
   

 

 

 

 

SDK API 

Reference Manual 

Extensions for User-Defined Functions 

 

 

 

 

 

API Version 1.13 

 

 

 

 

  



   

ii SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13 

LEGAL DISCLAIMER 

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO 

LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL 

PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.  EXCEPT AS PROVIDED IN INTEL'S 

TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY 

WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO 

SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO 

FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY 

PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. 

 

UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT 

DESIGNED NOR INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL 

PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR. 

 

Intel may make changes to specifications and product descriptions at any time, without notice. 

Designers must not rely on the absence or characteristics of any features or instructions 

marked "reserved" or "undefined." Intel reserves these for future definition and shall have no 

responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. 

The information here is subject to change without notice. Do not finalize a design with this 

information.  

 

The products described in this document may contain design defects or errors known as errata 

which may cause the product to deviate from published specifications. Current characterized 

errata are available on request.  

 

Contact your local Intel sales office or your distributor to obtain the latest specifications and 

before placing your product order.  

 

Copies of documents which have an order number and are referenced in this document, or 

other Intel literature, may be obtained by calling 1-800-548-4725, or by visiting Intel's Web 

Site. 

MPEG is an international standard for video compression/decompression promoted by ISO. 

Implementations of MPEG CODECs, or MPEG enabled platforms may require licenses from 

various entities, including Intel Corporation. 

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its 

subsidiaries in the United States and other countries. 

*Other names and brands may be claimed as the property of others. 

Copyright © 2010-2015, Intel Corporation. All Rights reserved. 

  

http://www.intel.com/
http://www.intel.com/


   

iii SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13 

Optimization Notice 

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for 

optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, 

SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the 

availability, functionality, or effectiveness of any optimization on microprocessors not 

manufactured by Intel.  

 

Microprocessor-dependent optimizations in this product are intended for use with Intel 

microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for 

Intel microprocessors. Please refer to the applicable product User and Reference Guides for 

more information regarding the specific instruction sets covered by this notice. 

Notice revision #20110804 

 



   

iv SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13 

Table of Contents 

Overview .............................................................................. 1 

Document Conventions ......................................................................... 1 

Acronyms and Abbreviations .................................................................. 1 

Architecture .......................................................................... 2 

Using General Plug-in............................................................................ 4 

Using Codec Plug-in .............................................................................. 5 

Writing Plug-in ..................................................................................... 6 

Task Submission ...................................................................................................... 6 

Task Execution......................................................................................................... 8 

Mandatory functions ................................................................................................. 9 

Working with Opaque Surfaces ............................................................. 11 

Mapping and Un-mapping Opaque Surfaces ............................................................... 11 

Accessing Opaque Surfaces ..................................................................................... 11 

Plug-in Distribution ............................................................................. 12 

Dynamic Link Library .............................................................................................. 12 

Loading ................................................................................................................. 12 

System Wide Installation ......................................................................................... 13 

Application Folder Installation .................................................................................. 14 

Function Reference .............................................................. 15 

MFXVideoUSER ................................................................................... 15 

MFXVideoUSER_ProcessFrameAsync ......................................................................... 16 

MFXVideoUSER_Register ......................................................................................... 16 

MFXVideoUSER_Unregister ...................................................................................... 17 



   

v SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13 

MFXVideoUSER_Load .............................................................................................. 18 

MFXVideoUSER_LoadByPath .................................................................................... 18 

MFXVideoUSER_UnLoad .......................................................................................... 19 

MFXAudioUSER .................................................................................. 20 

MFXAudioUSER_ProcessFrameAsync ......................................................................... 21 

MFXAudioUSER_Register ......................................................................................... 21 

MFXAudioUSER_Unregister ...................................................................................... 22 

MFXAudioUSER_Load .............................................................................................. 23 

MFXAudioUSER_UnLoad .......................................................................................... 23 

Structure Reference ............................................................. 25 

mfxCoreInterface ............................................................................... 25 

CopyBuffer ............................................................................................................ 26 

CopyFrame ............................................................................................................ 27 

DecreaseReference ................................................................................................. 28 

GetCoreParam ....................................................................................................... 28 

GetHandle ............................................................................................................. 29 

IncreaseReference .................................................................................................. 29 

MapOpaqueSurface ................................................................................................ 30 

UnmapOpaqueSurface ............................................................................................ 30 

GetRealSurface ...................................................................................................... 31 

GetOpaqueSurface ................................................................................................. 32 

mfxPlugin .......................................................................................... 32 

Execute................................................................................................................. 34 

FreeResources ....................................................................................................... 35 

GetPluginParam ..................................................................................................... 35 

PluginClose ............................................................................................................ 36 



   

vi SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13 

PluginInit .............................................................................................................. 37 

Submit .................................................................................................................. 38 

mfxVideoCodecPlugin .......................................................................... 39 

mfxAudioCodecPlugin .......................................................................... 41 

mfxCoreParam ................................................................................... 42 

mfxPluginParam ................................................................................. 44 

Enumerator Reference .......................................................... 46 

mfxThreadPolicy ................................................................................. 46 

mfxPluginType ................................................................................... 46 

 

 



   

1 SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13 

Overview 

Intel® Media Server Studio – SDK and Intel® Integrated Native Developer Experience Media 

SDK for Windows*, further referred to as the SDK, is a software development library that 

exposes the media acceleration capabilities of Intel platforms for decoding, encoding and video 

processing. The API library covers a wide range of Intel platforms. 

This document describes an API extension that allows user-defined functions into the 

transcoding pipeline. Please refer to the SDK API Reference Manual for a complete description 

of the API. 

Audio for Windows* (part of Intel® Integrated Native Developer Experience 2015) and Intel® 

Media Server Studio 2015 - Audio Encoder & Decoder, further referred as AUDIO is a software 

library that provides audio encoding and decoding capabilities. AUDIO uses API very similar to 

SDK API. For general AUDIO API details please refer to Audio API Reference Manual.  

 

Document Conventions 

The SDK API uses the Verdana typeface for normal prose. With the exception of section 

headings and the table of contents, all code-related items appear in the Courier New typeface 

(mxfStatus and MFXInit). All class-related items appear in all cap boldface, such as DECODE 

and ENCODE. Member functions appear in initial cap boldface, such as Init and Reset, and are 

members of all three classes (DECODE, ENCODE and VPP). Hyperlinks appear in underlined 
boldface, such as mfxStatus. 

 

Acronyms and Abbreviations 

SDK Intel® Media Server Studio – SDK and Intel® Integrated Native Developer 

Environment Media SDK for Windows* 

AUDIO Audio for Windows* (part of Intel® Integrated Native Developer Experience 

2015) and Intel® Media Server Studio 2015 - Audio Encoder & Decoder 

CORE SDK auxiliary functions for memory allocation and asynchronous operation 

synchronization 

DECODE SDK decoding functions 

ENCODE SDK encoding functions 

AUDIO DECODE AUDIO decoding functions 

AUDIO ENCODE AUDIO encoding functions 

VPP SDK video preprocessing functions 

USER SDK user-defined functions 



   

2 SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13 

Architecture 

SDK provides the USER class of functions to allow user-defined functions, also known as plug-

ins, to participate in transcoding operations. When combined with DECODE, VPP and ENCODE, 

USER provides additional functionality beyond what SDK defines. Figure 1 shows three usage 

examples. In the first example, the application uses custom decoder in the transcoding pipeline. 

In the second one, the application adds rotation into the pipeline. In the third example, the 

application opens two sessions to decode two video streams and then calls the USER class of 

functions to form a composite stream for encoding. 

DECODE VPPUSER
(Rotation)

ENCODE

DECODE VPP USER
(Compositing)

ENCODE

DECODE VPP

Transcoding with rotation

Transcoding with picture-in-picture

Session 1

Session 2

USER
(decoder)

VPP ENCODE

Transcoding with custom decoder

 

Figure 1: User-Defined Functions Examples 

Currently USER class of functions supports both video and audio processing functionality. 

Splitters and muxers have straightforward API that does not require plug-in extension and 

developer can create his own component based on provided samples. See “Intel® Media 

Software Development Kit Splitters and Muxers Sample” manual for more details.  

The SDK supports two kinds of plug-in. First one was introduced in version 1.1 of the SDK API. 

It was called general plug-in and it was intended for general kind of video processing. Although 

it can support decode and encode functionality its major goal was to support complex video 

processing filters. It has loosely defined interface and requires significant changes in application 

to implement. 

Second kind of plug-ins has been added in version 1.8 of the SDK. It is called codec plug-in and 

it is intended to completely replace one of the internal SDK components: decode, encode, or 

VPP. Codec plug-in uses the same API functions as native SDK component and application can 

use the same code path for both native SDK component and codec plug-in. For example, to 

replace AVC decoder in the existent application by HEVC one, all that application developer has 



   

3 SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13 

to do is to load plugin and to change codec ID during decoder initialization. API for audio codec 

plugins (decoding and encoding) was added in version 1.13 of the SDK.  

There are six different types of plugin. One for general plug-in and three for codec plug-ins: 

 general – this is general type that can be used to implement any video processing 

functionality. It does not replace any SDK class of functions. 

 decode – replaces the SDK DECODE class of functions, 

 encode - replaces the SDK ENCODE class of functions, 

 audio decode – replaces Audio DECODE class of functions, 

 audio encode – replaces Audio ENCODE class of functions, 

 VPP - replaces the SDK VPP class of functions. 

There are two different ways to insert plug-in into the SDK session. First one uses 

MFXVideoUSER_Register function and gives the application complete control over plugin code 

location. It can be in separate DLL or part of the application. All types of plug-ins can be loaded 

this way. Second one uses MFXVideoUSER_Load function and loads one of the preinstalled plug-

ins directly from DLL. General types of plug-ins cannot be loaded by this method. 

The same two schemes are available for audio plugins loading (via MFXAudioUSER_Register and 

MFXAudioUSER_Load functions respectively). 

The SDK/AUDIO session can hold only one component of any given class of functions. 

Therefore, the application could not insert plug-in if the same component has been initialized, 

or plug-in with the same type has been inserted. For example, if application has initialized 

native SDK decoder, any attempts to insert decoder plugin in the SDK session fails. The 

application should use multiple session and session joining mechanism to deal with such 

pipelines.    

The USER class of functions requires the application to use an additional include file, 

mfxplugin.h, besides the regular SDK include files. No additional library is required at link 

time. 

 

Include these files: 

#include “mfxvideo.h” /* SDK functions in C */ 

#include “mfxvideo++.h” /* optional for C++ development */ 

#include “mfxplugin.h” /* plugin development */ 

#include “mfxaudio.h”         /* AUDIO functions – needed for audio 

plugins */ 

#include “mfxaudio++.h”    /* optional for C++ development for audio 

plugins */ 

Link these libraries:  

 libmfx.lib   /* The SDK static dispatcher library */ 

or 

      libmfx.a                 /* The SDK static dispatcher library */ 

 



   

4 SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13 

 

 

The following sections describe the USER class of functions including rules that application 

developers must follow when programming with USER functions.  

 

Using General Plug-in 

Follow the procedure provided below to insert the general plug-in into the SDK pipeline. 

(1) Create mfxPlugin structure with set of call back functions. Set pointer to 

mfxVideoCodecPlugin structure to zero.  

(2) Initialize plug-in by registering a set of callback functions through the 

MFXVideoUSER_Register function. The SDK invokes these callback functions during 

USER operations. 

(3) Once initialized, the application can use the function MFXVideoUSER_ProcessFrameAsync 

to process data. The function returns a sync point for result synchronization (as is done 

with DECODE, VPP, or ENCODE). 

(4) Close USER by unregistering it via the MFXVideoUSER_Unregister function. 

When comparing USER with DECODE, VPP, and ENCODE, notice that the USER class of 

functions does not support Init, Close, Query, QueryIOSurf, or GetVideoParam. This 

simplification is possible because SDK does not participate in any of these operations. If 

required, the application can define its own form of initialization, capability query, or status 

retrieval of the user-defined functions. 

The function MFXVideoUSER_ProcessFrameAsync can take any number of inputs and generate 

any number of outputs. The interpretation of the I/O parameters is subject to the callback 

functions registered at the USER initialization stage. As per SDK convention on asynchronous 

operations, the application must consider the inputs “used” and the outputs unavailable until 

the application performs an explicit synchronization. However, the application can pass the 

output results to any downstream SDK component such as VPP and ENCODE without 

synchronization. See the Asynchronous Operation chapter in the SDK API Reference Manual for 

more details on asynchronous operations. 

Example 1 shows the pseudo code for transcoding with USER operations. The application 

passes data from DECODE to VPP, VPP to USER and USER to ENCODE. Finally, the 

application synchronizes the processing results and writes them to a file. 



   

5 SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13 

 

Example 1: Pseudo Code for transcoding with USER Operations 

Using Codec Plug-in 

The codec plug-in is used to insert one of the custom codec in the SDK pipeline. Unlike the 

general type, the codec plug-in uses the same SDK functions for processing as native SDK 

encoder, decoder, VPP and AUDIO encoder or decoder. Codec plugin defines Init, Close and 

most other API functions. Therefore, the application can use the same code path to work with 

native and custom decoder, encoder and VPP. 

Follow one of the procedures provided below to insert the codec plug-in into the SDK pipeline. 

Procedure A: 

(1) Create mfxPlugin structure with set of callback functions including functions in the 

mfxVideoCodecPlugin (mfxAudioCodecPlugin for AUDIO) structure. Depending on 

plug-in type set irrelevant function pointers to NULL.   

(2) Initialize plug-in by registering a set of callback functions through the 
MFXVideoUSER_Register (MFXAudioUSER_Register for AUDIO) function. 

(3) Once initialized, the application can use common DECODE, VPP, ENCODE, AUDIO 

ENCODE or AUDIO DECODE functions to process data. 

(4) Close plug-in by unregistering it via the MFXVideoUSER_Unregister 

(MFXAudioUSER_Unregister for AUDIO) function. 

 

MFXInit(MFX_IMPL_AUTO,0,&session); 

MFXVideoUSER_Register(session,0,&my_user_module); 

 

MFXVideoDECODE_Init(session, decoding_configuration); 

MFXVideoVPP_Init(session, preprocessing_configuration); 

/* Initialize my user module */  

MFXVideoENCODE_Init(session, encoding_configuration); 

 

do { 

 /* load bitstream to bs_d */ 

    MFXVideoDECODE_DecodeFrameAsync(session, bs_d, surface_w, &surface_d, &sync_d); 

MFXVideoVPP_RunFrameVPPAsync(session, surface_d, surface_v, NULL, &sync_v); 

MFXVideoUSER_ProcessFrameAsync(session, &surface_v, 1, &surface_u, 1, &sync_u); 

MFXVideoENCODE_EncodeFrameAsync(session, NULL, surface_u, bs_e, &sync_e); 

MFXVideoCORE_SyncOperation(session, sync_e, INFINITE); 

/* write bs_e to file */ 

} while (!end_of_stream) 

 

MFXVideoENCODE_Close(session); 

/* Close my user module */ 

MFXVideoVPP_Close(session); 

MFXVideoDECODE_Close(session); 

 

MFXVideoUSER_Unregister(session); 

MFXClose(session); 



   

6 SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13 

Procedure B: 

(1) Load plug-in by calling MFXVideoUSER_Load (MFXAudioUSER_Load for AUDIO) 

function.   

(2) Use common DECODE, ENCODE, VPP, AUDIO ENCODE and AUDIO DECODE 

functions to process data. 

(3) Unload plug-in by calling MFXVideoUSER_UnLoad (MFXAudioUSER_UnLoad for AUDIO) 

function. 

 

Writing Plug-in  

This section describes internal design of the SDK plug-in interface. It is relevant to all types of 

plug-in. Depending on plug-in type different functions correspond to name Submit and 

Process. See table below for mapping: 

Plug-in Type Process Submit 

General MFXVideoUSER_ProcessFrameAsync Submit 

Decode MFXVideoDECODE_DecodeFrameAsync DecodeFrameSubmit 

Encode MFXVideoENCODE_EncodeFrameAsync EncodeFrameSubmit 

VPP MFXVideoVPP_RunFrameVPPAsync VPPFrameSubmit 

Audio Decode MFXAudioDECODE_DecodeFrameAsync DecodeFrameSubmit 

Audio Encode MFXAudioENCODE_EncodeFrameAsync EncodeFrameSubmit 

 

Task Submission 

Internally, when the application calls the Process function, the SDK performs the following 

operations: 

 Within the same thread, SDK calls back the function Submit to check the validity of the 

I/O parameters. 

 If the function Submit returns an error code, SDK aborts the operation and returns the 

error code to the application. 



   

7 SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13 

 If the function Submit approves the I/O parameters, the function returns a task 

identifier to SDK. A task identifier is a unique user-defined parameter that identifies the 
work of processing the frames submitted by Process function. The SDK then schedules 

the task execution based on available resources. Next, the SDK returns a sync point 

back to the application for later synchronization. 

 

This discussion introduces two new concepts: task submission and task execution. Task 

submission checks the validity of the I/O parameters within the same application thread and 

submits a task identifier that is executed later by SDK. Task execution is the actual execution of 

the submitted task(s) within SDK internal threads. 

Due to the asynchronous nature of the SDK API, the application must follow the guidelines 

below when accessing I/O parameters: 

Data Type During Task Submission 
(Submit) 

During Task Execution 
(Execute) 

Frame data in system 

memory 

The frame data is not ready. Do 

not read the frame data buffer. 

SDK resolves the data 

dependency before running 

the task. The frame data is 

ready to access. Frame data in video 

memory 

The frame data is not ready. Do 

not lock the surface or access to 

the frame data.  

Bitstream data for 

decoder 

The bitstream data is ready. It 

is safe to read data from buffer 

and move data pointer.  

The bitstream buffer has 

been reused by application. 

Do not access it. 

Bitstream data for 

encoder 

The bitstream data is not ready. 

Do not access the bitstream 

buffer. 

SDK resolves the data 

dependency before running 

the task. The bitstream 

data is ready to access. 

Parameters in output 

structures 

The structure parameters are 
available. The Submit function 

can overwrite output structure 

parameters if necessary. 

The structure parameters 

are available. However, do 

not overwrite parameters 

unless an overwrite is 

anticipated by downstream 

components.  

 

  



   

8 SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13 

 

Task Execution 

SDK defines two callback functions for task execution and cancellation: 

Execute SDK calls this function (with the task identifier) for task 

execution after resolving all input data dependencies. 

FreeResources SDK calls this function (with the task identifier) after each task 

completion. SDK also calls this function to cancel a task before 

execution. For example, if an upstream function returns an error, 

SDK aborts all subsequent queued tasks. 

Parallel execution can improve performance. This is achieved by dividing a task into small units 

and executing them in parallel. For example, dividing a frame into several slices and processing 

each slice independently in different threads results in less overall processing time. Program the 

Execute function to divide a task into small units and track the progress of execution. Note that 

the SDK is not involved in task partitioning. 

SDK uses the following logic to execute a task in parallel: 

1. SDK determines a value for T, the number of available concurrent threads. This number is 

less than or equal to the NumWorkingThread value from the mfxCoreParam structure. 

2. SDK determines a value for R, the maximum number of concurrent threads a plug-in can 

support. This number is less than or equal to the MaxThreadNum value from the 

mfxPluginParam structure. 

3. SDK makes parallel calls to the Execute function equal to the lesser of the values R and T. 

Each Execute call has a unique uid_p value ranging from zero to R-1, and an associated 

uid_a value that increases by 1 with each Execute call. The uid_p value uniquely identifies 

the current parallel execution and the uid_a value identifies each Execute call during the 

entire task execution. 

Note:  For uid_p, the p stands for parallelism and for uid_a, the a is the total number of 

executions. 

4. If any of the Execute function calls return MFX_TASK_DONE and all remaining Execute 

functions complete successfully, SDK signals the application that the asynchronous 

operation is complete. 

5. If any of the Execute function calls return a failure, SDK signals the application that the 

asynchronous operation failed. 

6. If any of the Execute function calls return MFX_TASK_WORKING or MFX_TASK_BUSY, or a 

working thread becomes available, SDK repeats the above process and schedules additional 

executions. 

 



   

9 SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13 

Example of task execution 

Assume a plug-in component is designed to run a maximum of 4 threads. At initialization, the 

plug-in allocates 4 local thread resources. 

Also assume there are two SDK threads available. The SDK schedules two parallel Execute 

function runs with uid_p set to 0 and 3 (this can be any combination of two numbers from 0 to 

3), and uid_a set to 0 and 1. The Execute function evaluates its I/O parameters and 

determines that the best way to process the current frame is to use five slices, and tracks 

progress of such execution. 

Sometime later, while the first two Execute functions are still running, a third thread becomes 

available, so the SDK runs a third Execute function with uid_p set to 1 (which can also be 2, 

but not 0 or 3 because these uid_p values are taken by the two Execute functions currently 

running), and uid_a set to 2. 

While the second and third Execute functions continue to run, the first Execute function (with 

uid_p = 3) finishes early and returns MFX_TASK_WORKING, signaling the SDK to immediately 

schedule additional runs. If the SDK does not find a task with a higher priority, the SDK runs 
the Execute function again with uid_p set to 3 (or 2) and uid_a set to 3. 

The process continues until one of the Execute functions returns MFX_TASK_DONE, signaling the 

end of processing for the current frame. The SDK waits until the rest of the Execute functions 

finishes running and then signals the application that the processing task is complete. 

In this example, the uid_a value increased by one (from 0 to 4) with each Execute call. 

 

Mandatory functions 

Each type of plug-in has different set of mandatory functions. See table below for complete list.  

General set of mandatory functions: 

 plug-in type 

 general encode decode vpp audio 

encode 

audio 

decode 

mfxPlugin 

PluginInit V V V V V V 

PluginClose V V V V V V 

GetPluginParam V V V V V V 

Submit V      

Execute V V V V V V 

FreeResources V V V V V V 



   

10 SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13 

Mandatory functions specific for video plugins: 

 plug-in type 

 general encode decode vpp 

mfxVideoCodecPlugin 

Query  V V V 

QueryIOSurf  V V V 

Init   V V V 

Reset   V V V 

Close   V V V 

GetVideoParam   V V V 

EncodeFrameSubmit   V   

DecodeHeader    V  

GetPayload   V  

DecodeFrameSubmit    V  

VPPFrameSubmit    V 

 

Mandatory functions specific for audio plugins: 

 plug-in type 

 audio decode audio encode 

mfxAudioCodecPlugin 

Query V V 

QueryIOSize V V 

Init  V V 

Reset  V V 

Close  V V 



   

11 SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13 

GetAudioParam  V V 

EncodeFrameSubmit   V 

DecodeHeader  V  

DecodeFrameSubmit  V  

 

Working with Opaque Surfaces 

This chapter describes how to handle opaque surfaces in the USER module. The opaque surface 

concept is introduced in the SDK API 1.3. Please see the SDK API Reference Manual for details 

about opaque surface. 

 

Mapping and Un-mapping Opaque Surfaces 

Opaque surfaces are frame structures with empty data buffer pointers. Before the SDK can 

access surface content, the SDK needs to allocate native surfaces (for example, Direct3D9* 

surfaces or system memory buffers) and maps the opaque surfaces to them. After the SDK 

completes operations on the opaque surfaces, the SDK needs to remove the mapping and de-

allocate native surfaces. This is usually done inside an SDK module initialization and closing 

functions. 

Since the general plug-in does not have initialization or closing functions, the application needs 
to call the MapOpaqueSurface function before any USER module operations on the specific 

opaque surfaces. After all operations on the opaque surfaces are done, the application needs to 
call the UnmapOpaqueSurface function to remove the mapping and de-allocate the native 

surfaces. 

For code plug-ins the best place to map opaque surfaces is Init function and to unmap them is 

Close function.  

 

Accessing Opaque Surfaces 

If plug-in function works with opaque surfaces at input/output, the function needs to retrieve 

the corresponding native surface by calling the GetRealSurface function. Then this real surface 

can be used as usual. For example, to get access to surface data plug-in function should call 

Lock function from FrameAllocator exposed by core interface.  

Note that opaque surfaces and native surfaces are different identities. If the plug-in function 

needs to update the surface structure parameters for output, the update should be done on the 

opaque surface structures. 

The plug-in function can optionally use the GetOpaqueSurface function to retrieve the opaque 

surface structure from a native surface structure. 

 



   

12 SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13 

Plug-in Distribution 

From deployment point of view, plug-in may be implemented as either part of the application or 

a separate dynamic link library. This chapter discusses DLL approach.  

The SDK provides couple of auxiliary functions to simplify DLL plug-in loading - 
MFXVideoUSER_Load and MFXVideoUSER_UnLoad. To use these functions, plug-in developer 

should properly build and install plug-in on the system. This chapter describes how to do it.  

 

Dynamic Link Library 

Plug-in should be compiled as dynamic link library (ELF shared object on Linux). That library 

should expose at least one function: 

mfxStatus MFX_CDECL CreatePlugin(mfxPluginUID uid, mfxPlugin* plugin); 

This function should accept plugin identifier and fills in mfxPlugin structure by appropriate 

function pointers. Irrelevant function pointers should be set to NULL. The function should return 

MFX_ERR_NONE if it succeeds and any negative value otherwise.  

Because this function may be called multiple times during plug-in search, it is not 

recommended to perform any processing or initializations inside it. mfxPlugin::PluginInit 

function should be used instead.  

The plug-in DLL should not link Media SDK Dispatcher. 

Linux / Android specific 

To prevent global symbol list conflicts between different plug-ins, all DLL plug-ins are 

loaded with RTLD_LOCAL | RTLD_NOW flags passed to dlopen function. This means that 

plugin should make no assumptions about already loaded modules and other plug-ins. 

Loading 

DLL plug-in loading functionality is implemented on dispatcher level. Plug-in is loading in next 

steps: 

1. When application calls MFXVideoUSER_Load/ MFXAudioUSER_Load dispatcher firstly looks 

in the registry on Windows or in global configuration file on Linux for specified by 

application plug-in uid. 

2. If such uid is found then dispatcher reads plug-in version Vplg and plug-in API version 

Vapi from registry. 

3. Dispatcher compares plug-in version specified by application Vapp with plug-in version. 

If Vplg<Vapp, dispatcher discards this plug-in and continues search. 

4. Dispatcher compares plug-in API version with library version Vlib. Note that dispatcher 

uses actual version of the loaded library, not the version provided by the application 

during MFXInit call. 

5. If Vapi is not equal to Vlib, dispatcher discards this plug-in and continues search. 



   

13 SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13 

6. Dispatchers creates plug-in by calling CreatePlugin function. If function fails, 

dispatcher discards this plug-in and continues search. 

7. Dispatcher registers plug-in by calling MFXVideoUSER_Register/ 

MFXAudioUSER_Register function and returns control back to the application. 

8. If dispatcher has not been able to load plug-in from registry, it continue search in local 

application folder.  

9. Dispatcher looks for folder with required uid. If required folder does not exist, dispatcher 

stops search and returns error to the application. 

10. If required folder has been found, dispatcher reads plugin.cfg file and extracts plug-in 

version Vplg, plug-in API version Vapi and file name from it. 

11. Dispatcher checks versions and creates plug-in as has been described on steps 3 – 7. 

12. If all steps above fail, dispatcher returns error back to the application. 

 

 

System Wide Installation 

Plug-in should be properly described system wide (in registry on Windows or in global 

configuration file on Linux) or in the local application folder. Each description is optional, but at 

least one of them should be present.  

Below are two templates based on HEVC encoder plug-in. GUID, PlgVer, APIVer and Path fields 

are mandatory. The rest are optional and may be omitted. 

[HKEY_LOCAL_MACHINE\SOFTWARE\Intel\MediaSDK\Dispatch\Plugin\<arbitrary name 

here>] 

"GUID"          = hex: 2f,ca,99,74,9f,db,49,ae,b1,21,a5,b6,3e,f5,68,f7 

"PluginVersion" = dword:01 

"APIVersion"    = dword:0108 

"Path"          = string:"C:\\...\\Plugin\mfxplugin32_hevce_sw.dll" 

"Type"          = dword:02 

"CodecID"       = dword:43564548 

"Default"       = dword:00 

Where 

<arbitrary name here> – arbitrary name for the plug-in description. It is recommended to 

have plug-in GUID as part of the name to avoid possible conflicts with other plug-ins installed 

on the system. For example, <2fca99749fdb49aeb121a5b63ef568f7_trial>; 

GUID – unique plug-in identifier; 

PluginVersion – plug-in version; 

APIVersion – the SDK API version; 

Path – path to installed plug-in; 

Type – codec plug-in type, see mfxPluginType enumerator; 

CodecID – codec ID, it is strongly recommended to use predefined by the SDK value. If 

required value is not defined, please contact the SDK development team; 



   

14 SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13 

Default – reserved and must be zero. 

 

Linux / Android specific 

Linux/Android implementation uses global configuration file located at 

/opt/intel/mediasdk/plugins/plugins.cfg. Format of this file is essentially ini-file. Each registered 

plug-in should have separate section in this file. 

[HEVC_Decoder_15dd936825ad475ea34e35f3f54217a6] 

GUID          = 15dd936825ad475ea34e35f3f54217a6 

PluginVersion = 1 

APIVersion    = 264 

Path          = /opt/intel/mediasdk/plugins/libmfxplugin64_hevcd_sw.so 

Type          = 1 

CodecID       = HEVC 

Default       = 0 

 

Application Folder Installation  

The plugin can be located in the application folder. Each plug-in should have separate folder. 

Folder name should be equal to the plug-in uid without any dashes ‘-‘, curly brackets ‘{‘, ‘}’ or 

spaces ‘ ‘. Each folder should contain plug-in configuration file and plug-in dynamic link library. 

Example of folder layout: 

application_folder\ 

 application.exe 

 2fca99749fdb49aeb121a5b63ef568f7\ 

  plugin.cfg 

  mfxplugin32_hevce_sw.dll 

Plug-in configuration file is plain text file that contains plugin description similar to description 

in the registry. Each line should start with parameter name followed by ‘=’ and then by 

parameter value. Parameter value is a number or a string inside quotation marks. PlgVer, 

APIVer, and file name (FileName32 or FileName64) are mandatory parameters. The rest are 

optional. Note that file name should represent exact file name, without any absolute or relative 

path. 

Example of plug-in configuration file: 

PluginVersion = 1 

APIVersion    = 264 //0x0108 

FileName32    = "mfxplugin32_hevce_sw.dll" 

FileName64    = "mfxplugin64_hevce_sw.dll" 

Type          = 02 //encode 

CodecID       = "HEVC" 

Default       = 0 

 



   

15 SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13 

Function Reference 

This section describes the SDK plug-in functions and their operations. 

Each description documents only commonly used status codes. The function may return 

additional status codes, such as MFX_ERR_INVALID_HANDLE or MFX_ERR_NULL_PTR, for example. 

See the SDK API Reference Manual for details on all status codes. 

 

MFXVideoUSER 

This class of functions allows applications to specify user-defined functions to use in the SDK 

transcoding pipeline. 

Member Functions  

MFXVideoUSER_Register Register the plug-in 

MFXVideoUSER_ProcessFrameAsync Process data using the plug-in 

MFXVideoUSER_Unregister Unregister the plug-in 

MFXVideoUSER_Load Load plug-in from dynamic link library 

MFXVideoUSER_LoadByPath Load plug-in from dynamic link library by path 

MFXVideoUSER_UnLoad Unload plug-in 

 

  



   

16 SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13 

 

MFXVideoUSER_ProcessFrameAsync 

Syntax 

 mfxStatus MFXVideoUSER_ProcessFrameAsync(mfxSession session, mfxHDL *in, 

mfxU32 in_num, mfxHDL *out, mfxU32 out_num, mfxSyncPoint *syncp); 

Parameters 

 session SDK session handle 

 in, in_num A set of input parameters 

 out, out_num A set of output parameters 

 syncp The returned sync point 

Description 

 This asynchronous function calls back the user-defined functions to generate output 

data from input data. If successful, the function returns a sync point for synchronizing 

the output results. Otherwise, the function returns a user-defined error code. 

Return Status 

 MFX_ERR_NONE The function completed successfully. 

Change History 

 This function is available since SDK API 1.1. 

   

 

MFXVideoUSER_Register 

Syntax 

 mfxStatus MFXVideoUSER_Register(mfxSession session, mfxU32 type, 

mfxPlugin *par); 

Parameters 

 session SDK session handle 

 type Plug-in type. See mfxPluginType for the list of 

supported plug-in types. 

 par Pointer to the mfxPlugin structure 



   

17 SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13 

Description 

 This function registers user-defined functions and initializes the USER component. It 

may be used for both kinds of plug-ins, general and codec. See also 
MFXVideoUSER_Load function.  

Return Status 

 MFX_ERR_NONE The function completed successfully. 

Change History 

 This function is available since SDK API 1.1. 

SDK API 1.8 extends functionality and allows registering of codec plug-ins. Before this 
version of API type parameter has been reserved.  

   

MFXVideoUSER_Unregister 

Syntax 

 mfxStatus MFXVideoUSER_Unregister(mfxSession session, mfxU32 type); 

Parameters 

 session SDK session handle 

 type Reserved; must be zero 

Description 

 This function removes any registered callback functions. USER becomes uninitialized 

after this function. 

The application must call this function after all active tasks are completed. 

Return Status 

 MFX_ERR_NONE The function completed successfully. 

 MFX_WRN_IN_EXECUTION Active tasks are in execution or in queue. Call back 

later after active tasks are completed. 

Change History 

 This function is available since SDK API 1.1. 

   



   

18 SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13 

 

MFXVideoUSER_Load 

Syntax 

 mfxStatus MFXVideoUSER_Load(mfxSession session, const mfxPluginUID *uid, 

mfxU32 version); 

Parameters 

 session SDK session handle 

 uid plug-in unique ID  

 version plug-in version 

Description 

 The function loads plug-in directly from DLL into the SDK session. It is used only for 
codec plug-ins. See also MFXVideoUSER_Register function. 

Function fails if plug-in with the same type has been loaded or native SDK component 

with the same type has been initialized or plug-in with the same uid has been loaded. 

See Plug-in Distribution for more details on how the SDK loads plug-ins.  

Return Status 

 MFX_ERR_NONE The function completed successfully. 

 MFX_ERR_NOT_FOUND Plug-in library has not been found. 

 MFX_ERR_UNDEFINED_BEHAVIOR Plug-in of the same type has been loaded or the 

SDK component initialized.  

 MFX_ERR_UNKNOWN Plug-in loading has failed. 

Change History 

 This function is available since SDK API 1.8. 

   

MFXVideoUSER_LoadByPath 

Syntax 

 mfxStatus MFXVideoUSER_LoadByPath(mfxSession session, const mfxPluginUID 

*uid, mfxU32 version, const mfxChar *path, mfxU32 len); 



   

19 SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13 

Parameters 

 session SDK session handle 

 uid plug-in unique ID  

 version plug-in version 

 path Path to plug-in library in UTF-8 encoding 

 len Length of path in bytes 

Description 

 The function loads plug-in directly from DLL into the SDK session. It is used only for 
codec plug-ins. See also MFXVideoUSER_Register function. 

Function fails if plug-in with the same type has been loaded or native SDK component 

with the same type has been initialized or plug-in with the same uid has been loaded. 

See Plug-in Distribution for more details on how the SDK loads plug-ins.  

Return Status 

 MFX_ERR_NONE The function completed successfully. 

 MFX_ERR_NOT_FOUND Plug-in library has not been found. 

 MFX_ERR_UNDEFINED_BEHAVIOR Plug-in of the same type has been loaded or the 

SDK component initialized.  

 MFX_ERR_UNKNOWN Plug-in loading has failed. 

Change History 

 This function is available since SDK API 1.13. 

 

MFXVideoUSER_UnLoad 

Syntax 

 mfxStatus MFXVideoUSER_UnLoad(mfxSession session, const mfxPluginUID 

*uid); 

Parameters 

 session SDK session handle 

 uid plugin unique ID 



   

20 SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13 

Description 

 The function unloads plug-in. Function does not check if plug-in has any task in 

execution. 

Return Status 

 MFX_ERR_NONE The function completed successfully. 

   

Change History 

 This function is available since SDK API 1.8. 

   

MFXAudioUSER 

This class of functions allows applications to specify user-defined functions to use in the AUDIO 

transcoding pipeline. 

Member Functions  

MFXAudioUSER_Register Register audio codec plug-in 

MFXAudioUSER_ProcessFrameAsync Process data using the plug-in 

MFXAudioUSER_Unregister Unregister the plug-in 

MFXAudioUSER_Load Load plug-in from dynamic link library 

MFXAudioUSER_UnLoad Unload plug-in 

 

  



   

21 SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13 

 

MFXAudioUSER_ProcessFrameAsync 

Syntax 

 mfxStatus MFXAudioUSER_ProcessFrameAsync(mfxSession session, mfxHDL *in, 

mfxU32 in_num, mfxHDL *out, mfxU32 out_num, mfxSyncPoint *syncp); 

Parameters 

 session AUDIO session handle 

 in, in_num A set of input parameters 

 out, out_num A set of output parameters 

 syncp The returned sync point 

Description 

 This asynchronous function calls back the user-defined functions to generate output 

data from input data. If successful, the function returns a sync point for synchronizing 

the output results. Otherwise, the function returns a user-defined error code. 

Return Status 

 MFX_ERR_NONE The function completed successfully. 

Change History 

 This function is available since SDK API 1.13 

   

 

MFXAudioUSER_Register 

Syntax 

 mfxStatus MFXAudioUSER_Register(mfxSession session, mfxU32 type, 

mfxPlugin *par); 

Parameters 

 session AUDIO session handle 

 type Plug-in type. See mfxPluginType for the list of 

supported plug-in types. 

 par Pointer to the mfxPlugin structure 



   

22 SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13 

Description 

 This function registers user-defined functions and initializes the USER component. See 
also MFXAudioUSER_Load function.  

Return Status 

 MFX_ERR_NONE The function completed successfully. 

Change History 

 This function is available since SDK API 1.13 

 

   

MFXAudioUSER_Unregister 

Syntax 

 mfxStatus MFXAudioUSER_Unregister(mfxSession session, mfxU32 type); 

Parameters 

 session AUDIO session handle 

 type Reserved; must be zero 

Description 

 This function removes any registered callback functions. USER becomes uninitialized 

after this function. 

The application must call this function after all active tasks are completed. 

Return Status 

 MFX_ERR_NONE The function completed successfully. 

 MFX_WRN_IN_EXECUTION Active tasks are in execution or in queue. Call back 

later after active tasks are completed. 

Change History 

 This function is available since SDK API 1.13 

   

 



   

23 SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13 

MFXAudioUSER_Load 

Syntax 

 mfxStatus MFXAudioUSER_Load(mfxSession session, const mfxPluginUID *uid, 

mfxU32 version); 

Parameters 

 session AUDIO session handle 

 uid plug-in unique ID  

 version plug-in version 

Description 

 The function loads plug-in directly from DLL into the AUDIO session. See also 

MFXAudioUSER_Register function. 

Function fails if plug-in with the same type has been loaded or native AUDIO 

component with the same type has been initialized or plug-in with the same uid has 

been loaded. 

See Plug-in Distribution for more details on how AUDIO loads plug-ins.  

Return Status 

 MFX_ERR_NONE The function completed successfully. 

 MFX_ERR_NOT_FOUND Plug-in library has not been found. 

 MFX_ERR_UNDEFINED_BEHAVIOR Plug-in of the same type has been loaded or the 

AUDIO component initialized.  

 MFX_ERR_UNKNOWN Plug-in loading has failed. 

Change History 

 This function is available since SDK API 1.13 

   

MFXAudioUSER_UnLoad 

Syntax 

 mfxStatus MFXAudioUSER_UnLoad(mfxSession session, const mfxPluginUID 

*uid); 

Parameters 



   

24 SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13 

 session AUDIO session handle 

 uid plugin unique ID 

Description 

 The function unloads plug-in. Function does not check if plug-in has any task in 

execution. 

Return Status 

 MFX_ERR_NONE The function completed successfully. 

   

Change History 

 This function is available since SDK API 1.13. 

 



   

25 SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13 

Structure Reference 

In the following structure references, initialize all reserved fields to zero at creation. 

mfxCoreInterface 

Definition 

 
typedef struct mfxCoreInterface { 

    mfxHDL pthis; 

 

    mfxHDL reserved1[2]; 

    mfxFrameAllocator FrameAllocator; 

    mfxBufferAllocator reserved3; 

 

    mfxStatus (*GetCoreParam)(mfxHDL pthis, mfxCoreParam *par); 

    mfxStatus (*GetHandle) (mfxHDL pthis, mfxHandleType type,  

                            mfxHDL *handle); 

    mfxStatus (*IncreaseReference) (mfxHDL pthis, mfxFrameData *fd); 

    mfxStatus (*DecreaseReference) (mfxHDL pthis, mfxFrameData *fd); 

    mfxStatus (*CopyFrame) (mfxHDL pthis, mfxFrameSurface1 *dst, 

                            mfxFrameSurface1 *src); 

    mfxStatus (*CopyBuffer)(mfxHDL pthis, mfxU8 *dst, mfxU32 size, 

                            mfxFrameSurface1 *src); 

 

    mfxStatus (*MapOpaqueSurface)(mfxHDL pthis, mfxU32  num, mfxU32  type, 

                                  mfxFrameSurface1 **op_surf); 

    mfxStatus (*UnmapOpaqueSurface)(mfxHDL pthis, mfxU32  num, mfxU32  type, 

                                  mfxFrameSurface1 **op_surf); 

 

    mfxStatus (*GetRealSurface)(mfxHDL pthis, mfxFrameSurface1 *op_surf, 

                                mfxFrameSurface1 **surf); 

    mfxStatus (*GetOpaqueSurface)(mfxHDL pthis, mfxFrameSurface1 *surf, 

                                  mfxFrameSurface1 **op_surf); 

 

    mfxHDL reserved4[4]; 

} mfxCoreInterface; 

Description 

 The mfxCoreInterface structure provides additional functions to assist in the 

development of user-defined functions. 

Members 

 pthis The class pointer points to the SDK internal implementation. 

When the plug-in uses any function defined in the 
mfxCoreInterface structure, pass this pthis value to the first 

argument of the function. 

 FrameAllocator Frame allocator of the current session. It should be used to 



   

26 SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13 

allocate surfaces in plug-in and to get access to surface data 

(use Lock and GetHDL functions).  

See the SDK API Reference Manual for the definition of the 

FrameAllocator structure. 

 GetCoreParam Obtain information about the current session. 

 GetHandle Obtain system handle from the current session. 

 IncreaseReference Atomically increase the frame lock counter. 

 DecreaseReference Atomically decrease the frame lock counter. 

 CopyFrame Accelerated copy from video memory surface to a system 

memory surface. 

 CopyBuffer Accelerated copy from video memory to a system memory 

buffer. 

 MapOpaqueSurface Map opaque surface to “real” one. Allocate “real” memory if 

necessary. 

 UnmapOpaqueSurface Unmap opaque surface from real one. Free “real” memory if 

necessary. 

 GetRealSurface Get “real” surface mapped to opaque one. 

 GetOpaqueSurface Get opaque surface mapped to “real” one. 

Change History 

 This structure is available since SDK API 1.1. 

 

CopyBuffer 

Syntax 

 mfxStatus (*CopyBuffer)(mfxHDL pthis, mfxU8 *dst, mfxU32 size, 

mfxFrameSurface1 *src); 

Parameters 

 pthis The pthis value of the mfxCoreInterface structure. 

 dst The destination buffer pointer in the system memory 

 size The size of the buffer in bytes 



   

27 SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13 

 src The source buffer surface in video memory 

Description 

 This function copies the linear buffer from a Direct3D9* video memory surface to a 

system memory buffer. The underlying platform accelerates the copy operation. 

The application must share its Direct3D* device with SDK or the function will fail 

because a platform-accelerated copy requires a D3D device. 

Return Status 

 MFX_ERR_NONE The function completed successfully. 

Change History 

 This function is available since SDK API 1.1. 

   

CopyFrame 

Syntax 

 mfxStatus (*CopyFrame)(mfxHDL pthis, mfxFrameSurface1 *dst, 

mfxFrameSurface1 * src); 

Parameters 

 pthis The pthis value of the mfxCoreInterface structure. 

 dst Surface in system memory 

 src Surface in video memory 

Description 

 This function copies a video memory surface to a system memory surface. The 

underlying platform accelerates the copy operation. Do not use this function for other 

combinations of destination and source memory types. 

The application must share its HW acceleration device with SDK, or this function will 

not function properly. 

Return Status 

 MFX_ERR_NONE The function completed successfully. 

Change History 

 This function is available since SDK API 1.1. 



   

28 SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13 

   

DecreaseReference 

Syntax 

 mfxStatus (*DecreaseReference)(mfxHDL pthis, mfxFrameData *fd); 

Parameters 

 pthis The pthis value of the mfxCoreInterface structure. 

 fd Pointer to the mfxFrameData structure 

Description 

 This function atomically decreases the lock counter of the mfxFrameData structure. 

Return Status 

 MFX_ERR_NONE The function completed successfully. 

   

GetCoreParam 

Syntax 

 mfxStatus (*GetCoreParam)(mfxHDL pthis, mfxCoreParam *par); 

Parameters 

 pthis The pthis value of the mfxCoreInterface structure. 

 par Pointer to the mfxCoreParam structure 

Description 

 This function returns information about the current session. 

Return Status 

 MFX_ERR_NONE The function completed successfully. 

Change History 

 This function is available since SDK API 1.1. 

   



   

29 SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13 

GetHandle 

Syntax 

 mfxStatus (*GetHandle)(mfxHDL pthis, mfxHandleType type, mfxHDL 

*handle); 

Parameters 

 pthis The pthis value of the mfxCoreInterface structure. 

 type Handle type defined in the mfxHandleType enumerator 

 handle Pointer to the handle to be returned 

Description 

 This function returns the system handle from the current session and can be used to 

retrieve SDK internal Direct3D* device handle. 

Return Status 

 MFX_ERR_NONE The function completed successfully. 

 MFX_ERR_NOT_FOUND The specified handle type is not found. 

Change History 

 This function is available since SDK API 1.1. 

   

IncreaseReference 

Syntax 

 mfxStatus (*IncreaseReference)(mfxHDL pthis, mfxFrameData *fd); 

Parameters 

 pthis The pthis value of the mfxCoreInterface structure. 

 fd Pointer to the mfxFrameData structure 

Description 

 This function atomically increases the lock counter of the mfxFrameData structure. 

Return Status 



   

30 SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13 

 MFX_ERR_NONE The function completed successfully. 

Change History 

 This function is available since SDK API 1.1. 

 

MapOpaqueSurface 

Syntax 

 mfxStatus (*MapOpaqueSurface)(mfxHDL pthis, mfxU32  num, mfxU32  type, 

mfxFrameSurface1 **op_surf); 

Parameters 

 pthis The pthis value of the mfxCoreInterface structure. 

 num The number of opaque surfaces 

 type The surface type; see the ExtMemFrameType 

enumerator in the SDK API Reference Manual for details. 

 op_surf The array pointers of the frame surfaces 

Description 

 This function maps the opaque surfaces to the native surfaces. If not already 

allocated, the function allocates the native surfaces and keeps track. This function 
does not return the allocated native surfaces. Use the GetRealSurface function to 

retrieve the native surface, and the GetOpaqueSurface function to retrieve the 

mapped opaque surface. 

Return Status 

 MFX_ERR_NONE The function completed successfully. 

Change History 

 This function is available since SDK API 1.3. 

 

UnmapOpaqueSurface 

Syntax 

 mfxStatus (*UnmapOpaqueSurface)(mfxHDL pthis, mfxU32  num, mfxU32  type, 



   

31 SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13 

mfxFrameSurface1 **op_surf); 

Parameters 

 pthis The pthis value of the mfxCoreInterface structure. 

 num The number of opaque surfaces 

 type The surface type; see the ExtMemFrameType 

enumerator in the SDK API Reference Manual for details. 

 op_surf The array of pointers to the frame surfaces 

Description 

 This function removes the mapping between the opaque surfaces and the native 

surfaces. The native surfaces are de-allocated if the SDK allocates it in the mapping 

process. 

Return Status 

 MFX_ERR_NONE The function completed successfully. 

Change History 

 This function is available since SDK API 1.3. 

 

GetRealSurface 

Syntax 

 mfxStatus (*GetRealSurface)(mfxHDL pthis, mfxFrameSurface1 *op_surf, 

mfxFrameSurface1 **surf); 

Parameters 

 pthis The pthis value of the mfxCoreInterface structure. 

 op_surf The pointer to the opaque surface 

 surf The pointer to the frame structure; the native memory 

handle is returned in the frame structure. 

Description 

 This function returns the corresponding native surface of a mapped opaque surface. 

The native surface is part of SDK internal allocations. The application should not 

delete it. The SDK will manage the surfaces. 



   

32 SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13 

Return Status 

 MFX_ERR_NONE The function completed successfully. 

Change History 

 This function is available since SDK API 1.3. 

   

GetOpaqueSurface 

Syntax 

 mfxStatus (*GetOpaqueSurface)(mfxHDL pthis, mfxFrameSurface1 *surf, 

mfxFrameSurface1 **op_surf); 

Parameters 

 pthis The pthis value of the mfxCoreInterface structure. 

 surf Pointer to the native memory structure 

 op_surf Pointer to the opaque surface structure   

Description 

 This function returns the corresponding opaque surface from a mapped native 

surface. 

Return Status 

 MFX_ERR_NONE The function completed successfully. 

Change History 

 This function is available since SDK API 1.3. 

 

mfxPlugin 

Definition 

 
typedef struct mfxPlugin{ 

    mfxHDL pthis; 

 

    mfxStatus (*PluginInit)(mfxHDL pthis, mfxCoreInterface *core); 

    mfxStatus (*PluginClose)(mfxHDL pthis); 



   

33 SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13 

 

    mfxStatus (*GetPluginParam)(mfxHDL pthis, mfxPluginParam *par); 

 

    mfxStatus (*Submit)(mfxHDL pthis, const mfxHDL *in, mfxU32 in_num, 

                        const mfxHDL *out, mfxU32 out_num,  

                        mfxThreadTask *task); 

    mfxStatus (*Execute)(mfxHDL pthis, mfxThreadTask task,  

                         mfxU32 uid_p, mfxU32 uid_a); 

    mfxStatus (*FreeResources)(mfxHDL pthis, mfxThreadTask task, 

                               mfxStatus sts); 

 

    mfxVideoCodecPlugin  *Video; 

 

    mfxHDL reserved[8]; 

} mfxPlugin; 

Description 

 The mfxPlugin structure defines the plug-in callback functions.  

Members 

 pthis Pointer to the plug-in object. The SDK passes this pointer as the 

first argument of each callback function to locate the member 

function. 

 PluginInit SDK calls this function to initialize the plug-in component and 

allocate necessary internal resources. 

 PluginClose SDK calls this function to close the plug-in component and free 

internal resources. 

 GetPluginParam SDK calls this function to obtain plug-in configuration information. 

 Submit SDK calls this function to check the validity of the I/O parameters 

and submit a task to SDK for execution. 

 Execute SDK calls this function to execute the submitted task after resolving 

all input data dependencies. 

 FreeResources SDK calls this function when task execution finishes or to cancel the 

queued task. 

 Video Pointer to video codec plug-in structure. Should be zero for general 

plug-in. 

Change History 

 This structure is available since SDK API 1.1. 

The SDK API 1.8 adds Video field. 



   

34 SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13 

Execute 

Syntax 

 mfxStatus (*Execute)(mfxHDL pthis, mfxThreadTask task, mfxU32 uid_p, 

mfxU32 uid_a); 

Parameters 

 pthis SDK passes the class pointer from the pthis field of the 

mfxPlugin structure. 

 task SDK passes the task identifier from the Submit function. 

 uid_p Unique identifier for concurrent execution. The value is 

from 0 to MaxThreadNum-1 (from the mfxPluginParam 

structure) but may not be continuous. SDK calls the 
Execute function as many times in parallel, at any 

moment, as the number of available working threads 

until the task is completed.  

 uid_a Unique identifier for the overall execution of the task. 

The value increases by 1 with each call to the Execute 

function. 

Description 

 SDK calls this function for task execution after resolving all input dependencies. See 

the Task Execution section for a detailed description. 

Return Status 

 MFX_TASK_DONE The task execution is complete. SDK signals the 

application that the asynchrous operation is complete. 

 MFX_TASK_BUSY The task execution was not completed due to an internal 

resource conflict. SDK schedules an additional task 

execution. 

 MFX_TASK_WORKING The task execution is not yet completed. SDK schedules 

an additional task execution in the same thread unless a 

higher priority task is waiting in the queue. 

 Any other values The task execution failed. SDK aborts the asynchronous 

pipeline and returns an error code to the application. 

Change History 

 This function is available since SDK API 1.1. 



   

35 SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13 

   

 

FreeResources 

Syntax 

 mfxStatus (*FreeResources)(mfxHDL pthis, mfxThreadTask task, mfxStatus 

sts); 

Parameters 

 pthis SDK passes the class pointer from the pthis field of the 

mfxPlugin structure. 

 task SDK passes the task identifier from the Submit function. 

 sts SDK passes the status return from the Execute function to this 

function. Most common returns: 

MFX_TASK_DONE Execution completed successfully. 

MFX_ERR_ABORTED Aborted previous task. 

Description 

 SDK calls this function after a task execution or to cancel any queued tasks. The 

application can now free any resources allocated for this task. 

 

Return Status 

 MFX_ERR_NONE The task cancellation was successful. 

 Any other 

values 
The task cancellation failed. The application can force SDK to 

execute the submitted/queued task by returning an error code. 

Change History 

 This function is available since SDK API 1.1. 

   

GetPluginParam 

Syntax 

 mfxStatus (*GetPluginParam)(mfxHDL pthis, mfxPluginParam *par); 



   

36 SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13 

Parameters 

 pthis SDK passes the class pointer from the pthis field of the 

mfxPlugin structure. 

 par The mfxPluginParam structure filled by the plug-in. 

   

Description 

 SDK calls this function to obtain the configurtion of the plug-in component. The plug-

in must fill the mfxPluginParam structure. 

Return Status 

 MFX_ERR_NONE The function completed succesfully. 

Change History 

 This function is available since SDK API 1.1. 

   

PluginClose 

Syntax 

 mfxStatus PluginClose(mfxHDL pthis); 

Parameters 

 pthis The class pointer passed by SDK from the pthis field of 

the mfxPlugin structure. 

Description 

 The SDK calls this function to deallocate any plugin resources. If plug-in initialization 

fails, the SDK does not call this function. 

Return Status 

 MFX_ERR_NONE The operation completed successfully. 

Change History 

 This function is available since SDK API 1.1. 

   



   

37 SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13 

PluginInit 

Syntax 

 mfxStatus PluginInit(mfxHDL pthis, mfxCoreInterface *core); 

Parameters 

 pthis SDK passes the class pointer from the pthis field of the 

mfxPlugin structure. 

 core SDK passes the mfxCoreInterface structure to provide 

a set of useful services to use in task submission or 

execution. 

   

Description 

 SDK calls this function to initialize plug-in resources. The provided mfxCoreInterface 

structure contains a set of useful services that the plug-in can use during task 

submission or execution. 

Return Status 

 MFX_ERR_NONE The operation completed successfully. 

Change History 

 This function is available since SDK API 1.1. 

   

 

  



   

38 SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13 

 

Submit 

Syntax 

 mfxStatus (*Submit)(mfxHDL pthis, mfxHDL *in, mfxU32 in_num, mfxHDL 

*out, mfxU32 out_num, mfxThreadTask *task); 

Parameters 

 pthis SDK passes the class pointer from the pthis field of the 

mfxPlugin structure. 

 in, in_num SDK passes these input parameters from the arguments 
of the MFXVideoUSER_ProcessFrameAsync 

(MFXAudioUSER_ProcessFrameAsync for AUDIO) 

function. The in variable points to an array of input 

arguments. The in_num variable specifies the number of 

input arguments. 

 out, out_num SDK passes these output parameters from the 
arguments of the MFXVideoUSER_ProcessFrameAsync 

(MFXAudioUSER_ProcessFrameAsync for AUDIO) 

function. The out variable points to an array of output 

arguments. The out_num variable specifies the number 

of output arguments. 

 Task The returned task identifier. The task identifier uses the 
mfxThreadTask pseudo type (cast to mfxHDL.) 

Description 

 SDK/AUDIO call this function to check the validity of the I/O parameters from the 
mfxVideoUSER_ProcessFrameAsync (mfxAudioUSER_ProcessFrameAsync for AUDIO) 

function. If successful, this function returns a task identifier to be queued for 

execution after SDK resolves all input dependencies. The task identifier is a user-

defined parameter that identifies the specific task to be executed. 

Return Status 

 MFX_ERR_NONE The function completed succesfully. 

 Any other values The validity check failed. SDK/AUDIO returns the status 

code to the application. 

Change History 

 This function is available since SDK API 1.1. 



   

39 SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13 

   

 

 

mfxVideoCodecPlugin 

Definition 

 
typedef struct mfxVideoCodecPlugin{ 

    mfxStatus (*Query)(mfxHDL pthis, mfxVideoParam *in, mfxVideoParam *out); 

    mfxStatus (*QueryIOSurf)(mfxHDL pthis, mfxVideoParam *par, 

                             mfxFrameAllocRequest *in,  

                             mfxFrameAllocRequest *out);  

    mfxStatus (*Init)(mfxHDL pthis, mfxVideoParam *par); 

    mfxStatus (*Reset)(mfxHDL pthis, mfxVideoParam *par); 

    mfxStatus (*Close)(mfxHDL pthis); 

    mfxStatus (*GetVideoParam)(mfxHDL pthis, mfxVideoParam *par); 

 

    mfxStatus (*EncodeFrameSubmit)(mfxHDL pthis, mfxEncodeCtrl *ctrl, 

                                   mfxFrameSurface1 *surface,  

                                   mfxBitstream *bs, mfxThreadTask *task); 

     

    mfxStatus (*DecodeHeader)(mfxHDL pthis, mfxBitstream *bs,  

                              mfxVideoParam *par); 

    mfxStatus (*GetPayload)(mfxHDL pthis, mfxU64 *ts, mfxPayload *payload); 

    mfxStatus (*DecodeFrameSubmit)(mfxHDL pthis, mfxBitstream *bs, 

                                   mfxFrameSurface1 *surface_work, 

                                   mfxFrameSurface1 **surface_out, 

                                   mfxThreadTask *task); 

 

    mfxStatus (*VPPFrameSubmit)(mfxHDL pthis,  mfxFrameSurface1 *in, 

                                mfxFrameSurface1 *out,  

                                mfxExtVppAuxData *aux, mfxThreadTask *task); 

 

    mfxHDL reserved1[5]; 

    mfxU32 reserved2[8]; 

} mfxVideoCodecPlugin; 

Description 

 The mfxVideoCodecPlugin structure together with mfxPlugin structure defines the set of 

callback functions for codec plugin, i.e. for decode, encode and VPP plug-ins.  

Irrelevant function pointers should be set to NULL. See Mandatory functions for list of 

irrelevant functions. 

Members 

 Query This plug-in function is mapped to the following API functions. I.e. if 

application calls one of the following API functions, the SDK routes 



   

40 SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13 

this call to the plug-in Query function.  

MFXVideoENCODE_Query 

MFXVideoDECODE_Query 

MFXVideoVPP_Query 

 QueryIOSurf This plug-in function is mapped to: 

MFXVideoENCODE_QueryIOSurf 

MFXVideoDECODE_QueryIOSurf 

MFXVideoVPP_QueryIOSurf 

For decode plug-in only out parameter is routed, for encode only in 

and for VPP - both. 

 Init  This plug-in function is mapped to: 

MFXVideoENCODE_Init 

MFXVideoDECODE_Init 

MFXVideoVPP_Init 

 Reset  This plug-in function is mapped to: 

MFXVideoENCODE_Reset 

MFXVideoDECODE_Reset 

MFXVideoVPP_Reset 

 Close  This plug-in function is mapped to: 

MFXVideoENCODE_Close 

MFXVideoDECODE_Close 

MFXVideoVPP_Close 

 GetVideoParam  This plug-in function is mapped to: 

MFXVideoENCODE_GetVideoParam 

MFXVideoDECODE_GetVideoParam 

MFXVideoVPP_GetVideoParam 

 EncodeFrameSubmit  This plug-in function is mapped to: 

MFXVideoENCODE_EncodeFrameAsync 

 DecodeHeader  This plug-in function is mapped to: 

MFXVideoDECODE_DecodeHeader 

 GetPayload This plug-in function is mapped to: 

MFXVideoDECODE_GetPayload 

 DecodeFrameSubmit  This plug-in function is mapped to: 

MFXVideoDECODE_DecodeFrameAsync 

 VPPFrameSubmit This plug-in function is mapped to: 

MFXVideoVPP_RunFrameVPPAsync 

Change History 

 This structure is available since SDK API 1.8. 



   

41 SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13 

mfxAudioCodecPlugin 

Definition 

 
typedef struct mfxAudioCodecPlugin{ 

    mfxStatus (*Query)(mfxHDL pthis, mfxAudioParam *in, mfxAudioParam *out); 

    mfxStatus (*QueryIOSize)(mfxHDL pthis, mfxAudioParam *par, 

                             mfxAudioAllocRequest *request);  

    mfxStatus (*Init)(mfxHDL pthis, mfxAudioParam *par); 

    mfxStatus (*Reset)(mfxHDL pthis, mfxAudioParam *par); 

    mfxStatus (*Close)(mfxHDL pthis); 

    mfxStatus (*GetAudioParam)(mfxHDL pthis, mfxAudioParam *par); 

 

    mfxStatus (*EncodeFrameSubmit)(mfxHDL pthis, mfxAudioFrame *aFrame,  

                                   mfxBitstream *out, mfxThreadTask *task); 

     

    mfxStatus (*DecodeHeader)(mfxHDL pthis, mfxBitstream *bs,  

                              mfxAudioParam *par); 

    mfxStatus (*DecodeFrameSubmit)(mfxHDL pthis, mfxBitstream *in, 

                                   mfxAudioFrame *out 

                                   mfxThreadTask *task); 

 

    mfxHDL reserved1[6]; 

    mfxU32 reserved2[8]; 

} mfxAudioCodecPlugin; 

Description 

 The mfxAudioCodecPlugin structure together with mfxPlugin structure defines the set of 

callback functions for audio codec plugin, i.e. for audio decode and encode.  

Irrelevant function pointers should be set to NULL. See Mandatory functions for list of 

irrelevant functions. 

Members 

 Query This plug-in function is mapped to the following API functions. I.e. if 

application calls one of the following API functions, AUDIO routes 
this call to the plug-in Query function.  

MFXAudioENCODE_Query 

MFXAudioDECODE_Query 

 QueryIOSize This plug-in function is mapped to: 

MFXAudioENCODE_QueryIOSize 

MFXAudioDECODE_QueryIOSize 

For decode plug-in only out parameter is routed, for encode only - 

both. 

 Init  This plug-in function is mapped to: 

MFXAudioENCODE_Init 

MFXAudioDECODE_Init 



   

42 SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13 

 Reset  This plug-in function is mapped to: 

MFXAudioENCODE_Reset 

MFXAudioDECODE_Reset 

 Close  This plug-in function is mapped to: 

MFXAudioENCODE_Close 

MFXAudioDECODE_Close 

 GetAudioParam  This plug-in function is mapped to: 

MFXAudioENCODE_GetAudioParam 

MFXAudioDECODE_GetAudioParam 

 EncodeFrameSubmit  This plug-in function is mapped to: 

MFXAudioENCODE_EncodeFrameAsync 

 DecodeHeader  This plug-in function is mapped to: 

MFXAudioDECODE_DecodeHeader 

 DecodeFrameSubmit  This plug-in function is mapped to: 

MFXAudioDECODE_DecodeFrameAsync 

  
 

Change History 

 This structure is available since SDK API 1.13. 

 

mfxCoreParam 

Definition 

 typedef struct { 

 mfxU32 reserved[13]; 

 mfxIMPL Impl; 

 mfxVersion Version; 

 mfxU32 NumWorkingThread; 

} mfxCoreParam; 

Description 

 The mfxCoreParam structure describes the current session information. 

Members 

 Impl Implementation type; See the SDK API Reference Manual for the 



   

43 SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13 

definition of the mfxIMPL structure. 

 Version API version supported; See the SDK API Reference Manual for the 
definition of the mfxVersion structure. 

 NumWorkingThread Total number of working threads in the session. When using shared 

sessions, this number refers to the number of working threads 

within the shared sessions. 

Change History 

 This structure is available since SDK API 1.1. 

   

 

 

 

  



   

44 SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13 

 

mfxPluginParam 

Definition 

 typedef struct { 

    mfxU8  Data[16]; 

} mfxPluginUID; 

 

typedef struct mfxPluginParam { 

    mfxU32  reserved[6]; 

    mfxU16  reserved1; 

    mfxU16  PluginVersion; 

    mfxVersion   APIVersion; 

    mfxPluginUID PluginUID; 

    mfxU32  Type; 

    mfxU32  CodecId; 

    mfxThreadPolicy ThreadPolicy; 

    mfxU32  MaxThreadNum; 

} mfxPluginParam; 

Description 

 The mfxPluginParam structure defines plug-in implementation informaton. 

Members 

 PluginVersion Plug-in version. It is used to indicate set of supported by plug-in 

features. Each version should be backward compatible with previous 

ones, i.e. each new version should support all functionality of old 

versions and application that worked with old versions should 

continue to work with new one. If backward compatibility cannot be 

kept, for example due to significant changes in plug-in functionality, 

the plug-in uid should be changed.  

See Plug-in Distribution for information how plug-in version is used 

during plug-in loading. 

 APIVersion API version that is supported by plug-in. It defines version of the 
SDK to plug-in interface (mfxCoreInterface and mfxCoreParam) 

and plug-in to the SDK interface (mfxPlugin, 

mfxVideoCodecPlugin, mfxPluginParam). This version should be 

equal to the version of currently loaded SDK library. 



   

45 SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13 

See Plug-in Distribution for information how API version is used 

during plug-in loading. 

 PluginUID Plugin ID. In conjunction with plug-in version, it is used to uniquely 

identify plug-in implementation. 

See Plug-in Distribution for information how this ID is used during 

plug-in loading. 

 Type Plug-in type. See mfxPluginType for the list of supported plug-in 

types. 

 CodecId Plug-in codec ID. 

 ThreadPolicy The policy defining how to thread the Execute function across 

frames (input data). See the mfxThreadPolicy enumerator for 

details. 

 MaxThreadNum The number of local storage (tables, buffers or other resources) 

allocated at initialization. This number determines the maximum 

number of concurrent threads allowed for a task execution. 

Change History 

 This structure is available since SDK API 1.1. 

The SDK API 1.8 adds PluginVersion, APIVersion, PluginUID, Type and CodecId 

fields. 

   

 



   

46 SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13 

Enumerator Reference 

mfxThreadPolicy 

Description 

 The mfxThreadPolicy enumerator defines the threading policy for how to thread the 

USER module for different input frames (data). 

Name/Description 

 MFX_THREADPOLICY_SERIAL Process frames in serial only. SDK begin next task 

(mfxThreadTask) execution only after first task is 

finished. 

 MFX_THREADPOLICY_PARALLEL Process frames in parallel. SDK may schedule 

execution of two different tasks (mfxThreadTask) 

simultaneously. 

Change History 

 This enumerator is available since SDK API 1.1. 

   

mfxPluginType 

Description 

 The mfxPluginType enumerator defines the supported type of plug-in. See 

Architecture chapter for more details.  

Name/Description 

 MFX_PLUGINTYPE_VIDEO_GENERAL    general plug-in, can be used to implement any 

kind of video processing 

 MFX_PLUGINTYPE_VIDEO_DECODE     decode plug-in 

 MFX_PLUGINTYPE_VIDEO_ENCODE encode plug-in 

 MFX_PLUGINTYPE_VIDEO_VPP VPP plug-in 

Change History 

 This enumerator is available since SDK API 1.8. 



   

47 SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13 

   

 

 

 


