
1

With the Intel® RealSense™ SDK, you have

access to robust, natural human-computer

interaction (HCI) algorithms such as face

tracking, finger tracking, gesture recognition,

speech recognition and synthesis, fully

textured 3D scanning and enhanced depth

augmented reality.

Using the SDK and Unity* software you can

create Windows* applications and games that

offer innovative user experiences.

In this tutorial, you’ll learn how to use the SDK

to capture color and depth images from your

input device. An application can render image

samples within a loop and output the video

data streams to a screen or output file.

By the end of this tutorial you’ll be ready to

start using the hand tracking and other

algorithm modules in Unity software with the

C# programming language.

Capturing Raw Streams

Tutorial
Using Unity* Software

Intel® RealSense™

SDK 2014

Intel® RealSense™ SDK Unity Capturing Raw Streams Tutorial 2

Contents

 Overview

 Creating a Session

 Capturing Color and Depth Streams

 Rendering Depth and Color Streams

 Cleaning Up the Pipeline

 Running the Code Samples

 To learn more

3 Intel® RealSense™ SDK Unity Capturing Raw Streams Tutorial

Overview

The Intel RealSense SDK supports two types of modules: input/output modules and algorithm

modules. This tutorial shows you how to implement I/O modules, and later tutorials show you

how to implement algorithm modules.

This tutorial shows how to capture aligned color and depth samples, but it is also possible to

capture them individually (unaligned). Capturing unaligned samples may be useful if you

require a high frame rate for streaming depth data.

You can use either procedural calls (used in this tutorial) or event callbacks to capture data,

and code samples are provided for both (see Table 1). Using event callbacks is usually

preferred when developing console applications; procedural calls are often used for GUI

applications.

Table 1: Code Samples

Code Sample For more information, see:

Capturing aligned or unaligned color and

depth streams using procedural calls

File: RawDataCapture.cs

This Tutorial. Also see Color and Depth

Samples using the SenseManager

sections in the SDK Reference Manual.

Capturing aligned or unaligned color and

depth streams using event callbacks

Color and Depth Samples using the

SenseManager Events sections in the

SDK Reference Manual.

 The depth stream can be used to innovatively show the user what exactly the

RealSense Camera sees in your application.

https://software.intel.com/sites/landingpage/realsense/camera-sdk/v1.1/documentation/html/index.html?manuals_color_and_depth_picture_alignment.html
https://software.intel.com/sites/landingpage/realsense/camera-sdk/v1.1/documentation/html/index.html?manuals_color_and_depth_picture_alignment.html
https://software.intel.com/sites/landingpage/realsense/camera-sdk/v1.1/documentation/html/index.html?manuals_color_and_depth_picture_alignment.html
https://software.intel.com/sites/landingpage/realsense/camera-sdk/v1.1/documentation/html/index.html?manuals_color_and_depth_picture_alignment.html

Intel® RealSense™ SDK Unity Capturing Raw Streams Tutorial 4

Creating a Session

The SDK core is represented by two interfaces:

 PXCMSession: manages all of the modules of the SDK

 PXCMSenseManager: organizes a pipeline by starting, stopping, and pausing the

operations of its various modalities.

The first step when creating an application that uses the Intel RealSense SDK is to create a

session. A session can be created explicitly by creating an instance of PXCMSession. Each

session maintains its own pipeline that contains the I/O and algorithm modules.

Another way of creating a session is by creating an instance of the PXCMSenseManager using

CreateInstance. The PXCMSenseManager implicitly creates a session internally. Do this in the

Start function before calling the Update method.

 /// <summary>

 /// Use this for initialization

 /// Unity function called on the frame when a script is enabled

 /// just before the Update method is called the first time.

 /// </summary>

 void Start () {

 /* Initialize a PXCMSenseManager instance */

 psm = PXCMSenseManager.CreateInstance();

 if (psm == null){

 Debug.LogError("SenseManager Initialization Failed");

 return;

 }

 }

5 Intel® RealSense™ SDK Unity Capturing Raw Streams Tutorial

Initializing the Pipeline

1. Add the color and depth streams to the pipeline using the EnableStream function as

separate calls.

a. Specify the stream types STREAM_TYPE_COLOR and STREAM_TYPE_DEPTH from

PXCCapture.

b. Specify the resolution (width and height) of the streams.

2. Initialize the pipeline with the Init function so that the requested stream samples can be

processed.

 Color stream resolution can support up to 1920x1080 pixels; you can configure

various frame rates as well.

 The SDK also gives you access to left, right, and IR camera feeds.

Note: If a stream is not available with the specified settings, the camera will not stream—to

indicate the settings are incorrect. When the settings are correct, Init function will return

PXC_STATUS_NO_ERROR status.

 /// <summary>

 /// Use this for initialization

 /// Unity function called on the frame when a script is enabled

 /// just before any of the Update methods is called the first time

 /// </summary>

 void Start ()

 {

 /* Initialize a PXCMSenseManager instance */

 psm = PXCMSenseManager.CreateInstance();

 if (psm == null){

 Debug.LogError("SenseManager Initialization Failed");

 return;

 }

 /* Enable the depth stream of size 640x480 and color stream of size 640x480 */

 psm.EnableStream(PXCMCapture.StreamType.STREAM_TYPE_DEPTH, 640, 480);

 psm.EnableStream(PXCMCapture.StreamType.STREAM_TYPE_COLOR, 640, 480);

 /* Initialize the execution pipeline */

 sts = psm.Init();

 if (sts != pxcmStatus.PXCM_STATUS_NO_ERROR){

 Debug.LogError("PXCMSenseManager.Init Failed");

 OnDisable(); // Clean-up

 return;

 }
 }

Intel® RealSense™ SDK Unity Capturing Raw Streams Tutorial 6

Capturing Color and Depth Streams

1. Perform all processing in the Update function, which Unity software calls every frame.

2. In every Update (per frame), first use the AcquireFrame function:

a. TRUE (aligned) to wait for both color and depth samples to be ready in a given frame;

else

b. FALSE (unaligned) to return whenever either of the two samples are ready.

3. Retrieve an instance of sample from PXCMCapture.Sample through the QuerySample

function.

4. Retrieve and render the individual color and depth images from the sample as explained in

the next section of this tutorial.

5. Release the frame for reading the next samples (color + depth) through the ReleaseFrame

function.

 /// <summary>

 /// Update is called every frame by Unity, if the MonoBehaviour is enabled.

 /// </summary>

 void Update () {

 /* Make sure PXCMSenseManager Instance is Initialized */

 if (psm == null) return;

 /* Wait until any frame data is available true(aligned) false(unaligned) */

 if (psm.AcquireFrame(true) != pxcmStatus.PXCM_STATUS_NO_ERROR) return;

 /* Retrieve a sample from the camera */

 PXCMCapture.Sample sample = psm.QuerySample();

 if (sample != null)

 {

 /*Retrieve and render the individual color and depth images */

 }

 /* Release the frame to process the next frame */

 psm.ReleaseFrame();

 }

7 Intel® RealSense™ SDK Unity Capturing Raw Streams Tutorial

Rendering Depth and Color Streams

1. Retrieve a sample image instance using sample.depth or sample.color.

2. If a Texture2D is not allocated (for the first time):

a. Retrieve the sample image’s resolution using image.info.width and

image.info.height along with the TextureFormat and allocate the Texture2D.

b. Associate the Texture2D with a gameObject with a mesh to render the texture by

setting gameObject.renderer.material.mainTexture to the allocated Texture2D.

3. Retrieve the image data by using AcquireAccess on the sample image with the appropriate

access type and pixel format, in this case, PXCMImage.Access and

PXCMImage.PixelFormat.

4. Convert the image data to a texture using imageData.ToTexture2D.

5. Release the Access on the sample image using sampleImage.ReleaseAccess.

6. Apply the updated texture onto the gameObject mesh using Texture2D.Apply.

7. Repeat the same approach for the color data.

 /// <summary>

 /// Update is called every frame by Unity, if the MonoBehaviour is enabled.

 /// </summary>

 {

 depthImage = sample.depth;

 if (depthImage != null)

 {

 if (depthTexture2D == null)

 {

 /* If not allocated, allocate a Texture2D */

 depthTexture2D = new Texture2D(depthImage.info.width, depthImage.info.height,

TextureFormat.ARGB32, false);

 /* Associate the Texture2D with a gameObject */

 depthPlane.renderer.material.mainTexture = depthTexture2D;

 depthPlane.renderer.material.mainTextureScale = new Vector2(-1f, 1f); // for a mirror effect

 }

 /* Retrieve the image data in Texture2D */

 PXCMImage.ImageData depthImageData;

depthImage.AcquireAccess(PXCMImage.Access.ACCESS_READ,

PXCMImage.PixelFormat.PIXEL_FORMAT_RGB32, out depthImageData);

 depthImageData.ToTexture2D(0, depthTexture2D);

 depthImage.ReleaseAccess(depthImageData);

 /* Apply the texture to the GameObject to display on */

 depthTexture2D.Apply();

 }

 }

Intel® RealSense™ SDK Unity Capturing Raw Streams Tutorial 8

Cleaning Up the Pipeline

After your application is done capturing and rendering samples, you must “clean up”. This is

done in the OnDisable function, which Unity software calls right before the behavior is

disabled.

1. Check to make sure that PXCMSenseManager is already released.

2. If not, close all the last opened streams and release any session and processing module

instances using Dispose() on the PXCMSenseManager instance.

Now you have all the information to configure, capture, render, and display raw color and

depth data from input streams using your device.

 /// <summary>

 /// Unity function that is called when the behaviour becomes disabled () or inactive.

 /// Used for clean-up in the end

 /// </summary>

 void OnDisable()

 {

 if (psm == null) return;

 psm.Dispose();

 }

9 Intel® RealSense™ SDK Unity Capturing Raw Streams Tutorial

Running the Code Sample

You can run the Unity* tutorial code sample by running the RawDataCapture scene in Unity

software.

Figures 1 shows the output when capturing and rendering aligned color and depth streams

from the RawDataCapture.cs unity code sample.

Figure 1. Rendered Color and Depth Streams

https://software.intel.com/en-us/realsense/documentation

Intel® RealSense™ SDK Unity Capturing Raw Streams Tutorial 10

To learn more

 The SDK Reference Manual is your complete reference guide and contains API

definitions, advanced programming techniques, frameworks, and other need-to-know

topics.

 You can use PXC[M]CaptureManager to query a PXC[M]Capture device in order to

manipulate camera behavior such as DepthConfidenceThreshold, IVCAMAccuracy,

MirrorMode, , IVCAMMotionRangeTradeOff, etc. Refer to the Interface and Function

Reference : Essential section in the SDK Reference Manual.

 You can extract z-depth data from the depth samples using data.planes[0]. Refer to

the Access Image and Audio Data section in the SDK Reference Manual.

https://software.intel.com/sites/landingpage/realsense/camera-sdk/v1.1/documentation/html/index.html
https://software.intel.com/sites/landingpage/realsense/camera-sdk/v1.1/documentation/html/index.html?pxccapturemanager.html
https://software.intel.com/sites/landingpage/realsense/camera-sdk/v1.1/documentation/html/index.html?pxccapture.html
https://software.intel.com/sites/landingpage/realsense/camera-sdk/v1.1/documentation/html/index.html?setdepthconfidencethreshold_device_pxccapture.html
https://software.intel.com/sites/landingpage/realsense/camera-sdk/v1.1/documentation/html/index.html?setivcamaccuracy_device_pxccapture.html
https://software.intel.com/sites/landingpage/realsense/camera-sdk/v1.1/documentation/html/index.html?setmirrormode_device_pxccapture.html
https://software.intel.com/sites/landingpage/realsense/camera-sdk/v1.1/documentation/html/index.html?setivcammotionrangetradeoff_device_pxccapture.html
https://software.intel.com/sites/landingpage/realsense/camera-sdk/v1.1/documentation/html/index.html?manuals_interface_and_function_reference_core.html
https://software.intel.com/sites/landingpage/realsense/camera-sdk/v1.1/documentation/html/index.html?manuals_interface_and_function_reference_core.html
https://software.intel.com/sites/landingpage/realsense/camera-sdk/v1.1/documentation/html/index.html?manuals_image_and_audio_data.html

