
Pushing the limits of
work-stealing

Anton Malakhov
Evgeny Fiksman

Intel, Russia and Israel

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Authors

•Senior developer for Intel®
Threading Building Blocks (Intel®
TBB), since 2006, before the first
Beta release

•Patent applications for algorithms of
concurrent_hash_map and auto
partitioner

•Currently responsible for Intel TBB
task scheduler functionality and
improvements for OpenCL* runtime
team.

•linkedin.com/in/antonmalakhov

Anton
Malakhov

•Lead developer of OpenCL* runtime
for CPU and Intel® Many Integrated
Core Architecture (Intel® MIC
Architecture) since first line was
added

•Currently main focal point between
Intel’s OpenCL and Intel TBB teams,
closely working with Intel TBB team
on definition, prototyping and
deployment of new features

Evgeny
Fiksman

2

http://www.linkedin.com/in/antonmalakhov

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Background

Intel®
Xeon Phi™
coprocessor

OpenCL

Intel TBB

• Intel® Many Integrated Core
Architecture

• ~60 cores / ~240 threads

• Wide SIMD

• Heterogeneous parallel programing
on CPU, GPGPU, accelerators

• Host / Device model, C99 based

• Cross-platform, functional
portability

• Challenge: Performance portability

• Work-stealing scheduler

• Efficient load balancing

• Nested parallelism

• Containers, algorithms, locks…

• www.threadingbuildingblocks.org

3

http://www.threadingbuildingblocks.org/

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenCL on Intel Xeon Phi
coprocessor: challenges

GPGPU
applications

Short/Lightweight
kernels

Memory
Bounded

Latency
Host-Device

communication
Memory Transfer and

Compute overlap

Throughput
Increased

synchronization
overheads

High
memory
latency

Need
efficient

threading

Intel MIC
architecture

More
threads

Wider SIMD
size

Increased
overheads

work work

work workwork

distribution wrap-up

work work

work work

Less threads

work

wrap-updistribution

wo
rk

wo
rk

wo
rk

wo
rk

wo
rk

wo
rk

wo
rk

wo
rk

wo
rk

wo
rk

More threads

4

time

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Target Benchmark’s Characteristics

Native C++ reproducers on top
of OpenMP* API and Intel TBB

Small input
data size
(<=16MiB)

•feet into $L2

Fine grain
kernels

(from 8000
cycles per
thread)

Low
parallelism

<2048 items,
1-8 per thread

5

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Initial results

omp static omp dynamic
TBB 4.1
defaults

TBB 4.2 U2
defaults

opencl
partitioner

minimal 100 46 0 37 83

conformance 100 94 37 61 87

reduction 100 96 35 61 96

scan 100 7 44 60 97

spmv 100 33 51 62 92

spmv-unbalanced 11 43 39 82 100

0

10

20

30

40

50

60

70

80

90

100

P
e
r
fo

r
m

a
n

c
e
,

%

Threading:

Benchmarks

Normalized performance comparison

Configuration Info - SW Versions: Intel® C++ Intel® 64 Compiler, Version 13.1.1.163; Hardware: Intel® Xeon Phi™ Coprocessor 7120 (16GB, 1.238 GHz, 61C/244T);
MPSS Version: 3.1; Flash Version: 2.1.03.0386; Host: 2x Intel® Xeon® CPU E5-2680 0 @ 2.70GHz (16C/32T); 64GB Main Memory; OS: Red Hat Enterprise Linux Server
release 6.2 (Santiago), kernel 2.6.32-220.el6.x86_64; Benchmarks are measured only on Intel® Xeon Phi™ Coprocessor with power management disabled.
Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate performance of Intel products as measured by
those tests. Any difference in system hardware or software design or configuration may affect actual performance. Buyers should consult other sources of information to
evaluate the performance of systems or components they are considering purchasing. For more information on performance tests and on the performance of Intel products,
refer to www.intel.com/performance/resources/benchmark_limitations.htm.

6

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

General optimizations

•Tuning pause times for spin-loops

•Optimized memory layouts for less
shared cache

•Manual cache prefetching and eviction

Improve
inter-core

communication

•Reduce thieves contention on a victim

•Reduce synchronization points on
critical path

•Pin worker threads to remove outliers

Overcome
multi-core
overheads

7

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intermediate results

omp static omp dynamic
TBB 4.1
defaults

TBB 4.2 U2
defaults

opencl
partitioner

minimal 100 46 0 37 83

conformance 100 94 37 61 87

reduction 100 96 35 61 96

scan 100 7 44 60 97

spmv 100 33 51 62 92

spmv-unbalanced 11 43 39 82 100

0

10

20

30

40

50

60

70

80

90

100

P
e
r
fo

r
m

a
n

c
e
,

%

Threading:

Benchmarks

Normalized performance comparison

Configuration Info - SW Versions: Intel® C++ Intel® 64 Compiler, Version 13.1.1.163; Hardware: Intel® Xeon Phi™ Coprocessor 7120 (16GB, 1.238 GHz, 61C/244T);
MPSS Version: 3.1; Flash Version: 2.1.03.0386; Host: 2x Intel® Xeon® CPU E5-2680 0 @ 2.70GHz (16C/32T); 64GB Main Memory; OS: Red Hat Enterprise Linux Server
release 6.2 (Santiago), kernel 2.6.32-220.el6.x86_64; Benchmarks are measured only on Intel® Xeon Phi™ Coprocessor with power management disabled.
Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate performance of Intel products as measured by
those tests. Any difference in system hardware or software design or configuration may affect actual performance. Buyers should consult other sources of information to
evaluate the performance of systems or components they are considering purchasing. For more information on performance tests and on the performance of Intel products,
refer to www.intel.com/performance/resources/benchmark_limitations.htm.

8

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Load balancing challenge

One-fits-all approach needed
20% behind omp static is tolerable

OpenCL needs load balancing without killing performance
Work-stealing works against things which help OpenMP* shine

TBB assigns work to threads unevenly,

Load-balancing breaks equal distribution

Random work-stealing disrupts cache
locality

OpenMP* static schedule shines on well balanced work

No load-balancing overheads, work is
distributed equally across threads

Deterministic distribution: cache locality
on repeating workloads

9

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Work distribution through stealing:
the conception

[0;10)

[0;5)

[0;3) [5;8)

steal

Divide the range in half,
spawn tasks

Best choice for theft!

•big piece of work

•data far from victim’s hot data.

L
o

g
2

(n
)

 s
te

p
s

n = 4 tasks
P = 4 threads

[5;10)

steal

[3;5)

steal

[8;10)

Stealing
is random

any thread
can steal
from any

other thread

Non-determinism.
Slow for few tasks

across lots of threads

10

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Our work distribution issues

Distribution

• Non-determinism
cache locality

• Slow for first and
last tasks

• Irregularity
final imbalance

Executing

• Cache
locality

• Granularity

Final load
balancing

• Irregularity
induced
imbalance

• Or caused
by too small
granularity

11

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

T
im

e
 t

o
 s

ta
r
t

w
o

r
k
,

lo
w

e
r
 i
s
 b

e
tt

e
r

Thread id, sorted by the time

Intel TBB Distribution
OVERHEADS

Useful work area

OpenMP
*

Distribution

Work distribution through stealing:
challenges of big concurrency

1. Hard to find last tasks
across all task pools

– The worst case is for n == P

2. Speed of signal propagation
via binary task tree

– Classical equal splits
spread the work slower

3. Thieves contention on
victim’s lock

– Try_lock helps for P > log2 n

– But still hard to start the first
tasks..

1

2

3

ti
m

e
12

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Work distribution through stealing:
the conception (reminder)

[0;10)

[0;5)

[0;3) [5;8)

steal

[5;10)

steal

[3;5)

steal

[8;10)

Stealing
is random

any thread
can steal
from any

other thread

SPMC
(Single producer

multiple consumers)

14

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Work distribution through mailboxing:
task affinity

[0;3) [5;8) [8;10)

[0;10)

[5;10)[0;5)

[3;5)

• Deterministic distribution via mailboxing

• No contention (SPSC communication)

Intel TBB
task

affinity
15

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Work distribution through mailboxing:
uneven task tree

• Sending signal is faster than receiving it

• Earlier threads produce more tasks than
later threads (not serialized!)

• Split in a proportion, not in half

Unbalanced
(lopsided)
task tree

[7;10)

[5;7)

[3;5)[0;3)

[0;10)

[0;7)

[0;5)

16

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Start of 240 tasks, 1 per thread

Configuration Info - SW Versions: Intel® C++ Intel® 64 Compiler, Version 13.1.1.163; Hardware: Intel® Xeon Phi™ Coprocessor 7120 (16GB, 1.238 GHz, 61C/244T);
MPSS Version: 3.1; Flash Version: 2.1.03.0386; Host: 2x Intel® Xeon® CPU E5-2680 0 @ 2.70GHz (16C/32T); 64GB Main Memory; OS: Red Hat Enterprise Linux Server
release 6.2 (Santiago), kernel 2.6.32-220.el6.x86_64; Benchmarks are measured only on Intel® Xeon Phi™ Coprocessor with power management disabled.
Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate performance of Intel products as measured by
those tests. Any difference in system hardware or software design or configuration may affect actual performance. Buyers should consult other sources of information to
evaluate the performance of systems or components they are considering purchasing. For more information on performance tests and on the performance of Intel products,
refer to www.intel.com/performance/resources/benchmark_limitations.htm.

17

ti
m

e

T
im

e
 t

o
 s

ta
rt

 w
o
rk

,
lo

w
e
r

is
 b

e
tt

e
r

Thread id, sorted by the time

Stealing Mailbox Uneven Mailboxing OpenMP

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Distribution: work’s point of view

0 N

The thread, timeline

Thread 1

18

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Simple work distribution: splitting

Thread 1

Thread 2

Thread 3

Splits into equal halves imbalance on non-power-of-2 # of CPUs

19

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Simple work distribution: balancing

Thread 1

Thread 2

Thread 3

Can lead to inefficient stealing at the end, small grain-sizes

Stealing

Stealing

20

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Proportional splitting

Thread 1

Thread 2

Thread 3

Split into uneven halves
proportionally to # of tasks

Even
distribution

No artificial
imbalance

21

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Premature stealing in Intel TBB

Thread 1

Thread 2

Stealing can occur earlier than the work supposed for the thread arrives

Work will arrive hereStealing

. . .Thread 3

22

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Premature stealing in Intel TBB

Thread 1

Thread 2

Thread 3

Premature
stealing

Load
imbalance

Broken cache
locality

P
re

m
a
tu

re

s
te

a
lin

g

Stealing

23

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Solving last problems

Thread 1

Thread 2

Thread 3

RDTSC is used to put a ban
on sharing the work

Also coarsen grain-size
during this interval

24

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Configuration Info - SW Versions: Intel® C++ Intel® 64 Compiler, Version 13.1.1.163; Hardware: Intel® Xeon Phi™ Coprocessor 7120 (16GB, 1.238 GHz, 61C/244T);
MPSS Version: 3.1; Flash Version: 2.1.03.0386; Host: 2x Intel® Xeon® CPU E5-2680 0 @ 2.70GHz (16C/32T); 64GB Main Memory; OS: Red Hat Enterprise Linux Server
release 6.2 (Santiago), kernel 2.6.32-220.el6.x86_64; Benchmarks are measured only on Intel® Xeon Phi™ Coprocessor with power management disabled.
Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate performance of Intel products as measured by
those tests. Any difference in system hardware or software design or configuration may affect actual performance. Buyers should consult other sources of information to
evaluate the performance of systems or components they are considering purchasing. For more information on performance tests and on the performance of Intel products,
refer to www.intel.com/performance/resources/benchmark_limitations.htm.

Effect of automatic initial grain-size

25

0%

20%

40%

60%

80%

100%

Coarse Medium Small Auto

P
e
r
fo

r
m

a
n

c
e

Initial grain-size

spmv spmv-unbalanced

Universal solution provides good
performance for both balanced and

unbalanced workloads

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Fits the
Goal!

Final results

omp static omp dynamic
TBB 4.1
defaults

TBB 4.2 U2
defaults

opencl
partitioner

minimal 100 46 0 37 83

conformance 100 94 37 61 87

reduction 100 96 35 61 96

scan 100 7 44 60 97

spmv 100 33 51 62 92

spmv-unbalanced 11 43 39 82 100

0

10

20

30

40

50

60

70

80

90

100

P
e
r
fo

r
m

a
n

c
e
,

%

Threading:

Benchmarks

Normalized performance comparison

Configuration Info - SW Versions: Intel® C++ Intel® 64 Compiler, Version 13.1.1.163; Hardware: Intel® Xeon Phi™ Coprocessor 7120 (16GB, 1.238 GHz, 61C/244T);
MPSS Version: 3.1; Flash Version: 2.1.03.0386; Host: 2x Intel® Xeon® CPU E5-2680 0 @ 2.70GHz (16C/32T); 64GB Main Memory; OS: Red Hat Enterprise Linux Server
release 6.2 (Santiago), kernel 2.6.32-220.el6.x86_64; Benchmarks are measured only on Intel® Xeon Phi™ Coprocessor with power management disabled.
Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate performance of Intel products as measured by
those tests. Any difference in system hardware or software design or configuration may affect actual performance. Buyers should consult other sources of information to
evaluate the performance of systems or components they are considering purchasing. For more information on performance tests and on the performance of Intel products,
refer to www.intel.com/performance/resources/benchmark_limitations.htm.

26

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Summary

Almost closed gaps with OpenMP* static

Major solutions:

Using task
affinity

Unbalanced
task tree

Even work
distribution

Adaptive
delay

Dynamic
grain-size

Started from up to 3x gap with OpenMP* static

27

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS
DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR
IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on
Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using
specific computer systems, components, software, operations and functions. Any change to any of
those factors may cause the results to vary. You should consult other information and performance
tests to assist you in fully evaluating your contemplated purchases, including the performance of that
product when combined with other products.

Copyright © , Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon, Xeon Phi, Core,
VTune, and Cilk are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and
other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended
for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for
Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information
regarding the specific instruction sets covered by this notice.

Notice revision #20110804

Legal Disclaimer & Optimization Notice

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

28

*Other names and brands may be claimed as the property of others.

29

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Executing and stealing tasks

Thread 1

Thread 2

Thread 3

Thread 4

root

task B

task A

task A

Thread 1 task pool (deque)

task B

Timeline t

root

tailhead tail

30

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Executing and stealing tasks

rootThread 1

Thread 2

Thread 3

Thread 4

root

task B

task A

task A

Timeline t

task B

task D task C

task C task D

task A

task D

Thread 1 task pool (deque)

head tail tail tailhead

31

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Executing and stealing tasks

rootThread 1

Thread 2

Thread 3

Thread 4

root

task B task A

Timeline t

task B

task D task C

task C

task A

task D

task Etask F

task E task F

task C

task E

Thread 1 task pool (deque)

head tail tailhead head

32

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Executing and stealing tasks

rootThread 1

Thread 2

Thread 3

Thread 4

root

task B task A

Timeline t

task B

task D task C

task A

task D

task Etask F

task F

task C

task E

Thread 1 task pool (deque)

tailhead

when (tail – head) > 1, adding or taking tasks

by local owner from a task pool is lock free

executing from the back (newest)

stealing from the front (old/large)

33

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

0

10

20

30

40

50

60

70

O
c
c
u
rr

e
n
c
e
 a

c
ro

s
s
 t

h
re

a
d
s

Time to start work

Stealing

Mailboxing

Uneven Mailboxing

Distribution of 240 tasks to its
threads

Configuration Info - SW Versions: Intel® C++ Intel® 64 Compiler, Version 13.1.1.163; Hardware: Intel® Xeon Phi™ Coprocessor 7120 (16GB, 1.238 GHz, 61C/244T);
MPSS Version: 3.1; Flash Version: 2.1.03.0386; Host: 2x Intel® Xeon® CPU E5-2680 0 @ 2.70GHz (16C/32T); 64GB Main Memory; OS: Red Hat Enterprise Linux Server
release 6.2 (Santiago), kernel 2.6.32-220.el6.x86_64; Benchmarks are measured only on Intel® Xeon Phi™ Coprocessor with power management disabled.
Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate performance of Intel products as measured by
those tests. Any difference in system hardware or software design or configuration may affect actual performance. Buyers should consult other sources of information to
evaluate the performance of systems or components they are considering purchasing. For more information on performance tests and on the performance of Intel products,
refer to www.intel.com/performance/resources/benchmark_limitations.htm.

34

