
Intel® Software Guard Extensions (Intel® SGX)

Developer Guide

Intel(R) Software Guard Extensions Developer Guide

- 2 -

Legal Information
No license (express or implied, by estoppel or otherwise) to any intellectual
property rights is granted by this document.

Intel disclaims all express and implied warranties, including without limitation,
the implied warranties of merchantability, fitness for a particular purpose, and
non-infringement, as well as any warranty arising from course of performance,
course of dealing, or usage in trade.

This document contains information on products, services and/or processes in
development. All information provided here is subject to change without
notice. Contact your Intel representative to obtain the latest forecast, sched-
ule, specifications and roadmaps.

The products and services described may contain defects or errors known as
errata which may cause deviations from published specifications. Current char-
acterized errata are available on request.

Intel technologies features and benefits depend on system configuration and
may require enabled hardware, software or service activation. Learn more at
Intel.com, or from the OEM or retailer.

Copies of documents which have an order number and are referenced in this
document may be obtained by calling 1-800-548-4725 or by visiting www.in-
tel.com/design/literature.htm.

Intel, the Intel logo, Xeon, and Xeon Phi are trademarks of Intel Corporation in
the U.S. and/or other countries.

Optimization Notice
Intel's compilers may or may not optimize to the same degree for non-Intel
microprocessors for optimizations that are not unique to Intel micro-
processors. These optimizations include SSE2, SSE3, and SSSE3 instruction
sets and other optimizations. Intel does not guarantee the availability, func-
tionality, or effectiveness of any optimization on microprocessors not man-
ufactured by Intel. Microprocessor-dependent optimizations in this product
are intended for use with Intel microprocessors. Certain optimizations not spe-
cific to Intel microarchitecture are reserved for Intel microprocessors. Please
refer to the applicable product User and Reference Guides for more inform-
ation regarding the specific instruction sets covered by this notice.

Notice revision #20110804

* Other names and brands may be claimed as the property of others.

http://www.intel.com/design/literature.htm

Intel(R) Software Guard Extensions Developer Guide

- 3 -

Copyright 2014-2020 Intel Corporation.

This software and the related documents are Intel copyrighted materials, and
your use of them is governed by the express license under which they were
provided to you (License). Unless the License provides otherwise, you may not
use, modify, copy, publish, distribute, disclose or transmit this software or the
related documents without Intel's prior written permission.

This software and the related documents are provided as is, with no express
or implied warranties, other than those that are expressly stated in the
License.

Intel(R) Software Guard Extensions Developer Guide

- 4 -

Revision History
Revision Number Description Revision Date

2.1 Intel® SGX Win 2.1 release August 2018

2.2 Intel® SGX Win 2.2 release November 2018

2.2.3 Intel® SGX Win 2.2.3 release February 2019

2.3 Intel® SGX Win 2.3 release March 2019

2.4 Intel® SGX Win 2.4 release June 2019

2.5 Intel® SGX Win 2.5 release October 2019

2.5.1 Intel® SGX Win 2.5.1 release November 2019

2.6 Intel® SGX Win 2.6 release January 2020

2.7 Intel® SGX Win 2.7 release March 2020

Intel(R) Software Guard Extensions Developer Guide

- 5 -

Introduction
The Intel® Software Guard Extensions (Intel® SGX) Developer Guide provides
guidance on how to develop robust application enclaves based on Intel SGX
technology. This guide does not provide an introduction to the Intel SGX tech-
nology and it is not a secure coding guideline. This guide assumes that after
assessing the benefits, costs and restrictions of developing with Intel SGX, you
have decided to use this technology and now want to learn how to properly
use it to develop sound application enclaves. With your knowledge of the
Intel® SGX technology (see Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3D) and experience on secure coding principles
and practices, this guide will help you to develop your own application
enclaves.

This document provides examples of many programming constructs and prin-
ciples based on a hypothetical generic run-time system. The elements of this
run-time system include the following:

 l Untrusted Run-Time System (uRTS) – code that executes outside of the
Intel SGX enclave environment and performs functions such as:

 l Loading and managing an enclave.

 l Making calls to an enclave and receiving calls from within an
enclave.

 l Trusted Run-Time System (tRTS) – code that executes within an Intel
SGX enclave environment and performs functions such as:

 l Receiving calls into the enclave and making calls outside of an
enclave.

 l Managing the enclave itself.

 l Standard C/C++ libraries and run-time environment.

 l Edge Routines – functions that may run outside the enclave (untrusted
edge routines) or inside the enclave (trusted edge routines) and serve to
bind a call from the application with a function inside the enclave or a
call from the enclave with a function in the application.

 l 3rd Party Libraries – for the purpose of this document, this is any library
that has been tailored to work inside the Intel SGX enclave environment.

See the following Table Terminology for a definition of terms.

Terminology

https://software.intel.com/en-us/articles/intel-sdm

Intel(R) Software Guard Extensions Developer Guide

- 6 -

Term Definition
ECall “Enclave Call” a call made into an interface function within the enclave

OCall “Out Call” a call made from within the enclave to the outside application

Trusted Refers to any code or construct that runs inside an enclave in a “trusted” envir-
onment

Trusted
Thread Con-
text

The context for a thread running inside the enclave. This is com-
posed of:

 l Thread Control Structure (TCS)

 l Thread Data/Thread Local Storage – data within the enclave
and specific to the thread

 l State Save Area (SSA) – a data buffer which holds register
state when an enclave must exit due to an interrupt or excep-
tion

 l Stack – a stack located within the enclave

Untrusted Refers to any code or construct that runs in the applications “untrusted” envir-
onment (outside of the enclave)

Intel(R) Software Guard Extensions Developer Guide

- 7 -

Enclave Programming Model
Intel® Software Guard Extensions (Intel® SGX) software, including an Intel SGX
run time system, can be developed using standard tools and development
environments. While the programming paradigm is very similar to con-
ventional software, there are some differences in how the Intel SGX software is
designed, developed and debugged to take advantage of the Intel SGX tech-
nology.

In this section, we compare the programming model available for developing
enclaves and the programming model Independent Software Vendors (ISVs)
are familiar with as the result of developing traditional applications for
Android*, Linux*, OS X*, and Windows* operating systems. There are certain
similarities that lower the barrier of entry to developers willing to adopt the
Intel SGX technology. However, enclave writers must also be aware of the dif-
ferences in how Intel SGX software is designed, developed and debugged to
create robust enclaves. Features unique to Intel SGX such as attestation, pro-
visioning and sealing are described in other sections of this document.

Enclave writers that understand the technology as well as the programming
model it entails will extract the most benefit from Intel SGX. Developers must
observe the following principles to develop application enclaves correctly. Fail-
ing to do so could result in a security vulnerability that could be exploited
later on.

 l An enclave is a monolithic software entity that reduces the Trusted Com-
puting Base (TCB) for an application to a trusted runtime system, ISV
code and 3rd party trusted libraries. A bug in one component may com-
promise the security properties of the enclave.

 l The untrusted domain controls the order in which the enclave interface
functions are invoked.

 l When calling into an enclave, it is the untrusted domain who selects the
Trusted Thread Context to be used within the enclave.

 l There is no guarantee that the input parameters of a call into an enclave
(ECall) or the return parameters from a call outside an enclave (OCall) will
be what the enclave expects because the untrusted domain supplies
them.

 l The untrusted function invoked during an OCall may not perform the
operations expected by the enclave.

Intel(R) Software Guard Extensions Developer Guide

- 8 -

 l Anyone may load an enclave. Furthermore, an attacker may load an
enclave with a program specifically developed to expose vulnerabilities
in that enclave.

Enclave File Format

At a high-level, the Intel® SGX supporting software offers a programming
model similar to what ISVs are used to from developing regular Android*,
Linux*, macOS*, and Windows* applications, which is exposed through a DLL
on Windows* OS, a Dynamic Library on macOS, and a Shared Object on Linux*
OS and Android* OS.

A regular DLL, Dynamic Library, or Shared Object file typically contains code
and data sections corresponding to the functions and/or methods as well as
the variables and/or objects implemented in the shared library. The operating
system allocates a heap when the process that uses the shared library is
loaded and a stack for each thread spawned within the process. Similarly, an
enclave library file contains trusted code and data sections that will be loaded
into protected memory Enclave Page Cache (EPC) when the enclave is cre-
ated. In an enclave file, there is also an Intel SGX specific data structure, the
enclave metadata. The metadata is not loaded into EPC. Instead, it is used by
the untrusted loader to determine how to properly load the enclave in EPC.
The metadata defines a number of trusted thread contexts, which includes
the trusted stack, and a trusted heap initialized by the trusted runtime system
at enclave initialization. Trusted thread contexts and trusted heap are
required to support a trusted execution environment. The metadata also con-
tains the enclave signature structure, which is a vital certificate of authenticity
and origin of an enclave.

Even though an enclave can be delivered as a shared library file, defining what
code and data is placed inside the enclave and what remains outside in the
untrusted application is a key aspect of enclave development.

Enclaves, regardless on the number of trusted threads defined, must not be
designed with the assumption that the untrusted application will invoke the
ISV interface functions following a specific order. Once the enclave is ini-
tialized, an attacker may invoke any ISV interface function, arrange the calls in
any order and provide any input parameters. Keep these ploys in mind to pre-
vent opening an enclave up to attacks.

Enclave Trusted Computing Base (TCB)

Intel SGX Application

Intel(R) Software Guard Extensions Developer Guide

- 9 -

The first step in designing an Intel SGX enabled application is to identify the
assets it needs to protect, the data structures where the assets are contained,
and the set of code that operates on those data structures and then place
them into a separate trusted library. Since the ISV knows the application best,
the ISV should conduct a security analysis of the application and properly par-
tition it making the decision about what code and data is placed in the
enclave.

The code in an enclave is no different than code that exists as part of a regular
application. However, enclave code is loaded in a special way such that once
the enclave has been initialized, privileged code and the rest of the untrusted
application cannot directly read data that resides in the protected envir-
onment, or change the behavior of the code within the enclave without detec-
tion. For this reason, even though identifying the secret processing
components and the resources they use is an important step in any secure
software development process, for using Intel SGX it is an essential activity.

Partitioning an application into trusted and untrusted components has addi-
tional implications from a security standpoint. It is generally accepted that a
smaller memory footprint (smaller code and data) usually implies a lower
chance of having defects in the final software product. It also implies simpler
security analysis and safer software as a smaller attack surface can be exposed.
Therefore, while it may be possible to move the majority of application code
into an enclave, in most cases this would not be desirable. The TCB size should
be a factor to consider when designing what goes inside an enclave. ISVs
should attempt to minimize the enclave size, even though the Intel SGX archi-
tecture protects the enclave contents when the OS, VMM, or BIOS are com-
promised. The first generation of the Intel SGX architecture requires that all
the functionality inside an enclave is statically linked in at build-time. This cre-
ates a performance/size trade-off which developers must carefully analyze as
it impacts the TCB size. When using static library functionality, ISVs have two
choices. They could provide a shim layer to call the functionality outside the
enclave, or alternatively include the implementation of the library as part of
the enclave. The first approach adds performance overhead compared to

Intel(R) Software Guard Extensions Developer Guide

- 10 -

normal library function calls. The second method causes an increase of the
TCB size.

Partitioning also plays a key role in preparing an Intel SGX application to man-
age power events, see Section Power Management for additional details. The
smaller the state information stored inside the enclave, the quicker the
enclave will be able to backup this information outside the enclave and to
recover from a power event.

Enclave Interface Functions (ECalls)

After defining the trusted (enclave) and untrusted (application) components
of an Intel SGX enabled application, the developer should carefully define the
interface between untrusted application and enclave. ISV trusted code is
executed in the following scenarios:

 l The untrusted application explicitly makes a call to an enclave interface
function within the enclave, for example the application makes an ECall.
Calling through an ISV interface function is the same as a regular applic-
ation calling into a shared library.

 l After a call made from within the enclave to the outside application
(OCall) returns. Returning from an OCall is similar to what happens when
a call from a shared library to another shared library returns; for instance
after calling the Standard C library to perform an I/O operation. When an
OCall returns, the trusted function that made the call outside the enclave
continues execution.

 l After an interrupts returns, the enclave code is also executed. However,
the Intel SGX architecture ensures that execution within the enclave con-
tinues as if the interrupt never occurred. The same behavior is expected
with interrupts that happen while a shared library function is executing.

An enclave must expose an API for applications to call in (ECalls) and advertise
what services provided by the untrusted domain are needed (OCalls). The
enclave writer defines the ECall and OCall functions that constitute the
enclave boundary interface. Since ECalls expose the interface that an untrus-
ted application may use, you should reduce the enclave attack surface by lim-
iting the number of ECalls. You should also be aware that an enclave has no
control on which ECall is executed, or the order in which ECalls are invoked.
Thus, an enclave cannot depend on ECalls occurring in certain order. On the
other hand, ISV interface functions can be invoked only after the enclave has
been initialized, which means that:

Intel(R) Software Guard Extensions Developer Guide

- 11 -

 l Any necessary address re-basing is performed successfully;

 l Trusted global data, including security-centric data (for example, stack
canary) are initialized successfully;

 l Trusted thread context, including security-centric data (for example,
stack guard pages) of the trusted thread the function is running on is ini-
tialized successfully;

 l The implicit trusted initialization functions (for example, ISV global con-
structors) execute to completion.

As a special case of an ISV interface function, an ISV registered exception hand-
ler can only be invoked on a trusted thread where a supported enclave excep-
tion has happened and after the conditions above are met.

Enclave Inputs

Enclave inputs (and for this matter enclave outputs) can be observed and mod-
ified by untrusted code. The enclave writer must never trust any information
coming from the untrusted domain and must always check ECall input para-
meters as well as OCall return values. When accepting inputs from outside the
enclave, assumptions about the size and type of the values being passed in
should be checked by the enclave software to assure correct behavior. After
identifying the source and/or destination (remote entity, users, etc.) you
should decide whether applying integrity protection and/or encryption with
anti-replay and liveness protection checks are necessary to safeguard the
information that at some point is exposed to the untrusted domain.

When an ISV interface function is invoked:

 l The function arguments and any marshaled data of the pass-by-ref-
erence parameters are inside the trusted environment and not access-
ible to attackers;

 l A read and/or write operation on the arguments, the return value and
the marshaled reference, according to the parameter definitions spe-
cified by the enclave writer, will not compromise the ISV code/data con-
fidentiality and integrity.

 l The argument, return value and the marshaled data are allocated
and managed by the trusted runtime, not overlapping any ISV code
or data.

 l The size of an argument, return value and the marshaled reference
is as specified by the ISV (for example, the buffer size of the

Intel(R) Software Guard Extensions Developer Guide

- 12 -

marshaled data referenced by a pointer parameter is either spe-
cified by a constant, another parameter or a field in the fixed-size
portion of the actual data).

Intel(R) Software Guard Extensions Developer Guide

- 13 -

Inputs Passed by Reference
Input arguments reside inside the enclave when the ISV interface function is
invoked. However, when an input is passed by reference, only the reference
(the pointer address) will be inside the enclave. The value referenced could
be outside and change at any time. For instance, an attacker may change the
value after the enclave code checks the function parameters.

The enclave writer must handle references or pointers with special care. An
application may pass a pointer referencing a memory location within the
enclave boundary, which may cause the enclave to inadvertently overwrite
enclave code or data. Similarly, if the enclave software is not aware that a
pointer references an untrusted location, the enclave may leak secrets. To pre-
vent these issues, the enclave software must determine whether the memory
region (specified by a pointer and size) is inside or outside the enclave linear
range before dereferencing the pointer. Additionally, the enclave must ensure
the data cannot be modified after it is checked. Developers should only pass
through the enclave boundary interface pointers to objects of scope known
inside the enclave. Thus pointers to C data structures are reasonable, but
pointers to C++ objects are not.

Calls outside the Enclave (OCalls)

Enclaves cannot directly access OS-provided services. Instead, an enclave
must do an OCall to an interface routine in the untrusted application. While
calling outside adds a performance overhead, there is no loss of con-
fidentiality. However, communication with the OS requires the release of data
or the import of non-secret data, which needs to be handled properly.

Even though OCalls might be necessary sometimes, they are calls outside the
enclave and therefore have associated some security risks.

 l Enclave operations that require an OCall, such as thread synchronization
and I/O, are exposed to the untrusted domain. An enclave must be
designed in such a way that it prevents leaking side-channel information
that would allow an attacker, who is looking at the untrusted functions
called from an enclave, to gain insight into enclave secrets, see Section
Protection from Side-Channel Attacks for additional information.

 l An enclave must be prepared to handle the scenario where the OCall
function is not performed at all. The return value from an OCall, which is
an enclave input, comes from the untrusted domain and must not be
relied upon. It might appear that an OCall has been successfully

Intel(R) Software Guard Extensions Developer Guide

- 14 -

completed when it has not. For instance, an attacker might drop an
enclave’s request to write sealed data to disk and tell the enclave the file
was written successfully.

 l An enclave cannot depend on nested ECalls occurring in certain order
during an OCall. A developer may limit the ECalls that are allowed during
a given OCall, since the state information (corresponding to the OCall in
progress) can be stored inside the enclave. However, once an enclave
makes an OCall there is no guarantee the untrusted domain will not
recursively call into the enclave, and the enclave has no control over the
order in which nested ECalls occur or the actual ISV interface functions
invoked.

When an ISV function inside the enclave invokes an OCall:

 l The OCall only exposes the OCall function arguments (including the ref-
erenced data) and the return value to the untrusted domain.

 l When the OCall returns, the return value and any marshaled data of the
pass-by-reference output parameters are inside the trusted envir-
onment (thus not accessible to an attacker) and the input-only function
arguments (including the referenced data) are not changed. When the
return value is a pointer, only the reference will be inside the trusted
environment. The enclave software must check the data buffer ref-
erenced by the returned pointer like any other reference passed into
the enclave.

 l When the OCall returns, the trusted thread context is the same as before
the OCall was made, except for the volatile registers and the output data
on the trusted stack.

In certain scenarios, the enclave writer may avoid OCall functions by repar-
titioning the application and passing the information that an OCall is meant to
obtain as an input parameter to an ISV interface function.

Nested ECalls (ECalls during OCalls)

You should be aware that when an OCall is made, it opens the door for nested
ECalls. Once outside the enclave, an attacker trying to find vulnerabilities may
invoke any ISV interface function exposed as an ECall to recursively call into
the enclave. When an OCall is needed, you may reduce the surface attack
blocking ISV interface functions such that nested ECalls are not allowed. For
instance, you may store the state information (corresponding to the OCall in

Intel(R) Software Guard Extensions Developer Guide

- 15 -

progress) inside the enclave. However, an enclave cannot depend on nested
ECalls occurring in certain order during an OCall. Initially, nested ECalls (ECalls
during an OCall) are allowed and only limited by the amount of stack reserved
inside the enclave. However, ISVs should be aware that such constructs com-
plicates the security analysis on the enclave. When the need for nested ECalls
arises, the enclave writer should try to partition the application in a different
manner. If nested ECalls cannot be avoided, the enclave writer should limit the
ISV interface functions that may be called recursively to only those strictly
required.

NOTE:
The ISV interface functions can only be invoked after the enclave has been
initialized. Thus nested ECalls are not allowed during the ISV global con-
structor functions.

Third Party Libraries

Earlier we mentioned that the enclave code must perform a thorough para-
meter checking for all the ISV interface functions; in other words, the enclave
interface functions exposed to the untrusted domain. Such a recommendation
also applies when working with a third party library. If a trusted library con-
tains any function that is exposed, the ISV must confirm that the library pro-
vider also have this interface function check its input parameters exhaustively.
However, if the top-level functions of a trusted library are meant to be called
from inside the enclave only, or the trusted library is an enclavized version of
an open-source implementation, the parameter checking might not be as
strict. When a third party library does not sanitize its input parameters, and it
is unpractical to change the third party code, then the enclave writer could
add a wrapper that performs parameter checking to the API. This addition will
not change the behavior or implementation of the third party library API, but
removes the burden of validating the library again and simplifies future library
updates.

Intel(R) Software Guard Extensions Developer Guide

- 16 -

Enclave Signature Structure
Establishing trust in software involved three main activities:

 l Measurement: As an enclave is instantiated in a trusted environment, an
accurate and protected recording of its identity is taken.

 l Attestation: Demonstrating to other entities that a particular envir-
onment is instantiated in the correct manner.

 l Sealing: Enabling data belonging to the trusted environment to be
bound to it so that it can be restored only when the trusted environment
is restored.

This section focuses on the first activity, measurement. Attestation and sealing
activities are described in subsequent sections.

Enclaves include a self-signed certificate from the enclave author, also known
as the Enclave Signature Structure (SIGSTRUCT). The enclave signature struc-
ture contains information that allows the Intel® SGX architecture to detect
whether any portion of the enclave file has been tampered with. This allows an
enclave to prove that it has been loaded in EPC correctly and it can be trus-
ted. However, the hardware only verifies the enclave measurement when an
enclave is loaded. This means that anyone can modify an enclave and sign it
with his/her own key. To prevent this type of attack, the enclave signature
structure also identifies the enclave author. The enclave signature structure
contains several important fields that are essential for an enclave ability to
attest to outside entities:

 l Enclave Measurement – A single 256-bit hash that identifies the code
and initial data to be placed inside the enclave, the expected order and
position in which they are to be placed, and the security properties of
those pages. A change in any of these variables will result in a different
measurement. When the enclave code/data pages are placed inside the
EPC, the CPU calculates the enclave measurement and stores this value
in the MRENCLAVE register. Then the CPU compares the content of
MRENCLAVE against the enclave measurement value in SIGSTRUCT.
Only if they match with each other, the CPU will allow the enclave to be
initialized.

 l The Enclave Author’s Public Key – After an enclave is successfully ini-
tialized, the CPU records a hash of the enclave author’s public key in the
MRSIGNER register. The contents of MRSIGNER will serve as the identity

Intel(R) Software Guard Extensions Developer Guide

- 17 -

of the enclave author. The result is that those enclaves which have been
authenticated with the same key shall have the same value placed in the
MRSIGNER register.

 l The Security Version Number of the Enclave (ISVSVN) – The enclave
author assigns a Security Version Number (SVN) to each version of an
enclave. The SVN reflects the level of the security property of the
enclave, and should monotonically increase with improvements of the
security property. After an enclave is successfully initialized, the CPU
records the SVN, which can be used during attestation. Different ver-
sions of an enclave with the same security property should be assigned
with the same SVN. For example, a new version of an enclave with non-
security-related bug fixes should have the same SVN as the older ver-
sion.

 l The Product ID of the Enclave (ISVPRODID) – The enclave author also
assigns a Product ID to each enclave. The Product ID allows the enclave
author to segment enclaves with the same enclave author identity. After
an enclave is successfully initialized, the Product ID is recorded by the
CPU, which can be used during attestation.

An enclave developer must provide the Security Version and Product ID of an
enclave, as well as a signing key pair to generate the enclave signature struc-
ture. The CPU derives the identity of the enclave author from the public key
whereas the private key is used to sign the enclave. The enclave measurement
calculation must be performed based on the code and initial data to be
placed inside the enclave, the expected order and position in which they are
to be placed and the security properties of those pages. The code and initial
data to be placed inside the enclave as well as the security properties of those
pages are generated by the compiler, while their placement into the enclave
is controlled by the enclave loader. Thus, the measurement calculation must
follow the expected behavior of the enclave loader with regard to the manner
of placing enclave code and initial data in the enclave.

Safeguarding the Enclave Signing Key

The enclave signing key is part of the enclave identity and it is critical to pro-
tect its secrets. An attacker who compromises the private signing key of an ISV
might be able to:

 l Write a malicious enclave that successfully attests to the identity of legit-
imate enclaves, and/or

Intel(R) Software Guard Extensions Developer Guide

- 18 -

 l Write malware which uses the malicious enclave to compromise sealed
data on individual platforms.

Proper key management practice should be employed to safeguard the
private signing key, for example:

 l Maintain minimum access to the private signing key.

 l Use another enclave or a Hardware Security Module (HSM) to store the
private signing key and perform enclave signing.

 l Separate test signing from release signing using separate key pairs.

The SDK includes a tool for signing enclaves, called sgx_sign, that takes an
enclave file and adds the enclave signature structure as required by the Intel®
SGX architecture. This tool supports single-step test signing using a test sign-
ing private key configured on the local system, and two-step release signing
that involves a signing facility/platform, where the release signing private key
is protected. sgx_sign can also generate whitelisting materials from a signed
enclave file.

Maintaining the Development Platform Clean

The ISV must maintain the development environment free from malware and
other potential threads at all times. If the development platform is ever com-
promised, you cannot continue using the Intel SGX support software since it
could be used to compromise the integrity of the enclaves built on that plat-
form. At this point, the ISV must sanitize the platform before development can
proceed.

Intel(R) Software Guard Extensions Developer Guide

- 19 -

Attestation
Attestation is the process of demonstrating that a piece of software has been
established on a platform. In the case of Intel SGX, it is the mechanism by
which a third entity establishes that a software entity is running on an Intel
SGX enabled platform protected within an enclave prior to provisioning that
software with secrets and protected data. Attestation relies on the ability of a
platform to produce a credential that accurately reflects the signature of an
enclave, which includes information on the enclave’s security properties. The
Intel SGX architecture provides the mechanisms to support two forms of
attestation. There is a mechanism for creating a basic assertion between
enclaves running on the same platform, which supports local, or intra-platform
attestation, and then another mechanism that provides the foundation for
attestation between an enclave and a remote third party.

NOTE:
The signing process involved in attestation takes place in such a manner
that the relying party can be assured that it is communicating with a real
hardware enclave and not some software emulation.

Local (Intra-Platform) Attestation

Application developers may wish to write enclaves which can co-operate with
one another to perform some higher-level function. In order to do this,
developers need a mechanism that allows an enclave to prove its identity and
authenticity to another party within the local platform. Intel SGX provides a
trusted hardware based mechanism for doing this. An enclave can ask the hard-
ware to generate a credential, also known as report, which includes cryp-
tographic proof that the enclave exists on the platform. This report can be
given to another enclave who can verify that the enclave report was generated
on the same platform. The authentication mechanism used for intra-platform
enclave attestation uses a symmetric key system where only the enclave veri-
fying the report structure and the enclave hardware creating the report know
the key, which is embedded in the hardware platform.

An enclave report contains the following data:

 l Measurement of the code and data in the enclave.

 l A hash of the public key in the ISV certificate presented at enclave ini-
tialization time.

 l User data.

Intel(R) Software Guard Extensions Developer Guide

- 20 -

 l Other security related state information (not described here).

 l A signature block over the above data, which can be verified by the same
platform that produced the report.

Local Attestation Example

The figure Local Attestation Example shows an example flow of how two
enclaves on the same platform would authenticate each other.

 1. In the figure above, application A hosts enclave A and application B hosts
enclave B. After the untrusted applications A and B have established a
communication path between the two enclaves, enclave B sends its
MRENCLAVE identity to enclave A.

NOTE:
Applications A and B can be the same application.

There are two methods the application can use to retrieve the
MRENCLAVE measurement for the enclave, either:

 l The application B retrieves the MRENCLAVE value from the enclave
certificate for enclave B.

 l Enclave B supports an interface to export this value which is
retrieved by creating a report with a random MRENCLAVE target
measurement.

 2. Enclave A asks the hardware to produce a report structure destined for
enclave B using the MRENCLAVE value it received from enclave B.
Enclave A transmits its report to enclave B via the untrusted application.

 l As part of his report request, enclave A can also pass in a data block
of its choosing referred to as the user data. Inclusion of the user
data in the report provides the fundamental primitive that enables
a trusted channel to terminate in the enclave.

Intel(R) Software Guard Extensions Developer Guide

- 21 -

 3. Once it has received the report from enclave A, enclave B asks the hard-
ware to verify the report to affirm that enclave A is on the same platform
as enclave B. Enclave B can then reciprocate by creating its own report
for enclave A, by using the MRENCLAVE value from the report it just
received. Enclave B transmits its report to enclave A.

 4. Enclave A then verifies the report to affirm that enclave B exists on the
same platform as enclave A.

Remote (Inter-Platform) Attestation

An application that hosts an enclave can also ask the enclave to produce a
report and then pass this report to a platform service to produce a type of cre-
dential that reflects the enclave and platform state. This credential is known as
quote. This quote can then be passed to entities off of the platform, and veri-
fied using Intel® Enhanced Privacy ID (Intel® EPID) signature verification tech-
niques. As a result, the CPU key is never directly exposed outside the platform.

A quote includes the following data:

 l Measurement of the code and data in the enclave.

 l A hash of the public key in the ISV certificate presented at enclave ini-
tialization time.

 l The Product ID and the Security Version Number (SVN) of the enclave.

 l Attributes of the enclave, for example, whether the enclave is running in
debug mode.

 l User data included by the enclave in the data portion of the report struc-
ture. Allows establishing a secure channel bound to the remote attest-
ation process so a remote server may provision secrets to the entity that
has been attested.

 l A signature block over the above data, which is signed by the Intel EPID
group key.

The enclave data contained in the quote (MRENCLAVE, MRSIGNER,
ISVPRODID, ISVSVN, ATTRIBUTES, and so on.) is presented to the remote ser-
vice provider at the end of the attestation process. This is the data the service
provider will compare against to a trusted configuration to decide whether to
render the service to the enclave.

Intel(R) Software Guard Extensions Developer Guide

- 22 -

Intel® Enhanced Privacy ID (Intel® EPID)

Attestation using standard asymmetric cryptographic signature algorithms has
a well-known privacy concern when a small number of keys are used across
the life of the platform. Because the key used for signing the quote needs to
be associated with the hardware performing the quote operation, it allows
third parties to collude and track which sites users have visited. To overcome
this problem, Intel has introduced the use of an anonymous signature tech-
nique, known as Intel® Enhanced Privacy ID (Intel® EPID), for signing enclave
quotes.

Intel EPID is a group signature scheme, which allows platforms to cryp-
tographically sign objects while at the same time preserving the signer’s pri-
vacy. With Intel EPID signature scheme, each signer in a group has their own
private key for signing, but verifiers use the same group public key to verify
individual signatures. Therefore, users cannot be uniquely identified if signing
two transactions with the same party because a verifier cannot detect which
member of the group signed a quote. In the case of Intel SGX, this group is a
collection of Intel SGX enabled platforms.

The Quoting Enclave

An Intel provided enclave known as the Quoting Enclave (QE) verifies the
reports that have been created to its MRENCLAVE measurement value and
then converts and signs them using a device specific asymmetric key, the Intel
EPID key. The output of this process is called a quote, which may be verified
outside the platform. Only the QE has access to the Intel EPID key when the
enclave system is operational. Therefore the quote can be seen to be eman-
ating from the hardware itself but the CPU key is never exposed outside the
platform.

Remote Attestation Process

The following figure shows an example of how an application, which has
broken its processing into two component parts, provides attestation to a chal-
lenging service provider to receive some value added service from them.

Intel(R) Software Guard Extensions Developer Guide

- 23 -

Remote Attestation Example

The figure Remote Attestation Example shows the basic steps involved in
canonical enclave attestation. Included in this diagram is the Quoting Enclave
(QE). The steps in the figure are described below:

 1. When the application needs a service from outside the platform, it first
establishes communication with the service providing system. The ser-
vice provider issues a challenge to the application to demonstrate that it
is indeed running the necessary components of itself inside one or more
enclaves. The challenge itself contains a nonce for liveness purposes.

 2. The application requests a report from the application’s enclave and
passes in the nonce from the challenger.

 3. The enclave generates a report structure and returns this structure
along with a manifest to the application.

 a. The manifest contains those values which are included in the user
data portion of the report.

 b. The manifest may include the nonce and an ephemerally gen-
erated public key to be used by the challenger for communicating
secrets back to the enclave.

 4. The report is delivered to the Quoting Enclave for signing.
 a. The Quoting Enclave authenticates the report.
 b. The Quoting Enclave converts the body of the report into a quote

and signs it with the Intel EPID key.
 5. The Quoting Enclave returns the quote structure requested.
 6. The application returns the quote structure and any associated manifest

of supporting data to the service challenger.

Intel(R) Software Guard Extensions Developer Guide

- 24 -

 7. The challenger uses an Intel EPID verification service to verify the Intel
EPID signature over the quote.

 8. The challenger compares the enclave information in the quote against
the trusted configuration and only renders the service to the application
if the enclave information matches the trusted configuration. The chal-
lenger might enforce different trust policies, for example, only trusting a
specific version of an enclave, identified by the measurement of the
code and data in the enclave, or trusting all enclaves with a specific
Product ID from a specific enclave author, identified by the hash of the
public key in the ISV certificate. A trust policy must include enclave
authorship and attributes check. For example, a debug enclave should
never be trusted with any secret.

These steps serve as an example to illustrate one possible way that an enclave
can be attested by a remote entity.

The trusted configuration mentioned in step 8 above is typically provided by
the enclave author to the service provider. The mechanism for the service pro-
vider to acquire the trusted configuration is out of the scope of the remote
attestation. One possible mechanism is that the service provider utilizes exist-
ing PKI infrastructure to verify the identity of the entity that’s providing the
trusted configuration information before accepting the trusted configuration
information.

 Privacy

Intel EPID name based (NB) Quotes only leave the platform encrypted with an
Intel public key.

Malicious use of NB signatures (as unique IDs) can only occur if Service Pro-
viders (SP) collude somehow, for example, by lying about their identify or shar-
ing private keys.

 l License agreement between the SP and the Attestation Service will pro-
hibit collusion, under penalty of the Attestation Service revoking an
offending SP by no longer verifying attestations.

NB quotes are treated as unique identifiers; NB Quotes only being meaningful
to a single Service Provider is not enough to waive this. Therefore, user opt-in
is still required before transmitting them.

Intel(R) Software Guard Extensions Developer Guide

- 25 -

 l License agreement between the SP and the Attestation Service will
require the Intel® SGX application that communicates with the SP to be
responsible for getting the user opt-in under penalty of the Attestation
Service revoking an offending SP/application by no longer verifying
attestations.

 l Opt-in needs to be “above and beyond” EULA acceptance.

Distinguishing between Running Enclave Instances

Intel SGX does not provide a direct mechanism (for example, through the auto-
matically generated REPORT fields) to distinguish between two (or more) run-
ning instances of an enclave. Two running instances of an enclave cannot be
distinguished by the automatically generated data in their REPORT’s alone. To
do this, you must add a nonce to the protocol you use to establish trust in the
underlying enclave. To establish trust in the underlying enclave, use the
RDRAND functionality of the hardware and ensure this is submitted (directly
or indirectly through a cryptographic hash) as part of the userdata field
included in the REPORTs exchanged between enclaves. For more information
of the RDRAND functionality, see Random Number Generation.

Intel(R) Software Guard Extensions Developer Guide

- 26 -

Secret Provisioning
A remote entity may provision some secrets to an enclave after remote attest-
ation has been accomplished. Typically, secret provisioning is conducted
through a secure channel. The secure channel establishment must be bound
to the remote attestation process. Otherwise, the remote server might pro-
vision the secret to an entity other than the enclave that has been attested.

Step 3.b in the attestation flow referenced the ability to include a public key
to facilitate the creation of a trusted channel. To accomplish this, in step 3 the
enclave may wish to authenticate the server first, to ensure that it is about to
receive a secret from a trusted entity. A known good root certificate can be
embedded within the enclave code or initialization data for example, allowing
the enclave to validate the server. Once the server has been authenticated,
the enclave can generate an ephemeral public/private key pair and include
the public key in the user data portion of the report.

After the enclave has been validated in step 7 of the attestation flow, the
server can generate an encryption key E, and encrypt it with the enclave’s pub-
lic key P, and send P(E) over the channel to the application. The channel itself
does not need to be protected, because the secret is encrypted.

Once P(E) has been received by the application, it can be passed to the
enclave. Inside the enclave then, it can decrypt P(E) since it possesses the
private key that is associated with this ephemeral public/private key pair, so
now both the challenger and the enclave possess the encryption key E.

Similar to attestation, this is not the only way that a trusted channel can be
established between an enclave and a remote entity to exchange a secret, just
one example.

The verifier of the remote attestation must check the identity of the signer
(MRSIGNER) before provisioning any secrets. The Intel SGX architecture does
not verify the certificate chain when an enclave is instantiated. The hardware
only verifies the enclave measurement (MRENCLAVE) and saves a hash of the
ISV public key in the MRSIGNER field of the enclave signature structure. This
means that anyone can modify an enclave and re-sign it. Similarly, the verifier
must also check the enclave attributes to prevent provisioning any secret to a
debug enclave, for instance.

Once a secure channel has been established, secrets can be provisioned to
the enclave. The challenger can now encrypt a secret S with the key E, and
send E(S) to the application, which in turn passes it to the enclave. The
enclave can now use E to decrypt E(S), and now it possesses S. It would be

Intel(R) Software Guard Extensions Developer Guide

- 27 -

inconvenient, however to require the enclave to connect to the remote entity
for secret provisioning every time the enclave is instantiated. Instead, the
enclave may choose to store the secret in non volatile storage using the seal-
ing techniques discussed in the next section. Even when the secret is sealed
outside the enclave, the secret remains inaccessible to anyone but to the
enclave that sealed it, and only on the platform on which it was sealed.

Secret provisioning is a critical feature enabled by the Intel® SGX technology.
It allows building enclaves that are more robust than current Tamper Resistant
Software (TRS). TRS typically provides security through obscurity, for instance
it obfuscates secrets in the executable in an attempt to keep secrets safe from
unauthorized observation. However, this approach simply makes it time-con-
suming, but not impossible, to extract secrets embedded in a TRS binary. Fur-
thermore, it is a complex technique for developers to use and its practice is
discouraged.

Debug (Opt-in) Enclave Considerations

Data provisioned to a debug enclave is not secret. A debug enclave’s memory
is not protected by the hardware so it may be inspected and modified using
the Intel SGX debugging instructions. The enclave attributes, which include
the debug flag, are contained in the report and quote that provide the enclave
credentials. To protect all secrets provisioned to production enclaves, local
and remote entities must check the enclave attributes and exchange special
debug secrets during the development process but refrain from provisioning
any secret to a debug enclave.

Disposal of Enclave Secrets

Enclave secrets may be safely stored outside the enclave boundary after such
secrets are properly sealed. However, there are certain instances where a
secret, such as the seal key, needs to be disposed of inside the enclave. The
enclave writer must use the memset_s() function to clear any variable that
contained secret data. The use of this function guarantees that the compiler
will not optimize away the write to memory intended by this function call and
thus ensuring the secret data is cleared. Using memset_s() is especially
important when secret data is stored in a dynamically allocated buffer. After
such a buffer is freed it could be reallocated and its previous contents, if they
are not erased, may be leaked outside the enclave.

The implementation of memset_s() is not performance optimized so the use
of memset() is appropriate to initialize buffers and clear buffers that do not
contain secret data.

Intel(R) Software Guard Extensions Developer Guide

- 28 -

Sealing
When an enclave is instantiated it provides (confidentiality and integrity) pro-
tection to the data by keeping it within the boundary of the enclave. Enclave
developers should identify enclave data and/or state that is considered secret
and potentially needs to be preserved across the following events (when the
enclave is destroyed):

 l The application is done with the enclave and closes it.

 l The application itself is closed.

 l The platform is hibernated or shutdown.

In general, the secrets provisioned to an enclave are lost when the enclave is
closed. But if the secret data needs to be preserved during one of these
events for future use within an enclave, then it must be stored outside the
enclave boundary before closing the enclave. In order to protect and preserve
the data, a mechanism is in place which allows enclave software to retrieve a
key unique to that enclave. This key can only be generated by that enclave on
that particular platform. Enclave software uses that key to encrypt data to the
platform or to decrypt data already on the platform. We refer to these encrypt
and decrypt operations as sealing and unsealing, respectively as the data is
cryptographically sealed to the enclave and platform.

Software Sealing Policies

When sealing data, the enclave needs to specify the conditions which need to
be met when the data is to be unsealed. There are two options available.

Seal to the Current Enclave (Enclave Measurement)

Sealing to the current enclave uses the current version of the enclave meas-
urement (MRENCLAVE), taken when the enclave was created, and binds this
value to the key used by the sealing operation. This binding is performed by
the hardware through the EGETKEY instruction.

Only an enclave with the same MRENCLAVE measurement will be able to
unseal the data that was sealed in this manner. If the enclave DLL, Dynamic
Library, or Shared Object file is tampered with, the measurement of the
enclave will change. As a result, the sealing key will change as well, and the
data cannot be recovered.

Intel(R) Software Guard Extensions Developer Guide

- 29 -

Seal to the Enclave Author

Sealing to the enclave author uses the identity of the enclave author, which
the CPU stores in the MRSIGNER register at enclave initialization time, and
binds this value to the key used by the seal data function. This binding is per-
formed by the hardware through the EGETKEY instruction. The key used by
the seal data function is also bound to the Product ID of the enclave. The
Product ID is stored in the CPU when the enclave is instantiated.

Only an enclave with the same value in the MRSIGNER measurement register
and the same Product ID will be able to unseal data that was sealed in this
manner.

The benefit of offering this mechanism over sealing to the enclave identity is
two-fold. First, it allows for an enclave to be upgraded by the enclave author,
but does not require a complex upgrade process to unlock data sealed to the
previous version of the enclave (which will have a different MRENCLAVE meas-
urement) and reseal it to the new version. Second, it allows enclaves from the
same author to share sealed data.

Enclave authors have the opportunity to set a Security Version Number (SVN)
when they produce the enclave. This security version number is also stored in
the CPU when the enclave is instantiated. An enclave has to supply an SVN in
its request to obtain the seal key from the CPU. The enclave cannot specify a
version beyond the SVN used when the enclave was created (ISVSVN). This
would give the enclave access to a seal key to which it is not entitled.
However, the enclave may specify an SVN previous to the enclave’s ISVSVN.
This option gives an enclave the ability to unseal data sealed by a previous ver-
sion of the enclave, which would facilitate enclave software updates, for
instance.

Sealing and Unsealing Process

The high level process for sealing data within an enclave is as follows:

 1. Allocate memory within the enclave for the encrypted data and the
sealed data structure which includes the payload consisting of both the
data to encrypt and the Additional Authentication Data (AAD). AAD refers
to the additional data/text that will be part of the MAC calculation but
will not be encrypted (for example, it will remain plain text/data in the
seal data structure). The AAD may include information about the applic-
ation enclave, version, data, and so on.

Intel(R) Software Guard Extensions Developer Guide

- 30 -

 2. Call the seal data API to perform the sealing operation. An example seal
operation algorithm is:

 a. Verify the input parameters are valid. For instance, if a pointer to a
sealed data structure is passed as a parameter, the buffer it points
to must be inside the enclave.

 b. Instantiate and populate a key request structure used in the
EGETKEY operation to obtain a seal key:

 i. Call EREPORT to obtain the ISV and TCB Security Version
Numbers, which will be used in the key derivation.

 ii. Key Name: Identifies the key required, which in this case is
the seal key.

 iii. Key Policy: Identifies the inputs required to be used in the
key derivation. Use MRSIGNER to seal to the enclave’s author
or MRENCLAVE to seal to the current enclave (enclave meas-
urement). Reserved bits must be cleared.

 iv. Key ID: Call RDRAND to obtain a random number for key
wear-out protection.

 v. Attribute Mask: Bitmask indicating which attributes the seal
key should be bound to. The recommendation is to set all the
attribute flags, except Mode 64 bit, Provision Key and Launch
key, and none of the XFRM attributes.

 c. Call EGETKEY with the key request structure from the previous
step to obtain the seal key.

 d. Call the encryption algorithm to perform the seal operation with
the seal key. It is recommended to utilize a function that performs
AES-GCM* encryption/decryption, such as the Rijndael128GCM,
which is available in the Intel® Integrated Performance Primitives
Cryptography library.

 e. Delete the seal key from memory to prevent accidental leaks.
 3. Save the seal data structure (including the key request structure) to

external memory for future use within an enclave. The key request struc-
ture will be used in future enclave instantiation(s) to obtain the seal key
required for the decryption process.

The high level process for unsealing data within an enclave is as follows:

Intel(R) Software Guard Extensions Developer Guide

- 31 -

 1. Allocate memory for the decrypted data.
 2. Call the unseal data API to perform the unsealing operation. An example

unseal operation algorithm is:
 a. Verify the input parameters are valid.
 b. Retrieve the key request structure used in conjunction with the

seal data structure.
 c. Call EGETKEY with the key request structure to obtain the seal key.
 d. Call the decryption algorithm to perform the unseal operation with

the seal key.
 e. Delete the seal key from memory to prevent accidental leaks.
 f. Confirm that the hash tag generated by the decryption algorithm

matches the tag generated during encryption.

Distinguishing between Enclave Instances

Enclave writers should be aware that even though two running instances of
the same enclave can be distinguished at the time they attest, there is no
Intel® SGX mechanism to prevent one enclave instance from having access to
the sealed data of another enclave when both enclaves use the EGETKEY
instruction. Both instances will return the same key value for the enclave – this
is a basic premise for keeping data secret across power cycles. This is also true
when the same enclave is executing in different virtual machines.

In order to provide SEAL key separation between enclave instances, including
those executing in a virtualized environments (e.g. datacenter or cloud), Intel
recommends that enclave writers use the KEYID field of the KEYREQUEST
structure passed into the EGETKEY instruction to pass an enclave instance spe-
cific nonce. This will provide a different key even when the same enclave is in
a different virtual machine.

Should you need to keep separate TCB’s over different instances, it is recom-
mended that the enclave writer assign a different identity to the enclave
through the enclave signature mechanism.

For more information about differentiating between enclave instances and the
attestation mechanism, see Distinguishing between Running Enclave
Instances.

Data Migration across Platforms

Before the Intel SGX technology, the hardware platform was never part of the
TCB for encrypting user data. This allowed the user to easily migrate their

Intel(R) Software Guard Extensions Developer Guide

- 32 -

data, even if it was encrypted, from one platform to another. Now the CPU is
used to help determine the enclave’s sealing key. Therefore, migrating a user’s
data from one platform to the next now requires careful planning.

If an application is moved from an old Intel SGX system to a new Intel SGX sys-
tem (platform upgrade) or from one processor to another (CPU replacement
in a system or load balancing in a cloud environment) the enclave will not be
able to unseal the data in the new platform. Data migration typically requires a
back-end server that verifies the identity of the enclave on the old system and
the enclave on the new system, and facilitates the key exchange between the
two systems to share the data. Regardless of the specific method that an ISV
uses to migrate data, the seal key should not be shared outside an enclave
because it could compromise all data previously sealed by the enclave.

Debug (Opt-in) Enclave Considerations

The Intel SGX architecture includes the debug flag, as well as other enclave
attributes specified by the developer in the key request structure, in the seal
key derivation. Two identical enclaves launched in debug and non-debug
mode respectively, will get different seal keys. This mechanism protects the
data sealed by a production enclave, since it cannot be unsealed by a debug
enclave.

Intel(R) Software Guard Extensions Developer Guide

- 33 -

Processor Features
Aside from a few exceptions (described in Illegal Instructions within an
Enclave), code executing within an enclave can execute most of the instruc-
tions available to software executing at Ring 3. This includes cryptographic
acceleration instructions such as the Intel® Advanced Encryption Standard
New Instructions (Intel® AES-NI) Set and the facility to generate trustworthy
random values, rooted in the hardware.

Hardware Features

Functionality wise, hardware features can be assured using the enclave attrib-
utes. An enclave will fail at initialization if the platform does not support the
requested attributes. However, some implementations may not support the
same processor features. Software should consider that certain attribute may
not be supported in all implementations before using these features inside
the enclave.

Running an Enclave with Validated Features

An enclave writer typically depends on the compiler and libraries to utilize the
appropriate Extended CPU feature instructions. This means that he/she does
not know whether the generated enclave code utilizes any specific Extended
CPU feature. The untrusted loader follows a conservative approach and
attempts to enable all the Extended CPU Features available on the platform
(supported by the CPU and enabled by the OS). However, an advanced
enclave writer can override the default settings.

The Enclave Signature Structure (SIGSTRUCT) contains an ATTRIBUTES and
ATTRIBUTEMASK fields. The entire ATTRIBUTES field, which includes the X-
Features Request Mask (Extended CPU features mask or XFRM) subfield, is
integral part of an enclave’s identity (for example, its value is included in the
reports generated by the Intel SGX platform, and arbitrary bits from this field
can be included in key-derivation requests for keys). Together, the
ATTRIBUTES and ATTRIBUTEMASK dictate what Extended CPU features must
be enabled on the platform before the Intel SGX architecture initializes an
enclave.

If a bit in SIGSTRUCT.ATTRIBUTEMASK is set to 1, the untrusted loader will
have the corresponding enclave ATTRIBUTES and SIGSTRUCT.ATTRIBUTES
bits match each other. This means that the corresponding X-Feature will be
enabled or disabled based on the SIGSTRUCT.ATTRIBUTES bit and whether
said X-Feature is enabled on the platform. If a specific Extended CPU feature

Intel(R) Software Guard Extensions Developer Guide

- 34 -

is requested (SIGSTRUCT.ATTRIBUTE is 1) but it is not enabled on the plat-
form the enclave will fail to initialize. On the other hand, the Intel SGX archi-
tecture will disable any Extended CPU feature enabled on the platform that is
not desired (SIGSTRUCT.ATTRIBUTE is 0). When a bit in
SIGSTRUCT.ATTRIBUTEMASK is not set, then the untrusted loader will
attempt to enable the corresponding Extended CPU feature (default settings).

To ensure that an enclave will only run with features that have been validated
and prevent using a configuration that could compromise the enclave’s beha-
vior, set the ATTRIBUTEMASK bits corresponding to the appropriate X fea-
tures to 1, and set the ATTRIBUTES bits to 1 or 0 depending on whether the
specific Extended CPU feature should be enabled or disabled, respectively.
Similarly, to guarantee that an enclave does not run in a future processor with
a feature that is currently undefined the Intel SGX architecture requires set-
ting the reserved ATTRIBUTEMASK bits to 1 and the reserved ATTRIBUTES
bits to 0 (in SIGSTRUCT).

NOTE:
Do not rely on the enclave attributes to safeguard protected data. An
attacker could sign an enclave with different attributes in an attempt to
have the enclave crash and leak some secrets. In this scenario, however, the
enclave will report a different MRSIGNER during attestation. As long as
secrets are not provisioned to an enclave that has not been signed with the
ISV key, a well-designed enclave that crashes because it is run with unex-
pected hardware features will not leak any secrets.

Random Number Generation

A good source of entropy is required to build a high-quality random number
generator. The RDRAND instruction provides access to the hardware imple-
mentation of the underlying Digital Random Number Generator (DRNG).
However, there are some circumstances when the RDRAND instruction may
fail. When this happens, the recommendation is to try again up to ten times.
Software vendors that have an existing Pseudo-Random Number Generator
(PRNG) should use the RDSEED instruction to benefit from the high-quality
entropy source of the Intel® Secure Key, rather than seeding the PRNG with
some value contained in the enclave binary file, since an attacker would have
access to it. Depending on uninitialized memory as a source of entropy to
seed the PRNG is not a recommended either. Intentional references to unini-
tialized memory make the code difficult to understand and analyze and alone
does not guarantee the randomness of the data collected. Additionally,

Intel(R) Software Guard Extensions Developer Guide

- 35 -

debugging tools will warn enclave developers about code where uninitialized
memory is being used. However, tracking down the source of the uninitialized
memory is not straightforward task.

Illegal Instructions within an Enclave

The following is a list of hardware instructions which are illegal within an
enclave and will generate a #UD fault if executed:

 1. Instructions which may VMEXIT if executed inside an enclave. Since it is
not permissible for the VMM to update the enclave, they are not allowed.

CPUID, GETSEC, RDPMC, RDTSC, RDTSCP, SGDT, SIDT, SLDT, STR,
VMCALL, VMFUNC.

 2. I/O instructions cannot be executed inside an enclave. These instructions
could cause faults which cannot be handled by software.

IN, INS/INSB/INSW/INSD, OUT, OUTS/OUTSB/OUTSW/OUTSD.

 3. Instructions that may require a change in privilege levels.

Far call, Far jump, Far ret, INT n/INTO, IRET, LDS/LES/LFS/LGS/LSS, MOV
to DS/ES/SS/FS/GS, POP DS/ES/SS/FS/GS, SYSCALL, SYSENTER.

Developers should consider these instructions with respect to standard I/O
and system functions, which depend on these HW instructions for their under-
lying implementation. Functions which gather host system attributes, perform
I/O, or require a higher privilege level should be performed outside an
enclave. In some cases, a developer may have access to trusted alternatives
such as trusted time and trusted I/O. This functionality however is not
provided directly by the Intel SGX architecture and it is currently out of the
scope of this document.

CPUID Information

The CPUID instruction is also illegal inside the enclave. Thus software that
retrieves CPUID information must do so outside the enclave. Therefore, this
information cannot be assured from a security viewpoint and should be used
carefully.

An enclave writer may write a custom untrusted function for gathering host
system state, which may include CPUID values, system environment variables,
and additional application attributes. The results from a specific CPUID leaf
could then be preserved inside the enclave (via a specific ECall) to avoid the
overhead associated with performing an OCall to execute the CPUID

Intel(R) Software Guard Extensions Developer Guide

- 36 -

instruction outside an enclave. The key point is that this information is
gathered in the untrusted domain and thus the application enclave should
design and validate for the scenario in which unexpected or inconsistent data
is provided.

One additional consideration is the use of third party libraries which are
dependent on the CPUID instruction and have not been modified for Intel SGX
compatibility. In this case, the ISV must write a custom exception handler to
catch the #UD fault caused by CPUID. In creating the custom exception hand-
ler, the ISV should:

 1. Determine which CPUID leafs are required by the third party library.
 2. Provide an initialization routine to gather the CPUID data needed by the

third party library and cache it inside the enclave.
 3. Write a custom exception handler for a #UD fault on a CPUID instruction

and provide the results for the leaf requested in the failing CPUID instruc-
tion. The exception handler must also advance the Instruction Pointer to
bypass the CPUID instruction. OCalls are not permitted in exception
handlers and thus CPUID data must be obtained during initialization.

Intel(R) Software Guard Extensions Developer Guide

- 37 -

Programming for Performance
The security that is offered by the Intel® SGX architecture does not come for
free in terms of impact of the performance on your application. Generally
speaking Intel will seek to minimize the effect of the security checks and mech-
anisms that are required to support the security model offered by Intel SGX
but some general awareness of where performance can be impacted will
prove a useful tool to those seeking to get the best performance from their
application.

Developers that understand the potential overhead in the areas described in
this section and apply the recommendations made here, can successfully cre-
ate applications that do not experience these addressable performance
issues.

Enclave Creation

Enclave creation is the first area to consider. As the following discussion makes
clear, enclave size greatly affects the time it takes to create an enclave
because enclave measurement occurs to ensure the code loaded into the
enclave is trusted.

During enclave creation, a series of EADD and EXTEND instructions are run to
load and measure enclave pages.

 l Each EADD instruction records EPCM information in the cryptographic
log stored in the SECS and copies 4 Kbytes of data from unprotected
memory outside the EPC to the allocated EPC page.

 l Each EEXTEND instruction measures a 256 byte region (generating a
cryptographic hash), which means it takes 16 invocations of EEXTEND to
measure the 4KB page created by EADD. Each of the 16 invocations of
EEXTEND adds to the cryptographic log information and to the meas-
urement of the section.

Since cryptographic processing takes processor cycles, the time to create an
enclave scales directly with the size of the enclave, because each additional
4KB page that an enclave uses results in cryptographic processing that occurs
for the EADD instruction and cryptographic processing for the 16 EEXTEND
instructions to measure that 4KB page. Creation of the enclave is visible to the
application.

Intel(R) Software Guard Extensions Developer Guide

- 38 -

If you are concerned that the enclave creation time for your application is
impacting its overall performance, consider the following approaches to
reduce this impact:

 l Reduce the size of your enclave. Scrutinize each code and data element
currently in your enclave and move every element that does not reas-
onably need to be there to the untrusted part of your application. (You
can use Intel® VTune™ Amplifier to help experiment with how long it
takes to create various size enclaves.)

 l Enclave Dynamic Memory Management (EDMM) available with Intel® SGX
allows enclaves to expand after creation. When your OS supports EDMM,
your application can create a smaller size enclave at first, then expand it
later when additional enclave space is needed. This shifts some of the
time to copy pages and measure regions from enclave creation time to a
later point in time.

 l Look for ways to hide the enclave loading time by having the application
perform processing that occupies the user’s attention.

 l Avoid excessive enclave destruction/reloads to minimize repeating load
overhead.

NOTE:
This discussion includes a subset of enclave creation actions. For details,
see Constructing an Enclave in Intel® 64 and IA-32 Architectures Software
Developer’s Manual: Volume 3D.

Enclave Transitions

Transitioning control to/from enclaves is the second area to consider. The fol-
lowing discussion explains how the amount of data marshalled back and forth
between the untrusted part of an application and the enclave greatly affects
transition time to/from enclaves. Also discussed is balancing the time an applic-
ation spends executing in an enclave versus how often that application enter-
s/exits the enclave.

Transitions to an enclave and from an enclave resemble a context switch in
many ways. When an EENTER instruction is executed to transition control into
an enclave, register state and other information regarding the untrusted state
is saved; then inside the enclave thread state and other information regarding
the trusted state is loaded so execution can begin in the enclave. Much of this
is performed by SDK generated code. A reverse process occurs on the

https://www.intel.com/content/dam/www/public/emea/xe/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3d-part-4-manual.pdf

Intel(R) Software Guard Extensions Developer Guide

- 39 -

transition from an enclave, initiated by an EEXIT instruction. The trusted
thread state information is saved; then untrusted register state and other
information is loaded. Security checks are also performed during all trans-
itions. Again, much of this is performed by SDK generated code. These actions
constitute a fixed element of the overhead associated with transitioning to/-
from enclaves.

However, there is also a variable element of the overhead associated with
transitions at runtime. Parameters are marshalled from the untrusted part of
the application to the trusted part, and return values are un-marshalled. In the
trusted part, parameters from the untrusted part are un-marshalled and
return values for the untrusted part are marshalled. Since parameters can vary
greatly in size, if an application is passing large parameters between the two
parts of an application, a noticeable overhead can be experienced.

If the overhead associated with transitions to/from enclaves for your applic-
ation is impacting its performance, consider the following approaches to
reduce this impact:

 l Reduce the total size of parameters being passed. Examine each para-
meter currently being passed between the untrusted part of the applic-
ation and the enclave and remove non-critical parameters. If possible,
reduce the remaining parameters to their smallest reasonable size. You
can use Intel® VTune™ Amplifier to compare transition time with fre-
quency of transitions to help achieve a healthy performance balance.

 l If the code in your enclave needs to operate on large data structures,
you may wish to pass a pointer to the data structure into the enclave
instead of the actual data. This is allowed using the user_check para-
meter with pointers in the Enclave Definition Language (EDL) file.
However, there is a security risk because the Edger8r tool does not
verify the pointer before passing it to the enclave when user_check is
used. You as the developer must ensure that you are not exposing
secrets in untrusted memory. You must also implement your own
pointer verification if you choose this method. For details on the EDL
user_check parameter, see this discussion in the Intel® Software
Guard Extensions SDK Developer Reference: https://soft-
ware.intel.com/en-us/node/708978. For details on the functions used to
determine if a pointer and its associated data is inside or outside the
enclave, see this discussion in the Intel® Software Guard Extensions SDK
Developer Reference: https://software.intel.com/en-us/node/709040.

 l If transition time is a concern, you may want to investigate other

Intel(R) Software Guard Extensions Developer Guide

- 40 -

approaches, such as implementing an Exit-less Service. With exit-less ser-
vices, parameters are held in a buffer in the untrusted part of the applic-
ation only; the trusted part polls the buffer looking for notification to
perform its work on the data. So no transition occurs. This trades trans-
ition overhead for dedicating an enclave thread for additional polling,
which may be appropriate in some cases. The following link allows you to
download a paper describing exit-less based services: https://s-
ites.google.com/site/silbersteinmark/Home/cr-eurosys17sgx.pdf.

NOTE:

 l When an interrupt occurs while executing in an enclave, an Asyn-
chronous Exit (AEX) occurs, which results in a transition from the
enclave. An AEX has more overhead associated with it than a standard
(non-Intel® SGX) interrupt context switch. Since interrupts are under
the control of the OS, there is nothing you can do in your application
to control this. But it’s good to understand that interrupts may effect
perceived application performance.

 l This discussion describes a subset actions that occur during enclave
transitions. For details, see Enclave Entry and Exiting in Intel® 64 and
IA-32 Architectures Software Developer’s Manual: Volume 3D.

 l For more information on data marshalling, see the discussion of Proxy
Functions in Part 7 of the Intel® SGX Tutorial Series.

Excessive Cache Misses

The third area to consider is the effect of cache misses, which in some situ-
ations can result in an overhead increase for Intel® SGX applications. The gen-
eral actions (and overhead) associated with a cache write to system memory
or a cache line fill in a non-Intel® SGX enabled system are very well known.
However, Intel® SGX adds another dimension to cache misses, as all memory
transactions that are outside the portion of the processor cache used for an
enclave are protected. This protection adds some overhead when fetching
cache lines from the memory. This overhead will be model-specific to the
implementation of Intel® SGX. (A technical whitepaper describing the initial
implementation can be found at: http://eprint.iacr.org/2016/204.pdf.)

Intel® SGX architecture adds two potential overhead elements to each cache
miss beyond typical cache overhead:

https://www.intel.com/content/dam/www/public/emea/xe/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3d-part-4-manual.pdf
https://software.intel.com/en-us/articles/intel-software-guard-extensions-tutorial-part-7-refining-the-enclave

Intel(R) Software Guard Extensions Developer Guide

- 41 -

 l The time to perform integrity check/anti-replay check for each cache
line not currently in the processor cache, and to update the data struc-
ture in system memory (if needed). This overhead depends on the
memory access pattern.

 l The time to encrypt/decrypt the actual data being moved between the
cache and system memory.

This additional overhead could become significantly greater as the frequency
of cache misses increases. (Note that memory access inside the enclave
already in the cache are not impacted. And accessing memory outside the
enclave from inside the enclave has little impact.)

If your application is experiencing overhead associated with a high number of
cache misses, consider taking the following steps:

 l Reduce the size of your enclave’s data. Inspect your data to ensure that
only critical elements are in the enclave. Less data means less encryp-
tion/decryption and less data structure checking by the Intel® SGX
memory control/protection mechanism. You can use Intel® VTune™
Amplifier to inspect caching behavior in your application to help make
tuning decisions.

 l Consider the recommendations of the following sources to help create a
more “cache friendly” application:

https://software.intel.com/en-us/articles/resolve-cache-misses-on-64-
bit-intel-architecture.

https://www.in-
tel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-
architectures-optimization-manual.pdf.

Excessive Writing of Pages

The fourth area to consider is how extensive page writes in Intel® SGX applic-
ations can increase overhead, and how to minimize that effect. Typically oper-
ating systems support paging, which includes some overhead; however, the
overhead associated with paging in Intel® SGX is greater, as described below.

Intel® SGX uses secure storage, called the Enclave Page Cache (EPC), to stored
enclave contents. Enclave pages are 4KB in size. When enclaves are larger
than the total memory available to the EPC, enclave paging can be used by

Intel(R) Software Guard Extensions Developer Guide

- 42 -

privileged SW to evict some pages to swap in other pages. The CPU performs
the following steps using the EWB instruction when the OS swaps out an
enclave page:

 l Read the Intel SGX page to be swapped out (evicted)

 l Encrypt the contents of that page

 l Write the encrypted page to unprotected system memory

Since this process has an inherent overhead associated with it, the more
pages that are swapped out, the more often the overhead is incurred.

To prevent your application from experiencing the additional overhead asso-
ciated with excessive page writes, do what you can to ensure enclave size is
less than the EPC. By including only secrets and the code to operate on them
in your enclaves, you can help minimize the chances of incurring paging over-
head. You can use Intel® VTune™ Amplifier to inspect paging behavior in your
application to help make tuning decisions.

NOTE:

 l While developers have control over use of finite resources in their
application design, users/usages also have significant control over
how many applications are running. If users/usages end up causing a
lot of enclaves to be run, enclave performance can be impacted, des-
pite the efforts you put into performance optimization.

 l The following technical forum discussion provides additional details
related to paging of enclave code/data: https://software.intel.com/en-
us/forums/intel-software-guard-extensions-intel-sgx/topic/722444.

Additional Performance Notes

If your application is multi-threaded, look into optimizing data synchronization,
locking, the threading model, and the memory allocation algorithm selected to
improve performance.

 l The Intel® SGX SDK (for Microsoft* Windows* and Linux*) has some syn-
chronization and locking primitives that are already optimized.

 l For heavily threaded applications, it may be better to select one
memory allocation algorithm over another. The Intel® SGX SDK for Linux
supports TCMalloc memory allocation algorithm, which can result in a

Intel(R) Software Guard Extensions Developer Guide

- 43 -

significant performance increase for many heavily-threaded applications
over the default dlmalloc alternative.

Intel(R) Software Guard Extensions Developer Guide

- 44 -

Defense In-depth Mechanisms
The Intel® SGX software stack supports standard defense-in depth mech-
anisms such as stack probing, buffer overflow protection and, on Windows OS,
safe structured exception handling. Enclave writers should set the compiler
options such that by default enclaves are built with standard defense in-depth
mechanisms available on a given platform. Regarding stack buffer overflow pro-
tection, developers must be aware that the commonly used compiler options
only provide protection when the buffer meets certain criteria. For instance,
Microsoft* Visual Studio compiler option /GS and GNU* compiler option –
fstack-protector do not provide protection when the size of the buffer
in stack is below certain threshold to avoid significant performance penalty.
The enclave writer must evaluate whether this security check should be
enabled in enclave functions that would remain unprotected otherwise
(enclave interface functions, for instance) and apply more strict checking
options, such as Visual Studio compiler option /sdl and GNU compiler
options –fstack-protector-all, –fstack-protector-strong, and –
fstack-protector-explicit, to specific modules. GNU compiler sup-
ports options –fstack-protector-strong and –fstack-protector-
explicit in version 4.9.2. Address Space Layout Randomization (ASLR) is
not supported within an enclave. However, the randomization of the load
address of the enclave is dependent on the operating system. Different ver-
sions of Windows* may randomize (or not randomize) the location differently.
A compromised loader or OS (both of which are outside the TCB) can remove
the randomization entirely. The enclave writer should not rely on the ran-
domization of the base address of the enclave.

The ideal enclave would also have a defense-in-depth mechanism that
ensured that all sections containing executable code would also be non-writ-
able. This would protect the enclave from an attack that managed to inject
code into the enclave and then execute it. However, the nature of how an
enclave is loaded impacts the ability of the enclave to ensure that all code
pages are non-writable. The main point is that the image of the enclave must
be loaded into the EPC before it can be relocated. Since relocations need to
be performed after the EPC is loaded, any code pages containing relocations
have to be loaded with write permission. This opens the door for the attack
mentioned above. The best option to protect against this potential attack is
for the code to contain no relocations. This can be done differently depending
on the format of the linked image and whether it is a 32- or 64-bit enclave.
The trusted libraries that are either part of the Intel® SGX support software or
provided by a 3rd party should not contain any text relocations. In addition,

Intel(R) Software Guard Extensions Developer Guide

- 45 -

the tool provided to ISVs for signing their enclaves should output a warning if
an enclave image contains any relocation in the .text sections, which means
the final enclave will have writable code pages.

The Intel® SGX SDK includes limited data address randomization, where the
addresses of all stack variables are randomized. The randomization comes at
the expense of increased stack usage. Enclaves built with the Intel® SGX SDK
that support address randomization should increase their stack size setting by
4 KB. To confirm your version of the Intel® SGX SDK supports address ran-
domization, please check the Release Notes.

Unsafe C++11 Attributes

Developers should use C++11 attributes inside an enclave with care. The
attribute noreturn, in particular, may cause a potential security risk. For
instance, if a trusted function calls a noreturn function any clean-up code
placed after the function call will be ignored.

[noreturn]]void foo(parameters…)
 {
 ...
 }
 int ecall_function(parameters…)
 {
 ...
 foo(...);
 // Clean-up code below will be ignored
 ...
 return 0;
 }

Intel(R) Software Guard Extensions Developer Guide

- 46 -

Power Management
Modern operating systems provide mechanisms for allowing applications to
be notified of major power events on the platform. When the platform enters
the S3 and S4 power states (suspend to RAM and hibernate to disk), the keys
are erased and all of the enclaves are destroyed. Enclaves that wish to pre-
serve secrets across S3, S4, and S5 must save state information on disk.

The Intel SGX architecture does not provide a way of directly messaging the
power down event into the enclave. The application may register a callback
function for such events. When the callback function is invoked then the applic-
ation may call the enclave specifically to save secret state to disk for pre-
servation. However, the operating system does not guarantee that the enclave
will be given enough time to seal all its internal state. Enclaves that wish to pre-
serve state across power transition events must periodically seal enclave state
data outside the enclave (on disk or the cloud). On re-instantiation of the
application, the enclave is rebuilt from scratch and the enclave must retrieve
its protected state (from disk or the cloud) inside the enclave.

To minimize the overhead caused by constantly sealing secrets and storing
the encrypted data on disk or the cloud, the enclave writer should design an
application enclave that keeps as little state information as possible inside the
enclave, so the application can survive a power transition event smoothly.

Intel(R) Software Guard Extensions Developer Guide

- 47 -

Use of Large Addresses for 32-bit Enclaves
When an enclave writer develops a 32-bit enclave, the developer must be
aware that the enclave may be loaded into a large address (defined here as an
address greater than 2GB) or it may receive a pointer from a large address
range. The enclave should be designed to cope with these scenarios and fail
smartly.

32-bit applications are usually loaded by Windows OS and run below a virtual
address of 2 GB. This means that an application developer could expect that
the most significant bit in a valid pointer to be zero; and therefore perform a
signed operation (subtraction, comparison, etc.) on that pointer without
impacting the result. If that pointer were allowed to be greater than 2 GB,
then the most significant bit would become the sign bit on a signed operation
and the result of the operation may change. For example, the program flow for
the code below would change based on whether the enclave is loaded to an
address greater than 2GB. Because ptr1 and ptr2 point inside the enclave,
they would become negative numbers.

Since the enclave itself cannot control whether the system is configured to
support large addresses for 32-bit programs and the enclave cannot control
where it is loaded or the inputs it receives, all 32-bit enclaves should expect
that they can be loaded above the 2 GB limit or receive a pointer that ref-
erences memory above this limit.

int * ptr1, ptr2;

 // Perform some operation that initializes ptr1 and ptr2
to be inside the enclave

 if ((LONG_PTR)ptr1 > (LONG_PTR)ptr2) //Note: LONG_PTR
is signed
 {
 //do something
 }
 else
 {
 //do something else
 }

The developer must also be aware that pointers may be subject to integer con-
version rules when used in any arithmetic or comparison operation. These
rules may convert a large address into a negative number and influence the

Intel(R) Software Guard Extensions Developer Guide

- 48 -

outcome of the operation; thereby potentially impacting the integrity of the
security solution.

This is similar to preparing a 32-bit application to use the
/LARGEADDRESSAWARE linker option in the Microsoft linker.

Intel(R) Software Guard Extensions Developer Guide

- 49 -

Threading Topics
The developer must be aware that when using multiple threads within an
enclave certain conditions related to the Thread Binding Policy or how Thread
Local Storage or Mutexes are used can potentially open an enclave up to
attacks.

Thread Binding Policy

When an enclave writer develops an enclave which may employ more than
one thread, the developer must be aware that untrusted code controls the
binding of an untrusted thread to the Trusted Thread Context (composed of a
TCS page, SSA, Stack, and Thread Local Storage Variables). Thus, the
developer must follow the policies on using Thread Local Storage and thread
synchronization objects within the enclave.

The developer may select one of the following Thread Binding Policies for an
enclave:

 l Non-Binding Mode: in this mode, the untrusted runtime (uRTS) selects
any available Trusted Thread Context when a root call is made into the
enclave. A root call is defined as an enclave call that is not nested within
another enclave call (or does not occur within the context of an enclave
out call). The uRTS then uses the same Trusted Thread Context for the
duration of the enclave call. In other words, it will pick the same context
for a nested enclave call. As the selection of the Trusted Thread Context
is arbitrary in this mode, the trusted runtime within the enclave will ini-
tialize the entire Thread Local Storage data set on each root enclave call.
This means that all Thread Local Storage variables will be reset at the
beginning of each root enclave call.

 l Binding Mode: in this mode, the uRTS binds an untrusted thread with a
Trusted Thread Context within the enclave. This means that the uRTS
always selects the same Trusted Thread Context for a specific applic-
ation thread. Essentially, the uRTS binds an untrusted thread and a trus-
ted thread together. In this mode, the trusted runtime does not
reinitialize the Thread Local Storage data-set on each root enclave call.

NOTE:

Intel(R) Software Guard Extensions Developer Guide

- 50 -

Binding Mode is not supported in the Universal Windows Platform
(UWP) version of the uRTS.

The Thread Binding Policy is stored both inside the enclave as a trusted para-
meter (which is also measured) and outside the enclave as an untrusted para-
meter in the uRTS. The trusted parameter affects whether the trusted
runtime system re-initializes Thread Local Storage variables on each root
enclave call; while the untrusted parameter determines how the uRTS selects
a Trusted Thread Context to use for each call.

Thread synchronization objects, mutexes in particular, cannot be used safely
across root enclave calls regardless the Thread Binding Policy. Syn-
chronization objects maintain state information, such as a mutex ownership,
within the enclave. Thus a thread must not exit an enclave returning from a
root enclave call after acquiring the ownership of mutex.

Scenario 1

Application thread that reenters an enclave with a different Trusted Thread
Context than the one used to acquire a mutex, cannot release the mutex,
because the mutex ownership is mapped to the Trusted Thread Context.

Scenario 2

Application thread that enters an enclave with the Trusted Thread Context
that was previously used by another thread to acquire a mutex, does not have
the ownership of the said mutex.

These scenarios may only occur when the critical section protected by the
mutex or other thread synchronization object is split across root enclave calls.
Therefore, avoid such practice.

Since the uRTS selects which Trusted Thread Context to use for an enclave
call, and the uRTS is untrusted code, the developer must be aware that an
attacker can manipulate this selection. Thus, the attacker may switch the bind-
ing mode that the uRTS employs or even select a specific Thread Context for
each call.

Intel(R) Software Guard Extensions Developer Guide

- 51 -

Protection from Side-Channel Attacks
Intel SGX does not provide explicit protection from side-channel attacks. It is
the enclave developer's responsibility to address side-channel attack con-
cerns.

In general, enclave operations that require an OCall, such as thread syn-
chronization, I/O, etc., are exposed to the untrusted domain. If using an OCall
would allow an attacker to gain insight into enclave secrets, then there would
be a security concern. This scenario would be classified as a side-channel
attack, and it would be up to the ISV to design the enclave in a way that pre-
vents the leaking of side-channel information.

An attacker with access to the platform can see what pages are being
executed or accessed. This side-channel vulnerability can be mitigated by
aligning specific code and data blocks to exist entirely within a single page.

More important, the application enclave should use an appropriate crypto
implementation that is side channel attack resistant inside the enclave if side-
channel attacks are a concern.

NOTE:
The Intel® Advanced Encryption Standard New Instructions (Intel® AES-NI)
Set is designed to be constant time to prevent timing based side channel
attacks.

Intel(R) Software Guard Extensions Developer Guide

- 52 -

Programming Recommendations
As we mentioned in the beginning, this guide is not meant to be a secure cod-
ing guideline. However, we provide some recommendations based on the les-
sons learned from recent security research on Intel SGX and publications
review.

Uninitialized Padding

To make the access of members of a structure more efficient, the compiler
may pad certain C/C++ structs. Such padding is not initialized unless the
developer explicitly calls memset on the entire structure. When an
ECALL/OCALL returns/passes a struct as a parameter, the enclave may leak
sensitive data through the struct padding. The edge-routines copy the entire
struct rather than its individual members. This means the padding values,
which may contain enclave stack/heap information, will be exposed to the
untrusted application. This problem is not specific to Intel SGX and has
impacted the security of the Linux kernel as well.

Recommendation

Use memset to initialize all structs that return/pass information in an
ECALL/OCALL. Ensuring that secrets are cleared after use also (a fundamental
secure coding guideline) avoids this issue as well, unless an OCALL somehow
occurs while secrets are in use. Also, it can be difficult to ensure this con-
sidering the use of third-party/open-source libraries in enclaves.

	Intel(R) Software Guard Extensions Developer Guide
	Legal Information
	Revision History
	Introduction
	Enclave Programming Model
	Enclave File Format
	Enclave Trusted Computing Base (TCB)
	Enclave Interface Functions (ECalls)
	Enclave Inputs

	Inputs Passed by Reference
	Calls outside the Enclave (OCalls)
	Nested ECalls (ECalls during OCalls)

	Third Party Libraries

	Enclave Signature Structure
	Safeguarding the Enclave Signing Key
	Maintaining the Development Platform Clean

	Attestation
	Local (Intra-Platform) Attestation
	Remote (Inter-Platform) Attestation
	Intel® Enhanced Privacy ID (Intel® EPID)
	The Quoting Enclave
	Remote Attestation Process
	Privacy

	Distinguishing between Running Enclave Instances

	Secret Provisioning
	Debug (Opt-in) Enclave Considerations
	Disposal of Enclave Secrets

	Sealing
	Software Sealing Policies
	Seal to the Current Enclave (Enclave Measurement)
	Seal to the Enclave Author

	Sealing and Unsealing Process
	Distinguishing between Enclave Instances
	Data Migration across Platforms
	Debug (Opt-in) Enclave Considerations

	Processor Features
	Hardware Features
	Running an Enclave with Validated Features
	Random Number Generation
	Illegal Instructions within an Enclave
	CPUID Information

	Programming for Performance
	Enclave Creation
	Enclave Transitions
	Excessive Cache Misses
	Excessive Writing of Pages
	Additional Performance Notes

	Defense In-depth Mechanisms
	Unsafe C++11 Attributes

	Power Management
	Use of Large Addresses for 32-bit Enclaves
	Threading Topics
	Thread Binding Policy

	Protection from Side-Channel Attacks
	Programming Recommendations
	Uninitialized Padding
	Recommendation

