
1

2

3

4

5

KNL is a highly-parallel architecture with large vector units. To get the most
performance out of this platform, it is imperative to take advantage of these
strengths.

6

7

Most screenshots in this presentation were taken from Intel® VTune™ Amplifier
XE 2016 Update 4. This is the first public version with KNL support.
Screenshots from different versions of the tool may have minor differences.

8

Results will be created in a directory named r###ah, r###ge, or r###macc

Results can be viewed from the command-line or GUI on the KNL machine, but it
is generally more efficient to copy results to another machine with the GUI
installed for analysis.

It is also recommended to add the –no-auto-finalize flag to collections that will be
creating large results. The finalization step is compute intensive and runs serially
which may take a long time on the KNL. Finalization can be done on another
machine after copying the results off of the KNL.

The data collected may be very large for longer runs with many threads active. If
you find that you are reaching the data limit, use the flag -data-limit=<integer>.
The default limit is 500MB. The integer specifies the size in MB. Use 0 for no limit.

9

10

The Advanced Hotspots Analysis will show where your application is spending its
time, including information related to OpenMP parallelism. Ensure that the
OpenMP runtime library used in the application (e.g. libiomp5.so) is available on
the system doing the analysis. This is required to accurately analyze OpenMP
overhead.

11

Use the Bottom-up view to see time spent at various granularities; for example
Function or Module granularities. This can be changed in the Grouping drop-down
menu. Focus tuning efforts on the hot portions of your application.

12

To get the best performance from KNL, it is important to have highly threaded
parallel applications. The CPU Usage Histogram in the Summary shows how much
time was spent with various numbers of logical cores active. As a general
guideline, the vast majority of time should be spent with more than 50% of all
available logical cores active. Because each KNL core has 4 HyperThreads, it isn’t
always beneficial to have all logical cores active if the bottleneck is the execution
core, which is shared between HyperThreads. If memory accesses are the
bottlenecks, more threads may alleviate the problem.

Memory Bandwidth may not be helped by more threads, but Memory Latency can.

To identify memory latency as the issue look at L2 misses. If L2 misses are high
and bandwidth is high, bandwidth may be the bottleneck. If L2 misses are high,
but bandwidth is low, latency may be the issue, and more threads may help.

13

KNL supports 512 bit vector instructions. To optimize for KNL, an application
should take advantage of these large vector units with heavily vectorized code.
Look at the metric VPU Utilization to determine the areas of high and low
vectorization in your application.

14

The VPU Utilization metric is also available in the Bottom-up view of the General
Exploration viewpoint. Locate hotspots with low VPU Utilization and try to improve
their usage of the AVX512 capabilities.

15

For this processor, the CPU_CLK_UNHALTED.THREAD counter measures unhalted
clockticks on a per hardware thread basis. The CPU_CLK_UNHALTED.THREAD
counter allows you to see where cycles are being spent on each individual
hardware thread.
There is also a CPU_CLK_UNHALTED.REF counter, which counts unhalted
clockticks per thread, at the reference frequency for the CPU. In other words, the
CPU_CLK_UNHALTED.REF counter should not increase or decrease as a result of
frequency changes due to throttling. This counter can be useful for removing the
variance introduced due to throttling when comparing multiple analyses.

16

17

Formula:
(UOPS_RETIRED.ALL/ (2*CPU_CLK_UNHALTED.THREAD))

Thresholds: Investigate if -
% Retiring < .10

This metric is based on the fact that when operating at peak performance, the
pipeline on this CPU should be able to retire 2 micro-operations per clock cycle (or
“clocktick”). The formula looks at “slots” in the pipeline for each core, and sees if
the slots are filled, and if so, whether they contained a micro-op that retired.

18

Formula:
CPU_CLK_UNHALTED.THREAD/INST_RETIRED.ANY

Threshold:
In the interface, CPI will be highlighted if it is greater than 6. This is a very
general rule based on the fact that many tuned applications should be able to get
below this threshold. However, many applications will naturally have a CPI of
over 6 – it is very dependent on workload and platform. It is best used as a
comparison factor – know your app’s CPI and see if over time it is moving upward
(that is bad) or reducing (good!).

Note that CPI is a ratio! Cycles per instruction. So if the code size changes for a
binary, CPI will change. In general, if CPI reduces as a result of optimizations,
that is good, and if it increases, that is bad. However there are exceptions.
Some code can have a very low CPI but still be inefficient because more
instructions are executed than are needed.

Additionally, CPI can be affected if using Intel® Hyper-threading. In a serial
workload, or a workload with Intel® Hyper-threading disabled the theoretical best
CPI on a hardware thread is 0.5 because the core can allocate and retire 2
instructions per cycle. In a workload with Intel® Hyper-threading enabled which
utilizes all 4 hardware threads effectively, the ideal CPI per-thread would be 2
instead of 0.5. This is because the hardware threads share allocation and

19

retirement resources on the core.

Note: Optimized code (e.g. with AVX512 instructions) may actually increase the
CPI, and increase stall % – but improve the performance. This is because a single
vector instruction will generally take more cycles than a single scalar instruction,
but it also often performs more work. For example, a vector instruction may take
twice as many cycles, but perform the work of four scalar instructions. In that
case, the average CPI will increase, but the application will still be running faster.

CPI is just a general efficiency metric – the real measure of efficiency is work
taking less time.

19

20

For a hotspot that is inefficient, determining the primary bottleneck is the first
step. Optimizing code to fix issues outside the primary bottleneck category may
not boost performance – the biggest boost will come from resolving the biggest
bottleneck. Generally, if Retiring is the primary bottleneck, that is good. See
next slides.

21

Note the way that this methodology allows us to classify what percentage of all
pipeline slots end up in each category, for each cycle and for each core. It is
possible that for a given dataset, there may be a significant percentage of
pipeline slots in multiple categories that merit investigation. Start with the
category with the highest percentage of pipeline slots. Ideally a large percentage
of slots will fall into the “Retiring” category, but even then, it may be possible to
make your code more efficient.

22

23

24

25

26

27

28

29

30

31

32

33

The General Exploration analysis type multiplexes hardware events during
collection, which can result in imprecise results if too few samples are collected.
The GUI will gray out metrics if the reliability is low based on the number of
samples collected. If a metric is grayed out for your area of interest, consider
increasing the runtime of the analysis or allowing multiple runs via the project
properties.

Previous versions of the tool used a MUX Reliability metric for each row, however
this was unable to distinguish between different metrics on the same row.

34

35

36

1. Notes about MCDRAM Hit Rate
1. This rate counts loads and streaming stores, e.g. vmovnt (non-

temporal), but not stores/writebacks
2. If you have streaming stores, your MCDRAM Hit Rate may be lower

than expected because streaming stores are expected to miss MCDRAM
Cache

37

38

Run a Memory Access analysis with MCDRAM configures in flat mode and all
allocations occurring in DDR (not using MCDRAM).
Create a custom grouping in the Memory Access analysis to see functions causing
Medium or High bandwidth utilization. Objects accessed within these functions
may be candidates to move into MCDRAM.

39

40

HPC Performance Characterization provides performance information that is
especially important for High Performance Computing (HPC) applications. This
analysis can be run from the GUI or using the command line flag “–collect hpc-
performance”

41

The CPU Utilization metrics provide another way to determine how busy all of the
cores are during the performance analysis.

42

The Memory Bound metrics provide information about how the application is
utilizing, and possibly bottlenecked by, the memory subsystem. If issues are
exposed here, the Memory Access analysis may provide even more detailed
information.

43

The Floating Point Units (FPU) on KNL are important for getting the best
performance. The HPC Performance Characterization provides an upper bound
estimate of the utilization. This is an upper bound because the events used are
not able to account for masking, and the metric assumes all vector lanes are used
in each instruction.

44

45

46

Use this 5 step process to determine how well you are vectorizing and where you
can improve.
Intel® Advisor is available at: https://software.intel.com/en-us/intel-advisor-xe

47

48

49

Analyze the hot loops for the common issues that can impact vectorization.
Use the Memory Access Patterns Analysis and Recommendations to identify
problematic behaviors and ways to correct them.

50

Data dependencies between loop iterations make it difficult for the compiler to
vectorize a loop. For example:

for (i = 1; i < N; i++) {
A[i] = A[i-1] + C[i];

}

Each iteration is dependent on the value calculated in the previous iteration. Use
Advisor to detect these dependencies.

51

The strides of memory accesses can affect vectorization. Determine the patterns
to learn which loops may be difficult to vectorize.

52

53

54

55

56

57

58

59

