Intended Audience: Software

Developers

Interested in performance optimizing your application
» Don't need to be a performance expert
= But should be an expert in the application!

Working on a platform with an Intel® Xeon Phi™ code named
Knights Landing
Using Intel® VTune™ Amplifier XE performance analyzer

= The performance information here applies to other tools (PTU, etc) butis
focused on VTune Amplifier XE

= The last section of this guide also includes information about Intel®
Advisor XE




How to Use this Presentation

Read through the slides once, then again while collecting
data

Remember performance analysis is a process that may take
several iterations

Software Optimization should begin after you have:
= Utilized any compiler optimization options (/02, /QxAVX2, etc)
= Chosen an appropriate workload

= Measured baseline performance




Using Intel” VTune™ Amplifier XE
to Tune Software on the

Intel® Xeon Phi™ code named
Knights Landing (KNL)

Software and Services Grou




Agenda

= Intel® Xeon Phi™ Code Named Knights Landing (KNL)
Overview

* Intel® VTune™ Amplifier XE
= Software Optimization Steps
= Profile resource utilization

= |dentify problematic symptoms
= | ocate issuesand use recommendations to improve performance

* Additional Tuning Recommendations

= Intel® Advisor




Knights Landing Overview

* Knights Landing is the next Intel Many Core product after
Knights Corner

+ First self-boot Intel® Xeon Phi™ that is binary compatible with
main line 1A

+ Significant leap in scalar and vector performance
improvement over KNC

* Integration of memory on package: Innovative memory
architecture for high bandwidth and high capacity

* Integration of fabric on package




Knights Landing Overview (2)

36 Tiles w/ 72 new Silvermont-based
cores

4 HyperThreads per core
2 Vector Processing Units per core
6 channels of DDR4 2400 up to 384GB

8GB/16GB of on-package MCDRAM
memory

36 lanes PCIE Gen 3. 4 lanes of DMI

KNL is a highly-parallel architecture with large vector units. To get the most
performance out of this platform, it is imperative to take advantage of these
strengths.



KNL Tile:

Core: Changed from KNC to KNL. Based on Intel microarchitecture code named
Silvermont (SLM) core — with many changes

Selected Important features of the Core

Out of order 2-wide core: 72 inflight uops. 4 threads/core

Back to back fetch and issue per thread

32KB Icache, 32KB Dcache. 2x 64B Loads ports in Dcache. Larger TLBs than in SLM
L1 Prefetcher (IPP) and L2 Prefetcher.

Fast unaligned and cache-line split support. Fast Gather/Scatter support

2x BW between Dcache and L2 than in SLM: 1 line Rd and Yz line Wr per cycle

2 VPUs: 2x 512b Vectors. 325P and 16DP. X87, SSE and EMU support




Intel® VTune™ Amplifier XE

VTune Amplifier XE features:

Multiple Collection Types

X HOtSpOtS Grouong: Sy Gt Funcen { Ca Stack

Sync Object / Function / Col Stack

Wat Time by Utkzstions *E wa e
Bidile @Poor DO Bldent @O S L
= Bandwidth s 1510, SRR 150708 Contan

e
 Auts Rese Event ESES45 12405, 678 05 AvoRebem R

= Event-based Sampling

Timeline View Integrated
into all Analysis Types

= Source/Assembly Viewing

= Compatible with C/C++,
Fortran, Java, Assembly,
.NET

Visual Studio Integration,
Command-line, or
Standalone interface for Windows* or Linux*

Most screenshots in this presentation were taken from Intel® VTune™ Amplifier
XE 2016 Update 4. This is the first public version with KNL support.
Screenshots from different versions of the tool may have minor differences.



Running VTune Amplifier from the command-line

On self-boot KNL machines ensure the amplxe-cl command is
installed. See the “amplxe-cl —help” command for complete details. To
collect:

Hotspots:
amplxe-cl -collect advanced-hotspots —-- myapp.out

General Exploration:

amplxe-cl -collect general-exploration —-- myapp.out

Memory Access:

amplxe-cl —-collect memory-access —- myapp.out

Results will be created in a directory named r###ah, r###ge, or r###macc

Results can be viewed from the command-line or GUI on the KNL machine, but it
is generally more efficient to copy results to another machine with the GUI
installed for analysis.

It is also recommended to add the —no-auto-finalize flag to collections that will be
creating large results. The finalization step is compute intensive and runs serially
which may take a long time on the KNL. Finalization can be done on another
machine after copying the results off of the KNL.

The data collected may be very large for longer runs with many threads active. If
you find that you are reaching the data limit, use the flag -data-limit=<integer>.
The default limit is 500MB. The integer specifies the size in MB. Use 0 for no limit.



Advanced Hotspots Analysis

* Supports OpenMP*analysis

« Stack-samplingis enabled. However, call counts and trip counts
are not supported.

* Advanced Hotspots H

Elapsed Time : 4.506s

CPU Time : 566.499s
Effective Time : 195.181s
Spin Time : 352 865s

A significant portion of CPU time is spentwaiting. Use this metric to discover which synchronizations are spinning. Consider adjusting spin wait
parameters, changing the lock implementation (for example. by backing off then descheduling). or adjusting the synchronization granularity.

Overhead Time : 18.453s
Instructions Retired: 320,824,000,000
CPIRate 2642

The CPI may be too high. This could be caused by issues such as memory stalls, instruction starvation. branch misprediction or long latency
instructions. Explore the other hardware-related metrics to identify what is causing high CPI.

CPU Frequency Ratio 1071
Total Thread [ 130

Total Thread Count much
Paused Time % 0s higher on Intel* Xeon

Phi™. Threading is vital
for performance.

10



Advanced Hotspots Analysis

* Advanced Hotspots

Advanced OpenMP
performance analysis

| |
o
-
o
>
®
=
-
§
H
3

is. Collection Time : 4.506
Serial Time (outside any paraliel region) 11078 (246%)
Serial Time of your application is high It directly impacts application Elapsed Time and scalabiity. Explore options for parallelzation. algorithm
or tuning of the serial part of the applicato
Parallel Region Time 3.399s (75.4%)
Estmated ideal Time 12178 (27.0%)
OpenMP Potental Gain 21825 (484%)

The tme wasted on load imbalance or parallel work amangement is signficant and negatvely impacts the application performance and
scalabilty. Explore OpenMP regions with the highest metric values Make sure the workioad of the regions is enough and the loop schedule is
optmal

Top OpenMP Regi by P ial Gain
This section kists OpenMP regions with the highest potensial for perormance improvement. The Potential Gain metric shows the elapsed sme that could
be saved f the region was optmed 10 have no load imbalance assuming no runtime overhead

OpenMP Region OpenMP Polential Gain (%) OpenMP Region Time

ainsompsparaliel 10@unknown 192 21825 484% 3399
Top Hotspots
This section kists the most active functions in your application. Oy typically results g overall apphicaton
performance
Function Module CPU Time
- plate<kmp flag 64 libiompSso  282763s List of the hottest
testout 1867215 functions
2 g>_notdone check libiomp5so 135218
ease ibiompS 5o 87208
liblomp5 so 7838s

NA 3 appbed 19 nor summable metcs

The Advanced Hotspots Analysis will show where your application is spending its
time, including information related to OpenMP parallelism. Ensure that the
OpenMP runtime library used in the application (e.g. libiomp5.s0) is available on
the system doing the analysis. This is required to accurately analyze OpenMP
overhead.



Advanced Hotspots Analysis

Adjust grouping to
change granularity

Sowcefde | St Addven

0
Top Functions

See 100s of
OpenMP Threads
Seected 1 romis N MEAONIN 244 10%
OMP Master Thvead 5. - Overhead is very
important on
: KNL

i W T
e
o et Toesd
i Wedm Tt
G st

J oo s

£ (OMP Worker Thead
o ek Tt
o Werke Tresd

Use the Bottom-up view to see time spent at various granularities; for example
Function or Module granularities. This can be changed in the Grouping drop-down
menu. Focus tuning efforts on the hot portions of your application.

12



Profile Resource Utilization
Advanced Hotspots > Summary Tab

CPU Usage Histogram
This histogram displays a percentage of the wall sme the specific number of CPUs were unning simutaneously. Spin and Overhead time adds to the idle CPU usage value
£
3s{E

3 H B

2545
1504

500ms {
os

Poor/OK/Good

classification can
be adjusted
manually.

To get the best performance from KNL, it is important to have highly threaded
parallel applications. The CPU Usage Histogram in the Summary shows how much
time was spent with various numbers of logical cores active. As a general
guideline, the vast majority of time should be spent with more than 50% of all
available logical cores active. Because each KNL core has 4 HyperThreads, it isn't
always beneficial to have all logical cores active if the bottleneck is the execution
core, which is shared between HyperThreads. If memory accesses are the
bottlenecks, more threads may alleviate the problem.

Memory Bandwidth may not be helped by more threads, but Memory Latency can.
To identify memory latency as the issue look at L2 misses. If L2 misses are high

and bandwidth is high, bandwidth may be the bottleneck. If L2 misses are high,
but bandwidth is low, latency may be the issue, and more threads may help.

13



Vectorization Usage

General Exploration > Summary Tab

& General Exploration A BL: o s ko g e 1 e 1 e ampine

Elapsed Time :4.481s
ik 839229258842
V2708484062
260

The CPImay be 150 high This could bo caused by ssuss such 83 memory stalls, nsiucton starvason branch mespredscton or long latency ms¥ucsons Expiore the ofier
harchware tolated motics 1 dardy what 1 € ausng hagh CPI

1000
nre

asx
Back End Bound s6I%
A sigrvicant proporbion of pipeline Siots are remainag empty WNen 0perakons take 100 long = Ihe back-end My n e pipebne hat

fewer pipeiine siots contamg usehl work 10 be rewed par cycle han he machine is capable of supporing. This opportunity cost resulls in siowss execubon. Long latency
operatons ke dwides and memory Operations Can cause Tis. a3 Can 150 Many OPerABONS bemg Grected 1o 3 sngle execulon por (lor example. More MURDlY
‘oparatons anmving in fie back end per cycls hian e sxacuson unt ¢an SuppOTD

Retiing 215%
24 VPU Utilization
B8 At 1% represents Packed
AsgnicantpossonofresadvOpswars mswedb | fe P T o FP Assist masncs 1o detarmine the specifc cause
e instructions
Total Thiead Count 130
—— os

KNL supports 512 bit vector instructions. To optimize for KNL, an application
should take advantage of these large vector units with heavily vectorized code.
Look at the metric VPU Utilization to determine the areas of high and low
vectorization in your application.

14



Vectorization Usage

Retining
Function / Call Stack Clockticks Instructions Retired CPi Rate P 2 ° Ms
VPU Utilzation Wi | i FP Assists
4 _kmp_hyper_barrier_release 1,566,588,349,879 763,205,144,806 2053 0178
¥ compute_ths_SompSparallel@17 1,515,622.273,430 96,228,144,342 15750 0.105
3y solve_SompSparaliel for®27 1,396,328,094,489 59,428,089, 142 2.4% 0801 0223
92 solve_SompSparallel for®31 1,379,010,068,512 64234096351 21469 0814 0159
#x_solve_SompSparaliel_for®27 1,066,933,600,398 70,884,106,326 15,052 0831 0.160
+ [vminu] 197,668,296,502 36,600,054900 5401 0238
© tzetar_SompSparallel for@22 165,968,248,952 5,790,008,685 28.665) 0200
© tuinvr_SompSparallel for®22 140,052210078 6,356,009,534 22035 0223
+ add_SompSparaliel_for®19 125,748,188,622 4930,007,395 25.507)
+ ninvr_SompSparaliel for®20 81,542,122,313 3,352,005,028 24326) 0344
+ pimv1_SompSparaliel for®20 79,990,119,985 3,260,004890 2537 0299
5 _lkmp_hypes_barries_gather 68,008,102,012 32,918,049.377 2.066) 0162
5 _lmp_wait yield_4 $5,700,083,550 20304030456 2743 0274
5 _kmp_yield 40,500,060,750 483,000,732 8299 on2
® [ibe-2.19.50] 8,500,012,750 1,692,002538 5.024) 0518
+ thaint 7,398,011,097 43,000,072 154.125|
+ thsindy 6,558,009,837 56,000,084 n7.107
+ exact_rths_SompSparallel®20 3,654,005,481 1,064,001,5% 3434) 0.861
SompSparaliel®22 3,162,004743 1,282,001,923 2.466) 0951

_solution 3,084,004,626 251400377 1227] o751
# _kmp_bakery_check 2962,004203 62000093 46161 o745
5 _lmpe_for_static_init 4 1,618,002.427 32,000,048 50563
5 _kmp join_barmier 1.214,001,821
# [ibittnotiy_collector.s0] 1,150,001,725 36,000,054 3154

8 _kmpc_for_static_fini 746,001,119 \ J

The VPU Utilization metric is also available in the Bottom-up view of the General
Exploration viewpoint. Locate hotspots with low VPU Utilization and try to improve
their usage of the AVX512 capabilities.



|dentify the Hotspots

What: Hotspots are where your application spends
the most time

Why: You should aim your optimization efforts
there!

= Why improve a function that only takes 2% of your application’s
runtime?

How: VTune Amplifier XE Advanced Hotspots
analysis type

= Usually hotspots are defined in terms of the
CPU_CLK_UNHALTED.THREAD event(aka “clockticks”)

For this processor, the CPU_CLK_UNHALTED.THREAD counter measures unhalted
clockticks on a per hardware thread basis. The CPU_CLK_UNHALTED.THREAD
counter allows you to see where cycles are being spent on each individual
hardware thread.

There is also a CPU_CLK_UNHALTED.REF counter, which counts unhalted
clockticks per thread, at the reference frequency for the CPU. In other words, the
CPU_CLK_UNHALTED.REF counter should not increase or decrease as a result of
frequency changes due to throttling. This counter can be useful for removing the
variance introduced due to throttling when comparing multiple analyses.

16



The “Software on Hardware” Tuning
Process
For each Hotspot

= |f inefficient:
— Determine primary bottleneck
— Identify architectural reason for inefficiency
— Optimize the issue

Repeat

17



Efficiency Method 1: % Retiring Pipeline Slots

Why: Helps you understand how efficiently your app is using the
processors

How: General Exploration profile, Metric: Retiring

What Now: i @i i iy BRI o W
Grougng:  Funchion / Call Stack p—
= For a given hotspot: Funcion/ Cttach Codits | ancsonbeind | Crmae wing
= |f 10% or more of T e i 0
pipeline slots are retiring 7 L9 newm e ag 2%
e e @ am ot s 7 4 an
i e Somplparael f0r27 1,066,933,600, 398 T0.884.106,326 L N s
(.10 or higher), look at the B o
2 165,968, 248952 5.790,008.685 nes 2%
3 other top-level metric for waosz 0o ez s o
. . 125,748 188,622 4930,007,395 .3 1%
tuning options. nsammn A T e
74,990,119,985 3,260,004 890 M %
64,008,102,012 32910049377 = ams
45,700,083, 550 20,304 030,4% 2B u
40,500,060, 750 480,000,732 u 4%
8,500,012,750 1,682,002 538 kR O 9%
6,558,009,837 56,000,084 L8 o
1,654,005,481 1,064,001, 596 14 4%
3,962,004, 743 1,282.001,523 24 24%
Jomonuae 2 P s
2.862.004.293 62,000,093 £ 287%

Formula:
(UOPS_RETIRED.ALL/ (2*CPU_CLK_UNHALTED.THREAD))

Thresholds: Investigate if -
% Retiring < .10

This metric is based on the fact that when operating at peak performance, the
pipeline on this CPU should be able to retire 2 micro-operations per clock cycle (or
“clocktick”). The formula looks at “slots” in the pipeline for each core, and sees if
the slots are filled, and if so, whether they contained a micro-op that retired.

18



Efficiency Method 2: Changes in Cycles per
Instruction (CPI)

Why: Another measure of efficiency that can be useful when
comparing 2 sets of data

= Shows average time it takes one of your workload'’s instructions to
execute

How: General Exploration profile, Metric: CPl Rate

What Now: T 1
* CPI can vary widely Cuore: ectm/cates "\
dependingon the Function; CalStack Cloctcts~ - corRme

application and platform!

= |f code size stays
constant, optimizations
should focus on
reducing CPI

Formula:
CPU_CLK_UNHALTED.THREAD/INST_RETIRED.ANY

Threshold:

In the interface, CPI will be highlighted if it is greater than 6. This is a very
general rule based on the fact that many tuned applications should be able to get
below this threshold. However, many applications will naturally have a CPI of
over 6 - it is very dependent on workload and platform. It is best used as a
comparison factor — know your app’s CPI and see if over time it is moving upward
(that is bad) or reducing (good!).

Note that CPI is a ratio! Cycles per instruction. So if the code size changes for a
binary, CPI will change. In general, if CPI reduces as a result of optimizations,
that is good, and if it increases, that is bad. However there are exceptions.
Some code can have a very low CPI but still be inefficient because more
instructions are executed than are needed.

Additionally, CPI can be affected if using Intel® Hyper-threading. In a serial
workload, or a workload with Intel® Hyper-threading disabled the theoretical best
CPI on a hardware thread is 0.5 because the core can allocate and retire 2
instructions per cycle. In a workload with Intel® Hyper-threading enabled which
utilizes all 4 hardware threads effectively, the ideal CPI per-thread would be 2
instead of 0.5. This is because the hardware threads share allocation and

19



retirement resources on the core.

Note: Optimized code (e.g. with AVX512 instructions) may actually increase the
CPI, and increase stall % - but improve the performance. This is because a single
vector instruction will generally take more cycles than a single scalar instruction,
but it also often performs more work. For example, a vector instruction may take
twice as many cycles, but perform the work of four scalar instructions. In that
case, the average CPI will increase, but the application will still be running faster.

CPI is just a general efficiency metric — the real measure of efficiency is work
taking less time.

19



The “Software on Hardware” Tuning
Process
For each Hotspot

= Determine efficiency
= |If inefficient:

— Identify architectural reason for inefficiency
— Optimize the issue

Repeat

20



Determine the Primary Bottleneck

If Methods 1 or 2 are used to determine code is inefficient, first
determine the primary bottleneck.

The Top-Down hierarchy implemented in General Exploration
classifies your application’s utilization of the CPU cores into 4
categories:

= Front-End Bound
= Back-End Bound

= Bad Speculation

= Retiring

For a hotspot that is inefficient, determining the primary bottleneck is the first
step. Optimizing code to fix issues outside the primary bottleneck category may
not boost performance - the biggest boost will come from resolving the biggest
bottleneck. Generally, if Retiring is the primary bottleneck, that is good. See
next slides.



Issue Classification

A Pipeline Slotis an abstract concept — it represents the hardware resources
needed to process one micro-operation

On this CPU, there are 2 pipeline slots available on each core, each cycle

Performance is classified according to what happened for each slot available to

the application or hotspot:
Uop Allocated?
Yes No

Uop ever Back-end
Retire? stalled?
Yes No Yes No
- Bad Back-end Front-end
Retinng Speculation Bound Bound

Note the way that this methodology allows us to classify what percentage of all
pipeline slots end up in each category, for each cycle and for each core. It is
possible that for a given dataset, there may be a significant percentage of
pipeline slots in multiple categories that merit investigation. Start with the
category with the highest percentage of pipeline slots. Ideally a large percentage
of slots will fall into the “Retiring” category, but even then, it may be possible to

make your code more efficient.

22



The “Software on Hardware” Tuning
Process
For each Hotspot

= Determine efficiency
= If inefficient:

- Determineirimai bottleneck

Repeat

ﬂ

23



Gen

* General Exploration

eral Exploration Analysis

Function / o Stack Coctcts | instructions Resied o Reseng Meduie Source Fle
mamsomptpuatel ford 154% testout Ere—— vec testpp Ok
Pr———. SN b S——. 0
* [1aatnctdy coftetor so] 2% Uatnetty cotector o [4oatnetdy cobectesso °
ae-21 0] ", e °
——— 2180 $30) °
man 34000051 vec sestcpp O
(mport thunk _kmpe_for.satc mport thank kg fer_satc Sev) o
= ‘ 0
(mport thunk _kmpe.for ot ik 4] Qoo 14 Prmpont thunk _kmpe for sttt 4 o
Sivine] e 0
-2 850] LT 12180 °
J s 0
g3, 15) ep °
 limpon thurd teme et Bk e
[impart thunk [Opent® font ] mpert thork kg fork co]
Selected 1 rowt)| SUMLENY  HSMANI B8 13% o % wx

OMP Worker Theesd.

———eee e e T
——— -
R T < @D Punnng

| c————————————————————————————————————————————————————————
e ————————————————————————————————————————————— prpsspes
——— .
S vs———
ettt Sttt

b veT e

24



General Exploration Analysis
e e

Gy Punchon | Col a0k

I P
o _mp mper samer o Categories expand into
*ompute i Sorwipal  hjerarchical metrics
+ y.sohe_Sompipeatel |
#20ve X
+ v sohe_SomgSpantel ford2T s o
Fro) [ s
oot Somgpaate for022 2 ass
b SompSpuatel or822 asx
+ 234 Sompipaatel tor® 19 o
* mewr_SomgSperaied (00020 o
+ gt SomgSperatel (e 20 o
kg, Py bars g wis
g ety 4 an
kg, nw
Wb 1s0] s

L2 vt e

Rack End Bound
Memory Latency

ke QMe [Um sw a0
o0 G0 oo aow
o5 oM oo 195 T
oans Q0% oo 2458 M7
oo QoM a0 2955 4586
o6 000 Q001 2665 MASME
oars oo 007 oou 03
oo [ S0 160
o0 s a0 760
oot oom 20 o2
oo ane 9% 2100
oons aom 304 0
o000 o0 oom
o0 oo oo
o206 a0 oo
o0 oo oom
000 e

Page Wok
]

ot Losse

s

osa

Memary Parsaes
Sptt Soves | Loads Bocked b.
ax oo

aon oo0s

o7 oon

e o008

oot

100 [

25



General Exploration Analysis
Front-End Bound

ICache Misses

Description:
Missing instruction fetches from the Instruction Cache (ICache) causes stalls in the
pipeline. This may be the result of branch-heavy code or poor code layout by the
compiler.

Formula:
ICache Misses =
(FETCH_STALL.ICACHE_FILL_PENDING_CYCLES/INST_RETIRED.ANY)

Threshold:
Investigate if > 0.1

26



General Exploration Analysis
Bad Speculation

Branch Mispredict

Description:
Mispredicting branch targets causes the processor to execute instructions that will
never retire, because they are on the incorrect code path. This represents wasted
work and should be minimized.

Formula:
Branch Mispredict=
(2 * NO_ALLOC_CYCLES.MISPREDICTS)/(2 * CPU_CLK_UNHALTED.THREAD)

Threshold:
Investigate if > 0.05

27



General Exploration Analysis
Back-End Bound

L2 Hit Rate

Description:
The L2 is the last, and longest-latency, level in the memory hierarchy before DRAM or
MCDRAM. This metrics provides the ratio of demand load requests that hit in L2 to the
total number of demand load requests serviced by L2. This metric does not include
instruction fetches.

Formula:
L2 Hit Rate =
(MEM_UOPS_RETIRED.L2_HIT_LOADS_PS)/(MEM_UOPS_RETIRED.L2_HIT_LOADS_PS
+ MEM_UOPS_RETIRED.L2_MISS_LOADS_PS)

Threshold:
Investigate if <0.80

28



General Exploration Analysis
Back-End Bound

L2 Hit

Description:
The L2 is the last, and longest-latency, level in the memory hierarchy before DRAM
or MCDRAM. While L2 hits are serviced much more quickly than hits in DRAM, they
can still incur a significant performance penalty. This metrics provides the ratio of
cycles spent in servicing demand load requests that hit in L2 to the total number of
cycles.

Formula:
L2 Hit Penalty = (17 *
MEM_UOPS_RETIRED.L2_HIT_LOADS_PS/CPU_CLK_UNHALTED.THREAD )

Threshold:
Investigate if > 0.10

29



General Exploration Analysis
Back-End Bound

L2 Miss

Description:
The L2 is the last and longest-latency level in the memory hierarchy before the main
memory (DRAM) and MCDRAM. Any memory requests missing here must be serviced
by either DRAM or MCDRAM, with significant latency. The L2 Miss metric shows ratio
of cycles spent in servicing demand load requests that miss in L2 to the total number
of cycles.

Formula:
L2 Miss Penalty =
(230*MEM_UOPS_RETIRED.L2_MISS_LOADS_PS/CPU_CLK_UNHALTED.THREAD)

Threshold:
Investigate if > 0.15

30



General Exploration Analysis
Retiring

VPU Utilization

Description:
This metric measures the fraction of micro-ops (uops) that performed packed vector
operations of any vector length and any mask. VPU utilization metric can be in
conjunction with the compiler's vectorization report to assess VPU utilization and to
understand the compiler's judgement about the code. Note that this metric includes
integer packed simd uops but does not account for loads and stores. Also, this metric
does not take into consideration the uop masking behavior or vector length of the
uops.

Formula:
Vector VPU Compute Percentage = (UOPS_RETIRED.PACKED_SIMD)/
(UOPS_RETIRED.PACKED_SIMD + UOPS_RETIRED.SCALAR_SIMD)

Threshold:
Investigate if <0.5

31



General Exploration Analysis
Retiring

Divider

Description:
Not all arithmetic operations take the same amount of time. Divides and square

roots, both performed by the DIV unit, take considerably longer than integer or
floating point addition, subtraction, or multiplication. This metric measures the
fraction of total cycles when DIV unit was active. Note that this metric accounts only
for the following division operations: integer div, x87 div, divss, divsd, sqrtss, sqrtsd.

Formula:
Divider = (CYCLES_DIV_BUSY.ALL)/ (CPU_CLK_UNHALTED.THREAD)

Threshold:
Investigate if > 0.05

32



General Exploration Analysis
Retiring

FP Assists

Description:
Certain floating point operations cannot be handled natively by the execution
pipeline and must be performed by microcode (small programs injected into the
execution stream). For example, when working with very small floating point values
(so-called denormals), the floating-point units are not set up to perform these
operations natively. Instead, a sequence of instructions to perform the computation
on the denormal is injected into the pipeline. Since these microcode sequences
might be hundreds of instructions long, these microcode assists are extremely
detrimental to performance. This metric also accounts for other FP assists such as
Flush-To-Zero (FTZ).

Formula:
FP Assists = (MACHINE_CLEARS.FP_ASSIST)/ (INST_RETIRED.ANY)

Threshold:
Investigate if > 0.05

33



Additional Topic:
Metric Reliability

# General Exploration General Exploration viewpoint

nary RS - PMU Event

* Filled Pipeline Slots Unfilled Pipeline Slots (Stalls)
= B i} 3}
Instructions | CPI
Function / Call Stack Clocktic... ¥ Reted | Rote | pating S Sciaton Basck.gm, Front-End
ound Bound
grid_intersect | 14076.021.114] 1248016702 MKFE) 020l ooro YT 0063
¥ sphere_intersect 9,306,013959 9,206013,809 1.011 0282 0038 0615 0.065
# grid_bounds_intersect 1,098001,647 690,001,035 1.591 0123 0020 0781 0075
func@0x1002e3d5 922,001,383 700,001,050 1317
& _kmp_x86_pause 354000531 212,000318 1670
Ftri_intersect 222000333 152,000228 1461 0405 0.561
#pos2grid 212000318 186,000279 1.
20 mwimet 02000303 80000 Am 0 n26n naon
Selected 1 row(s):| 14,076,021,114 12,468,018,702 0210 0076 0.650 0063

Grayed out metric values represent low
reliability of the metrics for each value in

the grid.

The General Exploration analysis type multiplexes hardware events during
collection, which can result in imprecise results if too few samples are collected.
The GUI will gray out metrics if the reliability is low based on the number of
samples collected. If a metric is grayed out for your area of interest, consider
increasing the runtime of the analysis or allowing multiple runs via the project
properties.

Previous versions of the tool used a MUX Reliability metric for each row, however
this was unable to distinguish between different metrics on the same row.

34



Memory Access Analysis

* Provides individual bandwidth information for both,
MCDRAM and DDR.

* VTune cannot yet identify the system configuration: cluster
mode and memory modes. Hence, shows the bandwidth
information for both cache and flat mode. Users need to
choose the correct data based on system configuration.

3 Memory Modes Cache Model

* Mode selected at boot
* MCDRAM-Cache covers all DDR MCORAM DDR

MCDRAM MCDRAM
| oor DOR

Flat Models

Hybrid Model

NCORAM

Physical Address

35



Memory Access Analysis

Flat Mode

+ Allows the developers to explicitly control which data structures are in
MCDRAM vs. DDR.

+ Requires code modification, otherwise DDR will be used by default.

Cache Mode

+ No code modification. Hardware will use L1, then L2, then MCDRAM
cache.

+ Data allocated into MCDRAM cache needs to be highly reusable to see
performance benefits.

+ Average L2 miss latency is higher because misses in MCDRAM cache
then go to DDR

+ May have aliasing issues if multiple pages are mapped into same cache
lines in MCDRAM Cache. Non deterministic (not repeatable)

+ Streaming stores are negatively impacted. Expect lower bandwidth

36



Memory Access Analysis (2)

® Memory Access M

Elapsed Time : 15.108s

148845
10,000.300
1000%
S MCDRAM Hit Rate is applicable
1 when MCDRAM s configured as
0s cache
Bandwidth Utilization Histogram
This histogram displays a percentage of o wall bme the bandwidth was ubiized by certan value Use siders at fhe bolom of e hestogram 1o define treshoids
forLow, Medeum nd High skzaton levels You can use fese bardwidh wizston pes e Botlon-wp vew i roup data s see 3 knckons execited
dunng 8 pakculs zaton ype. To learm bandwidh capbies. tele 1 you system specikcatons o run appropriste beachmanks  measure e for
“xample ntel Marmory Litenéy Chacket can provide massmam achievable DRAM and P! bandwiah

Bandwidth Domain  DRAM, GB/sec

Elapsed Tme

[
5
4
%
2

1. Notes about MCDRAM Hit Rate
1. This rate counts loads and streaming stores, e.g. vmovnt (non-
temporal), but not stores/writebacks
2. If you have streaming stores, your MCDRAM Hit Rate may be lower
than expected because streaming stores are expected to miss MCDRAM
Cache



Memory Access Analysis (3

<no current project>

ok

Intel VTune Amplifier

Zoom and filter on

E
&

any areas of interest

CPUTime  MCORAM Fla

.3

S At MMM b atss AN

SelectFlat or
Cache mode for
MCDRAM

Grouping: | Bandwidth Domain / Bandwidth Utilization Type / Function / Call Stack

*
Bandwidth Domain / Bandwidth Utilization Type / Function / Call Stack CPU Timew
THigh 1773135
“kemels.mic] 1343045
[No call stack information] 26.8613|
Pllibiomps.sol 3687451
Selected 1 rowls) 1343045

2] (=] [a] [x
M8 ucMiss | Run sou. s |2
8 Count (Fu..| Fle [add.. g
210314721 °
205,614,392 ker.. [ke 0 |
41122878
700,049 ibi... flib. 0

205,614,392

+ Jany Theead

&8 <no current project...

Any Module

@O 4 S wedoct2l, 317AM &

Memory information
at source code level.

38



Intel VTune Amplifier XE 2(

ldentifying Objects to put in MCDRAM

* Memory Access Me

¥ 36] ) Mk Total, GB/sec
: ] 4 Write, GB/sec
£ MCDRAM Flat Mod..
‘3 MCDRAM Cache M...
a [ CPU Time
3
»
Groupng: | (custom) Bandwidth Utkzation Type / Function / Thread / Call Stack v & Q] %
Bandwidth Utilization Type / Function / Thread / Call Stacke CPU Time LLC Miss Count Module
Medium 6.124s (D 10,000,300
D random access
 [vmbinu] N Put data accessedin areas of | 0 vminux
3 Low highest Bandwidth Utilization in 1234 25,000,750
Blow MCDRAM 12302 D 25,000,750
¥ Low 18322 D 25,000,750
ilow 18.342: (D 25,000,750
4l Low 12212 D 15,000,450
# [Unknown] | 0

Run a Memory Access analysis with MCDRAM configures in flat mode and all

allocations occurring in DDR (not using MCDRAM).
Create a custom grouping in the Memory Access analysis to see functions causing
Medium or High bandwidth utilization. Objects accessed within these functions

may be candidates to move into MCDRAM.



KNL Cluster Mode Performance Tuning

* Quadrant Cluster Mode

* This configuration allows for an increase in usable bandwidth on the mesh because there
is less traffic crossing quadrant boundaries. It is generally expected to offer better
performance than all-to-all mode but does require that all DDR channels be populated
identically.

*  Sub-NUMA Cluster Mode (SNC4)

* This mode is expected to be preferable when threads running on the chip can be
grouped and affinitized to specific quadrants of tiles and they mostly access their own
data. Asingle data structure or array will normally be mapped to only a pair of MCDRAM
channels, or half of the DDR channels. Therefore, the accessible bandwidth to that
structure will be less than what it would be in quadrant mode because it is not spread
evenly across all channels. While this may seem undesirable, it is important to
remember that if the chip is being used to run multiple MPI ranks, or multiple processes,
then the total available bandwidth of the system is likely to be highest in this mode. Note
that if you try and allocate more memory than is available in your local cluster, the
additional memory will be allocated on another cluster. This is expected and does not
cause an exception or some other error to occur.

* All-to-All Cluster Mode

* This more is rarely used for performance. This is the fallback mode in the event of
system asymmetries or irregularities.




HPC Performance Characterization

Two characterization metrics

™ HPC Performance Characterization (preview) HPC Perf|

= Elapsed Time

Elapsed Time : 45.463s

* GFLOPs Upper Bound* GFLOPS Upper Bound : 28.950
Three performance aspects CFU {xon ;. S:MS
Memory Bound

= CPU Utilization
= Memory Bound
= FPU Utilization Upper Bound*

FPU Utilization Upper Bound : 0.9%

*Calculated based on FLOP HW counters assuming full vector utilization

HPC Performance Characterization provides performance information that is
especially important for High Performance Computing (HPC) applications. This
analysis can be run from the GUI or using the command line flag “-collect hpc-
performance”



HPC Performance Characterization

CPU Utilization

* % of “Effective” CPU usage by the @ 17¢ Perfomance Cherectsrim
application under profiling (threshold == ER0
90°/°) GFLOPS Upper Bound  : 28.950

= Under assumption that the app
should use all available logical cores
on a node

CPU Usilizaton : 31.8%

= Subtracting spinfoverhead time
spent in MPI and threading runtimes

Metrics in CPU utilization section

= Average CPU usage

= Additional MPI and OpenMP scalability H
metrics impacting effective CPU
utilization

= CPU usage histogram

The CPU Utilization metrics provide another way to determine how busy all of the
cores are during the performance analysis.

42



HPC Performance Characterization

Metrics in Memory Bound section
= L2 Hit Bound
= Cost of L1 misses served in L2
= L2 Miss Bound
= Cost of L2 misses
MCDRAM Bandwidth Bound

= % of app elapsed time consuming
high MCDRAM Bandwidth ol | .

MCDRAM Bandwidth Bound R

= % of app elapsed time consuming
high MCDRAM Bandwidth

= Bandwidth utilization histogram

The Memory Bound metrics provide information about how the application is
utilizing, and possibly bottlenecked by, the memory subsystem. If issues are
exposed here, the Memory Access analysis may provide even more detailed

information.

43



HPC Performance Characterization

FPU Utilization Upper Bound

= % of FPU load (100% when FPU is fully loaded, threshold 50%)
Metrics in FPU utilization section

= GFLOPs broken down by scalar and packed

= Top 5 loops/functions by FPU usage

= Dynamically generated issue descriptions on low FPU usage help to define the cause
and next steps

FPU Utilization Upper Bound : 0.9% ™

nd 28950

per Bound 2

ippecBousd - 26 628

ps (funchions) by FPU usage

fp— mostime - pont operanons

Functon CPUTime © FPU Usizaton Upper Bouns

1466 3005

The Floating Point Units (FPU) on KNL are important for getting the best
performance. The HPC Performance Characterization provides an upper bound
estimate of the utilization. This is an upper bound because the events used are
not able to account for masking, and the metric assumes all vector lanes are used
in each instruction.



VTune Amplifier Tips

* VTune Finalization:
+ Finalization is very slow on KNL. Finalize on Xeon.
» Disable auto finalization with: -no-auto-finalize

» Large amount of raw data collected:

* Appropriately select the app run duration using: -target-duration-
type=<veryshort/short/medium/long>

* Change the default data limit as required.
* Power throttling:

+ Keep an eye on the CPU frequency ratio. If this ratio changes significantly
during the run then you might be seeing throttling or turbo effects.

d

45



VTune Amplifier Tips (cont.)

* Event multiplexing:

+ Similar to KNC, KNL has only 2 general purpose counters. Hence, when
collecting a large number of events the data might be statistically invalid.

* Trychanging the target duration type or allow multiple runs.

46



Boost Vectorization with Intel® Advisor

Intel Advisor XE has a new feature to help analyze existing
vectorization and guide you through improving vectorization use.

1. Compiler diagnostics + Performance Data + SIMD
efficiency information

“““ 3. "Accurate” Trip Counts + FLOPs: understand utilization,
parallelism granularity & overheads

" 1
. 4. Loop-Carried Dependency Analysis.

Use this 5 step process to determine how well you are vectorizing and where you
can improve.
Intel® Advisor is available at: https://software.intel.com/en-us/intel-advisor-xe

47



Function CalSatesnd |
Loops

FEREEEEEERED DR

Survey Analysis

Vector e
floop in 1241_atlo
Docp ins152s_atle
lloop in s452_atle © 1 Data type conversions present
floop in 413_atlo Inettectne pecied/remamnder
floop in 5273_atlo ovuible meffcoent memory »
lloop ins27%_atlo. osuble meft<oent memcey »
floop in 1253_atle oruble meffcrent memory &
floop in 1251_atls
floep in 1271_atlo § 2 Posuble meffcsent memory o
floop in vi_at loep. § 1 Poruible meffcoent memory »
Tloop in 1274_atlo © 1 Poswible mefficnt memery &
floop in SET20 st m.
locp in st Fillel

|l teee. 3 )

‘All or some sgurce 100p fterations are not executing in the 1gop body. Improve performance by moving sour

Recommendation: Add data padding
The t11p count is not a multiple of yector length. To fix Do one of the following

o Increase the size of objects and add terations 5o the trip count Is a multiple of vector length.
o Increase the size of static and automatic objects, and use a compiler option 1o add data padding

Note: These compiler options apply only to Intel® Many integrated Core Architecture (Intel® MIC Archi

When you use one of these compiler options, the compiler does not add any padding for static and aut
application. To satisfy this assumption, you must increase the size of static and automatic objects in

Optional: Specify the trip count, if It is not constant, using a direCiive: | Spragms Loop. count
Read More.

. 1 loop count

Vectorized

Sort - Look at your hottest
vectorized loops

Efficiency —useas a
performance thermometer

Recommendations —get tips on
how to improve performance

48



Summary View: Plan Your Next Steps

What can |
expect to gain?

@ Vectorization Gain/Efficiency
Vectorized Loops Gain/Efficiency 2.64x
Program Theoretical Gain 243«

Top time-consuming loops

Loop Source Location Self Time Total Time
matvec Multiply.¢:72 5.62565 5.6256s
matvec Multiply.c:66 &80
D matvec Multiply.c:4f 0.5234s
D matvec Multi A 0.4088s
5 matvec Muttiply.c:85 0.1150s Where dol|

start?

49



Factors That Can Affect Efficiency

~55% 3.Small trip counts thatare nota

2._1 9x [ — multiple of the Vector Length

— B

far (1mtr 1) 244) /
Amn1 - e own_mais.;
! A1) = Bl
1
1.B Memory sub-system Latency / 22 Cie i .
Throughput 4.Branchy codes, outer vs. inner loops
wold scaleiist *a. fat *B) mand L Zorii = 0; i o= MAX: i++)
i it (ot <}
fox dat 1= 8 1 < VERLEIG 1443 do_ttam
a1se 12 o021 > 40

e11) = ®* Alu1
BIL) =2+ afy do_thato :
“

1.A.Indirect memory access

5.MANY others: spill/fill, FP accuracy trade-
2. Serialized or “sub-optimal” offs, FMA, DIV/SQRT, Unrolling
function calls

for (3 =1: 1< i ) {

Analyze the hot loops for the common issues that can impact vectorization.
Use the Memory Access Patterns Analysis and Recommendations to identify
problematic behaviors and ways to correct them.



Check if itis Safe to Vectorize

Loop-Carried Dependencies Analysis Verifies Correctness

Compiles Vectosization

Function Call Stes and Loops
Loop Type Why Mo Vectorzation?

B ocp

Selectloop for
Dependency
Analysis and

press play!

Vector Dependence
prevents
Vectorization!

Data dependencies between loop iterations make it difficult for the compiler to
vectorize a loop. For example:

for(i=1;i<N;i++){
A[i] = Afi-1] + CIi];
b

Each iteration is dependent on the value calculated in the previous iteration. Use
Advisor to detect these dependencies.



Improve Vectorization

Memory Access Pattern Analysis

* Where should | add vectorization and/or threading parallelism? ©

Elapsed time: 8325 || Vectorized || Not Vectorized FLTER: Al Modules v | Al Sources v

N P e Select loops of interest o

oo at fractalcppe179 in clambda1>z0p .
9 (100

01631
0,00081 0576} Remainder
12,0005 @D Scalar

Run Memory Access Patterns analysis to
checkhow memory is used in the loop
and the called function

The strides of memory accesses can affect vectorization. Determine the patterns
to learn which loops may be difficult to vectorize.



Memory Analysis Is Critical

Determine Possible Bandwidth or Latency Issues

m Small enough Big enough
. Wie | OpmendTyve Opewed Ser | Aggegeed ot
] 2 » bod

an "
Access crea - 18
ttern Gnon " n ES
i [=[8]- 5] " R a
Unit Stride Effective SIMD Effective SIMD
No Latency and BW  Bandwidth bottleneck
bottlenecks
Const stride
Irregular Bad SIMD Bad SIMD 2
Access, Latency bottlenec
Gather/Scatter Py eide | Opuend o Msesug Verrer eccel
e st
% 0TI - BZTete o
st DS BUND o
s . AT =
ux v a




AVX-512 Specifics for KNL

-t

s won

. Native AVX-512 profiling on KNL
Precise FLOPs and Mask Utilization profiler
AVX-512 Advice and Traits

AVX-512 Gather/Scatter Profiler

2.19x

Vectonzabon Gain

~55%

Veectonization Efficiency

AVX512ER_512; 1.28s
AVX512F_512

= Memory 3% (48)
* Campute 38% (72)
- ther  38%(70)

Traits™
2:Source Paeruaes
Dnisons
Fua
Gamers
[P——

Recipeocal CPupLS12ER)

Scamen®™
Sauare Roots

&) Program metries
Elapsed Time: 17,148
Nector Istruction Set AVIL AVXSTZ
@ Loop mevics
Total 93 e
Tim 16 vectened g
Tam s code.
%) Vectorization Gain/Efficiency
Vectenzed Loegs G Hhcney
Brogrem Thacestical Gon

1ot
am
2

e
Y

Pamiber of CPU Thvaads 1

[
N .

[ Vectorized Loops
Mask Utiization | Vect

100,0% EEE——

015D

168 FMA Mask Manipulstions
Appr. Reciprocals{AVX-5126R); Expone...

sosnemmmmm Avxs12 [CHIBRINN] 1441

3 Instruction Set Analysis

Efficiency | Gain Estim...| VL (... | Traits

FMA

FMA; Square Roots: Type Conversions

FMA
FMA

54



Vectorization Advisor on KNL AVX-512

See the Intel Advisor tutorials and documentation to learn how
to analyze your KNL application.

© Program metrics
Elapsed Time: 142.79s
Vector Set: AVX, AVX2, AVX512, SSE, SSE2 Number of CPU Threads: 4

® Loop metrics

Total CPU time 454085 [ 1000
Time in 88 vectonized loops. 41865 W92%

55



Good Luck!
For more information:

VTune Amplifier XE Videos, Forums, and Resources:
http://software.intel.com/en-us/intel-vtune-amplifier-xe/#pid-3659-760/

Intel® 64 and IA-32 Architecture Software Developer’'s Manuals:
http://www.intel.com/products/processor/manuals/index.htm

VTune Amplifier XE Tuning Guides for Other microarchitectures:
http://software.intel.com/en-us/articles/processor-
specific-performance-analysis-papers

56



Legal Disclaimer

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL‘ PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S
TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAI
EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING
IgOFéTE:%SRFgRTA PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL
IGH

UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY APPLICATION IN
WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.

Intel may make man§§s 10 specifications and product descriptions at any time, without notice. Designers must notrely on the absence or

characteristics of any Teatures or instructions marked “reserved” or “undefined." Intel reserves these for future definition and shall have no

resﬁonslblllty whatsoever for conflicts or incompatibilities arising from future changes tothem. The information here is subject to change
ithout notice. Do not finalize a design with this information

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from
published specifications. Current characterized errata are avallable on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

ogles of documents which have an order number and are referenced in this document or other Intel literature may be obtained by calling 1-
800-548-4725 or by visiting Intel's website.

Intel® Hg}er Tmeadmg Te(nnclogy requires a computer system with a pracessov supporting HT Technology and an HT Technology-enabled
cmr e will va he specific hardware and software you use. For more information
including detalls on which pro:essnrs support HT Technology, see hwe

Intel® Virtualization Technology requires a computer system with an enabled Intel® processor, BIOS, virtual machine monitor (VMM) and, for
some uses, certain computer system software enabled for it. Functionality, performance or other benefits will vary depending on hardware and
software connFuranons and may require a BIOS update. Software applications may not be compatible with all operating systems. Please check
with your application vendor.

64-bit computing on Intel architecture requires a computer system with a processor, chIpSEl BIOS, operanng system device drivers and
applications enabled for intel® 64 architecture. Performance will vary on you Consult with
your system vendor for more information.

“Intel® Turbo Boost Technology requires a PC with a processor with Intel Turbo Boost Technology capabilit g Intel Turbo Boost Technology
performance varies depending on hardware, software and overall system configuration. Check with your PC manufacturer on whether your
system delivers Intel Turbo Boost Technology. For more information, see http.//www. intel.com/technol 1 o

intel, the Intel logo, Xeon, Xeon Inside, VTune, inTru, and Core are trademarks or regi of Intel G or its subsidiaries
in the United States and other countries.

*Other names and brands are the property of their respective owners.

Copyright © 2014, Intel Corporation

57



Optimization Notice

Intel's compilers may or may not optimize to the same degree for
non-Intel microprocessors for optimizations that are not unique
to Intel microprocessors. These optimizations include SSE2,
SSE3, and SSSE3 instruction sets and other optimizations. Intel
does not guarantee the availability, functionality, or effectiveness
of any optimization on microprocessors not manufactured by
Intel. Microprocessor-dependent optimizations in this product
are intended for use with Intel microprocessors. Certain
optimizations not specific to Intel microarchitecture are reserved
for Intel microprocessors. Please refer to the applicable product
User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.

Notice revision #20110804

58






