SDK API
Reference Manual

Extensions for User-Defined Functions

API Version 1.13

(intel"
LEGAL DISCLAIMER

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO
LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL
PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S
TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY
WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO
SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO
FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT
DESIGNED NOR INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL
PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice.
Designers must not rely on the absence or characteristics of any features or instructions
marked "reserved" or "undefined." Intel reserves these for future definition and shall have no
responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.
The information here is subject to change without notice. Do not finalize a design with this
information.

The products described in this document may contain design defects or errors known as errata
which may cause the product to deviate from published specifications. Current characterized
errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and
before placing your product order.

Copies of documents which have an order number and are referenced in this document, or
other Intel literature, may be obtained by calling 1-800-548-4725, or by visiting Intel's Web
Site.

MPEG is an international standard for video compression/decompression promoted by ISO.
Implementations of MPEG CODECs, or MPEG enabled platforms may require licenses from
various entities, including Intel Corporation.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

*0Other names and brands may be claimed as the property of others.

Copyright © 2010-2015, Intel Corporation. All Rights reserved.

ii SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13

http://www.intel.com/
http://www.intel.com/

(intel“
Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for
optimizations that are not unique to Intel microprocessors. These optimizations include SSE2,
SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on microprocessors not
manufactured by Intel.

Microprocessor-dependent optimizations in this product are intended for use with Intel
microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for
Intel microprocessors. Please refer to the applicable product User and Reference Guides for
more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

il SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13

Table of Contents

L < T 1
Document CONVENLIONSuiiiiiiiiiii i e 1
Acronyms and Abbreviationscceviiiiii i e 1

ArChItECEUNE . 2
Using General PlUG-iN.. ... e nees 4
(W1 gTo I @leTa [Tl =] [§Ta LT o N PR 5
LA o T = 0 e o 6

TasK SUDMISSION 1viuiiiii 6
TASK EXECULION 1ttt 8
1 E= T Yo =X o] o VA {61 [t o (o] 1= 9
Working with Opaque SUMaces.ciiiiiiiii i aee e 11
Mapping and Un-mapping Opaque SUMacCESiiuiiiiiiiiiii it aenaeaes 11
ACCESSING OPAGUE SUIMACES ..ttt ittt ettt ettt e s e e et e aaa e aaaeaaeeenes 11
Plug-in DistribUtion .. .ciie i e 12
(DY at=T o oY ol Y o]l Ao =T oY/ 12
I Y= T 11 o Vo S T 12
System Wide Installation.... ..o e 13
Application Folder Installationcviiiiiiiiii e 14

Function ReferenCeooviiiiiiii e 15

1 VA T L= 10 1] = o 15
1 VAT [=To 1§ = S o Yol T o =10 g 1= AN VA o [o 16
o VAo [=To 18 IS = R =T =] =] ol P 16
T VAo [=To 18 A = 2R U o] =Te [1] o= PP 17

iv SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13

N30V A T L= 1 L] 2 1 Y= T 18
MFEXVideoUSER _LoadByPathc.ciiiiiiiii i e e e e e e 18
N 3G VA T [0 18 1] = 2 1 51 o Y= T 19
MEXAUAIOUSER ...t e e s ae s s e s s e e r e s ann e saneennes 20
MEXAUdIOUSER _ProCeSSFramEASY NC ..ttt it ittt ettt ettt e e aae et et e e aaeeaeeenneenes 21
MEXAUdIOUSER _REGISTOI ... ettt e e e e e e ees 21
MEXAUAIOUSER _UNEEGiS e ottt i s e e e e e e e e e s e ran e ran e aaneeneenes 22

N D U s [[e 10] = 2 e = o 23
N Y8 T [0 18 1] = 2 L0 1 1 1o = T 23
Structure ReferenCecovviiiiiiii e 25
MEXCOrEINEEITaCE v e 25
L] 04 = 101 (=] P 26
(600] 0}V =1 1. 1= P 27
DECrEASER O O ENCE . . e it 28
LTy o =] =1 1= o 28
GEEHANAIE .. 29

| Lol g t= [Tt A= £ =T = T ol PP 29
[F=T 010 o= Ta [U T=1 U = Lol 30
6] g g =T 01 @] o 1= [TSI YU o =Tl N 30
(T = T= I = ol PP 31
(1= @] oY= o [=1 T L =Tl = PP 32
0] 54 o 1T 1 32
= o] 1 | < 34
LTS]S0 6 1 ol = 35
(T e 1T |] == =1 o o P 35
U 1 1 [1= 36

Y, SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13

PIUGINTINIE Lottt 37

1] U1 0V o P 38

0] 274 VAo [=Te1@o T [Tl =] 18 T 1 o S 39

MIXAUAIOCOAECPIUGIN ..t e e e anee s 41

0] B Ole] =] =1 = o 42

MEXPIUGINPAram e e 44

Enumerator Referencec.cvviiiiiiii e 46

0] D a1t To | o] o A P 46

0] 4 o (8 Te 1 a1 1Y o L= PP 46
vi SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13

(intel“

Overview

Intel® Media Server Studio — SDK and Intel® Integrated Native Developer Experience Media
SDK for Windows*, further referred to as the SDK, is a software development library that
exposes the media acceleration capabilities of Intel platforms for decoding, encoding and video
processing. The API library covers a wide range of Intel platforms.

This document describes an API extension that allows user-defined functions into the
transcoding pipeline. Please refer to the SDK API Reference Manual for a complete description
of the API.

Audio for Windows* (part of Intel® Integrated Native Developer Experience 2015) and Intel®
Media Server Studio 2015 - Audio Encoder & Decoder, further referred as AUDIO is a software
library that provides audio encoding and decoding capabilities. AUDIO uses API very similar to
SDK API. For general AUDIO API details please refer to Audio API Reference Manual.

Document Conventions

The SDK API uses the Verdana typeface for normal prose. With the exception of section
headings and the table of contents, all code-related items appear in the Courier New typeface
(mxfStatus and MFXInit). All class-related items appear in all cap boldface, such as DECODE
and ENCODE. Member functions appear in initial cap boldface, such as Init and Reset, and are
members of all three classes (DECODE, ENCODE and VPP). Hyperlinks appear in underlined
boldface, such as mfxStatus.

Acronyms and Abbreviations

SDK Intel® Media Server Studio - SDK and Intel® Integrated Native Developer
Environment Media SDK for Windows*

AUDIO Audio for Windows* (part of Intel® Integrated Native Developer Experience
2015) and Intel® Media Server Studio 2015 - Audio Encoder & Decoder

CORE SDK auxiliary functions for memory allocation and asynchronous operation
synchronization

DECODE SDK decoding functions

ENCODE SDK encoding functions

AUDIO DECODE | AUDIO decoding functions

AUDIO ENCODE | AUDIO encoding functions

VPP SDK video preprocessing functions
USER SDK user-defined functions

1 SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13

(intel“

Architecture

SDK provides the USER class of functions to allow user-defined functions, also known as plug-
ins, to participate in transcoding operations. When combined with DECODE, VPP and ENCODE,
USER provides additional functionality beyond what SDK defines. Figure 1 shows three usage
examples. In the first example, the application uses custom decoder in the transcoding pipeline.
In the second one, the application adds rotation into the pipeline. In the third example, the
application opens two sessions to decode two video streams and then calls the USER class of
functions to form a composite stream for encoding.

USER I I
(decoder] VPP ENCODE]

Transcoding with custom decoder

[DECODE]—)[USER]—)[VPP]—)[ENCODE]
(Rotation)
Transcoding with rotation
[DECODE]—)[VPP]—)[USER]—)[ENCODE]
(Compositing)
7
Session 1
[DECODE]—)[VPP
Session 2

Transcoding with picture-in-picture

Figure 1: User-Defined Functions Examples

Currently USER class of functions supports both video and audio processing functionality.
Splitters and muxers have straightforward API that does not require plug-in extension and
developer can create his own component based on provided samples. See “Intel® Media
Software Development Kit Splitters and Muxers Sample” manual for more details.

The SDK supports two kinds of plug-in. First one was introduced in version 1.1 of the SDK API.
It was called general plug-in and it was intended for general kind of video processing. Although
it can support decode and encode functionality its major goal was to support complex video
processing filters. It has loosely defined interface and requires significant changes in application
to implement.

Second kind of plug-ins has been added in version 1.8 of the SDK. It is called codec plug-in and
it is intended to completely replace one of the internal SDK components: decode, encode, or
VPP. Codec plug-in uses the same API functions as native SDK component and application can
use the same code path for both native SDK component and codec plug-in. For example, to
replace AVC decoder in the existent application by HEVC one, all that application developer has

2 SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13

(intel"

to do is to load plugin and to change codec ID during decoder initialization. API for audio codec
plugins (decoding and encoding) was added in version 1.13 of the SDK.

There are six different types of plugin. One for general plug-in and three for codec plug-ins:
general - this is general type that can be used to implement any video processing
functionality. It does not replace any SDK class of functions.

decode - replaces the SDK DECODE class of functions,

encode - replaces the SDK ENCODE class of functions,

audio decode - replaces Audio DECODE class of functions,

audio encode - replaces Audio ENCODE class of functions,

VPP - replaces the SDK VPP class of functions.

There are two different ways to insert plug-in into the SDK session. First one uses
MFXVideoUSER_Register function and gives the application complete control over plugin code
location. It can be in separate DLL or part of the application. All types of plug-ins can be loaded
this way. Second one uses MFXVideoUSER_Load function and loads one of the preinstalled plug-
ins directly from DLL. General types of plug-ins cannot be loaded by this method.

The same two schemes are available for audio plugins loading (via MFXAudioUSER_Register and
MFXAudioUSER_Load functions respectively).

The SDK/AUDIO session can hold only one component of any given class of functions.
Therefore, the application could not insert plug-in if the same component has been initialized,
or plug-in with the same type has been inserted. For example, if application has initialized
native SDK decoder, any attempts to insert decoder plugin in the SDK session fails. The
application should use multiple session and session joining mechanism to deal with such
pipelines.

The USER class of functions requires the application to use an additional include file,
mfxplugin.h, besides the regular SDK include files. No additional library is required at link

time.

Include these files:
#include “mfxvideo.h”
#include “mfxvideo++.h"
#include “mfxplugin.h”
#include “mfxaudio.h”

/* SDK functions in C */

/* optional for C++ development */
/* plugin development */

/* AUDIO functions - needed for audio

plugins */
#include “mfxaudio++.h"” /* optional for C++ development for audio
plugins */
Link these libraries:
libmfx.lib /* The SDK static dispatcher library */
or
libmfx.a /* The SDK static dispatcher library */
3 SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13

(intel“

The following sections describe the USER class of functions including rules that application
developers must follow when programming with USER functions.

Using General Plug-in

Follow the procedure provided below to insert the general plug-in into the SDK pipeline.

(1) Create mfxPlugin structure with set of call back functions. Set pointer to
mfxVideoCodecPlugin structure to zero.

(2) Initialize plug-in by registering a set of callback functions through the
MFXVideoUSER Register function. The SDK invokes these callback functions during
USER operations.

(3) Once initialized, the application can use the function MFXVideoUSER ProcessFrameAsync

to process data. The function returns a sync point for result synchronization (as is done
with DECODE, VPP, or ENCODE).

(4) Close USER by unregistering it via the MFXvVideoUSER Unregister function.

When comparing USER with DECODE, VPP, and ENCODE, notice that the USER class of
functions does not support Init, Close, Query, QueryIOSurf, or GetVideoParam. This
simplification is possible because SDK does not participate in any of these operations. If
required, the application can define its own form of initialization, capability query, or status
retrieval of the user-defined functions.

The function MFXVideoUSER ProcessFrameAsync can take any number of inputs and generate
any number of outputs. The interpretation of the I/O parameters is subject to the callback
functions registered at the USER initialization stage. As per SDK convention on asynchronous
operations, the application must consider the inputs “used” and the outputs unavailable until
the application performs an explicit synchronization. However, the application can pass the
output results to any downstream SDK component such as VPP and ENCODE without
synchronization. See the Asynchronous Operation chapter in the SDK API Reference Manual for
more details on asynchronous operations.

Example 1 shows the pseudo code for transcoding with USER operations. The application
passes data fromm DECODE to VPP, VPP to USER and USER to ENCODE. Finally, the
application synchronizes the processing results and writes them to a file.

4 SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13

MEFXInit (MFX IMPL AUTO, 0, &session);
MFXVideoUSER Register (session, 0, &my user module);

MFXVideoDECODE Init (session, decoding configuration);
MFXVideoVPP Init (session, preprocessing configuration);
/* Initialize my user module */
MEFXVideoENCODE Init (session, encoding configuration);

do {
/* load bitstream to bs d */
MFXVideoDECODE DecodeFrameAsync (session, bs d, surface w, &surface d, &sync d);
MFXVideoVPP RunFrameVPPAsync (session, surface d, surface v, NULL, &sync v);
MFXVideoUSER ProcessFrameAsync (session, é&surface v, 1, &surface u, 1, &sync_u);
MFXVideoENCODE EncodeFrameAsync (session, NULL, surface u, bs e, &sync e);
MFXVideoCORE SyncOperation (session, sync_ e, INFINITE);
/* write bs e to file */

} while (!end of stream)

MFXVideoENCODE Close (session);
/* Close my user module */
MFXVideoVPP Close (session);
MFXVideoDECODE Close (session);

MFXVideoUSER Unregister (session);
MFXClose (session) ;

Example 1: Pseudo Code for transcoding with USER Operations

Using Codec Plug-in

The codec plug-in is used to insert one of the custom codec in the SDK pipeline. Unlike the
general type, the codec plug-in uses the same SDK functions for processing as native SDK
encoder, decoder, VPP and AUDIO encoder or decoder. Codec plugin defines Init, Close and
most other API functions. Therefore, the application can use the same code path to work with
native and custom decoder, encoder and VPP.

Follow one of the procedures provided below to insert the codec plug-in into the SDK pipeline.
Procedure A:

(1) Create mfxPlugin structure with set of callback functions including functions in the
mfxVideoCodecPlugin (mfxAudioCodecPlugin for AUDIO) structure. Depending on
plug-in type set irrelevant function pointers to NULL.

(2) Initialize plug-in by registering a set of callback functions through the
MFXVideoUSER Register (MFXAudioUSER Register for AUDIO) function.

(3) Once initialized, the application can use common DECODE, VPP, ENCODE, AUDIO
ENCODE or AUDIO DECODE functions to process data.

(4) Close plug-in by unregistering it via the MFXVideoUSER Unregister
(MFXAudioUSER Unregister for AUDIO) function.

5 SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13

(intel“

(1) Load plug-in by calling MFXVideoUSER Load (MFXAudioUSER Load for AUDIO)
function.

(2) Use common DECODE, ENCODE, VPP, AUDIO ENCODE and AUDIO DECODE
functions to process data.

Procedure B:

(3) Unload plug-in by calling MFXVideoUSER UnLoad (MFXAudioUSER UnLoad for AUDIO)
function.

Writing Plug-in

This section describes internal design of the SDK plug-in interface. It is relevant to all types of
plug-in. Depending on plug-in type different functions correspond to name Submit and
Process. See table below for mapping:

Plug-in Type Process Submit

General MFXVideoUSER_ ProcessFrameAsync | Submit

Decode MFXVideoDECODE DecodeFrameAsync | DecodeFrameSubmit
Encode MFXVideoENCODE EncodeFrameAsync | EncodeFrameSubmit
VPP MFXVideoVPP_RunFrameVPPAsync VPPFrameSubmit
Audio Decode MFXAudioDECODE DecodeFrameAsync | DecodeFrameSubmit
Audio Encode MFXAudioENCODE EncodeFrameAsync | EncodeFrameSubmit

Task Submission

Internally, when the application calls the Process function, the SDK performs the following
operations:

e Within the same thread, SDK calls back the function submit to check the validity of the
I/O parameters.

e If the function submit returns an error code, SDK aborts the operation and returns the
error code to the application.

6 SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13

(intel"

e If the function submit approves the I/O parameters, the function returns a task
identifier to SDK. A task identifier is a unique user-defined parameter that identifies the
work of processing the frames submitted by Process function. The SDK then schedules
the task execution based on available resources. Next, the SDK returns a sync point
back to the application for later synchronization.

This discussion introduces two new concepts: task submission and task execution. Task
submission checks the validity of the I/O parameters within the same application thread and
submits a task identifier that is executed later by SDK. Task execution is the actual execution of
the submitted task(s) within SDK internal threads.

Due to the asynchronous nature of the SDK API, the application must follow the guidelines
below when accessing I/O parameters:

Data Type

During Task Submission
(Submit)

During Task Execution
(Execute)

Frame data in system
memory

The frame data is not ready. Do
not read the frame data buffer.

Frame data in video
memory

The frame data is not ready. Do
not lock the surface or access to
the frame data.

SDK resolves the data
dependency before running
the task. The frame data is
ready to access.

Bitstream data for
decoder

The bitstream data is ready. It
is safe to read data from buffer
and move data pointer.

The bitstream buffer has
been reused by application.
Do not access it.

Bitstream data for
encoder

The bitstream data is not ready.
Do not access the bitstream
buffer.

SDK resolves the data
dependency before running
the task. The bitstream
data is ready to access.

Parameters in output
structures

The structure parameters are
available. The submit function
can overwrite output structure
parameters if necessary.

The structure parameters
are available. However, do
not overwrite parameters
unless an overwrite is
anticipated by downstream
components.

7 SDK API Reference Manual Extensions for User-Defined Functions

API Version 1.13

5-
~r
(a;

Task Execution

SDK defines two callback functions for task execution and cancellation:

Execute SDK calls this function (with the task identifier) for task

execution after resolving all input data dependencies.

FreeResources SDK calls this function (with the task identifier) after each task

completion. SDK also calls this function to cancel a task before
execution. For example, if an upstream function returns an error,
SDK aborts all subsequent queued tasks.

Parallel execution can improve performance. This is achieved by dividing a task into small units
and executing them in parallel. For example, dividing a frame into several slices and processing
each slice independently in different threads results in less overall processing time. Program the
Execute function to divide a task into small units and track the progress of execution. Note that

the SDK is not involved in task partitioning.

SDK uses the following logic to execute a task in parallel:

1.

SDK determines a value for T, the number of available concurrent threads. This number is
less than or equal to the NumWorkingThread value from the mfxCoreParam structure.

SDK determines a value for r, the maximum number of concurrent threads a plug-in can
support. This humber is less than or equal to the MaxThreadNum value from the
mfxPluginParam structure.

SDK makes parallel calls to the Execute function equal to the lesser of the values R and T.
Each Execute call has a unique uid p value ranging from zero to R-1, and an associated
uid a value that increases by 1 with each Execute call. The uid p value uniquely identifies
the current parallel execution and the uid a value identifies each Execute call during the
entire task execution.

Note: For uid p, the p stands for parallelism and for uid a, the a is the total number of
executions.

If any of the Execute function calls return MFX TASK DONE and all remaining Execute
functions complete successfully, SDK signals the application that the asynchronous
operation is complete.

If any of the Execute function calls return a failure, SDK signals the application that the
asynchronous operation failed.

If any of the Execute function calls return MFX_TASK WORKING Or MFX TASK BUSY, or a
working thread becomes available, SDK repeats the above process and schedules additional
executions.

SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13

(intel“

Assume a plug-in component is designed to run a maximum of 4 threads. At initialization, the
plug-in allocates 4 local thread resources.

Example of task execution

Also assume there are two SDK threads available. The SDK schedules two parallel Execute
function runs with uid p set to 0 and 3 (this can be any combination of two numbers from O to
3), and uid_a set to 0 and 1. The Execute function evaluates its I/O parameters and
determines that the best way to process the current frame is to use five slices, and tracks
progress of such execution.

Sometime later, while the first two Execute functions are still running, a third thread becomes
available, so the SDK runs a third Execute function with uid p set to 1 (which can also be 2,
but not 0 or 3 because these uid p values are taken by the two Execute functions currently
running), and uid a set to 2.

While the second and third Execute functions continue to run, the first Execute function (with
uid p = 3) finishes early and returns MFX TASK WORKING, signaling the SDK to immediately
schedule additional runs. If the SDK does not find a task with a higher priority, the SDK runs
the Execute function again with uid p set to 3 (or 2) and uid_a set to 3.

The process continues until one of the Execute functions returns MFX TASK DONE, signaling the
end of processing for the current frame. The SDK waits until the rest of the Execute functions
finishes running and then signals the application that the processing task is complete.

In this example, the uid a value increased by one (from 0 to 4) with each Execute call.

Mandatory functions

Each type of plug-in has different set of mandatory functions. See table below for complete list.

General set of mandatory functions:

plug-in type
general | encode | decode vpp audio audio
encode | decode

mfxPlugin
PluginInit \"/ \"/ Vv \'"/ \"; \"/
PluginClose \'"/ \"/ \" \'"/ \"; \"/
GetPluginParam Vv \" \Y/ \" Vv \"
Submit \V)
Execute \'"/ \"/ \"/ \'"/ \"; v
FreeResources \"/ \"/ Vv \'"/ \"/ \"/

9 SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13

5-
~r
(a;

Mandatory functions specific for video plugins:

plug-in type

general encode decode vpp
mfxVideoCodecPlugin
Query \"; \"; \"/
QueryIOSurf Vv Vv \"4
Init \") \' v
Reset \"/ \") \")
Close \"/ \") \")
GetVideoParam \V} \V} \Y}
EncodeFrameSubmit \V}
DecodeHeader \";
GetPayload \V}
DecodeFrameSubmit \V}
VPPFrameSubmit \Y}

Mandatory functions specific for audio plugins:

plug-in type
audio decode audio encode

mfxAudioCodecPlugin

Query \" \"/
QueryIOSize Vv \"
Init \"/ \"
Reset \"/ \"/
Close \") v

10 SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13

5-
~r
(”;

GetAudioParam \V) \V)
EncodeFrameSubmit \V)
DecodeHeader Vv
DecodeFrameSubmit \Y4

Working with Opaque Surfaces

This chapter describes how to handle opaque surfaces in the USER module. The opaque surface
concept is introduced in the SDK API 1.3. Please see the SDK API Reference Manual for details
about opaque surface.

Mapping and Un-mapping Opaque Surfaces

Opaque surfaces are frame structures with empty data buffer pointers. Before the SDK can
access surface content, the SDK needs to allocate native surfaces (for example, Direct3D9*
surfaces or system memory buffers) and maps the opaque surfaces to them. After the SDK
completes operations on the opaque surfaces, the SDK needs to remove the mapping and de-
allocate native surfaces. This is usually done inside an SDK module initialization and closing
functions.

Since the general plug-in does not have initialization or closing functions, the application needs
to call the MapOpaqueSurface function before any USER module operations on the specific
opaque surfaces. After all operations on the opaque surfaces are done, the application needs to
call the UnmapOpaqueSurface function to remove the mapping and de-allocate the native
surfaces.

For code plug-ins the best place to map opaque surfaces is Init function and to unmap them is
Close function.

Accessing Opaque Surfaces

If plug-in function works with opaque surfaces at input/output, the function needs to retrieve
the corresponding native surface by calling the GetRealsurface function. Then this real surface
can be used as usual. For example, to get access to surface data plug-in function should call
Lock function from FrameAllocator exposed by core interface.

Note that opaque surfaces and native surfaces are different identities. If the plug-in function
needs to update the surface structure parameters for output, the update should be done on the
opaque surface structures.

The plug-in function can optionally use the GetOpaqueSurface function to retrieve the opaque
surface structure from a native surface structure.

11 SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13

(intel“

Plug-in Distribution

From deployment point of view, plug-in may be implemented as either part of the application or
a separate dynamic link library. This chapter discusses DLL approach.

The SDK provides couple of auxiliary functions to simplify DLL plug-in loading -
MFXVideoUSER_Load and MFXVideoUSER UnLoad. To use these functions, plug-in developer
should properly build and install plug-in on the system. This chapter describes how to do it.

Dynamic Link Library

Plug-in should be compiled as dynamic link library (ELF shared object on Linux). That library
should expose at least one function:

mfxStatus MFX CDECL CreatePlugin (mfxPluginUID uid, mfxPlugin* plugin);
This function should accept plugin identifier and fills in mfxPlugin structure by appropriate

function pointers. Irrelevant function pointers should be set to NULL. The function should return
MFX ERR _NONE if it succeeds and any negative value otherwise.

Because this function may be called multiple times during plug-in search, it is not
recommended to perform any processing or initializations inside it. mfxPlugin: : PluginInit

function should be used instead.
The plug-in DLL should not link Media SDK Dispatcher.
Linux / Android specific

To prevent global symbol list conflicts between different plug-ins, all DLL plug-ins are
loaded with RTLD_LOCAL | RTLD_NOW flags passed to dlopen function. This means that
plugin should make no assumptions about already loaded modules and other plug-ins.

Loading

DLL plug-in loading functionality is implemented on dispatcher level. Plug-in is loading in next
steps:

1. When application calls MFXVideoUSER Load/ MFXAudioUSER Load dispatcher firstly looks
in the registry on Windows or in global configuration file on Linux for specified by
application plug-in uid.

2. If such uid is found then dispatcher reads plug-in version Vplg and plug-in API version
Vapi from registry.

3. Dispatcher compares plug-in version specified by application Vapp with plug-in version.
If Vplg<Vapp, dispatcher discards this plug-in and continues search.

4. Dispatcher compares plug-in API version with library version Vlib. Note that dispatcher
uses actual version of the loaded library, not the version provided by the application
during MFXInit call.

5. If Vapi is not equal to Vlib, dispatcher discards this plug-in and continues search.

12 SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13

(intel

6. Dispatchers creates plug-in by calling createPlugin function. If function fails,
dispatcher discards this plug-in and continues search.

7. Dispatcher registers plug-in by calling MFXVideoUSER Register/
MFXAudioUSER_Register function and returns control back to the application.

8. If dispatcher has not been able to load plug-in from registry, it continue search in local
application folder.

9. Dispatcher looks for folder with required uid. If required folder does not exist, dispatcher
stops search and returns error to the application.

10. If required folder has been found, dispatcher reads plugin.cfg file and extracts plug-in
version Vplg, plug-in API version Vapi and file name from it.

11. Dispatcher checks versions and creates plug-in as has been described on steps 3 - 7.

12.If all steps above fail, dispatcher returns error back to the application.

System Wide Installation

Plug-in should be properly described system wide (in registry on Windows or in global
configuration file on Linux) or in the local application folder. Each description is optional, but at
least one of them should be present.

Below are two templates based on HEVC encoder plug-in. GUID, PlgVer, APIVer and Path fields
are mandatory. The rest are optional and may be omitted.

[HKEY LOCAL MACHINE\SOFTWARE\Intel\MediaSDK\Dispatch\Plugin\<arbitrary name
here>]

"GUID" = hex: 2f,ca,99,74,9f,db,49,ae,bl,21,a5,b6,3e,£5,68,f7
"PluginVersion" = dword:01

"APIVersion" = dword:0108

"Path" = string:"C:\\...\\Plugin\mfxplugin32 hevce sw.dll"
"Type" = dword:02

"CodecID" = dword:43564548

"Default" = dword:00

Where

<arbitrary name here> - arbitrary name for the plug-in description. It is recommended to
have plug-in GUID as part of the name to avoid possible conflicts with other plug-ins installed
on the system. For example, <2£ca99749fdb49aebl21a5b63e£568£7 trial>;

GUID - unique plug-in identifier;

PluginVersion — plug-in version;

APIVersion — the SDK API version;

path — path to installed plug-in;

Type — codec plug-in type, see mf£xPluginType enumerator;

CodecID - codec ID, it is strongly recommended to use predefined by the SDK value. If
required value is not defined, please contact the SDK development team;

13 SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13

Default — reserved and must be zero.

Linux / Android specific

Linux/Android implementation uses global configuration file located at
/opt/intel/mediasdk/plugins/plugins.cfg. Format of this file is essentially ini-file. Each registered
plug-in should have separate section in this file.

[HEVC Decoder 15dd936825ad475ea34e35f3f54217a6]

GUID = 15dd936825ad475ea34e35£3£f54217a6

PluginVersion = 1

APIVersion = 264

Path = /opt/intel/mediasdk/plugins/libmfxplugin64 hevcd sw.so
Type =1

CodecID = HEVC

Default =0

Application Folder Installation

The plugin can be located in the application folder. Each plug-in should have separate folder.
Folder name should be equal to the plug-in uid without any dashes *-', curly brackets *{*, '} or
spaces ' . Each folder should contain plug-in configuration file and plug-in dynamic link library.

Example of folder layout:
application folder\
application.exe
2fca99749fdb49%9aebl21abb63ef568£7\
plugin.cfg
mfxplugin32 hevce sw.dll

Plug-in configuration file is plain text file that contains plugin description similar to description
in the registry. Each line should start with parameter name followed by ‘=" and then by
parameter value. Parameter value is a number or a string inside quotation marks. plgver,
APIVer, and file name (FileName32 Or FileName64) are mandatory parameters. The rest are
optional. Note that file name should represent exact file name, without any absolute or relative
path.

Example of plug-in configuration file:

PluginVersion = 1

APIVersion = 264 //0x0108

FileName32 = "mfxplugin32 hevce sw.dll"
FileName64 = "mfxplugin64 hevce sw.dll"
Type = 02 //encode

CodecID = "HEVC"

Default =0

14 SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13

(intel"

Function Reference

This section describes the SDK plug-in functions and their operations.

Each description documents only commonly used status codes. The function may return
additional status codes, such as MFX_ERR_INVALID HANDLE Oor MFX ERR NULL PTR, for example.

See the SDK API Reference Manual for details on all status codes.

MFXVideoUSER

This class of functions allows applications to specify user-defined functions to use in the SDK
transcoding pipeline.

Member Functions

MFXVideoUSER

Register

MFXVideoUSER

ProcessFrameAsync

MFXVideoUSER

Unregister

MFXVideoUSER

Load

MFXVideoUSER

LoadByPath

MFXVideoUSER

UnLoad

Register the plug-in

Process data using the plug-in

Unregister the plug-in

Load plug-in from dynamic link library

Load plug-in from dynamic link library by path

Unload plug-in

15 SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13

(intel"

MFXVideoUSER_ProcessFrameAsync

Syntax

mfxStatus MFXVideoUSER ProcessFrameAsync (mfxSession session, mfxHDL *in,
mfxU32 in num, mfxHDL *out, mfxU32 out num, mfxSyncPoint *syncp);

Parameters
session SDK session handle
in, in num A set of input parameters
out, out_num A set of output parameters
syncp The returned sync point

Description
This asynchronous function calls back the user-defined functions to generate output
data from input data. If successful, the function returns a sync point for synchronizing
the output results. Otherwise, the function returns a user-defined error code.

Return Status
MFX_ ERR_NONE The function completed successfully.

Change History

This function is available since SDK API 1.1.

MFXVideoUSER_Register

Syntax

mfxStatus MFXVideoUSER Register (mfxSession session, mfxU32 type,
mfxPlugin *par);

Parameters
session SDK session handle
type Plug-in type. See mfxPluginType for the list of
supported plug-in types.
par Pointer to the mfxPlugin structure

16 SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13

(intel
Description
This function registers user-defined functions and initializes the USER component. It
may be used for both kinds of plug-ins, general and codec. See also
MFXVideoUSER Load function.
Return Status
MFX_ ERR_NONE The function completed successfully.

Change History

This function is available since SDK API 1.1.

SDK API 1.8 extends functionality and allows registering of codec plug-ins. Before this
version of API type parameter has been reserved.

MFXVideoUSER_Unregister

Syntax

mfxStatus MFXVideoUSER Unregister (mfxSession session, mfxU32 type);

Parameters
session SDK session handle
type Reserved; must be zero

Description

This function removes any registered callback functions. USER becomes uninitialized
after this function.

The application must call this function after all active tasks are completed.
Return Status
MFX_ ERR_NONE The function completed successfully.

MFX_WRN_IN_EXECUTION Active tasks are in execution or in queue. Call back
later after active tasks are completed.

Change History

This function is available since SDK API 1.1.

17 SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13

5-
~r
(ﬂ;

MFXVideoUSER_ Load

Syntax

mfxStatus MFXVideoUSER Load (mfxSession session, const mfxPluginUID *uid,
mfxU32 version);

Parameters
session SDK session handle
uid plug-in unique ID
version plug-in version

Description

The function loads plug-in directly from DLL into the SDK session. It is used only for
codec plug-ins. See also MFXVideoUSER Register function.

Function fails if plug-in with the same type has been loaded or native SDK component
with the same type has been initialized or plug-in with the same uid has been loaded.

See Plug-in Distribution for more details on how the SDK loads plug-ins.
Return Status

MFX_ERR_NONE The function completed successfully.

MFX_ERR_NOT_FOUND Plug-in library has not been found.

MFX_ERR_UNDEFINED_ BEHAVIOR Plug-in of the same type has been loaded or the
SDK component initialized.

MFX_ ERR_UNKNOWN Plug-in loading has failed.
Change History

This function is available since SDK API 1.8.

MFXVideoUSER_LoadByPath

Syntax

mfxStatus MFXVideoUSER LoadByPath (mfxSession session, const mfxPluginUID
*uid, mfxU32 version, const mfxChar *path, mfxU32 len);

18 SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13

5-
~r
(”;

Parameters
session SDK session handle
uid plug-in unique ID
version plug-in version
path Path to plug-in library in UTF-8 encoding
len Length of path in bytes

Description

The function loads plug-in directly from DLL into the SDK session. It is used only for
codec plug-ins. See also MFXVideoUSER Register function.

Function fails if plug-in with the same type has been loaded or native SDK component
with the same type has been initialized or plug-in with the same uid has been loaded.

See Plug-in Distribution for more details on how the SDK loads plug-ins.
Return Status

MFX_ERR_NONE The function completed successfully.

MFX_ERR_NOT_FOUND Plug-in library has not been found.

MFX ERR UNDEFINED BEHAVIOR Plug-in of the same type has been loaded or the
SDK component initialized.

MFX_ ERR_UNKNOWN Plug-in loading has failed.
Change History

This function is available since SDK API 1.13.

MFXVideoUSER_UnLoad

Syntax
mfxStatus MFXVideoUSER UnLoad (mfxSession session, const mfxPluginUID
*uid) ;
Parameters
session SDK session handle
uid plugin unique ID

19 SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13

(intel,
Description

The function unloads plug-in. Function does not check if plug-in has any task in
execution.

Return Status

MFX_ERR_NONE The function completed successfully.

Change History

This function is available since SDK API 1.8.

MFXAudioUSER

This class of functions allows applications to specify user-defined functions to use in the AUDIO
transcoding pipeline.

Member Functions

MFXAudioUSER Register Register audio codec plug-in

MFXAudioUSER ProcessFrameAsync Process data using the plug-in

MFXAudioUSER Unregister Unregister the plug-in
MFXAudioUSER Load Load plug-in from dynamic link library
MFXAudioUSER UnLoad Unload plug-in

20 SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13

(intel"

MFXAudioUSER_ProcessFrameAsync

Syntax

mfxStatus MFXAudioUSER ProcessFrameAsync (mfxSession session, mfxHDL *in,
mfxU32 in num, mfxHDL *out, mfxU32 out num, mfxSyncPoint *syncp);

Parameters
session AUDIO session handle
in, in num A set of input parameters
out, out_num A set of output parameters
syncp The returned sync point

Description
This asynchronous function calls back the user-defined functions to generate output
data from input data. If successful, the function returns a sync point for synchronizing
the output results. Otherwise, the function returns a user-defined error code.

Return Status
MFX_ ERR_NONE The function completed successfully.

Change History

This function is available since SDK API 1.13

MFXAudioUSER_Register

Syntax

mfxStatus MFXAudioUSER Register (mfxSession session, mfxU32 type,
mfxPlugin *par);

Parameters
session AUDIO session handle
type Plug-in type. See mfxPluginType for the list of
supported plug-in types.
par Pointer to the mfxPlugin structure

21 SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13

(intel“

Description

This function registers user-defined functions and initializes the USER component. See
also MFXAudioUSER_Load function.

Return Status
MFX_ERR_NONE The function completed successfully.
Change History

This function is available since SDK API 1.13

MFXAudioUSER_Unregister

Syntax

mfxStatus MFXAudioUSER Unregister (mfxSession session, mfxU32 type);

Parameters
session AUDIO session handle
type Reserved; must be zero

Description

This function removes any registered callback functions. USER becomes uninitialized
after this function.

The application must call this function after all active tasks are completed.
Return Status
MFX_ ERR_NONE The function completed successfully.

MFX_WRN_IN_EXECUTION Active tasks are in execution or in queue. Call back
later after active tasks are completed.

Change History

This function is available since SDK API 1.13

22 SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13

(intel"

MFXAudioUSER_Load

Syntax

mfxStatus MFXAudioUSER Load (mfxSession session, const mfxPluginUID *uid,
mfxU32 version);

Parameters
session AUDIO session handle
uid plug-in unique ID
version plug-in version

Description

The function loads plug-in directly from DLL into the AUDIO session. See also
MFXAudioUSER_Register function.

Function fails if plug-in with the same type has been loaded or native AUDIO
component with the same type has been initialized or plug-in with the same uid has
been loaded.

See Plug-in Distribution for more details on how AUDIO loads plug-ins.
Return Status

MFX_ERR_NONE The function completed successfully.

MFX_ERR_NOT_FOUND Plug-in library has not been found.

MFX ERR UNDEFINED BEHAVIOR Plug-in of the same type has been loaded or the
AUDIO component initialized.

MFX_ ERR_UNKNOWN Plug-in loading has failed.
Change History

This function is available since SDK API 1.13

MFXAudioUSER_UnLoad

Syntax

mfxStatus MFXAudioUSER UnLoad (mfxSession session, const mfxPluginUID
*uid) ;

Parameters

23 SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13

(intel“

session AUDIO session handle
uid plugin unique ID
Description

The function unloads plug-in. Function does not check if plug-in has any task in
execution.

Return Status

MFX ERR_NONE The function completed successfully.

Change History

This function is available since SDK API 1.13.

24 SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13

Structure Reference

In the following structure references, initialize all reserved fields to zero at creation.

mfxCorelnterface

Definition

typedef struct mfxCorelInterface {

mfxHDL pthis;

mfxHDL reservedl[2];
mfxFrameAllocator FrameAllocator;
mfxBufferAllocator reserved3;

mfxStatus (*GetCoreParam) (mfxHDL pthis, mfxCoreParam *par);
mfxStatus (*GetHandle) (mfxHDL pthis, mfxHandleType type,

mfxHDL *handle) ;

mfxStatus (*IncreaseReference) (mfxHDL pthis, mfxFrameData *fd);
mfxStatus (*DecreaseReference) (mfxHDL pthis, mfxFrameData *fd);
mfxStatus (*CopyFrame) (mfxHDL pthis, mfxFrameSurfacel *dst,

mfxFrameSurfacel *src);

mfxStatus (*CopyBuffer) (mfxHDL pthis, mfxU8 *dst, mfxU32 size,

mfxFrameSurfacel *src);

mfxStatus (*MapOpaqueSurface) (mfxHDL pthis, mfxU32 num, mfxU32 type,

mfxFrameSurfacel **op surf);

mfxStatus (*UnmapOpaqueSurface) (mfxHDL pthis, mfxU32 num, mfxU32 type,

mfxFrameSurfacel **op surf);

mfxStatus (*GetRealSurface) (mfxHDL pthis, mfxFrameSurfacel *op_ surf,

mfxFrameSurfacel **surf);

mfxStatus (*GetOpaqueSurface) (mfxHDL pthis, mfxFrameSurfacel *surf,

mfxFrameSurfacel **op surf);

mfxHDL reserved4[4];

} mfxCorelInterface;

Description

The mfxCorelInterface structure provides additional functions to assist in the
development of user-defined functions.

Members

pthis

FrameAllocator

The class pointer points to the SDK internal implementation.
When the plug-in uses any function defined in the
mfxCoreInterface structure, pass this pthis value to the first
argument of the function.

Frame allocator of the current session. It should be used to

25 SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13

allocate surfaces in plug-in and to get access to surface data
(use Lock and GetHDL functions).

See the SDK API Reference Manual for the definition of the
FrameAllocator structure.

GetCoreParam Obtain information about the current session.

GetHandle Obtain system handle from the current session.
IncreaseReference Atomically increase the frame lock counter.
DecreaseReference Atomically decrease the frame lock counter.

CopyFrame Accelerated copy from video memory surface to a system

memory surface.

CopyBuffer Accelerated copy from video memory to a system memory
buffer.

MapOpaqueSurface Map opaque surface to “real” one. Allocate “real” memory if
necessary.

UnmapOpaqueSurface Unmap opaque surface from real one. Free “real” memory if
necessary.

GetRealSurface Get “real” surface mapped to opaque one.

GetOpaqueSurface Get opaque surface mapped to “real” one.

Change History

This structure is available since SDK API 1.1.

CopyBuffer

Syntax

mfxStatus (*CopyBuffer) (mfxHDL pthis, mfxU8 *dst, mfxU32 size,
mfxFrameSurfacel *src);

Parameters
pthis The pthis value of the mfxCoreInterface structure.
dst The destination buffer pointer in the system memory
size The size of the buffer in bytes

26 SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13

(intel“

src The source buffer surface in video memory
Description

This function copies the linear buffer from a Direct3D9* video memory surface to a
system memory buffer. The underlying platform accelerates the copy operation.

The application must share its Direct3D* device with SDK or the function will fail
because a platform-accelerated copy requires a D3D device.

Return Status
MFX_ERR_NONE The function completed successfully.
Change History

This function is available since SDK API 1.1,

CopyFrame

Syntax

mfxStatus (*CopyFrame) (mfxHDL pthis, mfxFrameSurfacel *dst,
mfxFrameSurfacel * src);

Parameters
pthis The pthis value of the mfxCoreInterface structure.
dst Surface in system memory
src Surface in video memory

Description
This function copies a video memory surface to a system memory surface. The

underlying platform accelerates the copy operation. Do not use this function for other
combinations of destination and source memory types.

The application must share its HW acceleration device with SDK, or this function will
not function properly.

Return Status
MFX_ERR_NONE The function completed successfully.
Change History

This function is available since SDK API 1.1.

27 SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13

s-
~r
(a;

DecreaseReference

Syntax

mfxStatus (*DecreaseReference) (mfxHDL pthis, mfxFrameData *fd);

Parameters
pthis The pthis value of the mfxCoreInterface structure.
fd Pointer to the mfxFrameData structure

Description
This function atomically decreases the lock counter of the mfxFrameData structure.
Return Status

MFX_ERR_NONE The function completed successfully.

GetCoreParam

Syntax

mfxStatus (*GetCoreParam) (mfxHDL pthis, mfxCoreParam *par) ;

Parameters
pthis The pthis value of the mfxCoreInterface structure.
par Pointer to the mfxCoreParam structure

Description

This function returns information about the current session.
Return Status

MFX_ERR_NONE The function completed successfully.
Change History

This function is available since SDK API 1.1.

28 SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13

(intel"

GetHandle

Syntax
mfxStatus (*GetHandle) (mfxHDL pthis, mfxHandleType type, mfxHDL
*handle) ;

Parameters
pthis The pthis value of the mfxCoreInterface structure.
type Handle type defined in the mfxHandleType enumerator
handle Pointer to the handle to be returned

Description

This function returns the system handle from the current session and can be used to
retrieve SDK internal Direct3D* device handle.

Return Status
MFX_ERR_NONE The function completed successfully.
MFX_ERR_NOT_FOUND The specified handle type is not found.
Change History

This function is available since SDK API 1.1.

IncreaseReference

Syntax

mfxStatus (*IncreaseReference) (mfxHDL pthis, mfxFrameData *fd);

Parameters
pthis The pthis value of the mfxCoreInterface structure.
fd Pointer to the mfxFrameData structure

Description
This function atomically increases the lock counter of the mfxFrameData structure.

Return Status

29 SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13

5-
~r
(ﬂ;

MFX_ERR_NONE The function completed successfully.
Change History

This function is available since SDK API 1.1.

MapOpaqueSurface

Syntax

mfxStatus (*MapOpaqueSurface) (mfxHDL pthis, mfxU32 num, mfxU32 type,
mfxFrameSurfacel **op surf);

Parameters
pthis The pthis value of the mfxCoreInterface structure.
num The number of opaque surfaces
type The surface type; see the ExtMemFrameType
enumerator in the SDK API Reference Manual for details.
op_surf The array pointers of the frame surfaces

Description

This function maps the opaque surfaces to the native surfaces. If not already
allocated, the function allocates the native surfaces and keeps track. This function
does not return the allocated native surfaces. Use the GetRealSurface function to
retrieve the native surface, and the GetOpaqueSurface function to retrieve the
mapped opaque surface.

Return Status
MFX ERR_NONE The function completed successfully.
Change History

This function is available since SDK API 1.3.

UnmapOpaqueSurface

Syntax

mfxStatus (*UnmapOpagqueSurface) (mfxHDL pthis, mfxU32 num, mfxU32 type,

30 SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13

(intel“

mfxFrameSurfacel **op surf);

Parameters
pthis The pthis value of the mfxCoreInterface structure.
num The number of opaque surfaces
type The surface type; see the ExtMemFrameType
enumerator in the SDK API Reference Manual for details.
op_surf The array of pointers to the frame surfaces

Description
This function removes the mapping between the opaque surfaces and the native
surfaces. The native surfaces are de-allocated if the SDK allocates it in the mapping
process.

Return Status
MEX_ERR_NONE The function completed successfully.

Change History

This function is available since SDK API 1.3.

GetRealSurface

Syntax

mfxStatus (*GetRealSurface) (mfxHDL pthis, mfxFrameSurfacel *op surf,
mfxFrameSurfacel **surf);

Parameters
pthis The pthis value of the mfxCoreInterface structure.
op_surf The pointer to the opaque surface
surf The pointer to the frame structure; the native memory

handle is returned in the frame structure.
Description
This function returns the corresponding native surface of a mapped opaque surface.

The native surface is part of SDK internal allocations. The application should not
delete it. The SDK will manage the surfaces.

31 SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13

s-
~r
(a;

Return Status
MFX_ERR_NONE The function completed successfully.
Change History

This function is available since SDK API 1.3.

GetOpaqueSurface

Syntax

mfxStatus (*GetOpaqueSurface) (mfxHDL pthis, mfxFrameSurfacel *surf,
mfxFrameSurfacel **op surf);

Parameters
pthis The pthis value of the mfxCoreInterface structure.
surf Pointer to the native memory structure
op_surf Pointer to the opaque surface structure

Description

This function returns the corresponding opaque surface from a mapped native
surface.

Return Status
MFX_ERR_NONE The function completed successfully.
Change History

This function is available since SDK API 1.3.

mfxPlugin

Definition
typedef struct mfxPlugin({
mfxHDL pthis;

mfxStatus (*PluginInit) (mfxHDL pthis, mfxCorelInterface *core);
mfxStatus (*PluginClose) (mfxHDL pthis);

32 SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13

mfxStatus

mfxStatus

mfxStatus

mfxStatus

intel)

(*GetPluginParam) (mfxHDL pthis, mfxPluginParam *par);

(*Submit) (mfxHDL pthis, const mfxHDL *in, mfxU32 in num,
const mfxHDL *out, mfxU32 out num,
mfxThreadTask *task);

(*Execute) (mfxHDL pthis, mfxThreadTask task,

mfxU32 uid p, mfxU32 uid a);

(*FreeResources) (mfxHDL pthis, mfxThreadTask task,

mfxStatus sts);

mfxVideoCodecPlugin *Video;

mfxHDL reserved[8];

} mfxPlugin;

Description

The mfxPlugin structure defines the plug-in callback functions.

Members

pthis

PluginInit

PluginClose

GetPluginParam

Submit

Execute

FreeResources

Video

Change History

Pointer to the plug-in object. The SDK passes this pointer as the
first argument of each callback function to locate the member
function.

SDK calls this function to initialize the plug-in component and
allocate necessary internal resources.

SDK calls this function to close the plug-in component and free
internal resources.

SDK calls this function to obtain plug-in configuration information.

SDK calls this function to check the validity of the I/O parameters
and submit a task to SDK for execution.

SDK calls this function to execute the submitted task after resolving
all input data dependencies.

SDK calls this function when task execution finishes or to cancel the
queued task.

Pointer to video codec plug-in structure. Should be zero for general
plug-in.

This structure is available since SDK API 1.1.

The SDK API

1.8 adds video field.

33

SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13

(intel“

Execute

Syntax

mfxStatus (*Execute) (mfxHDL pthis, mfxThreadTask task, mfxU32 uid p,
mfxU32 uid a);

Parameters

pthis SDK passes the class pointer from the pthis field of the
mfxPlugin structure.

task SDK passes the task identifier from the submit function.

uid p Unique identifier for concurrent execution. The value is
from 0 to MaxThreadNum-1 (from the mfxPluginParam
structure) but may not be continuous. SDK calls the
Execute function as many times in parallel, at any
moment, as the number of available working threads
until the task is completed.

uid_a Unique identifier for the overall execution of the task.
The value increases by 1 with each call to the Execute
function.

Description

SDK calls this function for task execution after resolving all input dependencies. See
the Task Execution section for a detailed description.

Return Status

MEFX_TASK_DONE The task execution is complete. SDK signals the
application that the asynchrous operation is complete.

MFX TASK BUSY The task execution was not completed due to an internal
resource conflict. SDK schedules an additional task
execution.

MFX TASK _WORKING The task execution is not yet completed. SDK schedules

an additional task execution in the same thread unless a
higher priority task is waiting in the queue.

Any other values The task execution failed. SDK aborts the asynchronous
pipeline and returns an error code to the application.

Change History

This function is available since SDK API 1.1.

34 SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13

5-
~r
(ﬂ;

FreeResources
Syntax
mfxStatus (*FreeResources) (mfxHDL pthis, mfxThreadTask task, mfxStatus
sts);
Parameters
pthis SDK passes the class pointer from the pthis field of the
mfxPlugin structure.
task SDK passes the task identifier from the submit function.
sts SDK passes the status return from the Execute function to this

function. Most common returns:
MFX_TASK_DONE Execution completed successfully.
MFX_ERR_ABORTED Aborted previous task.

Description

SDK calls this function after a task execution or to cancel any queued tasks. The
application can now free any resources allocated for this task.

Return Status

MFX_ERR_NONE The task cancellation was successful.
Any other The task cancellation failed. The application can force SDK to
values execute the submitted/queued task by returning an error code.

Change History

This function is available since SDK API 1.1.

GetPluginParam

Syntax

mfxStatus (*GetPluginParam) (mfxHDL pthis, mfxPluginParam *par);

35 SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13

(intel“

Parameters
pthis SDK passes the class pointer from the pthis field of the
mfxPlugin structure.
par The mfxPluginParam structure filled by the plug-in.

Description

SDK calls this function to obtain the configurtion of the plug-in component. The plug-
in must fill the mfxPluginParam structure.

Return Status
MFX_ERR_NONE The function completed succesfully.
Change History

This function is available since SDK API 1.1.

PluginClose

Syntax
mfxStatus PluginClose (mfxHDL pthis);
Parameters

pthis The class pointer passed by SDK from the pthis field of
the mfxPlugin structure.

Description

The SDK calls this function to deallocate any plugin resources. If plug-in initialization
fails, the SDK does not call this function.

Return Status
MFX ERR _NONE The operation completed successfully.
Change History

This function is available since SDK API 1.1.

36 SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13

5-
~r
(ﬂ;

Pluginlnit

Syntax

mfxStatus PluginInit (mfxHDL pthis, mfxCoreInterface *core);

Parameters
pthis SDK passes the class pointer from the pthis field of the
mfxPlugin structure.
core SDK passes the mfxCoreInterface structure to provide
a set of useful services to use in task submission or
execution.

Description

SDK calls this function to initialize plug-in resources. The provided mfxCoreInterface
structure contains a set of useful services that the plug-in can use during task
submission or execution.

Return Status
MFX_ERR_NONE The operation completed successfully.
Change History

This function is available since SDK API 1.1.

37 SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13

(intel“

Submit

Syntax

mfxStatus (*Submit) (mfxHDL pthis, mfxHDL *in, mfxU32 in num, mfxHDL
*out, mfxU32 out num, mfxThreadTask *task);

Parameters

pthis SDK passes the class pointer from the pthis field of the
mfxPlugin structure.

in, in_num SDK passes these input parameters from the arguments
of the MFXVideoUSER ProcessFrameAsync
(MFXAudioUSER ProcessFrameAsync for AUDIO)
function. The in variable points to an array of input
arguments. The in_num variable specifies the number of
input arguments.

out, out_num SDK passes these output parameters from the
arguments of the MFXVideoUSER ProcessFrameAsync
(MFXAudioUSER ProcessFrameAsync for AUDIO)
function. The out variable points to an array of output
arguments. The out_num variable specifies the number
of output arguments.

Task The returned task identifier. The task identifier uses the
mfxThreadTask pseudo type (cast to mfxHDL.)

Description

SDK/AUDIO call this function to check the validity of the I/O parameters from the
mfxVideoUSER ProcessFrameAsync (mfxAudioUSER ProcessFrameAsync for AUDIO)
function. If successful, this function returns a task identifier to be queued for
execution after SDK resolves all input dependencies. The task identifier is a user-
defined parameter that identifies the specific task to be executed.

Return Status
MFX_ERR_NONE The function completed succesfully.

Any other values The validity check failed. SDK/AUDIO returns the status
code to the application.

Change History

This function is available since SDK API 1.1.

38 SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13

mfxVideoCodecPlugin

Definition

typedef struct mfxVideoCodecPlugin{

mfxStatus
mfxStatus

mfxStatus
mfxStatus
mfxStatus
mfxStatus

mfxStatus

mfxStatus

mfxStatus
mfxStatus

mfxStatus

(*Query) (mfxHDL pthis, mfxVideoParam *in, mfxVideoParam *out);

(*QueryIOSurf) (mfxHDL pthis, mfxVideoParam *par,
mfxFrameAllocRequest *in,
mfxFrameAllocRequest *out)

(*Init) (mfxHDL pthis, mfxVideoParam *par)

(*Reset) (mfxHDL pthis, mfxVideoParam *par

(*Close) (mfxHDL pthis);

(*GetVideoParam) (mfxHDL pthis, mfxVideoParam *par);

’

)7

(*EncodeFrameSubmit) (mfxHDL pthis, mfxEncodeCtrl *ctrl,
mfxFrameSurfacel *surface,
mfxBitstream *bs, mfxThreadTask *task);

(*DecodeHeader) (mfxHDL pthis, mfxBitstream *bs,
mfxVideoParam *par);
(*GetPayload) (mfxHDL pthis, mfxU64 *ts, mfxPayload *payload);
(*DecodeFrameSubmit) (mfxHDL pthis, mfxBitstream *bs,
mfxFrameSurfacel *surface work,
mfxFrameSurfacel **surface out,
mfxThreadTask *task);

(*VPPFrameSubmit) (mfxHDL pthis, mfxFrameSurfacel *in,
mfxFrameSurfacel *out,
mfxExtVppAuxData *aux, mfxThreadTask *task);

mfxHDL reservedl[5];
mfxU32 reserved2[8];
} mfxVideoCodecPlugin;

Description

The mfxVideoCodecPlugin structure together with mfxPlugin structure defines the set of
callback functions for codec plugin, i.e. for decode, encode and VPP plug-ins.

Irrelevant function pointers should be set to NULL. See Mandatory functions for list of
irrelevant functions.

Members
Query This plug-in function is mapped to the following API functions. I.e. if
application calls one of the following API functions, the SDK routes
39 SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13

QueryIOSurf

Init

Reset

Close

GetVideoParam

EncodeFrameSubmit

DecodeHeader

GetPayload

DecodeFrameSubmit

VPPFrameSubmit

Change History

this call to the plug-in Query function.

MFXVideoENCODE_Query
MFXVideoDECODE_Query
MFXVideoVPP_ Query

This plug-in function is mapped to:

MFXVideoENCODE QueryIOSurf
MFXVideoDECODE QueryIOSurf
MFXVideoVPP_QueryIOSurf

For decode plug-in only out parameter is routed, for encode only in

and for VPP - both.

This plug-in function is mapped to:

MFXVideoENCODE Init
MFXVideoDECODE Init
MFXVideoVPP_Init

This plug-in function is mapped to:

MFXVideoENCODE Reset
MFXVideoDECODE Reset
MFXVideoVPP_Reset

This plug-in function is mapped to:

MFXVideoENCODE Close
MFXVideoDECODE Close
MFXVideoVPP_Close

This plug-in function is mapped to:

MFXVideoENCODE_GetVideoParam
MFXVideoDECODE_GetVideoParam
MFXVideoVPP_GetVideoParam

This plug-in function is mapped to:

MFXVideoENCODE EncodeFrameAsync

This plug-in function is mapped to:
MFXVideoDECODE DecodeHeader

This plug-in function is mapped to:
MFXVideoDECODE GetPayload

This plug-in function is mapped to:

MFXVideoDECODE DecodeFrameAsync

This plug-in function is mapped to:
MFXVideoVPP_RunFrameVPPAsync

This structure is available since SDK API 1.8.

40

SDK API Reference Manual Extensions for User-Defined Functions

API Version 1.13

intel)

mfxAudioCodecPlugin

Definition

typedef struct mfxAudioCodecPlugin{
mfxStatus (*Query) (mfxHDL pthis, mfxAudioParam *in,

mfxAudioParam *out) ;

mfxStatus (*QueryIOSize) (mfxHDL pthis, mfxAudioParam *par,
mfxAudioAllocRequest *request);

mfxStatus

mfxStatus
mfxStatus

*Close) (mfxHDL pthis);

*Init) (mfxHDL pthis, mfxAudioParam *par);

(

mfxStatus (*Reset) (mfxHDL pthis, mfxAudioParam *par);
(
(

*GetAudioParam) (mfxHDL pthis, mfxAudioParam *par);

mfxStatus (*EncodeFrameSubmit) (mfxHDL pthis, mfxAudioFrame *aFrame,
mfxBitstream *out, mfxThreadTask *task);

mfxStatus (*DecodeHeader) (mfxHDL pthis, mfxBitstream *bs,

mfxAudioParam *par);

mfxStatus (*DecodeFrameSubmit) (mfxHDL pthis, mfxBitstream *in,

mfxAudioFrame *out

mfxThreadTask *task);

mfxHDL reservedl[6];
mfxU32 reserved2[8];
} mfxAudioCodecPlugin;

Description

The mfxAudioCodecPlugin structure together with mfxPlugin structure defines the set of
callback functions for audio codec plugin, i.e. for audio decode and encode.

Irrelevant function pointers should be set to NULL. See Mandatory functions for list of

irrelevant functions.

Members

Query This plug-in function is mapped to the following API functions. I.e. if
application calls one of the following API functions, AUDIO routes

this call to the plug-in Query function.

MFXAudioENCODE Query
MFXAudioDECODE Query

QueryIOSize This plug-in function is mapped to:

MFXAudioENCODE QueryIOSize
MFXAudioDECODE QueryIOSize

For decode plug-in only out parameter is routed, for encode only -

both.

Init This plug-in function is mapped to:

MFXAudioENCODE Init
MFXAudioDECODE Init

41

SDK API Reference Manual Extensions for User-Defined Functions

API Version 1.13

Reset This plug-in function is mapped to:

MFXAudioENCODE Reset
MFXAudioDECODE Reset

Close This plug-in function is mapped to:

MFXAudioENCODE Close
MFXAudioDECODE Close

GetAudioParam This plug-in function is mapped to:

MFXAudioENCODE GetAudioParam
MFXAudioDECODE GetAudioParam

EncodeFrameSubmit This plug-in function is mapped to:
MFXAudioENCODE EncodeFrameAsync

DecodeHeader This plug-in function is mapped to:
MFXAudioDECODE_ DecodeHeader

DecodeFrameSubmit This plug-in function is mapped to:
MFXAudioDECODE DecodeFrameAsync

Change History

This structure is available since SDK API 1.13.

mfxCoreParam

Definition

typedef struct {
mfxU32 reserved[13];
mfxIMPL Impl;
mfxVersion Version;
mfxU32 NumWorkingThread;

} mfxCoreParam;

Description

The mfxCoreParam structure describes the current session information.

Members

Impl Implementation type; See the SDK API Reference Manual for the

42

SDK API Reference Manual Extensions for User-Defined Functions

API Version 1.13

(intel“

Version API version supported; See the SDK API Reference Manual for the
definition of the mfxVersion structure.

definition of the mfxIMPL structure.

NumWorkingThread Total number of working threads in the session. When using shared
sessions, this number refers to the number of working threads
within the shared sessions.

Change History

This structure is available since SDK API 1.1.

43 SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13

5-
~r
(”;

mfxPluginParam

Definition

typedef struct {

mfxU8 Data[l6];

} mfxPluginUID;

typedef struct mfxPluginParam {

mfxU32 reserved[6];

mfxUl6 reservedl;

mfxUl6 PluginVersion;

mfxVersion

APIVersion;

mfxPluginUID PluginUID;

mfxU32 Type;

mfxU32 CodecId;

mfxThreadPolicy ThreadPolicy;

mfxU32 MaxThreadNum;

} mfxPluginParam;

Description

The mfxPluginParam structure defines plug-in implementation informaton.

Members

PluginVersion

APIVersion

Plug-in version. It is used to indicate set of supported by plug-in
features. Each version should be backward compatible with previous
ones, i.e. each new version should support all functionality of old
versions and application that worked with old versions should
continue to work with new one. If backward compatibility cannot be
kept, for example due to significant changes in plug-in functionality,
the plug-in uid should be changed.

See Plug-in Distribution for information how plug-in version is used
during plug-in loading.

API version that is supported by plug-in. It defines version of the
SDK to plug-in interface (mfxCoreInterface and mfxCoreParam)
and plug-in to the SDK interface (mfxPlugin,
mfxVideoCodecPlugin, mfxPluginParam). This version should be
equal to the version of currently loaded SDK library.

44 SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13

PluginUID

Type

CodecId

ThreadPolicy

MaxThreadNum

Change History

(intel
See Plug-in Distribution for information how API version is used
during plug-in loading.

Plugin ID. In conjunction with plug-in version, it is used to uniquely
identify plug-in implementation.

See Plug-in Distribution for information how this ID is used during
plug-in loading.

Plug-in type. See mfxPluginType for the list of supported plug-in
types.

Plug-in codec ID.

The policy defining how to thread the Execute function across
frames (input data). See the mfxThreadPolicy enumerator for
details.

The number of local storage (tables, buffers or other resources)
allocated at initialization. This number determines the maximum
number of concurrent threads allowed for a task execution.

This structure is available since SDK API 1.1.

The SDK API 1.8 adds PluginVersion, APIVersion, PluginUID, Type ahd CodecId

fields.

45

SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13

5-
~r
(”;

Enumerator Reference

mfxThreadPolicy

Description

The mfxThreadPolicy enumerator defines the threading policy for how to thread the
USER module for different input frames (data).

Name/Description

MEFX_ THREADPOLICY_ SERIAL Process frames in serial only. SDK begin next task
(mfxThreadTask) execution only after first task is
finished.

MFX THREADPOLICY PARALLEL Process frames in parallel. SDK may schedule

execution of two different tasks (mfxThreadTask)
simultaneously.

Change History

This enumerator is available since SDK API 1.1.

mfxPluginType

Description

The mfxPluginType enumerator defines the supported type of plug-in. See
Architecture chapter for more details.

Name/Description

MFX_PLUGINTYPE_VIDEO_GENERAL general plug-in, can be used to implement any
kind of video processing

MFX_ PLUGINTYPE VIDEO DECODE decode plug-in
MFX_ PLUGINTYPE VIDEO ENCODE encode plug-in
MFX_ PLUGINTYPE VIDEO VPP VPP plug-in

Change History

This enumerator is available since SDK API 1.8.

46 SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13

5-
~r
(ﬂ;

47 SDK API Reference Manual Extensions for User-Defined Functions API Version 1.13

