its TCB. As a result, the enclave 
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needs to provide the security information of the PSE and its paired CSME to the remote server for 

attestation. 

The PSE security information is received in the PSE SGX report as part of the AppEnclave – PSE secure 

session establishment flow. The information includes PSE product ID, security version number (SVN), the 

PSE signing key information, and the PSE enclave measurement. 

The CSME security information is received by the PSE as part of the PSE – CSME pairing flow, and 

provided by the PSE to the AppEnclave as part of the AppEnclave – PSE secure session establishment 

flow. The CSME security information includes the CSME’s EPID group ID, the version numbers of the 

revocation lists for the CSME EPID private key and signature, and the identity information and security 

version number of the PSDA. 

4.6 Trusted Time Service Architecture 
As discussed in Section 3.2, for trusted time service, the PSE uses the CSME Protected Real-Time Clock 

(PRTC) based timer, and provides a timer source epoch to allow application enclaves to detect timer 

discontinuity. A high-level view of the architecture for the trusted time service is shown in Figure 7. 

CPU

PSE CSME

PCH
Timer value,

Timer Source Epoch Timer value, 
RTC Epoch

AppEnclave
AppEnclave

AppEnclave
PRTC

Timer
 value

 

Figure 7 High-level Architecture for Trusted Time Service 

In the CSME, each time the PRTC is reset (for example, due to battery replacement), it generates a new 

nonce for its RTC epoch. Each time the PSE reads the RTC timer value from the CSME, the CSME returns 

the current RTC epoch along with the timer value. 

For each AppEnclave, the PSE derives per-enclave timer source epoch as a hash of the RTC epoch, the 

PSE – CSME Pairing-Nonce, and the singing key information of the AppEnclave. As a result, different 

enclaves have different timer epoch values. Within an enclave, the timer source epoch value changes if 

the PRTC is reset or the PSE – CSME pairing changes. 

4.7 Monotonic Counter Service Architecture 

4.7.1 Overall Architecture 
As discussed in Section 3.3, the PSE maintains a secure database to manage all the monotonic counters, 

and uses the replay-protected storage (RPS) in the CSME for integrity and replay protection of the 

database. Since the monotonic counters are implemented in software by the PSE, they are also called 

Virtual Monotonic Counters (VMC). The database is also called the VMC database (VMC DB). Figure 8 

shows a high-level architecture. 
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Figure 8 High-level Architecture for Monotonic Counter Service 

Each VMC instance in the VMC DB is assigned a cryptographically unique VMC ID, and includes an access 

control policy based on the signing key and / or measurement of the requesting AppEnclave.  

To ensure integrity- and replay-protection, the PSE securely calculates and tracks a hash (called DB hash) 

over all the database entries. Upon each operation requested by an AppEnclave that results in creation, 

deletion, or update of a VMC entry in the VMC DB, the PSE generates a new DB hash, and sends it to the 

CSME for storage. 

The CSME provides a replay-protected storage (RPS) for the PSE to securely store its DB hash. It 

generates a random number as an epoch for replay-protection (RP epoch). Anytime when the CSME 

detects a condition that invalidates replay-protection of the stored DB hash, it generates a new RP 

epoch value. 

The PSE uses the RP epoch and the PSE – CSME Paining-Nonce in its calculation of the VMC DB hash. This 

allows it to detect loss of reply-protection of the database when RP epoch or Pairing-Nonce changes, 

and to invalidate the existing VMC DB, resulting in deleting all existing VMC instances. 

4.7.2 Monotonic Counter Database Protection 
In the PSE, for integrity and replay protection of the VMC database, the VMC entries are organized into a 

binary tree structure, with all the VMC entries as leaf nodes, one or more layers of intermediate nodes, 

and a single root node. Each intermediate node holds the hash of its left and right children. The root 

node contains the hash of these fields: left and right children, Pairing-Nonce of the PSE – CSME pairing, 

and RP epoch from the CSME. Figure 9 shows a high-level view of the binary tree structure. 
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Figure 9 VMC Database Binary Tree Structure for Integrity and Replay Protection 

To verify the integrity of a VMC entry, the PSE reads into its secure memory all the nodes along the 

branch from the VMC entry leaf node up to the root node, as well as the other immediate children of 

the intermediate and root nodes. The PSE calculates the hash of all the ancestors of the target VMC 

entry, along the path to and including that of the root node. It then retrieves from CSME the saved DB 

hash, and compares the retrieved and the calculated root node hash. Verification is successful if the two 

hash values are the same. 

After integrity verification of a VMC entry, the PSE can update it. After an update operation, the PSE re-

calculates the hash of all the ancestor nodes of the VMC entry, writes all updated VMC entry and nodes 

back to the VMC database, and sends the new root node hash value to the CSME for storage. 

In the PSE implementation, the VMC database is initialized with a fixed number of unused VMC entries, 

so the binary tree structure of the VMC entries does not need to change. When a new VMC instance is 

allocated, the PSE finds an unused VMC entry in the database for it. When a VMC instance is removed, 

the corresponding VMC entry in the database is simply marked as unused. 

5 Summary 
The purpose of this paper is to help software developers in their programming with the Intel SGX 

Platform Services, and to help readers in their understanding the internal design principles. This paper 

presented an overview of the trusted platform services and the architecture and the software stack. It 

then explained the APIs provided by the Intel SGX SDK. For the readers that are interested in learning 

about the design principles, the paper provided an in-depth discussion of the flows for the components 

to establish their identities and to create secure sessions between them, as well as the design of the 

supported platform services. More information about the Intel SGX SDK and its source code can be 

found in [1] [2] [3] and [4]. 
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