
SDK Developer Reference
API Version 1.27

LEGAL DISCLAIMER

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL
OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND
CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR
IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS
FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY
RIGHT.

UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY APPLICATION IN
WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or
characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no
responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change
without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from
published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling
1-800-548-4725, or by visiting Intel's Web Site.

MPEG is an international standard for video compression/decompression promoted by ISO. Implementations of MPEG CODECs, or MPEG
enabled platforms may require licenses from various entities, including Intel Corporation.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other
countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2007-2018, Intel Corporation. All Rights reserved.

http://www.intel.com/

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel.

Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific
to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more
information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

1
4
9
9
9

10
10
10
10
11
11
11
11
11
12
12

12
13
13
13
14
14
14
14
15
15
15
16
16
16
17
17
17

20
21
21
21
21
22
22
22

22
23
23
23
23
24
24
24
24
24
25
25
25
26
26
26
26

26
27
27
28
28
29

29
29
29
29
30
30

Table of Contents

SDK Developer Reference
Table of Contents
Overview

Document Conventions
Acronyms and Abbreviations

Architecture
Figure 1: SDK Function Naming Convention
Figure 2: SDK Library Dispatching Mechanism
Video Decoding
Video Encoding
Video Processing

Figure 3: Video Processing Operation Pipeline
Table 1: Video Processing Features
Table 2: Color Conversion Support in VPP*
Table 3: Deinterlacing/Inverse Telecine Support in VPP
Table 4: Color formats supported by VPP filters

Programming Guide
Status Codes
SDK Session

Multiple Sessions
Frame and Fields

Frame Surface Locking
Decoding Procedures

Bitstream Repositioning
Example 1: Decoding Pseudo Code

Multiple Sequence Headers
Broken Streams Handling

Encoding Procedures
Configuration Change

Example 2: Encoding Pseudo Code
External Bit Rate Control

Figure 4: Asynchronous Encoding Flow With External BRC
Example 3: External BRC Pseudo Code

Video Processing Procedures
Example 4: Video Processing Pseudo Code
Configuration

Table 4 Configurable VPP filters
Example 5: Configure Video Processing

Region of Interest
Figure 5: VPP Region of Interest Operation
Table 5: Examples of VPP Operations on Region of Interest

Transcoding Procedures
Asynchronous Pipeline

Example 6: Pseudo Code of Asynchronous Pipeline Construction
Example 7: Pseudo Code of Asynchronous ENC->ENCODE Pipeline Construction

Surface Pool Allocation
Example 8: Calculate Surface Pool Size

Pipeline Error Reporting
Working with hardware acceleration

Figure 6 Usage of video memory for hardware acceleration
Working with Microsoft* DirectX* Applications

Example 9 Setting multithreading mode
Table 6: Supported SDK Surface Types and Color Formats for Direct3D9
Table 7: Supported SDK Surface Types and Color Formats for Direct3D11

Working with VA API Applications
Example 10 Obtaining VA display from X Window System
Example 11 Obtaining VA display from Direct Rendering Manager
Table 8: Supported SDK Surface Types and Color Formats for VA API

Memory Allocation and External Allocators
Example 12: Example Frame Allocator

Surface Type Neutral Transcoding
Example 13: Pseudo-Code of Opaque Surface Procedure

Hardware Device Error Handling
Example 14: Pseudo-Code to Handle MFX_ERR_DEVICE_BUSY

Function Reference
Global Functions

MFXCloneSession
MFXClose
MFXDoWork
MFXDisjoinSession

30
31
31
31
32
32
32
33
33
33
34
34
34
34
35
35
36
36
37
37
37
38
38
39
39
39
40
40
40
41
41
41
42
42
43
43
44
44
44
45
45
45
46
46
47
47
48
48
49
49
49
49

50
50
51
51
51
52
52
52
53
53
54
54
55
55
57
60
64
64
65

MFXGetPriority
MFXInit
MFXInitEx
MFXJoinSession
MFXQueryIMPL
MFXQueryVersion
MFXSetPriority

MFXVideoCORE
MFXVideoCORE_SetHandle
MFXVideoCORE_GetHandle
MFXVideoCORE_SetBufferAllocator
MFXVideoCORE_SetFrameAllocator
MFXVideoCORE_QueryPlatform
MFXVideoCORE_SyncOperation

MFXVideoENCODE
MFXVideoENCODE_Query
MFXVideoENCODE_QueryIOSurf
MFXVideoENCODE_Init
MFXVideoENCODE_Reset
MFXVideoENCODE_Close
MFXVideoENCODE_GetVideoParam
MFXVideoENCODE_GetEncodeStat
MFXVideoENCODE_EncodeFrameAsync

MFXVideoENC
MFXVideoENC_Query
MFXVideoENC_QueryIOSurf
MFXVideoENC_Init
MFXVideoENC_Reset
MFXVideoENC_Close
MFXVideoENC_GetVideoParam
MFXVideoENC_ProcessFrameAsync

MFXVideoDECODE
MFXVideoDECODE_DecodeHeader
MFXVideoDECODE_Query
MFXVideoDECODE_QueryIOSurf
MFXVideoDECODE_Init
MFXVideoDECODE_Reset
MFXVideoDECODE_Close
MFXVideoDECODE_GetVideoParam
MFXVideoDECODE_GetDecodeStat
MFXVideoDECODE_GetPayload
MFXVideoDECODE_SetSkipMode
MFXVideoDECODE_DecodeFrameAsync

MFXVideoVPP
MFXVideoVPP_Query
MFXVideoVPP_QueryIOSurf
MFXVideoVPP_Init
MFXVideoVPP_Reset
MFXVideoVPP_Close
MFXVideoVPP_GetVideoParam
MFXVideoVPP_GetVPPStat
MFXVideoVPP_RunFrameVPPAsync

Structure Reference
mfxBitstream
mfxBufferAllocator

Alloc
Free
Lock
Unlock

mfxDecodeStat
mfxEncodeCtrl
mfxEncodeStat
mfxExtBuffer
mfxExtAVCRefListCtrl
mfxExtAVCRefLists
mfxExtCodingOption
mfxExtCodingOption2
mfxExtCodingOption3
mfxExtCodingOptionSPSPPS
mfxExtOpaqueSurfaceAlloc
mfxExtVideoSignalInfo

65
66
67
67
68
68
68
69
69
69
70
70
72
73
74
74
75
76
77
77
78
78
79
79
79
80
80
80
81
83
85
85
90
90
91
91
91
92
93
93
94
94
94
95
96
96
97
97
98
98
99
99
99

100
100
100
101
102
102
103
103
104
104
104
105
105
105

mfxExtPictureTimingSEI
mfxExtAvcTemporalLayers
mfxExtVppAuxData
mfxExtVPPDenoise
mfxExtVppMctf
mfxExtVPPDetail
mfxExtVPPDoNotUse
mfxExtVPPDoUse
mfxExtVPPFrameRateConversion
mfxExtVPPProcAmp
mfxExtVPPImageStab
mfxExtVPPComposite
mfxExtVPPVideoSignalInfo
mfxExtEncoderCapability
mfxExtEncoderResetOption
mfxExtAVCEncodedFrameInfo
mfxExtEncoderROI
mfxExtMasteringDisplayColourVolume
mfxExtContentLightLevelInfo
mfxExtVPPDeinterlacing
mfxFrameAllocator

Alloc
Free
Lock
Unlock
GetHDL

mfxFrameAllocRequest
mfxFrameAllocResponse
mfxFrameData
mfxFrameInfo
mfxFrameSurface1
mfxInfoMFX

Example 15: Pseudo-Code for GOP Structure Parameters
mfxInfoVPP
mfxInitParam
mfxPlatform
mfxPayload
mfxVersion
mfxVideoParam
mfxVPPStat
mfxENCInput
mfxENCOutput
mfxExtLAControl

Figure 6: LookAhead BRC QP Calculation Algorithm
mfxExtLAFrameStatistics
mfxExtVPPFieldProcessing
mfxExtMBQP
mfxExtMBForceIntra
mfxExtChromaLocInfo
mfxExtHEVCTiles
mfxExtMBDisableSkipMap
mfxExtDecodedFrameInfo
mfxExtTimeCode
mfxExtHEVCRegion
mfxExtThreadsParam
mfxExtHEVCParam
mfxExtPredWeightTable
mfxExtAVCRoundingOffset
mfxExtDirtyRect
mfxExtMoveRect
mfxExtCodingOptionVPS
mfxExtVPPRotation
mfxExtVPPScaling
mfxExtVPPMirroring
mfxExtVPPColorFill
mfxExtEncodedSlicesInfo
mfxExtMVOverPicBoundaries

106
107
108
109
110
110
110
111
111
111

112
112
113
113
113
114
115
115

116
116
116
116
117
117
118
118
120
120
123
123
124
124
124
125
125
125
125
126
127
127
127
128
129
130
130
131
131
131
131
132
132
132
133
133
133
133
133
134
134
134
134
135
135
135
135
136
136

mfxExtDecVideoProcessing
mfxExtVP9Param
mfxExtVP9Segmentation
mfxExtVP9TemporalLayers
mfxExtBRC

Init
Reset
Close
GetFrameCtrl
Update

mfxBRCFrameParam
mfxBRCFrameCtrl
mfxBRCFrameStatus
mfxExtMultiFrameParam
mfxExtMultiFrameControl
mfxExtEncodedUnitsInfo
mfxExtColorConversion
mfxExtDecodeErrorReport

Enumerator Reference
BitstreamDataFlag
ChromaFormatIdc
CodecFormatFourCC
CodecLevel
CodecProfile
CodingOptionValue
ColorFourCC
Corruption
ExtendedBufferID
ExtMemBufferType
ExtMemFrameType
FrameDataFlag
FrameType
MfxNalUnitType
FrcAlgm
GopOptFlag
IOPattern
mfxHandleType
mfxIMPL
mfxPriority
mfxSkipMode
mfxStatus
PicStruct
RateControlMethod
TimeStampCalc
TargetUsage
TrellisControl
BRefControl
LookAheadDownSampling
VPPFieldProcessingMode
PicType
SkipFrame
DeinterlacingMode
TelecinePattern
HEVCRegionType
GPUCopy
WeightedPred
ScenarioInfo
ContentInfo
PRefType
GeneralConstraintFlags
Angle
PlatformCodeName
PayloadCtrlFlags
IntraRefreshTypes
VP9ReferenceFrame
SegmentIdBlockSize
SegmentFeature

136
136
137
137
137
137

138
138
140
140
140
140

141
141
141
142
142
142
142
142
142

143
143
143

144
144
144
144
145
145

145
145

InsertHDRPayload
SampleAdaptiveOffset
BRCStatus
MFMode
ErrorTypes
ChromaSiting

Appendices
Appendix A: Configuration Parameter Constraints
Appendix B: Multiple-Segment Encoding

Figure 7: Multiple-Segment Encoding
Table 9: Multiple-Segment Encoding Functions
Example 16: Pseudo-code to Import H.264 SPS/PPS Parameters

Appendix C: Streaming and Video Conferencing Features
Dynamic Bitrate Change
Dynamic resolution change
Forced Key Frame Generation
Reference List Selection
Low Latency Encoding and Decoding
Reference Picture Marking Repetition SEI message
Long-term Reference frame
Temporal scalability

Appendix D: Switchable Graphics and Multiple Monitors
Switchable Graphics
Multiple Monitors

Appendix E: Working directly with VA API for Linux*
Example 17: Creation of VA surfaces
Example 18: Destroying of VA surfaces
Example 19: Accessing data in VA surface
Example 20: unmapping buffer and destroying VAImage
Example 21: Working with encoded bitstream buffer

Appendix F: CQP HRD mode encoding
Example 22: Pseudo-code to enable CQP HRD mode

Overview
Intel® Media Software Development Kit – SDK, further referred to as the SDK, is a software development library that exposes the
media acceleration capabilities of Intel platforms for decoding, encoding and video processing. The API library covers a wide
range of Intel platforms.

This document describes the SDK API.

Document Conventions
The SDK API uses the Verdana typeface for normal prose. With the exception of section headings and the table of contents, all
code-related items appear in the Courier New typeface (mxfStatus and MFXInit). All class-related items appear in all cap
boldface, such as DECODE and ENCODE. Member functions appear in initial cap boldface, such as Init and Reset, and these refer
to members of all three classes, DECODE, ENCODE and VPP. Hyperlinks appear in underlined
boldface, such as mfxStatus.

Acronyms and Abbreviations
API Application Programming Interface
AVC Advanced Video Codec (same as H.264 and MPEG-4, part 10)
Direct3D Microsoft* Direct3D* version 9 or 11.1
Direct3D9 Microsoft* Direct3D* version 9
Direct3D11 Microsoft* Direct3D* version 11.1
DXVA2 Microsoft DirectX* Video Acceleration standard 2.0
H.264 ISO/IEC 14496-10 and ITU-T* H.264, MPEG-4 Part 10, Advanced Video Coding, May 2005
HRD Hypothetical Reference Decoder
IDR Instantaneous decoding fresh picture, a term used in the H.264 specification
LA Look Ahead. Special encoding mode where encoder performs pre analysis of several frames before actual encoding

starts.
MPEG Motion Picture Expert Group
MPEG-2 ISO/IEC 13818-2 and ITU-T H.262, MPEG-2 Part 2, Information Technology- Generic Coding of Moving Pictures and

Associate Audio Information: Video, 2000
NAL Network Abstraction Layer
NV12 A color format for raw video frames
PPS Picture Parameter Set
QP Quantization Parameter
RGB3 Twenty-four-bit RGB color format. Also known as RGB24
RGB4 Thirty-two-bit RGB color format. Also known as RGB32
SDK Intel® Media Software Development Kit – SDK
SEI Supplemental Enhancement Information
SPS Sequence Parameter Set
VA API Video Acceleration API
VBR Variable Bit Rate
VBV Video Buffering Verifier
VC-1 SMPTE* 421M, SMPTE Standard for Television: VC-1 Compressed Video Bitstream Format and Decoding Process,

August 2005
video
memory

memory used by hardware acceleration device, also known as GPU, to hold frame and other types of video data

VPP Video Processing
VUI Video Usability Information
YUY2 A color format for raw video frames
YV12 A color format for raw video frames
GPB Generalized P/B picture. B-picture, containing only forward references in both L0 and L1
HDR High Dynamic Range
BRC Bit Rate Control
MCTF Motion Compensated Temporal Filter. Special type of a noise reduction filter which utilizes motion to improve

efficiency of video denoising

9 SDK Developer Reference 1.27

Architecture
SDK functions fall into the following categories:

DECODE Decode compressed video streams into raw video frames
ENCODE Encode raw video frames into compressed bitstreams
VPP Perform video processing on raw video frames
CORE Auxiliary functions for synchronization
Misc Global auxiliary functions
With the exception of the global auxiliary functions, SDK functions are named after their functioning domain and category, as
illustrated in Figure 1. Here, SDK only exposes video domain functions.

Figure 1: SDK Function Naming Convention

Applications use SDK functions by linking with the SDK dispatcher library, as illustrated in Figure 2. The dispatcher library
identifies the hardware acceleration device on the running platform, determines the most suitable platform library, and then
redirects function calls. If the dispatcher is unable to detect any suitable platform-specific hardware, the dispatcher redirects SDK
function calls to the default software library.

Figure 2: SDK Library Dispatching Mechanism

Video Decoding
The DECODE class of functions takes a compressed bitstream as input and converts it to raw frames as output.

DECODE processes only pure or elementary video streams. The library cannot process bitstreams that reside in a container
format, such as MP4 or MPEG. The application must first de-multiplex the bitstreams. De-multiplexing extracts pure video
streams out of the container format. The application can provide the input bitstream as one complete frame of data, less than
one frame (a partial frame), or multiple frames. If only a partial frame is provided, DECODE internally constructs
one frame of data before decoding it.

The time stamp of a bitstream buffer must be accurate to the first byte of the frame data. That is, the first byte of a video coding
layer NAL unit for H.264, or picture header for MPEG-2 and VC-1. DECODE passes the time stamp to the output surface for audio
and video multiplexing or synchronization.

Decoding the first frame is a special case, since DECODE does not provide enough configuration parameters to correctly process
the bitstream. DECODE searches for the sequence header (a sequence parameter set in H.264, or a sequence header in MPEG-2
and VC-1) that contains the video configuration parameters used to encode subsequent video frames. The decoder skips any
bitstream prior to that sequence header. In the case of multiple sequence headers in the bitstream, DECODE adopts the new
configuration parameters, ensuring proper decoding of subsequent frames.

DECODE supports repositioning of the bitstream at any time during decoding. Because there is no way to obtain the correct
sequence header associated with the specified bitstream position after a position change, the application must supply DECODE
with a sequence header before the decoder can process the next frame at the new position. If the sequence header required to
correctly decode the bitstream at the new position is not provided by the application, DECODE treats the new location as a new
“first frame” and follows the procedure for decoding first frames.

10 SDK Developer Reference 1.27

Video Encoding
The ENCODE class of functions takes raw frames as input and compresses them into a bitstream.

Input frames usually come encoded in a repeated pattern called the Group of Picture (GOP) sequence. For example, a GOP
sequence can start from an I-frame, followed by a few B-frames, a P-frame, and so on. ENCODE uses an MPEG-2 style GOP
sequence structure that can specify the length of the sequence and the distance between two key frames: I- or P-frames. A GOP
sequence ensures that the segments of a bitstream do not completely depend upon each other. It also enables decoding
applications to reposition the bitstream.

ENCODE processes input frames in two ways:

Display order: ENCODE receives input frames in the display order. A few GOP structure parameters specify the GOP
sequence during ENCODE initialization. Scene change results from the video processing stage of a pipeline can alter the
GOP sequence.
Encoded order: ENCODE receives input frames in their encoding order. The application must specify the exact input frame
type for encoding. ENCODE references GOP parameters to determine when to insert information such as an end-of-
sequence into the bitstream.

An ENCODE output consists of one frame of a bitstream with the time stamp passed from the input frame. The time stamp is
used for multiplexing subsequent video with other associated data such as audio. The SDK library provides only pure video
stream encoding. The application must provide its own multiplexing.

ENCODE supports the following bitrate control algorithms: constant bitrate, variable bitrate (VBR), and constant Quantization
Parameter (QP). In the constant bitrate mode, ENCODE performs stuffing when the size of the least-compressed frame is smaller
than what is required to meet the Hypothetical Reference Decoder (HRD) buffer (or VBR) requirements. (Stuffing is a process that
appends zeros to the end of encoded frames.)

Video Processing
Video processing (VPP) takes raw frames as input and provides raw frames as output.

Figure 3: Video Processing Operation Pipeline

The actual conversion process is a chain operation with many single-function filters, as Figure 3 illustrates. The application
specifies the input and output format, and the SDK configures the pipeline accordingly. The application can also attach one or
more hint structures to configure individual filters or turn them on and off. Unless specifically instructed, the SDK builds the
pipeline in a way that best utilizes hardware acceleration or generates the best video processing quality.

Table 1 shows the SDK video processing features. The application can configure supported video processing features through
the video processing I/O parameters. The application can also configure optional features through hints. See “Video Processing
procedure / Configuration” for more details on how to configure optional filters.

Table 1: Video Processing Features

Video Processing Features Configuration
Convert color format from input to output (See Table 2 for supported conversions) I/O parameters
De-interlace to produce progressive frames at the output (See Table 3 for supported conversions) I/O parameters
Crop and resize the input frames to meet the output resolution and region of display I/O parameters
Convert input frame rate to match the output I/O parameters
Perform inverse telecine operations I/O parameters
Fields weaving I/O parameters
Fields splitting I/O parameters
Remove noise hint (optional feature)
Enhance picture details/edges hint (optional feature)
Adjust the brightness, contrast, saturation, and hue settings hint (optional feature)
Perform image stabilization hint (optional feature)
Convert input frame rate to match the output, based on frame interpolation hint (optional feature)
Perform detection of picture structure hint (optional feature)

Table 2: Color Conversion Support in VPP*

Output Color>
Input Color˅

NV12 RGB32 P010 P210 NV16 A2RGB10

RGB4 (RGB32) X
limited

X
Limited

NV12 X X X X

11 SDK Developer Reference 1.27

YV12 X X
UYVY X
YUY2 X X
P010 X X X X
P210 X X X X X
NV16 X X X

Output Color>
Input Color˅

NV12 RGB32 P010 P210 NV16 A2RGB10

X indicates a supported function
*Conversions absent in this table are unsupported

The SDK video processing pipeline supports limited functionality for RGB4 input. Only filters that are required to convert input
format to output one are included in pipeline. All optional filters are skipped. See description of MFX_WRN_FILTER_SKIPPED
warning for more details on how to retrieve list of active filters.

Table 3: Deinterlacing/Inverse Telecine Support in VPP

Input Field
Rate (fps)
Interlaced

Output Frame
Rate (fps)
Progressive

Output Frame
Rate (fps)
Progressive

Output Frame
Rate (fps)
Progressive

Output Frame
Rate (fps)
Progressive

Output Frame
Rate (fps)
Progressive

Output Frame
Rate (fps)
Progressive

Output Frame
Rate (fps)
Progressive

- 23.976 25 29.97 30 50 59.94 60
29.97 Inverse

Telecine
X

50 X X
59.94 X X
60 X X
X indicates a supported function.

This table describes pure deinterlacing algorithm. The application can combine it with frame rate conversion to achieve any
desirable input/output frame rate ratio. Note, that in this table input rate is field rate, i.e. number of video fields in one second of
video. The SDK uses frame rate in all configuration parameters, so this input field rate should be divided by two during the SDK
configuration. For example, 60i to 60p conversion in this table is represented by right bottom cell. It should be described in
mfxVideoParam as input frame rate equal to 30 and output 60.

SDK support two HW-accelerated deinterlacing algorithms: BOB DI (in Linux’s libVA terms VAProcDeinterlacingBob) and
Advanced DI (VAProcDeinterlacingMotionAdaptive). Default is ADI (Advanced DI) which uses reference frames and has better
quality. BOB DI is faster than ADI mode. So user can select as usual between speed and quality.

User can exactly configure DI modes via mfxExtVPPDeinterlacing.

There is one special mode of deinterlacing available in combination with frame rate conversion. If VPP input frame is interlaced
(TFF or BFF) and output is progressive and ratio between source frame rate and destination frame rate is ½ (for example 30 to 60,
29.97 to 59.94, 25 to 50), special mode of VPP turned on: for 30 interlaced input frames application will get 60 different
progressive output frames.

Table 4: Color formats supported by VPP filters

Color>
Filter˅

RGB4 (RGB32) NV12 YV12 YUY2 P010 P210 NV16

Denoise X
MCTF X
Deinterlace X
Image stabilization X
Frame rate conversion X
Resize X X X X
Detail X
Color conversion (see table 2 for details)X X X X X X X
Composition X X
Field copy X
Fields weaving X
Fields splitting X
X indicates a supported function

The SDK video processing pipeline supports limited HW acceleration for P010 format - zeroed mfxFrameInfo::Shift leads to
partial acceleration.

The SDK video processing pipeline does not support HW acceleration for P210 format.

Programming Guide
This chapter describes the concepts used in programming the SDK.

12 SDK Developer Reference 1.27

The application must use the include file, mfxvideo.h (for C programming), or mfxvideo++.h (for C++ programming), and link the
SDK static dispatcher library, libmfx.lib or libmfx.a. If the application is written in C then libstdc++.a library should also be linked.

Include these files:
 #include "mfxvideo.h" /* The SDK include file */
 #include "mfxvideo++.h" /* Optional for C++ development */

Link this library:
 libmfx.lib /* The SDK static dispatcher library */

or
 libmfx.a /* The SDK static dispatcher library */

On Linux* there is slight difference between using dispatcher library from executable module or from shared object. To mitigate
symbol conflict between itself and SDK shared object on Linux*, application should:

1. link against dispatch_shared.a instead of libmfx.a
2. define MFX_DISPATCHER_EXPOSED_PREFIX before any SDK includes

Status Codes
The SDK functions organize into classes for easy reference. The classes include ENCODE (encoding functions), DECODE
(decoding functions), and VPP (video processing functions).

Init, Reset and Close are member functions within the ENCODE, DECODE and VPP classes that initialize, restart and de-initialize
specific operations defined for the class. Call all other member functions within a given class (except Query and QueryIOSurf)
within the Init … Reset (optional) … Close sequence.

The Init and Reset member functions both set up necessary internal structures for media processing. The difference between the
two is that the Init functions allocate memory while the Reset functions only reuse allocated internal memory. Therefore, Reset
can fail if the SDK needs to allocate additional memory. Reset functions can also fine-tune ENCODE and VPP parameters during
those processes or reposition a bitstream during DECODE.

All SDK functions return status codes to indicate whether an operation succeeded or failed. See the mfxStatus enumerator for all
defined status codes. The status code MFX_ERR_NONE indicates that the function successfully completed its operation. Status
codes are less than MFX_ERR_NONE for all errors and greater than MFX_ERR_NONE for all warnings.

If an SDK function returns a warning, it has sufficiently completed its operation, although the output of the function might not be
strictly reliable. The application must check the validity of the output generated by the function.

If an SDK function returns an error (except MFX_ERR_MORE_DATA or MFX_ERR_MORE_SURFACE or
MFX_ERR_MORE_BITSTREAM), the function aborts the operation. The application must call either the Reset function to put the
class back to a clean state, or the Close function to terminate the operation. The behavior is undefined if the application
continues to call any class member functions without a Reset or Close. To avoid memory leaks, always call the Close function
after Init.

SDK Session
Before calling any SDK functions, the application must initialize the SDK library and create an SDK session. An SDK session
maintains context for the use of any of DECODE, ENCODE, or VPP functions.

The function MFXInit starts (initializes) an SDK session. MFXClose closes (de-initializes) the SDK session. To avoid memory leaks,
always call MFXClose after MFXInit.

The application can initialize a session as a software-based session (MFX_IMPL_SOFTWARE) or a hardware-based session
(MFX_IMPL_HARDWARE,). In the former case, the SDK functions execute on a CPU, and in the latter case, the SDK functions use
platform acceleration capabilities. For platforms that expose multiple graphic devices, the application can initialize the SDK
session on any alternative graphic device (MFX_IMPL_HARDWARE1…MFX_IMPL_HARDWARE4).

The application can also initialize a session to be automatic (MFX_IMPL_AUTO or MFX_IMPL_AUTO_ANY), instructing the
dispatcher library to detect the platform capabilities and choose the best SDK library available. After initialization, the SDK
returns the actual implementation through the MFXQueryIMPL function.

Multiple Sessions
Each SDK session can run exactly one instance of DECODE, ENCODE and VPP functions. This is good for a simple transcoding
operation. If the application needs more than one instance of DECODE, ENCODE and VPP in a complex transcoding setting, or
needs more simultaneous transcoding operations to balance CPU/GPU workloads, the application can initialize multiple SDK
sessions. Each SDK session can independently be a software-based session or hardware-based session.

The application can use multiple SDK sessions independently or run a “joined” session. Independently operated SDK sessions
cannot share data unless the application explicitly synchronizes session operations (to ensure that data is valid and complete
before passing from the source to the destination session.)

To join two sessions together, the application can use the function MFXJoinSession. Alternatively, the application can use the
function MFXCloneSession to duplicate an existing session. Joined SDK sessions work
together as a single session, sharing all session resources, threading control and prioritization operations (except hardware

13 SDK Developer Reference 1.27

acceleration devices and external allocators). When joined, one of the sessions (the first join) serves as a parent session,
scheduling execution resources, with all others child sessions relying on the parent session for resource management.

With joined sessions, the application can set the priority of session operations through the MFXSetPriority function. A lower
priority session receives less CPU cycles. Session priority does not affect hardware accelerated processing.

After the completion of all session operations, the application can use the function MFXDisjoinSession to remove the joined
state of a session. Do not close the parent session until all child sessions are disjoined or closed.

Frame and Fields
In SDK terminology, a frame (or frame surface, interchangeably) contains either a progressive frame or a complementary field
pair. If the frame is a complementary field pair, the odd lines of the surface buffer store the top fields and the even lines of the
surface buffer store the bottom fields.

Frame Surface Locking
During encoding, decoding or video processing, cases arise that require reserving input or output frames for future use. In the
case of decoding, for example, a frame that is ready for output must remain as a reference frame until the current sequence
pattern ends. The usual approach is to cache the frames internally. This method requires a copy operation, which can
significantly reduce performance.

SDK functions define a frame-locking mechanism to avoid the need for copy operations. This mechanism is as follows:

The application allocates a pool of frame surfaces large enough to include SDK function I/O frame surfaces and internal
cache needs. Each frame surface maintains a Locked counter, part of the mfxFrameData structure. Initially, the Locked
counter is set to zero.
The application calls an SDK function with frame surfaces from the pool, whose Locked counter is zero. If the SDK
function needs to reserve any frame surface, the SDK function increases the Locked counter of the frame surface. A non-
zero Locked counter indicates that the calling application must treat the frame surface as “in use.” That is, the application
can read, but cannot alter, move, delete or free the frame surface.
In subsequent SDK executions, if the frame surface is no longer in use, the SDK decreases the Locked counter. When the
Locked counter reaches zero, the application is free to do as it wishes with the frame surface.

In general, the application must not increase or decrease the Locked counter, since the SDK manages this field. If, for some
reason, the application needs to modify the Locked counter, the operation must be atomic to avoid race condition. Modifying
the Locked counter is not recommended.

Decoding Procedures
Example 1 shows the pseudo code of the decoding procedure. The following describes a few key points:

The application can use the MFXVideoDECODE_DecodeHeader function to retrieve decoding initialization parameters
from the bitstream. This step is optional if such parameters are retrievable from other sources such as an audio/video
splitter.
The application uses the MFXVideoDECODE_QueryIOSurf function to obtain the number of working frame surfaces
required to reorder output frames.
The application calls the MFXVideoDECODE_DecodeFrameAsync function for a decoding operation, with the bitstream
buffer (bits), and an unlocked working frame surface (work) as input parameters. If decoding output is not available, the
function returns a status code requesting additional bitstream input or working frame surfaces as follows:

MFX_ERR_MORE_DATA: The function needs additional bitstream input. The existing buffer contains less than a frame worth of
bitstream data.

MFX_ERR_MORE_SURFACE: The function needs one more frame surface to produce any output.

MFX_ERR_REALLOC_SURFACE: Dynamic resolution change case - the function needs bigger working frame surface (work).

Upon successful decoding, the MFXVideoDECODE_DecodeFrameAsync function returns MFX_ERR_NONE. However, the
decoded frame data (identified by the disp pointer) is not yet available because the
MFXVideoDECODE_DecodeFrameAsync function is asynchronous. The application must use the
MFXVideoCORE_SyncOperation function to synchronize the decoding operation before retrieving the decoded frame
data.
At the end of the bitstream, the application continuously calls the MFXVideoDECODE_DecodeFrameAsync function with a
NULL bitstream pointer to drain any remaining frames cached within the SDK decoder, until the function returns
MFX_ERR_MORE_DATA.

Bitstream Repositioning
The application can use the following procedure for bitstream reposition during decoding:

Use the MFXVideoDECODE_Reset function to reset the SDK decoder.
Optionally, if the application maintains a sequence header that decodes correctly the bitstream at the new position, the
application may insert the sequence header to the bitstream buffer.

14 SDK Developer Reference 1.27

Append the bitstream from the new location to the bitstream buffer.
Resume the decoding procedure. If the sequence header is not inserted in the above steps, the SDK
decoder searches for a new sequence header before starting decoding.

Example 1: Decoding Pseudo Code
MFXVideoDECODE_DecodeHeader(session, bitstream, &init_param);
MFXVideoDECODE_QueryIOSurf(session, &init_param, &request);
allocate_pool_of_frame_surfaces(request.NumFrameSuggested);
MFXVideoDECODE_Init(session, &init_param);
sts=MFX_ERR_MORE_DATA;
for (;;) {
 if (sts==MFX_ERR_MORE_DATA && !end_of_stream())
 append_more_bitstream(bitstream);
 find_unlocked_surface_from_the_pool(&work);
 bits=(end_of_stream())?NULL:bitstream;
 sts=MFXVideoDECODE_DecodeFrameAsync(session,bits,work,&disp,&syncp);
 if (sts==MFX_ERR_MORE_SURFACE) continue;
 if (end_of_bitstream() && sts==MFX_ERR_MORE_DATA) break;
 if (sts==MFX_ERR_REALLOC_SURFACE) {
 MFXVideoDECODE_GetVideoParam(session, ¶m);
 realloc_surface(work, param.mfx.FrameInfo);
 continue;
 }
 … // other error handling
 if (sts==MFX_ERR_NONE) {
 MFXVideoCORE_SyncOperation(session, syncp, INFINITE);
 do_something_with_decoded_frame(disp);
 }
}
MFXVideoDECODE_Close();
free_pool_of_frame_surfaces();

Multiple Sequence Headers
The bitstream can contain multiple sequence headers. The SDK function returns a status code to indicate when a new sequence
header is parsed.

The MFXVideoDECODE_DecodeFrameAsync function returns MFX_WRN_VIDEO_PARAM_CHANGED if the SDK decoder parsed a
new sequence header in the bitstream and decoding can continue with existing frame buffers. The application can optionally
retrieve new video parameters by calling MFXVideoDECODE_GetVideoParam.

The MFXVideoDECODE_DecodeFrameAsync function returns MFX_ERR_INCOMPATIBLE_VIDEO_PARAM if the decoder parsed a
new sequence header in the bitstream and decoding cannot continue without reallocating frame buffers. The bitstream pointer
moves to the first bit of the new sequence header. The application must do the following:

Retrieve any remaining frames by calling MFXVideoDECODE_DecodeFrameAsync with a NULL input bitstream pointer until
the function returns MFX_ERR_MORE_DATA. This step is not necessary if the application plans to discard any remaining
frames.
De-initialize the decoder by calling the MFXVideoDECODE_Close function, and restart the decoding procedure from the
new bitstream position.

Broken Streams Handling
Robustness and capability to handle broken input stream is important part of the decoder.

First of all, start code prefix (ITU-T H.264 3.148 and ITU-T H.265 3.142) is used to separate NAL units. Then all syntax elements in
bitstream are parsed and verified. If any of elements violate the specification then input bitstream is considered as invalid and
decoder tries to re-sync (find next start code). The further decoder’s behavior is depend on which syntax element is broken:

SPS header – return MFX_ERR_INCOMPATIBLE_VIDEO_PARAM (HEVC decoder only, AVC decoder uses last valid)
PPS header – re-sync, use last valid PPS for decoding
Slice header – skip this slice, re-sync
Slice data - Corruption flags are set on output surface

Note:
Some requirements are relaxed because there are a lot of streams which violate the letter of standard but can be decoded
without errors.

Many streams have IDR frames with frame_num != 0 while specification says that “If the current picture is an IDR picture,
frame_num shall be equal to 0.” (ITU-T H.265 7.4.3)
VUI is also validated, but errors doesn’t invalidate the whole SPS, decoder either doesn’t use corrupted VUI (AVC) or resets
incorrect values to default (HEVC).

The corruption at reference frame is spread over all inter-coded pictures which use this reference for prediction. To cope with
this problem you either have to periodically insert I-frames (intra-coded) or use ‘intra refresh’ technique. The latter allows to

15 SDK Developer Reference 1.27

recover corruptions within a pre-defined time interval. The main point of ‘intra refresh’ is to insert cyclic intra-coded pattern
(usually row) of macroblocks into the inter-coded pictures, restricting motion vectors accordingly. Intra-refresh is often used in
combination with Recovery point SEI, where recovery_frame_cnt is derived from intra-refresh interval.
Recovery point SEI message is well described at ITU-T H.264 D.2.7 and ITU-T H.265 D.2.8. This message can be used by the
decoder to understand from which picture all subsequent (in display order) pictures contain no errors, if we start decoding from
AU associated with this SEI message. In opposite to IDR, recovery point message doesn’t mark reference pictures as "unused for
reference".

Besides validation of syntax elements and theirs constrains, decoder also uses various hints to handle broken streams.

If there are no valid slices for current frame – the whole frame is skipped.
The slices which violate slice segment header semantics (ITU-T H.265 7.4.7.1) are skipped. Only
slice_temporal_mvp_enabled_flag is checked for now.
Since LTR (Long Term Reference) stays at DPB until it will be explicitly cleared by IDR or MMCO, the incorrect LTR could
cause long standing visual artifacts. AVC decoder uses the following approaches to care about this:

When we have DPB overflow in case incorrect MMCO command which marks reference picture as LT, we
rollback this operation
An IDR frame with frame_num != 0 can’t be LTR

If decoder detects frame gapping, it inserts ‘fake’ (marked as non-existing) frames, updates FrameNumWrap (ITU-T H.264
8.2.4.1) for reference frames and applies Sliding Window (ITU-T H.264 8.2.5.3) marking process. ‘Fake’ frames are marked
as reference, but since they are marked as non-existing they are not really used for inter-prediction.

Encoding Procedures
Example 2 shows the pseudo code of the encoding procedure. The following describes a few key points:

The application uses the MFXVideoENCODE_QueryIOSurf function to obtain the number of working frame surfaces
required for reordering input frames.
The application calls the MFXVideoENCODE_EncodeFrameAsync function for the encoding operation. The input frame
must be in an unlocked frame surface from the frame surface pool. If the encoding output is not available, the function
returns the status code MFX_ERR_MORE_DATA to request additional input frames.
Upon successful encoding, the MFXVideoENCODE_EncodeFrameAsync function returns MFX_ERR_NONE. However, the
encoded bitstream is not yet available because the MFXVideoENCODE_EncodeFrameAsync function is asynchronous. The
application must use the
MFXVideoCORE_SyncOperation function to synchronize the encoding operation before retrieving the encoded bitstream.
At the end of the stream, the application continuously calls the MFXVideoENCODE_EncodeFrameAsync function with
NULL surface pointer to drain any remaining bitstreams cached within the SDK encoder, until the function returns
MFX_ERR_MORE_DATA.

Note: It is the application's responsibility to fill pixels outside of crop window when it is smaller than frame to be encoded.
Especially in cases when crops are not aligned to minimum coding block size (16 for AVC, 8 for HEVC and VP9).

Configuration Change
The application changes configuration during encoding by calling MFXVideoENCODE_Reset function. Depending on difference
in configuration parameters before and after change, the SDK encoder either continues current sequence or starts a new one. If
the SDK encoder starts a new sequence it completely resets internal state and begins a new sequence with IDR frame.

The application controls encoder behavior during parameter change by attaching mfxExtEncoderResetOption to mfxVideoParam
structure during reset. By using this structure, the application instructs encoder to start or not to start a new sequence after reset.
In some cases request to continue current sequence cannot be satisfied and encoder fails during reset. To avoid such cases the
application may query reset outcome before actual reset by calling MFXVideoENCODE_Query function with
mfxExtEncoderResetOption attached to mfxVideoParam structure.

The application uses the following procedure to change encoding configurations:

The application retrieves any cached frames in the SDK encoder by calling the MFXVideoENCODE_EncodeFrameAsync
function with a NULL input frame pointer until the function returns MFX_ERR_MORE_DATA.

Note: The application must set the initial encoding configuration flag EndOfStream of the mfxExtCodingOption structure to OFF
to avoid inserting an End of Stream (EOS) marker into the bitstream. An EOS marker causes the bitstream to terminate before
encoding is complete.

The application calls the MFXVideoENCODE_Reset function with the new configuration:
If the function successfully set the configuration, the application can continue encoding as usual.
If the new configuration requires a new memory allocation, the function returns
MFX_ERR_INCOMPATIBLE_VIDEO_PARAM. The application must close the SDK encoder and reinitialize the encoding
procedure with the new configuration.

Example 2: Encoding Pseudo Code

16 SDK Developer Reference 1.27

MFXVideoENCODE_QueryIOSurf(session, &init_param, &request);
allocate_pool_of_frame_surfaces(request.NumFrameSuggested);
MFXVideoENCODE_Init(session, &init_param);
sts=MFX_ERR_MORE_DATA;
for (;;) {
 if (sts==MFX_ERR_MORE_DATA && !end_of_stream()) {
 find_unlocked_surface_from_the_pool(&surface);
 fill_content_for_encoding(surface);
 }
 surface2=end_of_stream()?NULL:surface;
 sts=MFXVideoENCODE_EncodeFrameAsync(session,NULL,surface2,bits,&syncp);
 if (end_of_stream() && sts==MFX_ERR_MORE_DATA) break;
 … // other error handling
 if (sts==MFX_ERR_NONE) {
 MFXVideoCORE_SyncOperation(session, syncp, INFINITE);
 do_something_with_encoded_bits(bits);
 }
}
MFXVideoENCODE_Close();
free_pool_of_frame_surfaces();

External Bit Rate Control
The application can make encoder use external BRC instead of native one. In order to do that it should attach to mfxVideoParam
structure mfxExtCodingOption2 with ExtBRC = MFX_CODINGOPTION_ON and callback structure mfxExtBRC during encoder
initialization. Callbacks Init, Reset and Close will be invoked inside MFXVideoENCODE_Init, MFXVideoENCODE_Reset and
MFXVideoENCODE_Close correspondingly. Figure 4 illustrates usage of GetFrameCtrl and Update.

Figure 4: Asynchronous Encoding Flow With External BRC

mfxExtBRC SDK

GetFrameCtrl(X)
Get Surface for Frame N;

X=N; N++;
X.NumRecode=0;

Submit
Frame X Encoding;

S++;
S < IntAsyncDepth

X = (N-S)

No

Wait for Frame X;
S--;

Update(X)

MFX_BRC_PANIC_SMALL_FRAME

X.NumRecode++

Do Padding

Yes

MFX_BRC_PANIC_BIG_FRAMENo

Skip Frame X

Yes

Cancel Encoding
For Frames > X;
N=(X+1); S=0;

MFX_BRC_BIG_FRAME

MFX_BRC_SMALL_FRAME

No

No

No

X.NumRecode++

Yes

Yes

Yes

IntAsyncDepth is the SDK max internal asynchronous encoding queue size; it is always less than or equal to
mfxVideoParam::AsyncDepth.

Example 3: External BRC Pseudo Code
#include "mfxvideo.h"
#include "mfxbrc.h"

17 SDK Developer Reference 1.27

#include "mfxbrc.h"

typedef struct {
 mfxU32 EncodedOrder;
 mfxI32 QP;
 mfxU32 MaxSize;
 mfxU32 MinSize;
 mfxU16 Status;
 mfxU64 StartTime;
 ...
} MyBrcFrame;

typedef struct {
 MyBrcFrame* frame_queue;
 mfxU32 frame_queue_size;
 mfxU32 frame_queue_max_size;
 mfxI32 max_qp[3]; //I,P,B
 mfxI32 min_qp[3]; //I,P,B
 ...
} MyBrcContext;

mfxStatus MyBrcInit(mfxHDL pthis, mfxVideoParam* par) {
 MyBrcContext* ctx = (MyBrcContext*)pthis;
 mfxI32 QpBdOffset;
 mfxExtCodingOption2* co2;

 if (!pthis || !par)
 return MFX_ERR_NULL_PTR;
 if (!IsParametersSupported(par))
 return MFX_ERR_UNSUPPORTED;
 frame_queue_max_size = par->AsyncDepth;
 frame_queue = (MyBrcFrame*)malloc(sizeof(MyBrcFrame) * frame_queue_max_size);
 if (!frame_queue)
 return MFX_ERR_MEMORY_ALLOC;
 co2 = (mfxExtCodingOption2*)GetExtBuffer(par->ExtParam, par->NumExtParam,
MFX_EXTBUFF_CODING_OPTION2);
 QpBdOffset = (par->BitDepthLuma > 8) : (6 * (par->BitDepthLuma - 8)) : 0;

 for (<X = I,P,B>) {
 ctx->max_qp[X] = (co2 && co2->MaxQPX) ? (co2->MaxQPX - QpBdOffset) : <Default>;
 ctx->min_qp[X] = (co2 && co2->MinQPX) ? (co2->MinQPX - QpBdOffset) : <Default>;
 }

 ... //initialize other BRC parameters

 frame_queue_size = 0;

 return MFX_ERR_NONE;
}

mfxStatus MyBrcReset(mfxHDL pthis, mfxVideoParam* par) {
 MyBrcContext* ctx = (MyBrcContext*)pthis;

 if (!pthis || !par)
 return MFX_ERR_NULL_PTR;
 if (!IsParametersSupported(par))
 return MFX_ERR_UNSUPPORTED;
 if (!IsResetPossible(ctx, par))
 return MFX_ERR_INCOMPATIBLE_VIDEO_PARAM;
 ... //reset BRC parameters if required

 return MFX_ERR_NONE;
}

mfxStatus MyBrcClose(mfxHDL pthis) {
 MyBrcContext* ctx = (MyBrcContext*)pthis;

 if (!pthis)
 return MFX_ERR_NULL_PTR;
 if (ctx->frame_queue) {
 free(ctx->frame_queue);

18 SDK Developer Reference 1.27

 free(ctx->frame_queue);
 ctx->frame_queue = NULL;
 ctx->frame_queue_max_size = 0;
 ctx->frame_queue_size = 0;
 }

 return MFX_ERR_NONE;
}

mfxStatus MyBrcGetFrameCtrl(mfxHDL pthis, mfxBRCFrameParam* par, mfxBRCFrameCtrl* ctrl) {
 MyBrcContext* ctx = (MyBrcContext*)pthis;
 MyBrcFrame* frame = NULL;
 mfxU32 cost;

 if (!pthis || !par || !ctrl)
 return MFX_ERR_NULL_PTR;
 if (par->NumRecode > 0)
 frame = GetFrame(ctx->frame_queue, ctx->frame_queue_size, par->EncodedOrder);
 else if (ctx->frame_queue_size < ctx->frame_queue_max_size)
 frame = ctx->frame_queue[ctx->frame_queue_size++];

 if (!frame)
 return MFX_ERR_UNDEFINED_BEHAVIOR;
 if (par->NumRecode == 0) {
 frame->EncodedOrder = par->EncodedOrder;
 cost = GetFrameCost(par->FrameType, par->PyramidLayer);
 frame->MinSize = GetMinSize(ctx, cost);
 frame->MaxSize = GetMaxSize(ctx, cost);
 frame->QP = GetInitQP(ctx, frame->MinSize, frame->MaxSize, cost); // from QP/size stat
 frame->StartTime = GetTime();
 }

 ctrl->QpY = frame->QP;

 return MFX_ERR_NONE;
}

mfxStatus MyBrcUpdate(mfxHDL pthis, mfxBRCFrameParam* par, mfxBRCFrameCtrl* ctrl,
mfxBRCFrameStatus* status) {
 MyBrcContext* ctx = (MyBrcContext*)pthis;
 MyBrcFrame* frame = NULL;
 bool panic = false;

 if (!pthis || !par || !ctrl || !status)
 return MFX_ERR_NULL_PTR;
 frame = GetFrame(ctx->frame_queue, ctx->frame_queue_size, par->EncodedOrder);
 if (!frame)
 return MFX_ERR_UNDEFINED_BEHAVIOR;
 ...// update QP/size stat

 if (frame->Status == MFX_BRC_PANIC_BIG_FRAME
 || frame->Status == MFX_BRC_PANIC_SMALL_FRAME_FRAME)
 panic = true;

 if (panic || (par->CodedFrameSize >= frame->MinSize && par->CodedFrameSize <= frame-
>MaxSize)) {
 UpdateBRCState(par->CodedFrameSize, ctx);
 RemoveFromQueue(ctx->frame_queue, ctx->frame_queue_size, frame);
 ctx->frame_queue_size--;
 status->BRCStatus = MFX_BRC_OK;

 ...//update Min/MaxSize for all queued frames

 return MFX_ERR_NONE;
 }

 panic = ((GetTime() - frame->StartTime) >= GetMaxFrameEncodingTime(ctx));

 if (par->CodedFrameSize > frame->MaxSize) {
 if (panic || (frame->QP >= ctx->max_qp[X])) {
 frame->Status = MFX_BRC_PANIC_BIG_FRAME;
 } else {
 frame->Status = MFX_BRC_BIG_FRAME;
 frame->QP = <increase QP>;

19 SDK Developer Reference 1.27

 frame->QP = <increase QP>;
 }
 }

 if (par->CodedFrameSize < frame->MinSize) {
 if (panic || (frame->QP <= ctx->min_qp[X])) {
 frame->Status = MFX_BRC_PANIC_SMALL_FRAME;
 status->MinFrameSize = frame->MinSize;
 } else {
 frame->Status = MFX_BRC_SMALL_FRAME;
 frame->QP = <decrease QP>;
 }
 }

 status->BRCStatus = frame->Status;

 return MFX_ERR_NONE;
}

 ...
 //initialize encoder
 MyBrcContext brc_ctx;
 mfxExtBRC ext_brc;
 mfxExtCodingOption2 co2;
 mfxExtBuffer* ext_buf[2] = {&co2.Header, &ext_brc.Header};

 memset(&brc_ctx, 0, sizeof(MyBrcContext));
 memset(&ext_brc, 0, sizeof(mfxExtBRC));
 memset(&co2, 0, sizeof(mfxExtCodingOption2));
 vpar.ExtParam = ext_buf;
 vpar.NumExtParam = sizeof(ext_buf) / sizeof(ext_buf[0]);
 co2.Header.BufferId = MFX_EXTBUFF_CODING_OPTION2;
 co2.Header.BufferSz = sizeof(mfxExtCodingOption2);
 co2.ExtBRC = MFX_CODINGOPTION_ON;

 ext_brc.Header.BufferId = MFX_EXTBUFF_BRC;
 ext_brc.Header.BufferSz = sizeof(mfxExtBRC);
 ext_brc.pthis = &brc_ctx;
 ext_brc.Init = MyBrcInit;
 ext_brc.Reset = MyBrcReset;
 ext_brc.Close = MyBrcClose;
 ext_brc.GetFrameCtrl = MyBrcGetFrameCtrl;
 ext_brc.Update = MyBrcUpdate;

 status = MFXVideoENCODE_Query(session, &vpar, &vpar);
 if (status == MFX_ERR_UNSUPPOERTED || co2.ExtBRC != MFX_CODINGOPTION_ON)
 ...//unsupported
 else
 status = MFXVideoENCODE_Init(session, &vpar);

 ...

Video Processing Procedures
Example 4 shows the pseudo code of the video processing procedure. The following describes a few key points:

The application uses the MFXVideoVPP_QueryIOSurf function to obtain the number of frame surfaces needed for input
and output. The application must allocate two frame surface pools, one for the input and the other for the output.
The video processing function MFXVideoVPP_RunFrameVPPAsync is asynchronous. The application must synchronize to
make the output result ready, through the MFXVideoCORE_SyncOperation function.
The body of the video processing procedures covers three scenarios as follows:
If the number of frames consumed at input is equal to the number of frames generated at output, VPP returns
MFX_ERR_NONE when an output is ready. The application must process the output frame after synchronization, as the
MFXVideoVPP_RunFrameVPPAsync function is asynchronous. At the end of a sequence, the application must provide a
NULL input to drain any remaining frames.
If the number of frames consumed at input is more than the number of frames generated at output, VPP returns
MFX_ERR_MORE_DATA for additional input until an output is ready. When the output is ready, VPP returns
MFX_ERR_NONE. The application must process the output frame after synchronization and provide a NULL input at the
end of sequence to drain any remaining frames.
If the number of frames consumed at input is less than the number of frames generated at output, VPP returns either
MFX_ERR_MORE_SURFACE (when more than one output is ready), or MFX_ERR_NONE (when one output is ready and VPP
expects new input). In both cases, the application must process the output frame after synchronization and provide a NULL
input at the end of sequence to drain any remaining frames.

20 SDK Developer Reference 1.27

Example 4: Video Processing Pseudo Code
MFXVideoVPP_QueryIOSurf(session, &init_param, response);
allocate_pool_of_surfaces(in_pool, response[0].NumFrameSuggested);
allocate_pool_of_surfaces(out_pool, response[1].NumFrameSuggested);
MFXVideoVPP_Init(session, &init_param);
in=find_unlocked_surface_and_fill_content(in_pool);
out=find_unlocked_surface_from_the_pool(out_pool);
for (;;) {
 sts=MFXVideoVPP_RunFrameVPPAsync(session,in,out,aux,&syncp);
 if (sts==MFX_ERR_MORE_SURFACE || sts==MFX_ERR_NONE) {
 MFXVideoCore_SyncOperation(session,syncp,INFINITE);
 process_output_frame(out);
 out=find_unlocked_surface_from_the_pool(out_pool);
 }
 if (sts==MFX_ERR_MORE_DATA && in==NULL)
 break;
 if (sts==MFX_ERR_NONE || sts==MFX_ERR_MORE_DATA) {
 in=find_unlocked_surface(in_pool);
 fill_content_for_video_processing(in);
 if (end_of_input_sequence())
 in=NULL;
 }
}
MFXVideoVPP_Close(session);
free_pool_of_surfaces(in_pool);
free_pool_of_surfaces(out_pool);

Configuration
The SDK configures the video processing pipeline operation based on the difference between the input and output formats,
specified in the mfxVideoParam structure. A few examples follow:

When the input color format is YUY2 and the output color format is NV12, the SDK enables color conversion from YUY2
to NV12.
When the input is interleaved and the output is progressive, the SDK enables de-interlacing.
When the input is single field and the output is interlaced or progressive, the SDK enables field weaving, optionally with
deinterlacing.
When the input is interlaced and the output is single field, the SDK enables field splitting.

In addition to specifying the input and output formats, the application can provide hints to fine-tune the video processing
pipeline operation. The application can disable filters in pipeline by using mfxExtVPPDoNotUse structure; enable them by using
mfxExtVPPDoUse structure and configure them by using dedicated configuration structures. See Table 4 for complete list of
configurable video processing filters, their IDs and configuration structures. See the ExtendedBufferID enumerator for more
details.

The SDK ensures that all filters necessary to convert input format to output one are included in pipeline. However, the SDK can
skip some optional filters even if they are explicitly requested by the application, for example, due to limitation of underlying
hardware. To notify application about this skip, the SDK returns warning MFX_WRN_FILTER_SKIPPED. The application can
retrieve list of active filters by attaching mfxExtVPPDoUse structure to
mfxVideoParam structure and calling MFXVideoVPP_GetVideoParam function. The application must allocate enough memory
for filter list.

Table 4 Configurable VPP filters

Filter ID Configuration structure
MFX_EXTBUFF_VPP_DENOISE mfxExtVPPDenoise
MFX_EXTBUFF_VPP_MCTF mfxExtVppMctf
MFX_EXTBUFF_VPP_DETAIL mfxExtVPPDetail
MFX_EXTBUFF_VPP_FRAME_RATE_CONVERSIONmfxExtVPPFrameRateConversion
MFX_EXTBUFF_VPP_IMAGE_STABILIZATION mfxExtVPPImageStab
MFX_EXTBUFF_VPP_PICSTRUCT_DETECTION none
MFX_EXTBUFF_VPP_PROCAMP mfxExtVPPProcAmp
MFX_EXTBUFF_VPP_FIELD_PROCESSING mfxExtVPPFieldProcessing

Example 5 shows how to configure the SDK video processing.

Example 5: Configure Video Processing

21 SDK Developer Reference 1.27

 /* enable image stabilization filter with default settings */
 mfxExtVPPDoUse du;
 mfxU32 al=MFX_EXTBUFF_VPP_IMAGE_STABILIZATION;

 du.Header.BufferId=MFX_EXTBUFF_VPP_DOUSE;
 du.Header.BufferSz=sizeof(mfxExtVPPDoUse);
 du.NumAlg=1;
 du.AlgList=&al;

 /* configure the mfxVideoParam structure */
 mfxVideoParam conf;
 mfxExtBuffer *eb=&du;

 memset(&conf,0,sizeof(conf));
 conf.IOPattern=MFX_IOPATTERN_IN_SYSTEM_MEMORY|
 MFX_IOPATTERN_OUT_SYSTEM_MEMORY;
 conf.NumExtParam=1;
 conf.ExtParam=&eb;

 conf.vpp.In.FourCC=MFX_FOURCC_YV12;
 conf.vpp.Out.FourCC=MFX_FOURCC_NV12;
 conf.vpp.In.Width=conf.vpp.Out.Width=1920;
 conf.vpp.In.Height=conf.vpp.Out.Height=1088;

 /* video processing initialization */
 MFXVideoVPP_Init(session, &conf);

Region of Interest
During video processing operations, the application can specify a region of interest for each frame, as illustrated in Figure 5.

Figure 5: VPP Region of Interest Operation

Specifying a region of interest guides the resizing function to achieve special effects such as resizing from 16:9 to 4:3 while
keeping the aspect ratio intact. Use the CropX, CropY, CropW and CropH parameters in the mfxVideoParam structure to specify a
region of interest. Table 5 shows some examples.

Table 5: Examples of VPP Operations on Region of Interest

Operation VPP Input VPP Input VPP Output VPP Output
Width/HeightCropX, CropY, CropW,

CropH
Width/HeightCropX, CropY, CropW,

CropH
Cropping 720x480 16,16,688,448 720x480 16,16,688,448
Resizing 720x480 0,0,720,480 1440x960 0,0,1440,960
Horizontal stretching 720x480 0,0,720,480 640x480 0,0,640,480
16:9 4:3 with letter boxing at the top and
bottom

1920x1088 0,0,1920,1088 720x480 0,36,720,408

4:3 16:9 with pillar boxing at the left and right 720x480 0,0,720,480 1920x1088 144,0,1632,1088

Transcoding Procedures

22 SDK Developer Reference 1.27

The application can use the SDK encoding, decoding and video processing functions together for transcoding operations. This
section describes the key aspects of connecting two or more SDK functions together.

Asynchronous Pipeline
The application passes the output of an upstream SDK function to the input of the downstream SDK function to construct an
asynchronous pipeline. Such pipeline construction is done at runtime and can be dynamically changed, as illustrated in Example
6.

Example 6: Pseudo Code of Asynchronous Pipeline Construction
mfxSyncPoint sp_d, sp_e;
MFXVideoDECODE_DecodeFrameAsync(session,bs,work,&vin, &sp_d);
if (going_through_vpp) {
 MFXVideoVPP_RunFrameVPPAsync(session,vin,vout, &sp_d);
 MFXVideoENCODE_EncodeFrameAsync(session,NULL,vout,bits2,&sp_e);
} else {
 MFXVideoENCODE_EncodeFrameAsync(session,NULL,vin,bits2,&sp_e);
}
MFXVideoCORE_SyncOperation(session,sp_e,INFINITE);

The SDK simplifies the requirement for asynchronous pipeline synchronization. The application only needs to synchronize after
the last SDK function. Explicit synchronization of intermediate results is not required and in fact can slow performance.

The SDK tracks the dynamic pipeline construction and verifies dependency on input and output parameters to ensure the
execution order of the pipeline function. In Example 6, the SDK will ensure MFXVideoENCODE_EncodeFrameAsync does not
begin its operation until MFXVideoDECODE_DecodeFrameAsync or MFXVideoVPP_RunFrameVPPAsync has finished.

During the execution of an asynchronous pipeline, the application must consider the input data in use and must not change it
until the execution has completed. The application must also consider output data unavailable until the execution has finished.
In addition, for encoders, the application must consider extended and payload buffers in use while the input surface is locked.

The SDK checks dependencies by comparing the input and output parameters of each SDK function in the pipeline. Do not
modify the contents of input and output parameters before the previous asynchronous operation finishes. Doing so will break
the dependency check and can result in undefined behavior. An exception occurs when the input and output parameters are
structures, in which case overwriting fields in the structures is allowed. (Note that the dependency check works on the pointers
to the structures only.)

There are two exceptions with respect to intermediate synchronization:

The application must synchronize any input before calling the SDK function MFXVideoDECODE_DecodeFrameAsync, if
the input is from any asynchronous operation.
When the application calls an asynchronous function to generate an output surface in video memory and passes that
surface to a non-SDK component, it must explicitly synchronize the operation before passing the surface to the non-SDK
component.

Example 7: Pseudo Code of Asynchronous ENC->ENCODE Pipeline Construction
 mfxENCInput enc_in = ...;
 mfxENCOutput enc_out = ...;
 mfxSyncPoint sp_e, sp_n;
 mfxFrameSurface1* surface = get_frame_to_encode();
 mfxExtBuffer dependency;
 dependency.BufferId = MFX_EXTBUFF_TASK_DEPENDENCY;
 dependency.BufferSz = sizeof(mfxExtBuffer);
 enc_in.InSurface = surface;
 enc_out.ExtParam[enc_out.NumExtParam++] = &dependency;
 MFXVideoENC_ProcessFrameAsync(session, &enc_in, &enc_out, &sp_e);

 surface->Data.ExtParam[surface->Data.NumExtParam++] = &dependency;
 MFXVideoENCODE_EncodeFrameAsync(session, NULL, surface, &bs, &sp_n);

 MFXVideoCORE_SyncOperation(session, sp_n, INFINITE);
 surface->Data.NumExtParam--;

Surface Pool Allocation
When connecting SDK function A to SDK function B, the application must take into account the needs of both functions to
calculate the number of frame surfaces in the surface pool. Typically, the application can use the formula Na+Nb, where Na is
the frame surface needs from SDK function A output, and Nb is the frame surface needs from SDK function B input.

For performance considerations, the application must submit multiple operations and delays synchronization as much as
possible, which gives the SDK flexibility to organize internal pipelining. For example, the operation sequence, ENCODE(f1)-
>ENCODE(f2)->SYNC(f1)->SYNC(f2) is recommended, compared with ENCODE(f1)->SYNC(f1)->ENCODE(f2)->SYNC(f2).

In this case, the surface pool needs additional surfaces to take into account multiple asynchronous operations before
synchronization. The application can use the AsyncDepth parameter of the mfxVideoParam structure to inform an SDK function

23 SDK Developer Reference 1.27

that how many asynchronous operations the application plans to perform before synchronization. The corresponding SDK
QueryIOSurf function will reflect such consideration in the NumFrameSuggested value. Example 8 shows a way of calculating
the surface needs based on NumFrameSuggested values.

Example 8: Calculate Surface Pool Size
async_depth=4;
init_param_v.AsyncDepth=async_depth;
MFXVideoVPP_QueryIOSurf(session, &init_param_v, response_v);
init_param_e.AsyncDepth=async_depth;
MFXVideoENCODE_QueryIOSurf(session, &init_param_e, &response_e);
num_surfaces= response_v[1].NumFrameSuggested
 +response_e.NumFrameSuggested
 -async_depth; /* double counted in ENCODE & VPP */

Pipeline Error Reporting
During asynchronous pipeline construction, each stage SDK function will return a synchronization point (sync point). These
synchronization points are useful in tracking errors during the asynchronous pipeline operation.

Assume the pipeline is A->B->C. The application synchronizes on sync point C. If the error occurs in SDK function C, then the
synchronization returns the exact error code. If the error occurs before SDK function C, then the synchronization returns
MFX_ERR_ABORTED. The application can then try to synchronize on sync point B. Similarly, if the error occurs in SDK function B,
the synchronization returns the exact error code, or else MFX_ERR_ABORTED. Same logic applies if the error occurs in SDK
function A.

Working with hardware acceleration
To fully utilize the SDK acceleration capability, the application should support OS specific infrastructures, Microsoft* DirectX* for
Micorosoft* Windows* and VA API for Linux*. The exception is transcoding scenario where opaque memory type may be used.
See Surface Type Neutral Transcoding for more details.

The hardware acceleration support in application consists of video memory support and acceleration
device support.

Depending on usage model, the application can use video memory on different stages of pipeline.
Three major scenarios are illustrated on Figure 6.

Figure 6 Usage of video memory for hardware acceleration

The application must use the IOPattern field of the mfxVideoParam structure to indicate the I/O access pattern during
initialization. Subsequent SDK function calls must follow this access pattern. For example, if an SDK function operates on video
memory surfaces at both input and output, the application must specify the access pattern IOPattern at initialization in
MFX_IOPATTERN_IN_VIDEO_MEMORY for input and MFX_IOPATTERN_OUT_VIDEO_MEMORY for output. This particular I/O
access pattern must not change inside the Init … Close sequence.

Initialization of any hardware accelerated SDK component requires the acceleration device handle. This handle is also used by
SDK component to query HW capabilities. The application can share its device with the SDK by passing device handle through
the MFXVideoCORE_SetHandle function. It is recommended to share the handle before any actual usage of the SDK.

Working with Microsoft* DirectX* Applications
The SDK supports two different infrastructures for hardware acceleration on Microsoft* Windows* OS, “Direct3D 9 DXVA2” and
“Direct3D 11 Video API”. In the first one the application should use the IDirect3DDeviceManager9 interface as the acceleration
device handle, in the second one - ID3D11Device interface. The application should share one of these interfaces with the SDK
through the MFXVideoCORE_SetHandle function. If the application does not provide it, then the SDK creates its own internal
acceleration device. This internal device could not be accessed by the application and as a result, the SDK input and output will

24 SDK Developer Reference 1.27

be limited to system memory only. That in turn will reduce SDK performance. If the SDK fails to create a valid acceleration
device, then SDK cannot proceed with hardware acceleration and returns an error status to the application.

The application must create the Direct3D9* device with the flag D3DCREATE_MULTITHREADED. Additionally the flag
D3DCREATE_FPU_PRESERVE is recommended. This influences floating-point calculations, including PTS values.

The application must also set multithreading mode for Direct3D11* device. Example 9 Setting multithreading mode illustrates
how to do it.

Example 9 Setting multithreading mode
ID3D11Device *pD11Device;
ID3D11DeviceContext *pD11Context;
ID3D10Multithread *pD10Multithread;

pD11Device->GetImmediateContext(&pD11Context);
pD11Context->QueryInterface(IID_ID3D10Multithread, &pD10Multithread);
pD10Multithread->SetMultithreadProtected(true);

During hardware acceleration, if a Direct3D* “device lost” event occurs, the SDK operation terminates with the return status
MFX_ERR_DEVICE_LOST. If the application provided the Direct3D* device handle, the application must reset the Direct3D*
device.

When the SDK decoder creates auxiliary devices for hardware acceleration, it must allocate the list of Direct3D* surfaces for I/O
access, also known as the surface chain, and pass the surface chain as part of the device creation command. In most cases, the
surface chain is the frame surface pool mentioned in the Frame Surface Locking section.

The application passes the surface chain to the SDK component Init function through an SDK external allocator callback. See the
Memory Allocation and External Allocators section for details.

Only decoder Init function requests external surface chain from the application and uses it for auxiliary device creation. Encoder
and VPP Init functions may only request internal surfaces. See the ExtMemFrameType enumerator for more details about
different memory types.

Depending on configuration parameters, SDK requires different surface types. It is strongly recommended to call one of the
MFXVideoENCODE_QueryIOSurf, MFXVideoDECODE_QueryIOSurf or MFXVideoVPP_QueryIOSurf functions to determine the
appropriate type.

Table 6: Supported SDK Surface Types and Color Formats for Direct3D9 shows supported Direct3D9 surface types and color
formats. Table 7: Supported SDK Surface Types and Color Formats for Direct3D11 shows Direct3D11 types and formats. Note,
that NV12 is the major encoding and decoding color format. Additionally, JPEG/MJPEG decoder supports RGB32 and YUY2
output, JPEG/MJPEG encoder supports RGB32 and YUY2 input for Direct3D9/Direct3D11 and YV12 input for Direct3D9 only,
and VPP
supports RGB32 output.

Table 6: Supported SDK Surface Types and Color Formats for Direct3D9

SDK Class SDK Function Input SDK Function Input SDK Function Output SDK Function Output
Surface Type Color Format Surface Type Color Format

DECODE Not Applicable Not Applicable Decoder Render Target NV12
Decoder Render Target RGB32, YUY2

JPEG only
VPP Decoder/Processor Render TargetListed in ColorFourCCDecoder Render Target NV12

Processor Render TargetRGB32
ENCODE Decoder Render Target NV12 Not Applicable Not Applicable

Decoder Render Target RGB32, YUY2, YV12
JPEG only

Note: “Decoder Render Target” corresponds to DXVA2_ VideoDecoderRenderTarget type, “Processor
Render Target” to DXVA2_ VideoProcessorRenderTarget.

Table 7: Supported SDK Surface Types and Color Formats for Direct3D11

SDK Class SDK Function Input SDK Function Input SDK Function Output SDK Function Output
Surface Type Color Format Surface Type Color Format

DECODE Not Applicable Not Applicable Decoder Render Target NV12
Decoder /Processor Render TargetRGB32, YUY2

JPEG only
VPP Decoder/Processor Render TargetListed in ColorFourCCProcessor Render Target NV12

Processor Render Target RGB32
ENCODE Decoder/Processor Render TargetNV12 Not Applicable Not Applicable

Decoder/Processor Render TargetRGB32, YUY2
JPEG only

Note: “Decoder Render Target” corresponds to D3D11_BIND_DECODER flag, “Processor Render Target” to
D3D11_BIND_RENDER_TARGET.

25 SDK Developer Reference 1.27

Working with VA API Applications
The SDK supports single infrastructure for hardware acceleration on Linux* - “VA API”. The application should use the VADisplay
interface as the acceleration device handle for this infrastructure and share it with the SDK through the
MFXVideoCORE_SetHandle function. Because the SDK does not create internal acceleration device on Linux, the application
must always share it with the SDK. This sharing should be done before any actual usage of the SDK, including capability
query and component initialization. If the application fails to share the device, the SDK operation will fail.

Example 10 Obtaining VA display from X Window System and Example 10 Obtaining VA display from Direct Rendering Manager
show how to obtain and share VA display with the SDK.

Example 10 Obtaining VA display from X Window System
Display *x11_display;
VADisplay va_display;

x11_display = XOpenDisplay(current_display);
va_display = vaGetDisplay(x11_display);

MFXVideoCORE_SetHandle(session, MFX_HANDLE_VA_DISPLAY,
 (mfxHDL) va_display);

Example 11 Obtaining VA display from Direct Rendering Manager
int card;
VADisplay va_display;

card = open("/dev/dri/card0", O_RDWR); /* primary card */
va_display = vaGetDisplayDRM(card);
vaInitialize(va_display, &major_version, &minor_version);

MFXVideoCORE_SetHandle(session, MFX_HANDLE_VA_DISPLAY,
 (mfxHDL) va_display);

When the SDK decoder creates hardware acceleration device, it must allocate the list of video memory surfaces for I/O access,
also known as the surface chain, and pass the surface chain as part of the device creation command. The application passes the
surface chain to the SDK component Init function through an SDK external allocator callback. See the Memory Allocation and
External Allocators section for details.

Only decoder Init function requests external surface chain from the application and uses it for device creation. Encoder and VPP
Init functions may only request internal surfaces. See the ExtMemFrameType enumerator for more details about different
memory types.

The VA API does not define any surface types and the application can use either
MFX_MEMTYPE_VIDEO_MEMORY_DECODER_TARGET or MFX_MEMTYPE_VIDEO_MEMORY_PROCESSOR_TARGET to indicate
data in video memory.

Table 8: Supported SDK Surface Types and Color Formats for VA API shows supported by VA API color formats.

Table 8: Supported SDK Surface Types and Color Formats for VA API

SDK Class SDK Function Input SDK Function Output
DECODE Not Applicable NV12

RGB32, YUY2
JPEG only

VPP Listed in ColorFourCCNV12, RGB32
ENCODE NV12 Not Applicable

RGB32, YUY2, YV12
JPEG only

Memory Allocation and External Allocators
All SDK implementations delegate memory management to the application. The application must allocate sufficient memory for
input and output parameters and buffers, and de-allocate it when SDK functions complete their operations. During execution,
the SDK functions use callback functions to the application to manage memory for video frames through external allocator
interface mfxFrameAllocator.

mfxBufferAllocator interface is deprecated.

If an application needs to control the allocation of video frames, it can use callback functions through the mfxFrameAllocator
interface. If an application does not specify an allocator, an internal allocator is used. However, if an application uses video
memory surfaces for input and output, it must specify the hardware acceleration device and an external frame allocator using
mfxFrameAllocator.

The external frame allocator can allocate different frame types:

in system memory and
in video memory, as “decoder render targets” or “processor render targets.” See the section Working with hardware

26 SDK Developer Reference 1.27

acceleration for additional details.

The external frame allocator responds only to frame allocation requests for the requested memory type and returns
MFX_ERR_UNSUPPORTED for all others. The allocation request uses flags, part of memory type field, to indicate which SDK class
initiates the request, so the external frame allocator can respond accordingly. Example 12 illustrates a simple external frame
allocator.

Example 12: Example Frame Allocator
typedef struct {
 mfxU16 width, height;
 mfxU8 *base;
} mid_struct;

mfxStatus fa_alloc(mfxHDL pthis, mfxFrameAllocRequest *request, mfxFrameAllocResponse *response)
{
 if (!(request->type&MFX_MEMTYPE_SYSTEM_MEMORY))
 return MFX_ERR_UNSUPPORTED;
 if (request->Info->FourCC!=MFX_FOURCC_NV12)
 return MFX_ERR_UNSUPPORTED;
 response->NumFrameActual=request->NumFrameMin;
 for (int i=0;i<request->NumFrameMin;i++) {
 mid_struct *mmid=(mid_struct *)malloc(sizeof(mid_struct));
 mmid->width=ALIGN32(request->Info->Width);
 mmid->height=ALIGN32(request->Info->Height);
 mmid->base=(mfxU8*)malloc(mmid->width*mmid->height*3/2);
 response->mids[i]=mmid;
 }
 return MFX_ERR_NONE;
}

mfxStatus fa_lock(mfxHDL pthis, mfxMemId mid, mfxFrameData *ptr) {
 mid_struct *mmid=(mid_struct *)mid;
 ptr->pitch=mmid->width;
 ptr->Y=mmid->base;
 ptr->U=ptr->Y+mmid->width*mmid->height;
 ptr->V=ptr->U+1;
 return MFX_ERR_NONE;
}

mfxStatus fa_unlock(mfxHDL pthis, mfxMemId mid, mfxFrameData *ptr) {
 if (ptr) ptr->Y=ptr->U=ptr->V=ptr->A=0;
 return MFX_ERR_NONE;
}

mfxStatus fa_gethdl(mfxHDL pthis, mfxMemId mid, mfxHDL *handle) {
 return MFX_ERR_UNSUPPORTED;
}

mfxStatus fa_free(mfxHDL pthis, mfxFrameAllocResponse *response) {
 for (int i=0;i<response->NumFrameActual;i++) {
 mid_struct *mmid=(mid_struct *)response->mids[i];
 free(mmid->base); free(mid);
 }
 return MFX_ERR_NONE;
}

For system memory, it is highly recommended to allocate memory for all planes of the same frame as a single buffer (using one
single malloc call).

Surface Type Neutral Transcoding
Performance wise, software SDK library (running CPU instructions) prefers system memory I/O, and SDK platform
implementation (accelerated by platform graphic devices) prefers video memory surface I/O. The application needs to manage
both surface types (thus two data paths in a transcoding AB) to achieve the best performance in both cases.

The SDK provides a third surface type: opaque surface. With opaque surface, the SDK will map the surface type to either system
memory buffer or video memory surface at runtime. The application only needs to manage one surface type, or one transcoding
data path.

It is recommended the application use opaque surfaces for any transcoding intermediate data. For example, the transcoding
pipeline can be DECODE Opaque Surfaces VPP Opaque Surfaces ENCODE. It is possible to copy an opaque surface to a “real”
surface through a VPP operation.

The application uses the following procedure to use opaque surface, assuming a transcoding pipeline SDK A -> SDK B:

As described in section Surface Pool Allocation, the application queries SDK component A and B and calculates the
surface pool size. The application needs to use MFX_IOPATTERN_IN_OPAQUE_MEMORY and/or

27 SDK Developer Reference 1.27

MFX_IOPATTERN_OUT_OPAQUE_MEMORY while specifying the I/O pattern. It is possible that SDK component A returns a
different memory type than SDK component B, as the QueryIOSurf function returns the native allocation type and size. In
this case, the surface pool type and size should follow only one SDK component: either A or B.
The application allocates the surface pool, which is an array of the mfxFrameSurface1 structures. Within the structure,
specify Data.Y= Data.U= Data.V= Data.A= Data.MemId=0 for all array members.
During initialization, the application communicates the allocated surface pool to both SDK components by attaching the
mfxExtOpaqueSurfaceAlloc structure as part of the initialization parameters. The application needs to use
MFX_IOPATTERN_IN_OPAQUE_MEMORY and/or MFX_IOPATTERN_OUT_OPAQUE_MEMORY while specifying the I/O
pattern.
During decoding, encoding, and video processing, the application manages the surface pool and passes individual frame
surface to SDK component A and B as described in section Decoding Procedures, section Encoding Procedures, and
section Video Processing Procedures, respectively.

Example 13 shows the opaque procedure sample code.

Since the SDK manages the association of opaque surface to “real” surface types internally, the application cannot read the
content of opaque surfaces. Also the application does not get any opaque-type surface allocation requests if the application
specifies an external frame allocator.

If the application shares opaque surfaces among different SDK sessions, the application must join the sessions before SDK
component initialization and ensure that all joined sessions have the same hardware acceleration device handle. Setting device
handle is optional only if all components in pipeline belong to the same session. The application should not disjoin the session
which share opaque memory until the SDK components are not closed.

Example 13: Pseudo-Code of Opaque Surface Procedure
mfxExtOpqueSurfaceAlloc osa, *posa=&osa;
memset(&osa,0,sizeof(osa));
// query frame surface allocation needs
MFXVideoDECODE_QueryIOSurf(session, &decode_param, &request_decode);
MFXVideoENCODE_QueryIOSurf(session, &encode_param, &request_encode);

// calculate the surface pool surface type and numbers
if (MFX_MEMTYPE_BASE(request_decode.Type) ==
 MFX_MEMTYPE_BASE(request_encode.Type)) {
 osa.Out.NumSurface = request_decode.NumFrameSuggested +
 request_encode.NumFrameSuggested - decode_param.AsyncDepth;
 osa.Out.Type=request_decode.Type;
} else {
 // it is also ok to use decode's NumFrameSuggested and Type.
 osa.Out.NumSurface=request_encode.NumFrameSuggested;
 osa.Out.Type=request_encode.Type;
}

// allocate surface pool and zero MemId/Y/U/V/A pointers
osa.Out.Surfaces=allocmfxFrameSurface(osa.Out.NumSurface);

// attach the surface pool during decode & encode initialization
osa.Header.BufferId=MFX_EXTBUFF_OPAQUE_SURFACE_ALLOCATION;
osa.Header.BufferSz=sizeof(osa);
decode_param.NumExtParam=1;
decode_param.ExtParam=&posa;
MFXVideoDECODE_Init(session, &decode_param);

memcpy(&osa.In, &osa.Out, sizeof(osa.Out));
encode_param.NumExtParam=1;
encode_param.ExtParam=&posa;
MFXVideoENCODE_Init(session, &encode_param);

Hardware Device Error Handling
The SDK accelerates decoding, encoding and video processing through a hardware device. The SDK functions may return the
following errors or warnings if the hardware device encounters errors:

MFX_ERR_DEVICE_FAILED Hardware device returned unexpected errors. SDK was unable to restore operation.
MFX_ERR_DEVICE_LOST Hardware device was lost due to system lock or shutdown.
MFX_WRN_PARTIAL_ACCELERATIONThe hardware does not fully support the specified configuration. The encoding, decoding,

or video processing operation may be partially accelerated.
MFX_WRN_DEVICE_BUSY Hardware device is currently busy.

SDK functions Query, QueryIOSurf, and Init return MFX_WRN_PARTIAL_ACCELERATION to indicate that the encoding, decoding
or video processing operation can be partially hardware accelerated or not hardware accelerated at all. The application can ignore
this warning and proceed with the operation. (Note that SDK functions may return errors or other warnings overwriting
MFX_WRN_PARTIAL_ACCELERATION, as it is a lower priority warning.)

28 SDK Developer Reference 1.27

SDK functions return MFX_WRN_DEVICE_BUSY to indicate that the hardware device is busy and unable to take commands at this
time. Resume the operation by waiting for a few milliseconds and resubmitting the request. Example 14 shows the decoding
pseudo-code. The same procedure applies to encoding and video processing.

SDK functions return MFX_ERR_DEVICE_LOST or MFX_ERR_DEVICE_FAILED to indicate that there is a complete failure in
hardware acceleration. The application must close and reinitialize the SDK function class. If the application has provided a
hardware acceleration device handle to the SDK, the application must reset the device.

Example 14: Pseudo-Code to Handle MFX_ERR_DEVICE_BUSY
mfxStatus sts=MFX_ERR_NONE;
for (;;) {
 …
 sts=MFXVideoDECODE_DecodeFrameAsync(session, bitstream, surface_work, &surface_disp,
&syncp);
 if (sts == MFX_WRN_DEVICE_BUSY) Sleep(5);
}

Function Reference
This section describes SDK functions and their operations.

In each function description, only commonly used status codes are documented. The function may return additional status
codes, such as MFX_ERR_INVALID_HANDLE or MFX_ERR_NULL_PTR, in certain case. See the mfxStatus enumerator for a list of all
status codes.

Global Functions
Global functions initialize and de-initialize the SDK library and perform query functions on a global scale within an application.

Member Functions Description
MFXInit Initializes an SDK session
MFXQueryIMPL Queries the implementation type
MFXQueryVersion Queries the implementation version
MFXJoinSession Join two sessions together
MFXCloneSession Clone the current session
MFXSetPriority Set session priority
MFXGetPriority Obtain session priority
MFXDisjoinSession Remove the join state of the current session
MFXClose De-initializes an SDK session

MFXCloneSession
Syntax

mfxStatus MFXCloneSession(mfxSession session, mfxSession *clone);

Parameters

sessionSDK session handle
clone Pointer to the cloned session handle

Description

This function creates a clean copy of the current session. The cloned session is an independent session. It does not inherit any
user-defined buffer, frame allocator, or device manager handles from the current session. This function is a light-weight
equivalent of MFXJoinSession after MFXInit.

Return Status

MFX_ERR_NONEThe function completed successfully.

Change History

This function is available since SDK API 1.1.

MFXClose
Syntax

mfxStatus MFXClose(mfxSession session);

Parameters

sessionSDK session handle

Description

This function completes and de-initializes an SDK session. Any active tasks in execution or in queue are aborted. The application

29 SDK Developer Reference 1.27

cannot call any SDK function after this function.

All child sessions must be disjoined before closing a parent session.

Return Status

MFX_ERR_NONEThe function completed successfully.

Change History

This function is available since SDK API 1.0.

MFXDoWork
Syntax

mfxStatus MFXDoWork(mfxSession session);

Parameters

sessionSDK session handle

Description

This function complements MFXInitEx with external threading mode on. Application expected to create no less than two work
threads per session and pass them to SDK via this function. This function won’t return control to application unless session is
closed.

In case of joined sessions, application should call MFXDoWork only for parent session.

Return Status

MFX_ERR_NONEThe function completed successfully.

Change History

This function is available since SDK API 1.14.

MFXDisjoinSession
Syntax

mfxStatus MFXDisjoinSession(mfxSession session);

Parameters

sessionSDK session handle

Description

This function removes the joined state of the current session. After disjoining, the current session becomes independent. The
application must ensure there is no active task running in the session before calling this function.

Return Status

MFX_ERR_NONE The function completed successfully.
MFX_WRN_IN_EXECUTION Active tasks are in execution or in queue. Wait for the completion of the tasks and then call

this function again.
MFX_ERR_UNDEFINED_BEHAVIORThe session is independent, or this session is the parent of all joined sessions.

Change History

This function is available since SDK API 1.1.

MFXGetPriority
Syntax

mfxStatus MFXGetPriority(mfxSession session, mfxPriority *priority);

Parameters

session SDK session handle
priorityPointer to the priority value

Description

This function returns the current session priority.

Return Status

MFX_ERR_NONEThe function completed successfully.

Change History

30 SDK Developer Reference 1.27

This function is available since SDK API 1.1.

MFXInit
Syntax

mfxStatus MFXInit(mfxIMPL impl, mfxVersion *ver, mfxSession *session);

Parameters

impl mfxIMPL enumerator that indicates the desired SDK implementation
ver Pointer to the minimum library version or zero, if not specified
sessionPointer to the SDK session handle

Description

This function creates and initializes an SDK session. Call this function before calling any other SDK functions. If the desired
implementation specified by impl is MFX_IMPL_AUTO, the function will search for the platform-specific SDK implementation. If
the function cannot find it, it will use the software implementation.

The argument ver indicates the desired version of the library implementation. The loaded SDK will have an API version
compatible to the specified version (equal in the major version number, and no less in the minor version number.) If the desired
version is not specified, the default is to use the API version from the SDK release, with which an application is built.

We recommend that production applications always specify the minimum API version that meets their functional requirements.
For example, if an application uses only H.264 decoding as described in API v1.0, have the application initialize the library with
API v1.0. This ensures backward compatibility.

Return Status

MFX_ERR_NONE The function completed successfully. The output parameter contains the handle of the session.
MFX_ERR_UNSUPPORTEDThe function cannot find the desired SDK implementation or version.

Change History

This function is available since SDK API 1.0.

MFXInitEx
Syntax

mfxStatus MFXInitEx(mfxInitParam par, mfxSession *session);

Parameters

par mfxInitParam structure that indicates the desired SDK implementation, minimum library version and desired threading
mode

sessionPointer to the SDK session handle

Description

This function creates and initializes an SDK session. Call this function before calling any other SDK functions. If the desired
implementation specified by par. Implementation is MFX_IMPL_AUTO, the function will search for the platform-specific SDK
implementation. If the function cannot find it, it will use the software implementation.

The argument par.Version indicates the desired version of the library implementation. The loaded SDK will have an API
version compatible to the specified version (equal in the major version number, and no less in the minor version number.) If the
desired version is not specified, the default is to use the API version from the SDK release, with which an application is built.

We recommend that production applications always specify the minimum API version that meets their functional requirements.
For example, if an application uses only H.264 decoding as described in API v1.0, have the application initialize the library with
API v1.0. This ensures backward compatibility.

The argument par.ExternalThreads specifies threading mode. Value 0 means that SDK should internally create and handle
work threads (this essentially equivalent of regular MFXInit). If this parameter set to 1 then SDK will expect that application
should create work threads and pass them to SDK via single-entry function MFXDoWork. Setting par.ExternalThreads to 1
requires setting minimum API version to 1.14, as previous versions of SDK didn’t have such functionality.

Return Status

MFX_ERR_NONE The function completed successfully. The output parameter contains the handle of the session.
MFX_ERR_UNSUPPORTEDThe function cannot find the desired SDK implementation or version.

Change History

This function is available since SDK API 1.14.

MFXJoinSession
Syntax

31 SDK Developer Reference 1.27

mfxStatus MFXJoinSession(mfxSession session, mfxSession child);

Parameters

sessionThe current session handle
child The child session handle to be joined

Description

This function joins the child session to the current session.

After joining, the two sessions share thread and resource scheduling for asynchronous operations. However, each session still
maintains its own device manager and buffer/frame allocator. Therefore, the application must use a compatible device manager
and buffer/frame allocator to share data between two joined sessions.

The application can join multiple sessions by calling this function multiple times. When joining the first two sessions, the current
session becomes the parent responsible for thread and resource scheduling of any later joined sessions.

Joining of two parent sessions is not supported.

Return Status

MFX_ERR_NONE The function completed successfully.
MFX_WRN_IN_EXECUTIONActive tasks are executing or in queue in one of the sessions. Call this function again after all tasks are

completed.
MFX_ERR_UNSUPPORTED The child session cannot be joined with the current session.

Change History

This function is available since SDK API 1.1.

MFXQueryIMPL
Syntax

mfxStatus MFXQueryIMPL(mfxSession session, mfxIMPL *impl);

Parameters

sessionSDK session handle
impl Pointer to the implementation type

Description

This function returns the implementation type of a given session.

Return Status

MFX_ERR_NONEThe function completed successfully.

Change History

This function is available since SDK API 1.0.

MFXQueryVersion
Syntax

mfxStatus MFXQueryVersion(mfxSession session, mfxVersion *version);

Parameters

sessionSDK session handle
versionPointer to the returned implementation version

Description

This function returns the SDK implementation version.

Return Status

MFX_ERR_NONEThe function completed successfully.

Change History

This function is available since SDK API 1.0.

MFXSetPriority
Syntax

mfxStatus MFXSetPriority(mfxSession session, mfxPriority priority);

Parameters

32 SDK Developer Reference 1.27

session SDK session handle
priorityPriority value

Description

This function sets the current session priority.

Return Status

MFX_ERR_NONEThe function completed successfully.

Change History

This function is available since SDK API 1.1.

MFXVideoCORE
This class of functions consists of auxiliary functions that all functions of the SDK implementation
can call.

Member Functions
MFXVideoCORE_SetHandle Sets system handles that the SDK implementation might need
MFXVideoCORE_GetHandle Obtains system handles previously set
MFXVideoCORE_SetBufferAllocatorSets the external system buffer allocator
MFXVideoCORE_SetFrameAllocatorSets the external frame allocator
MFXVideoCORE_SyncOperation Initializes execution of the specified sync point and returns a status code

MFXVideoCORE_SetHandle
Syntax

mfxStatus MFXVideoCORE_SetHandle(mfxSession session, mfxHandleType type, mfxHDL hdl);

Parameters

sessionSDK session handle
type Handle type
hdl Handle to be set

Description

This function sets any essential system handle that SDK might use.

If the specified system handle is a COM interface, the reference counter of the COM interface will increase. The counter will
decrease when the SDK session closes.

Return Status

MFX_ERR_NONE The function completed successfully.
MFX_ERR_UNDEFINED_BEHAVIORThe same handle is redefined. For example, the function has been called twice with the same

handle type or internal handle has been created by the SDK before this function call.
Change History

This function is available since SDK API 1.0.

MFXVideoCORE_GetHandle
Syntax

mfxStatus MFXVideoCORE_GetHandle(mfxSession session, mfxHandleType type, mfxHDL *hdl);

Parameters

sessionSDK session handle
type Handle type
hdl Pointer to the handle to be set

Description

This function obtains system handles previously set by the MFXVideoCORE_SetHandle function. If the handler is a COM
interface, the reference counter of the interface increases. The calling application must release the COM interface.

Return Status

MFX_ERR_NONE The function completed successfully.
MFX_ERR_NOT_FOUNDSpecified handle type not found.

Change History

33 SDK Developer Reference 1.27

This function is available since SDK API 1.0.

MFXVideoCORE_SetBufferAllocator
Syntax

mfxStatus MFXVideoCORE_SetBufferAllocator(mfxSession session, mfxBufferAllocator *allocator);

Parameters

session SDK session handle
allocatorPointer to the mfxBufferAllocator structure

Description

This function is deprecated.

Return Status

MFX_ERR_NONEThe function completed successfully.

Change History

This function is available since SDK API 1.0.

Deprecated since SDK API 1.17.

MFXVideoCORE_SetFrameAllocator
Syntax

mfxStatus MFXVideoCORE_SetFrameAllocator(mfxSession session, mfxFrameAllocator *allocator);

Parameters

session SDK session handle
allocatorPointer to the mfxFrameAllocator structure

Description

This function sets the external allocator callback structure for frame allocation. If the allocator argument is NULL, the SDK
uses the default allocator, which allocates frames from system memory or hardware devices.

The behavior of the SDK is undefined if it uses this function while the previous allocator is in use. A general guideline is to set the
allocator immediately after initializing the session.

Return Status

MFX_ERR_NONEThe function completed successfully.

Change History

This function is available since SDK API 1.0.

MFXVideoCORE_QueryPlatform
Syntax

mfxStatus MFXVideoCORE_QueryPlatform(mfxSession session, mfxPlatform *platform);

Parameters

session SDK session handle
platformPointer to the mfxPlatform structure

Description

This function returns information about current hardware platform.

Return Status

MFX_ERR_NONEThe function completed successfully.

Change History

This function is available since SDK API 1.19.

MFXVideoCORE_SyncOperation
Syntax

mfxStatus MFXVideoCORE_SyncOperation(mfxSession session, mfxSyncPoint syncp, mfxU32 wait);

Parameters

34 SDK Developer Reference 1.27

sessionSDK session handle
syncp Sync point
wait Wait time in milliseconds

Description

This function initiates execution of an asynchronous function not already started and returns the status code after the specified
asynchronous operation completes. If wait is zero, the function returns immediately.

Return Status

MFX_ERR_NONE The function completed successfully.
MFX_WRN_IN_EXECUTIONThe specified asynchronous function is in execution.
MFX_ERR_ABORTED The specified asynchronous function aborted due to data dependency on a previous asynchronous

function that did not complete.
Change History

This function is available since SDK API 1.0.

Remarks

See status codes for specific asynchronous functions.

MFXVideoENCODE
This class of functions performs the entire encoding pipeline from the input video frames to the output bitstream.

Member Functions
MFXVideoENCODE_Query Queries the feature capability
MFXVideoENCODE_QueryIOSurf Queries the number of input surface frames required for encoding
MFXVideoENCODE_Init Initializes the encoding operation
MFXVideoENCODE_Reset Resets the current encoding operation and prepares for the next encoding operation
MFXVideoENCODE_Close Terminates the encoding operation and de-allocates any internal memory
MFXVideoENCODE_GetVideoParam Obtains the current working parameter set
MFXVideoENCODE_GetEncodeStat Obtains the statistics collected during encoding
MFXVideoENCODE_EncodeFrameAsyncPerforms the encoding and returns the compressed bitstream

MFXVideoENCODE_Query
Syntax

mfxStatus MFXVideoENCODE_Query(mfxSession session, mfxVideoParam *in, mfxVideoParam *out);

Parameters

sessionSDK session handle
in Pointer to the mfxVideoParam structure as input
out Pointer to the mfxVideoParam structure as output

Description

This function works in either of four modes:

If the in pointer is zero, the function returns the class configurability in the output structure. A non-zero value in each field of
the output structure indicates that the SDK implementation can configure the field with Init.

If the in parameter is non-zero, the function checks the validity of the fields in the input structure. Then the function returns the
corrected values in the output structure. If there is insufficient information to determine the validity or correction is impossible,
the function zeroes the fields. This feature can verify whether the SDK implementation supports certain profiles, levels or
bitrates.

If the in parameter is non-zero and mfxExtEncoderResetOption structure is attached to it, then the function queries for the
outcome of the MFXVideoENCODE_Reset function and returns it in the mfxExtEncoderResetOption structure attached to out.
The query function succeeds if such reset is possible and returns error otherwise. Unlike other modes that are independent of
the SDK encoder state, this one checks if reset is possible in the present SDK encoder state. This mode also requires completely
def i ned mfxVideoParam structure, unlike other modes that support partially defined configurations. See
mfxExtEncoderResetOption description for more details.

If the in parameter is non-zero and mfxExtEncoderCapability structure is attached to it, then the function returns encoder
capability in mfxExtEncoderCapability structure attached to out. It is recommended to fill in mfxVideoParam structure and set
hardware acceleration device handle before calling the function in this mode.

The application can call this function before or after it initializes the encoder. The CodecId field of the output structure is a
mandated field (to be filled by the application) to identify the coding standard.

Return Status

35 SDK Developer Reference 1.27

MFX_ERR_NONE The function completed successfully.
MFX_ERR_UNSUPPORTED The function failed to identify a specific implementation for the required features.
MFX_WRN_PARTIAL_ACCELERATION The underlying hardware does not fully support the specified video parameters; The

encoding may be partially accelerated. Only SDK HW implementations may return
this status code.

MFX_WRN_INCOMPATIBLE_VIDEO_PARAMThe function detected some video parameters were incompatible with others;
incompatibility resolved.

Change History

This function is available since SDK API 1.0.

MFXVideoENCODE_QueryIOSurf
Syntax

mfxStatus MFXVideoENCODE_QueryIOSurf(mfxSession session, mfxVideoParam *par, mfxFrameAllocRequest
*request);

Parameters

sessionSDK session handle
par Pointer to the mfxVideoParam structure as input
requestPointer to the mfxFrameAllocRequest structure as output

Description

This function returns minimum and suggested numbers of the input frame surfaces required for
encoding initialization and their type. Init will call the external allocator for the required
frames with the same set of numbers.

The use of this function is recommended. For more information, see the section Working with hardware
acceleration.

This function does not validate I/O parameters except those used in calculating the number of input
surfaces.

Return Status

MFX_ERR_NONE The function completed successfully.
MFX_WRN_PARTIAL_ACCELERATION The underlying hardware does not fully support the specified video parameters. The

encoding may be partially accelerated. Only SDK HW implementations may return
this status code.

MFX_ERR_INVALID_VIDEO_PARAM The function detected invalid video parameters. These parameters may be out of the
valid range, or the combination of them resulted in incompatibility. Incompatibility
not resolved.

MFX_WRN_INCOMPATIBLE_VIDEO_PARAMThe function detected some video parameters were incompatible with others;
incompatibility resolved.

Change History

This function is available since SDK API 1.0.

MFXVideoENCODE_Init
Syntax

mfxStatus MFXVideoENCODE_Init(mfxSession session, mfxVideoParam *par);

Parameters

sessionSDK session handle
par Pointer to the mfxVideoParam structure

Description

This function allocates memory and prepares tables and necessary structures for encoding. This
function also does extensive validation to ensure if the configuration, as specified in the input
parameters, is supported.

Return Status

MFX_ERR_NONE The function completed successfully.
MFX_WRN_PARTIAL_ACCELERATION The underlying hardware does not fully support the specified video parameters. The

encoding may be partially accelerated. Only SDK HW implementations may return
this status code.

MFX_ERR_INVALID_VIDEO_PARAM The function detected invalid video parameters. These parameters may be out of the
valid range, or the combination of them resulted in incompatibility. Incompatibility
not resolved.

36 SDK Developer Reference 1.27

MFX_WRN_INCOMPATIBLE_VIDEO_PARAMThe function detected some video parameters were incompatible with others;
incompatibility resolved.

MFX_ERR_UNDEFINED_BEHAVIOR The function is called twice without a close;

Change History

This function is available since SDK API 1.0.

MFXVideoENCODE_Reset
Syntax

mfxStatus MFXVideoENCODE_Reset(mfxSession session, mfxVideoParam *par);

Parameters

sessionSDK session handle
par Pointer to the mfxVideoParam structure

Description

This function stops the current encoding operation and restores internal structures or parameters
for a new encoding operation, possibly with new parameters.

Return Status

MFX_ERR_NONE The function completed successfully.
MFX_ERR_INVALID_VIDEO_PARAM The function detected that video parameters are wrong or they conflict with

initialization parameters. Reset is impossible.
MFX_ERR_INCOMPATIBLE_VIDEO_PARAMThe function detected that provided by the application video parameters are

incompatible with initialization parameters. Reset requires additional memory
allocation and cannot be executed. The application should close the SDK component
and then reinitialize it.

MFX_WRN_INCOMPATIBLE_VIDEO_PARAMThe function detected some video parameters were incompatible with others;
incompatibility resolved.

Change History

This function is available since SDK API 1.0.

MFXVideoENCODE_Close
Syntax

mfxStatus MFXVideoENCODE_Close(mfxSession session);

Parameters

sessionSDK session handle

Description

This function terminates the current encoding operation and de-allocates any internal tables or structures.

Return Status

MFX_ERR_NONEThe function completed successfully.

Change History

This function is available since SDK API 1.0.

MFXVideoENCODE_GetVideoParam
Syntax

mfxStatus MFXVideoENCODE_GetVideoParam(mfxSession session,mfxVideoParam *par);

Parameters

sessionSDK session handle
par Pointer to the corresponding parameter structure

Description

This function retrieves current working parameters to the specified output structure. If extended buffers are to be returned, the
application must allocate those extended buffers and attach them as part of the output structure.

The application can retrieve a copy of the bitstream header, by attaching the mfxExtCodingOptionSPSPPS structure to the
mfxVideoParam structure.

Returned information

37 SDK Developer Reference 1.27

MFX_ERR_NONEThe function completed successfully.

Change History

This function is available since SDK API 1.0.

MFXVideoENCODE_GetEncodeStat
Syntax

mfxStatus MFXVideoENCODE_GetEncodeStat(mfxSession session, mfxEncodeStat *stat);

Parameters

sessionSDK session handle
stat Pointer to the mfxEncodeStat structure

Description

This function obtains statistics collected during encoding.

Return Status

MFX_ERR_NONEThe function completed successfully.

Change History

This function is available since SDK API 1.0.

MFXVideoENCODE_EncodeFrameAsync
Syntax

mfxStatus MFXVideoENCODE_EncodeFrameAsync(mfxSession session, mfxEncodeCtrl *ctrl,mfxFrameSurface1
*surface, mfxBitstream *bs, mfxSyncPoint *syncp);

Parameters

SessionSDK session handle
ctrl Pointer to the mfxEncodeCtrl structure for per-frame encoding control; this parameter is optional(it can be NULL) if the

encoder works in the display order mode.
surfacePointer to the frame surface structure
bs Pointer to the output bitstream
syncp Pointer to the returned sync point associated with this operation

Description

This function takes a single input frame in either encoded or display order and generates its output bitstream. In the case of
encoded ordering the mfxEncodeCtrl structure must specify the explicit frame type. In the case of display ordering, this function
handles frame order shuffling according to the GOP structure parameters specified during initialization.

Since encoding may process frames differently from the input order, not every call of the function generates output and the
function returns MFX_ERR_MORE_DATA. If the encoder needs to cache the frame, the function locks the frame. The application
should not alter the frame until the encoder unlocks the frame. If there is output (with return status MFX_ERR_NONE), the return
is a frame worth of bitstream.

It is the calling application’s responsibility to ensure that there is sufficient space in the output buffer. The value
BufferSizeInKB in the mfxVideoParam structure at encoding initialization specifies the maximum possible size for any
compressed frames. This value can also be obtained from MFXVideoENCODE_GetVideoParam after encoding initialization.

To mark the end of the encoding sequence, call this function with a NULL surface pointer. Repeat the call to drain any remaining
internally cached bitstreams(one frame at a time) until MFX_ERR_MORE_DATA is returned.

This function is asynchronous.

Return Status

MFX_ERR_NONE The function completed successfully.
MFX_ERR_NOT_ENOUGH_BUFFER The bitstream buffer size is insufficient.
MFX_ERR_MORE_DATA The function requires more data to generate any output.
MFX_ERR_DEVICE_LOST Hardware device was lost; See Working with Microsoft* DirectX* Applications section

for further information.
MFX_WRN_DEVICE_BUSY Hardware device is currently busy. Call this function again in a few milliseconds.
MFX_ERR_INCOMPATIBLE_VIDEO_PARAM Inconsistent parameters detected not conforming to Appendix A.

Change History

This function is available since SDK API 1.0.

Remarks

38 SDK Developer Reference 1.27

If the EncodedOrder field in the mfxInfoMFX structure is true, input frames enter the encoder in the order of their encoding.
However, the FrameOrder field in the mfxFrameData structure of each frame must be set to the display order. If EncodedOrder
is false, the function ignores the FrameOrder field.

MFXVideoENC
This class of functions performs the first step of encoding process – motion estimation, intra prediction and mode decision.
These functions are declared in mfxenc.h file.

Member Functions
MFXVideoENC_Query Queries the feature capability
MFXVideoENC_QueryIOSurf Queries the number of input surface frames required for encoding
MFXVideoENC_Init Initializes the encoding operation
MFXVideoENC_Reset Resets the current encoding operation and prepares for the next encoding operation
MFXVideoENC_Close Terminates the encoding operation and de-allocates any internal memory
MFXVideoENC_ProcessFrameAsyncPerforms the first step of encoding process and returns intermediate data.

MFXVideoENC_Query
Syntax

mfxStatus MFXVideoENC_Query(mfxSession session, mfxVideoParam *in,mfxVideoParam *out);

Parameters

sessionSDK session handle
in Pointer to the mfxVideoParam structure as input
out Pointer to the mfxVideoParam structure as output

Description

This function works in either of two modes:

If the in pointer is zero, the function returns the class configurability in the output structure. A non-zero value in each field of
the output structure indicates that the SDK implementation can configure the field with Init.

If the in parameter is non-zero, the function checks the validity of the fields in the input structure. Then the function returns the
corrected values in the output structure. If there is insufficient information to determine the validity or correction is impossible,
the function zeroes the fields. This feature can verify whether the SDK implementation supports certain profiles, levels or
bitrates.

The application can call this function before or after it initializes the ENC.

Return Status

MFX_ERR_NONE The function completed successfully.
MFX_ERR_UNSUPPORTED The function failed to identify a specific implementation for the required features.
MFX_WRN_INCOMPATIBLE_VIDEO_PARAMThe function detected some video parameters were incompatible with others;

incompatibility resolved.
Change History

This function is available since SDK API 1.10.

MFXVideoENC_QueryIOSurf
Syntax

mfxStatus MFXVideoENC_QueryIOSurf(mfxSession session, mfxVideoParam *par, mfxFrameAllocRequest
*request);

Parameters

sessionSDK session handle
par Pointer to the mfxVideoParam structure as input
requestPointer to the mfxFrameAllocRequest structure as output

Description

This function returns minimum and suggested numbers of the input frame surfaces required for ENC
initialization and their type.

This function does not validate I/O parameters except those used in calculating the number of input
surfaces.

Return Status

MFX_ERR_NONE The function completed successfully.

39 SDK Developer Reference 1.27

MFX_ERR_INVALID_VIDEO_PARAM The function detected invalid video parameters. These parameters may be out of the
valid range, or the combination of them resulted in incompatibility. Incompatibility
not resolved.

MFX_WRN_INCOMPATIBLE_VIDEO_PARAMThe function detected some video parameters were incompatible with others;
incompatibility resolved.

Change History

This function is available since SDK API 1.10.

MFXVideoENC_Init
Syntax

mfxStatus MFXVideoENC_Init(mfxSession session, mfxVideoParam *par);

Parameters

sessionSDK session handle
par Pointer to the mfxVideoParam structure

Description

This function performs ENC initialization.

Return Status

MFX_ERR_NONE The function completed successfully.
MFX_ERR_INVALID_VIDEO_PARAM The function detected invalid video parameters. These parameters may be out of the

valid range, or the combination of them resulted in incompatibility. Incompatibility
not resolved.

MFX_WRN_INCOMPATIBLE_VIDEO_PARAMThe function detected some video parameters were incompatible with others;
incompatibility resolved.

MFX_ERR_UNDEFINED_BEHAVIOR The function is called twice without a close;

Change History

This function is available since SDK API 1.10.

MFXVideoENC_Reset
Syntax

mfxStatus MFXVideoENC_Reset(mfxSession session, mfxVideoParam *par);

Parameters

sessionSDK session handle
par Pointer to the mfxVideoParam structure

Description

This function stops the current encoding operation and restores internal structures or parameters for a new encoding operation,
possibly with new parameters.

Return Status

MFX_ERR_NONE The function completed successfully.
MFX_ERR_INVALID_VIDEO_PARAM The function detected that video parameters are wrong or they conflict with

initialization parameters. Reset is impossible.
MFX_ERR_INCOMPATIBLE_VIDEO_PARAMThe function detected that provided by the application video parameters are

incompatible with initialization parameters. Reset requires additional memory
allocation and cannot be executed. The application should close the SDK component
and then reinitialize it.

MFX_WRN_INCOMPATIBLE_VIDEO_PARAMThe function detected some video parameters were incompatible with others;
incompatibility resolved.

Change History

This function is available since SDK API 1.10.

MFXVideoENC_Close
Syntax

mfxStatus MFXVideoENC_Close(mfxSession session);

Parameters

sessionSDK session handle

40 SDK Developer Reference 1.27

Description

This function terminates the current encoding operation and de-allocates any internal tables or structures.

Return Status

MFX_ERR_NONEThe function completed successfully.

Change History

This function is available since SDK API 1.10.

MFXVideoENC_GetVideoParam
Syntax

mfxStatus MFXVideoENC_GetVideoParam(mfxSession session,
*par);

Parameters

sessionSDK session handle
par Pointer to the corresponding parameter structure

Description

This function retrieves current working parameters to the specified output structure. If extended buffers are to be returned, the
application must allocate those extended buffers and attach them as part of the output structure.

Returned information

MFX_ERR_NONEThe function completed successfully.

Change History

This function is available since SDK API 1.19.

MFXVideoENC_ProcessFrameAsync
Syntax

mfxStatus MFXVideoENC_ProcessFrameAsync(mfxSession session, mfxENCInput *in,
 mfxENCOutput *out, mfxSyncPoint *syncp);

Parameters

SessionSDK session handle
in Input parameters for ENC operation.
out Output parameters of encoding operation.
syncp Pointer to the returned sync point associated with this operation

Description

This function performs the first step of encoding process – motion estimation, intra prediction and mode decision. Its exact
operation, input and output parameters depend on usage model.

This function is stateless, i.e. each function call is independent from other calls.

This function is asynchronous.

Return Status

MFX_ERR_NONEThe function completed successfully.

Change History

This function is available since SDK API 1.10.

MFXVideoDECODE
This class of functions implements a complete decoder that decompresses input bitstreams directly to
output frame surfaces.

Member Functions
MFXVideoDECODE_Query Queries the feature capability
MFXVideoDECODE_QueryIOSurf Queries the number of frames required for decoding
MFXVideoDECODE_DecodeHeader Parses the bitstream to obtain the video parameters for initialization
MFXVideoDECODE_Init Initializes the decoding operation
MFXVideoDECODE_Reset Resets the current decoding operation and prepares for the next decoding operation
MFXVideoDECODE_Close Terminates the decoding operation and de-allocates any internal memory
MFXVideoDECODE_GetVideoParam Obtains the current working parameter set

41 SDK Developer Reference 1.27

MFXVideoDECODE_GetDecodeStat Obtains statistics during decoding
MFXVideoDECODE_GetPayload Obtains user data or SEI messages embedded in the bitstream
MFXVideoDECODE_SetSkipMode Set decoder skip mode
MFXVideoDECODE_DecodeFrameAsyncPerforms decoding from the input bitstream to the output frame surface

Member Functions

MFXVideoDECODE_DecodeHeader
Syntax

mfxStatus MFXVideoDECODE_DecodeHeader(mfxSession session, mfxBitstream *bs,mfxVideoParam *par);

Parameters

sessionSDK session handle
bs Pointer to the bitstream
par Pointer to the mfxVideoParam structure

Description

This function parses the input bitstream and fills the mfxVideoParam structure with appropriate values, such as resolution and
frame rate, for the Init function. The application can then pass the resulting structure to the MFXVideoDECODE_Init function for
decoder initialization.

An application can call this function at any time before or after decoder initialization. If the SDK finds a sequence header in the
bitstream, the function moves the bitstream pointer to the first bit of the sequence header. Otherwise, the function moves the
bitstream pointer close to the end of thebitstream buffer but leaves enough data in the buffer to avoid possible loss of start
code.

The CodecId field of the mfxVideoParam structure is a mandated field (to be filled by the application) to identify the coding
standard.

The application can retrieve a copy of the bitstream header, by attaching the mfxExtCodingOptionSPSPPS structure to the
mfxVideoParam structure.

Return Status

MFX_ERR_NONE The function successfully filled structure. It does not mean that the stream can be decoded by SDK. The
application should call MFXVideoDECODE_Query function to check if decoding of the stream is
supported.

MFX_ERR_MORE_DATAThe function requires more bitstream data.

Change History

This function is available since SDK API 1.0.

MFXVideoDECODE_Query
Syntax

mfxStatus MFXVideoDECODE_Query(mfxSession session, mfxVideoParam *in,mfxVideoParam *out);

Parameters

sessionSDK session handle
in Pointer to the mfxVideoParam structure as input
out Pointer to the mfxVideoParam structure as output

Description

This function works in one of two modes:

1. If the in pointer is zero, the function returns the class configurability in the output structure. A non-zero value in each
field of the output structure indicates that the field is configurable by the SDK implementation with the
MFXVideoDECODE_Init function).

2. If the in parameter is non-zero, the function checks the validity of the fields in the input structure. Then the function
returns the corrected values to the output structure. If there is insufficient information to determine the validity or
correction is impossible, the function zeros the fields. This feature can verify whether the SDK implementation supports
certain profiles, levels or bitrates.

The application can call this function before or after it initializes the decoder. The CodecId field of the output structure is a
mandated field (to be filled by the application) to identify the coding standard.

Return Status

MFX_ERR_NONE The function completed successfully.
MFX_ERR_UNSUPPORTED The function failed to identify a specific implementation.

42 SDK Developer Reference 1.27

MFX_WRN_PARTIAL_ACCELERATION The underlying hardware does not fully support the specified video parameters; The
decoding may be partially accelerated. Only SDK HW implementations may return
this status code.

MFX_WRN_INCOMPATIBLE_VIDEO_PARAMThe function detected some video parameters were incompatible with others;
incompatibility resolved.

Change History

This function is available since SDK API 1.0.

MFXVideoDECODE_QueryIOSurf
Syntax

mfxStatus MFXVideoDECODE_QueryIOSurf(mfxSession session, mfxVideoParam *par, mfxFrameAllocRequest
*request);

Parameters

sessionSDK session handle
par Pointer to the mfxVideoParam structure as input
requestPointer to the mfxFrameAllocRequest structure as output

Description

The function returns minimum and suggested numbers of the output frame surfaces required for decoding initialization and
their type. Init will call the external allocator for the required frames with the same set of numbers.

The use of this function is recommended. For more information, see the section Working with hardware acceleration.

The CodecId field of the mfxVideoParam structure is a mandated field (to be filled by the application) to identify the coding
standard.

This function does not validate I/O parameters except those used in calculating the number of output surfaces.

Return Status

MFX_ERR_NONE The function completed successfully.
MFX_WRN_PARTIAL_ACCELERATION The underlying hardware does not fully support the specified video parameters; The

decoding may be partially accelerated. Only SDK HW implementations may return
this status code.

MFX_ERR_INVALID_VIDEO_PARAM The function detected invalid video parameters. These parameters may be out of the
valid range, or the combination of them resulted in incompatibility. Incompatibility
not resolved.

MFX_WRN_INCOMPATIBLE_VIDEO_PARAMThe function detected some video parameters were incompatible with others;
incompatibility resolved.

Change History

This function is available since SDK API 1.0.

MFXVideoDECODE_Init
Syntax

mfxStatus MFXVideoDECODE_Init(mfxSession session, mfxVideoParam *par);

Parameters

sessionSDK session handle
par Pointer to the mfxVideoParam structure

Description

This function allocates memory and prepares tables and necessary structures for decoding. This function also does extensive
validation to determine whether the configuration is supported as specified in the input parameters.

Return Status

MFX_ERR_NONE The function completed successfully.
MFX_WRN_PARTIAL_ACCELERATION The underlying hardware does not fully support the specified video parameters; The

decoding may be partially accelerated. Only SDK hardware implementations return
this status code.

MFX_ERR_INVALID_VIDEO_PARAM The function detected invalid video parameters. These parameters may be out of the
valid range, or the combination of parameters resulted in an incompatibility error.
Incompatibility was not resolved.

MFX_WRN_INCOMPATIBLE_VIDEO_PARAMThe function detected some video parameters were incompatible; Incompatibility
resolved.

MFX_ERR_UNDEFINED_BEHAVIOR The function is called twice without a close.

43 SDK Developer Reference 1.27

Change History

This function is available since SDK API 1.0.

MFXVideoDECODE_Reset
Syntax

mfxStatus MFXVideoDECODE_Reset(mfxSession session, mfxVideoParam *par);

Parameters

sessionSDK session handle
par Pointer to the mfxVideoParam structure

Description

This function stops the current decoding operation and restores internal structures or parameters for a new decoding operation.

Reset serves two purposes:

It recovers the decoder from errors.
It restarts decoding from a new position.

The function resets the old sequence header (sequence parameter set in H.264, or sequence header in MPEG-2 and VC-1). The
decoder will expect a new sequence header before it decodes the next frame and will skip any bitstream before encountering
the new sequence header.

Return Status

MFX_ERR_NONE The function completed successfully.
MFX_ERR_INVALID_VIDEO_PARAM The function detected that video parameters are wrong or they conflict with

initialization parameters. Reset is impossible.
MFX_ERR_INCOMPATIBLE_VIDEO_PARAMThe function detected that provided by the application video parameters are

incompatible with initialization parameters. Reset requires additional memory
allocation and cannot be executed. The application should close the SDK component
and then reinitialize it.

MFX_WRN_INCOMPATIBLE_VIDEO_PARAMThe function detected some video parameters were incompatible; Incompatibility
resolved.

Change History

This function is available since SDK API 1.0.

MFXVideoDECODE_Close
Syntax

mfxStatus MFXVideoDECODE_Close(mfxSession session);

Parameters

sessionSDK session handle

Description

This function terminates the current decoding operation and de-allocates any internal tables or structures.

Return Status

MFX_ERR_NONEThe function completed successfully.

Change History

This function is available since SDK API 1.0.

MFXVideoDECODE_GetVideoParam
Syntax

mfxStatus MFXVideoDECODE_GetVideoParam(mfxSession session, mfxVideoParam *par);

Parameters

sessionSDK session handle
par Pointer to the corresponding parameter structure

Description

This function retrieves current working parameters to the specified output structure. If extended buffers are to be returned, the
application must allocate those extended buffers and attach them as part of the output structure.

44 SDK Developer Reference 1.27

The application can retrieve a copy of the bitstream header, by attaching the mfxExtCodingOptionSPSPPS structure to the
mfxVideoParam structure.

Return Status

MFX_ERR_NONEThe function completed successfully.

Change History

This function is available since SDK API 1.0.

MFXVideoDECODE_GetDecodeStat
Syntax

mfxStatus MFXVideoDECODE_GetDecodeStat(mfxSession session, mfxDecodeStat *stat);

Parameters

sessionSDK session handle
stat Pointer to the mfxDecodeStat structure

Description

This function obtains statistics collected during decoding.

Return Status

MFX_ERR_NONEThe function completed successfully.

Change History

This function is available since SDK API 1.0.

MFXVideoDECODE_GetPayload
Syntax

mfxStatus MFXVideoDECODE_GetPayload(mfxSession session, mfxU64 *ts, mfxPayload *payload);

Parameters

sessionSDK session handle
ts Pointer to the user data time stamp in units of 90 KHz; divide ts by 90,000 (90 KHz) to obtain the time in seconds; the

time stamp matches the payload with a specific decoded frame.
payloadPointer to the mfxPayload structure; the payload contains user data in MPEG-2 or SEI messages in H.264.

Description

This function extracts user data (MPEG-2) or SEI (H.264) messages from the bitstream. Internally, the decoder implementation
stores encountered user data or SEI messages. The application may call this function multiple times to retrieve the user data or
SEI messages, one at a time.

If there is no payload available, the function returns with payload->NumBit=0.

Return Status

MFX_ERR_NONE The function completed successfully and the output buffer is ready for decoding.
MFX_ERR_NOT_ENOUGH_BUFFERThe payload buffer size is insufficient.

Change History

This function is available since SDK API 1.0.

MFXVideoDECODE_SetSkipMode
Syntax

mfxStatus MFXVideoDECODE_SetSkipMode(mfxSession session, mfxSkipMode mode);

Parameters

sessionSDK session handle
mode Decoder skip mode. See the mfxSkipMode enumerator for details.

Description

This function sets the decoder skip mode. The application may use it to increase decoding performance by sacrificing output
quality. The rising of skip level firstly results in skipping of some decoding operations like deblocking and then leads to frame
skipping; firstly, B then P. Particular details are platform dependent.

Return Status

45 SDK Developer Reference 1.27

MFX_ERR_NONE The function completed successfully and the output surface is ready for decoding.
MFX_WRN_VALUE_NOT_CHANGEDThe skip mode is not affected as the maximum or minimum skip range is reached.

Change History

This function is available since SDK API 1.0.

MFXVideoDECODE_DecodeFrameAsync
Syntax

mfxStatus MFXVideoDECODE_DecodeFrameAsync(mfxSession session, mfxBitstream *bs, mfxFrameSurface1
*surface_work, mfxFrameSurface1 **surface_out, mfxSyncPoint *syncp);

Parameters

Session SDK session handle
Bs Pointer to the input bitstream
surface_workPointer to the working frame buffer for the decoder
surface_out Pointer to the output frame in the display order
Syncp Pointer to the sync point associated with this operation

Description

This function decodes the input bitstream to a single output frame.

The surface_work parameter provides a working frame buffer for the decoder. The application should allocate the working
frame buffer, which stores decoded frames. If the function requires caching frames after decoding, the function locks the frames
and the application must provide a new frame buffer in the next call.

If, and only if, the function returns MFX_ERR_NONE, the pointer surface_out points to the output frame in the display order. If
there are no further frames, the function will reset the pointer to zero and return the appropriate status code.

Before decoding the first frame, a sequence header(sequence parameter set in H.264 or sequence header in MPEG-2 and VC-1)
must be present. The function skips any bitstreams before it encounters the new sequence header.

The input bitstream bs can be of any size. If there are not enough bits to decode a frame, the function returns
MFX_ERR_MORE_DATA, and consumes all input bits except if a partial start code or sequence header is at the end of the buffer.
In this case, the function leaves the last few bytes in the bitstream buffer. If there is more incoming bitstream, the application
should append the incoming bitstream to the bitstream buffer. Otherwise, the application should ignore the remaining bytes in
the bitstream buffer and apply the end of stream procedure described below.

The application must set bsto NULL to signal end of stream. The application may need to call this function several times to drain
any internally cached frames until the function returns MFX_ERR_MORE_DATA.

If more than one frame is in the bitstream buffer, the function decodes until the buffer is consumed. The decoding process can
be interrupted for events such as if the decoder needs additional working buffers, is readying a frame for retrieval, or
encountering a new header. In these cases, the function returns appropriate status code and moves the bitstream pointer to the
remaining data.

The decoder may return MFX_ERR_NONE without taking any data from the input bitstream buffer. If the application appends
additional data to the bitstream buffer, it is possible that the bitstream buffer may contain more than 1 frame. It is recommended
that the application invoke the function repeatedly until the function returns MFX_ERR_MORE_DATA, before appending any
more data to the bitstream buffer.

This function is asynchronous.

Return Status

MFX_ERR_NONE The function completed successfully and the output surface is ready for decoding.
MFX_ERR_MORE_DATA The function requires more bitstream at input before decoding can proceed.
MFX_ERR_MORE_SURFACE The function requires more frame surface at output before decoding can proceed.
MFX_ERR_DEVICE_LOST Hardware device was lost; See the Working with Microsoft* DirectX* Applications

section for further information.
MFX_WRN_DEVICE_BUSY Hardware device is currently busy. Call this function again in a few milliseconds.
MFX_WRN_VIDEO_PARAM_CHANGED The decoder detected a new sequence header in the bitstream. Video parameters

may have changed.
MFX_ERR_INCOMPATIBLE_VIDEO_PARAMThe decoder detected incompatible video parameters in the bitstream and failed to

follow them.
MFX_ERR_REALLOC_SURFACE Bigger surface_work required. May be returned only if

mfxInfoMFX::EnableReallocRequest was set to ON during initialization.

Change History

This function is available since SDK API 1.0.

MFXVideoVPP

46 SDK Developer Reference 1.27

This class of functions performs video processing before encoding.

Member Functions
MFXVideoVPP_Query Queries the feature capability
MFXVideoVPP_QueryIOSurf Queries the number of input and output surface frames required for video processing
MFXVideoVPP_Init Initializes the VPP operation
MFXVideoVPP_Reset Resets the current video processing operation and prepares for the next operation
MFXVideoVPP_Close Terminates the video processing operation and de-allocates internal memory
MFXVideoVPP_GetVideoParam Obtains the current working parameter set
MFXVideoVPP_GetVPPStat Obtains statistics collected during video processing
MFXVideoVPP_RunFrameVPPAsyncPerforms video processing on the frame level

MFXVideoVPP_Query
Syntax

mfxStatus MFXVideoVPP_Query(mfxSession session, mfxVideoParam *in, mfxVideoParam *out);

Parameters

sessionSDK session handle
in Pointer to the mfxVideoParam structure as input
out Pointer to the mfxVideoParam structure as output

Description

This function works in either of two modes:

If in is zero, the function returns the class configurability in the output structure. A non-zero value in a field indicates that the
SDK implementation can configure it with Init.

If in is non-zero, the function checks the validity of the fields in the input structure. Then the function returns the corrected
values in the output structure. If there is insufficient information to determine the validity or correction is impossible, the
function zeroes the fields.

The application can call this function before or after it initializes the preprocessor.

Return Status

MFX_ERR_NONE The function completed successfully.
MFX_ERR_UNSUPPORTED The SDK implementation does not support the specified configuration.
MFX_WRN_PARTIAL_ACCELERATION The underlying hardware does not fully support the specified video parameters; The

video processing may be partially accelerated. Only SDK HW implementations may
return this status code.

MFX_WRN_INCOMPATIBLE_VIDEO_PARAMThe function detected some video parameters were incompatible with others;
incompatibility resolved.

Change History

This function is available since SDK API 1.0.

MFXVideoVPP_QueryIOSurf
Syntax

mfxStatus MFXVideoVPP_QueryIOSurf(mfxSession session, mfxVideoParam *par, mfxFrameAllocRequest
request[2]);

Parameters

sessionSDK session handle
par Pointer to the mfxVideoParam structure as input
requestPointer to the output mfxFrameAllocRequest structure; use request[0] for input requirements and request[1] for

output requirements for video processing.
Description

This function returns minimum and suggested numbers of input and output frame surfaces required for video processing
initialization and their type. The parameter request[0] refers to the input requirements; request[1] refers to output
requirements. Init will call the external allocator for the required frames with the same set of numbers.

The function is recommended. For more information, see the Working with hardware acceleration.

This function does not validate I/O parameters except those used in calculating the number of input and output surfaces.

Return Status

MFX_ERR_NONE The function completed successfully.

47 SDK Developer Reference 1.27

MFX_WRN_PARTIAL_ACCELERATION The underlying hardware does not fully support the specified video parameters; The
video processing may be partially accelerated. Only SDK HW implementation may
return this status code.

MFX_ERR_INVALID_VIDEO_PARAM The function detected invalid video parameters. These parameters may be out of the
valid range, or the combination of them resulted in incompatibility. Incompatibility
not resolved.

MFX_WRN_INCOMPATIBLE_VIDEO_PARAMThe function detected some video parameters were incompatible with others;
incompatibility resolved.

Change History

This function is available since SDK API 1.0.

MFXVideoVPP_Init
Syntax

mfxStatus MFXVideoVPP_Init(mfxSession session, mfxVideoParam *par);

Parameters

SessionSDK session handle
Par Pointer to the mfxVideoParam structure

Description

This function allocates memory and prepares tables and necessary structures for video processing. This function also does
extensive validation to ensure the configuration, as specified in the input parameters, is supported.

Return Status

MFX_ERR_NONE The function completed successfully.
MFX_WRN_PARTIAL_ACCELERATION The underlying hardware does not fully support the specified video parameters; The

video processing may be partially accelerated. Only SDK HW implementation may
return this status code.

MFX_ERR_INVALID_VIDEO_PARAM The function detected invalid video parameters. These parameters may be out of the
valid range, or the combination of them resulted in incompatibility. Incompatibility
not resolved.

MFX_WRN_INCOMPATIBLE_VIDEO_PARAMThe function detected some video parameters were incompatible with others;
incompatibility resolved.

MFX_ERR_UNDEFINED_BEHAVIOR The function was called twice without a close.
MFX_WRN_FILTER_SKIPPED The VPP skipped one or more filters requested by the application.

Change History

This function is available since SDK API 1.0. SDK API 1.6 added new return status,
MFX_WRN_FILTER_SKIPPED.

MFXVideoVPP_Reset
Syntax

mfxStatus MFXVideoVPP_Reset(mfxSession session, mfxVideoParam *par);

Parameters

sessionSDK session handle
par Pointer to the mfxVideoParam structure

Description

This function stops the current video processing operation and restores internal structures or parameters for a new operation.

Return Status

MFX_ERR_NONE The function completed successfully.
MFX_ERR_INVALID_VIDEO_PARAM The function detected that video parameters are wrong or they conflict with

initialization parameters. Reset is impossible.
MFX_ERR_INCOMPATIBLE_VIDEO_PARAMThe function detected that provided by the application video parameters are

incompatible with initialization parameters. Reset requires additional memory
allocation and cannot be executed. The application should close the SDK component
and then reinitialize it.

MFX_WRN_INCOMPATIBLE_VIDEO_PARAMThe function detected some video parameters were incompatible with others;
incompatibility resolved.

Change History

This function is available since SDK API 1.0.

48 SDK Developer Reference 1.27

MFXVideoVPP_Close
Syntax

mfxStatus MFXVideoVPP_Close(mfxSession session);

Parameters

sessionSDK session handle

Description

This function terminates the current video processing operation and de-allocates internal tables and structures.

Return Status

MFX_ERR_NONEThe function completed successfully.

Change History

This function is available since SDK API 1.0.

MFXVideoVPP_GetVideoParam
Syntax

mfxStatus MFXVideoVPP_GetVideoParam(mfxSession session, mfxVideoParam *par);

Parameters

sessionSDK session handle
par Pointer to the corresponding parameter structure

Description

This function obtains current working parameters to the specified output structure. To return extended buffers, the application
must allocate those extended buffers and attach them as part of the output structure.

Return Status

MFX_ERR_NONEThe function completed successfully.

Change History

This function is available since SDK API 1.0.

MFXVideoVPP_GetVPPStat
Syntax

mfxStatus MFXVideoVPP_GetVPPStat(mfxSession session, mfxVPPStat *stat);

Parameters

sessionSDK session handle
stat Pointer to the mfxVPPStat structure

Description

This function obtains statistics collected during video processing.

Return Status

MFX_ERR_NONEThe function completed successfully.

Change History

This function is available since SDK API 1.0.

MFXVideoVPP_RunFrameVPPAsync
Syntax

mfxStatus MFXVideoVPP_RunFrameVPPAsync(mfxSession session, mfxFrameSurface1 *in, mfxFrameSurface1 *out,
mfxExtVppAuxData *aux, mfxSyncPoint *syncp);

Parameters

sessionSDK session handle
in Pointer to the input video surface structure
out Pointer to the output video surface structure
aux Optional pointer to the auxiliary data structure
syncp Pointer to the output sync point

49 SDK Developer Reference 1.27

Description

This function processes a single input frame to a single output frame. Retrieval of the auxiliary data is optional; the encoding
process may use it.

The video processing process may not generate an instant output given an input. See section Video Processing Procedures for
details on how to correctly send input and retrieve output.

At the end of the stream, call this function with the input argument in=NULL to retrieve any remaining frames, until the function
returns MFX_ERR_MORE_DATA.

This function is asynchronous.

Return Status

MFX_ERR_NONE The output frame is ready after synchronization.
MFX_ERR_MORE_DATA Need more input frames before VPP can produce an output
MFX_ERR_MORE_SURFACEThe output frame is ready after synchronization. Need more surfaces at output for additional output

frames available.
MFX_ERR_DEVICE_LOST Hardware device was lost; See the Working with Microsoft* DirectX* Applications section for further

information.
MFX_WRN_DEVICE_BUSY Hardware device is currently busy. Call this function again in a few milliseconds.

Change History

This function is available since SDK API 1.0.

Structure Reference
In the following structure references, all reserved fields must be zero.

mfxBitstream
Definition

typedef struct mfxBitStream {
 union {
 struct {
 mfxEncryptedData* EncryptedData;
 mfxExtBuffer **ExtParam;
 mfxU16 NumExtParam;
 };
 mfxU32 reserved[6];
 };
 mfxI64 DecodeTimeStamp;
 mfxU64 TimeStamp;
 mfxU8* Data;
 mfxU32 DataOffset;
 mfxU32 DataLength;
 mfxU32 MaxLength;

 mfxU16 PicStruct;
 mfxU16 FrameType;
 mfxU16 DataFlag;
 mfxU16 reserved2;
} mfxBitstream;

Description

The mfxBitstream structure defines the buffer that holds compressed video data.

Members

EncryptedData Reserved and must be zero.
ExtParam Array of extended buffers for additional bitstream configuration. See the ExtendedBufferID enumerator for a

complete list of extended buffers.
NumExtParam The number of extended buffers attached to this structure.
DecodeTimeStampDecode time stamp of the compressed bitstream in units of 90KHz. A value of

MFX_TIMESTAMP_UNKNOWN indicates that there is no time stamp.

This value is calculated by the SDK encoder from presentation time stamp provided by the application in
mfxFrameSurface1 structure and from frame rate provided by the application during the SDK encoder
initialization.

TimeStamp Time stamp of the compressed bitstream in units of 90KHz. A value of MFX_TIMESTAMP_UNKNOWN
indicates that there is no time stamp.

Data Bitstream buffer pointer—32-bytes aligned
DataOffset Next reading or writing position in the bitstream buffer

50 SDK Developer Reference 1.27

DataLength Size of the actual bitstream data in bytes
MaxLength Allocated bitstream buffer size in bytes
PicStruct Type of the picture in the bitstream; this is an output parameter.
FrameType Frame type of the picture in the bitstream; this is an output parameter.
DataFlag Indicates additional bitstream properties; see the BitstreamDataFlag enumerator for details.

Change History

This structure is available since SDK API 1.0.

SDK API 1.1 extended the DataFlag field definition.

SDK API 1.6 adds DecodeTimeStamp field.

SDK API 1.7 adds ExtParam and NumExtParam fields.

mfxBufferAllocator
Definition

typedef struct {
 mfxU32 reserved[4];
 mfxHDL pthis;
 mfxStatus (*Alloc)(mfxHDL pthis, mfxU32 nbytes,
 mfxU16 type, mfxMemId *mid);
 mfxStatus (*Lock)(mfxHDL pthis, mfxMemId mid, mfxU8 **ptr);
 mfxStatus (*Unlock)(mfxHDL pthis, mfxMemId mid);
 mfxStatus (*Free)(mfxHDL pthis, mfxMemId mid);
} mfxBufferAllocator;

Description

The mfxBufferAllocator structure is deprecated.

Members

pthis Pointer to the allocator object
Alloc Pointer to the function that allocates a linear buffer
Lock Pointer to the function that locks a memory block and returns the pointer to the buffer
UnlockPointer to the function that unlocks a linear buffer; after unlocking, any pointer to the linear buffer is invalid.
Free Pointer to the function that de-allocates memory
Change History

This structure is available since SDK API 1.0.

Deprecated since API 1.17

Alloc
Syntax

mfxStatus (*Alloc)(mfxHDL pthis, mfxU32 nbytes, mfxU16 type, mfxMemId *mid);

Parameters

pthis Pointer to the allocator object
nbytesNumber of bytes in the linear buffer
type Memory type; see the ExtMemBufferType enumerator for details.
mid Pointer to the allocated memory ID

Description

This function allocates a linear buffer and returns its block ID. The allocated memory must be
32-byte aligned.

Return Status

MFX_ERR_NONE The function successfully allocated the memory block.
MFX_ERR_MEMORY_ALLOCThe function ran out of the specified type of memory.

Change History

This function is available since SDK API 1.0.

Free
Syntax

51 SDK Developer Reference 1.27

mfxStatus (*Free)(mfxHDL pthis, mfxMemId mid);

Parameters

pthisPointer to the allocator object
mid Memory block ID

Description

This function de-allocates memory specified by mid.

Return Status

MFX_ERR_NONE The function successfully de-allocated the memory block.
MFX_ERR_INVALID_HANDLEThe memory block ID is invalid.

Change History

This function is available since SDK API 1.0.

Lock
Syntax

mfxStatus (*Lock)(mfxHDL pthis, mfxMemId mid, mfxU8 **ptr);

Parameters

pthisPointer to the allocator object
mid Memory block ID
ptr Pointer to the returned linear buffer pointer

Description

This function locks the linear buffer and returns its pointer. The returned buffer must be 32-byte aligned.

Return Status

MFX_ERR_NONE The function successfully locked the memory block.
MFX_ERR_INVALID_HANDLEThe memory block ID is invalid.
MFX_ERR_LOCK_MEMORY The function failed to lock the linear buffer.

Change History

This function is available since SDK API 1.0.

Unlock
Syntax

mfxStatus (*Unlock)(mfxHDL pthis, mfxMemId mid);

Parameters

pthisPointer to the allocator object
mid Memory block ID

Description

This function unlocks the linear buffer and invalidates its pointer.

Return Status

MFX_ERR_NONE The function successfully unlocked the memory block.
MFX_ERR_INVALID_HANDLEThe memory block ID is invalid.

Change History

This function is available since SDK API 1.0.

mfxDecodeStat
Definition

typedef struct {
 mfxU32 reserved[16];
 mfxU32 NumFrame;
 mfxU32 NumSkippedFrame;
 mfxU32 NumError;
 mfxU32 NumCachedFrame;
} mfxDecodeStat;

52 SDK Developer Reference 1.27

Description

The mfxDecodeStat structure returns statistics collected during decoding.

Members

NumFrame Number of total decoded frames
NumSkippedFrameNumber of skipped frames
NumError Number of errors recovered
NumCachedFrame Number of internally cached frames

Change History

This structure is available since SDK API 1.0.

mfxEncodeCtrl
Definition

typedef struct {
 mfxExtBuffer Header;
 mfxU32 reserved[4];
 mfxU16 reserved1;
 mfxU16 MfxNalUnitType;
 mfxU16 SkipFrame;

 mfxU16 QP;

 mfxU16 FrameType;
 mfxU16 NumExtParam;
 mfxU16 NumPayload;
 mfxU16 reserved2;

 mfxExtBuffer **ExtParam;
 mfxPayload **Payload;
} mfxEncodeCtrl;

Description

The mfxEncodeCtrl structure contains parameters for per-frame based encoding control.

Members

SkipFrame Indicates that current frame should be skipped or number of missed frames before the current frame. See the
mfxExtCodingOption2::SkipFrame for details.

QP If nonzero, this value overwrites the global QP value for the current frame in the constant QP mode.
FrameType Encoding frame type; see the FrameType enumerator for details. If the encoder works in the encoded order,

the application must specify the frame type. If the encoder works in the display order, only key frames are
enforceable.

MfxNalUnitTypeType of NAL unit that contains encoding frame. All supported values are defined by MfxNalUnitType
enumerator. Other values defined in ITU-T H.265 specification are not supported.

The SDK encoder uses this field only if application sets mfxExtCodingOption3::EnableNalUnitType option to
ON during encoder initialization.

Only encoded order is supported. If application specifies this value in display order or uses value
inappropriate for current frame or invalid value, then SDK encoder silently ignores it.

NumExtParam Number of extra control buffers.
NumPayload Number of payload records to insert into the bitstream.
ExtParam Pointer to an array of pointers to external buffers that provide additional information or control to the

encoder for this frame or field pair; a typical usage is to pass the VPP auxiliary data generated by the video
processing pipeline to the encoder. See the ExtendedBufferID for the list of extended buffers.

Payload Pointer to an array of pointers to user data (MPEG-2) or SEI messages (H.264) for insertion into the bitstream;
for field pictures, odd payloads are associated with the first field and even payloads are associated with the
second field. See the mfxPayload structure for payload definitions.

Change History

This structure is available since SDK API 1.0. SDK API 1.1 extended the QP field. Since SDK API 1.3 specification of QP in display
order mode is allowed. SDK API 1.25 adds MfxNalUnitType field.

mfxEncodeStat
Definition

53 SDK Developer Reference 1.27

typedef struct {
 mfxU32 reserved[16];
 mfxU32 NumFrame;
 mfxU64 NumBit;
 mfxU32 NumCachedFrame;
} mfxEncodeStat;

Description

The mfxEncodeStat structure returns statistics collected during encoding.

Members

NumFrame Number of encoded frames
NumCachedFrameNumber of internally cached frames
NumBit Number of bits for all encoded frames

Change History

This structure is available since SDK API 1.0.

mfxExtBuffer
Definition

typedef struct {
 mfxU32 BufferId;
 mfxU32 BufferSz;
} mfxExtBuffer;

Description

The mfxExtBuffer structure is the common header definition for external buffers and video processing hints.

Members

BufferId Identifier of the buffer content. See the ExtendedBufferID enumerator for a complete list of extended buffers.
BufferSzSize of the buffer

Change History

This structure is available since SDK API 1.0.

mfxExtAVCRefListCtrl
Definition

typedef struct {
 mfxExtBuffer Header;
 mfxU16 NumRefIdxL0Active;
 mfxU16 NumRefIdxL1Active;

 struct {
 mfxU32 FrameOrder;
 mfxU16 PicStruct;
 mfxU16 ViewId;
 mfxU16 LongTermIdx;
 mfxU16 reserved[3];
 } PreferredRefList[32], RejectedRefList[16], LongTermRefList[16];

 mfxU16 ApplyLongTermIdx;
 mfxU16 reserved[15];
} mfxExtAVCRefListCtrl;

Description

The mfxExtAVCRefListCtrl structure configures reference frame options for the H.264 encoder. See Reference List Selection
and Long-term Reference frame chapters for more details.

Not all implementations of the SDK encoder support LongTermIdx and ApplyLongTermIdx fields in this structure. The
application has to use query mode 1 to determine if such functionality is supported. To do so, the application has to attach this
extended buffer to mfxVideoParam structure and call MFXVideoENCODE_Query function. If function returns MFX_ERR_NONE and
these fields were set to one, then such functionality is supported. If function fails or sets fields to zero then this functionality is
not supported.

Members

Header.BufferId Must be MFX_EXTBUFF_AVC_REFLIST_CTRL
NumRefIdxL0ActiveSpecify the number of reference frames in the active reference list L0. This number should be less or

equal to the NumRefFrame parameter from encoding initialization.

54 SDK Developer Reference 1.27

NumRefIdxL1ActiveSpecify the number of reference frames in the active reference list L1. This number should be less or
equal to the NumRefFrame parameter from encoding initialization.

PreferredRefList Specify list of frames that should be used to predict the current frame.
RejectedRefList Specify list of frames that should not be used for prediction.
LongTermRefList Specify list of frames that should be marked as long-term reference frame.
FrameOrder,
PicStruct

Together these fields are used to identify reference picture. Use FrameOrder =
MFX_FRAMEORDER_UNKNOWN to mark unused entry.

ViewID Reserved and must be zero.
LongTermIdx Index that should be used by the SDK encoder to mark long-term reference frame.
ApplyLongTermIdx If it is equal to zero, the SDK encoder assigns long-term index according to internal algorithm. If it is equal

to one, the SDK encoder uses LongTermIdx value as long-term index.

Change History

This structure is available since SDK API 1.3.

The SDK API 1.7 adds LongTermIdx and ApplyLongTermIdx fields.

mfxExtAVCRefLists
Definition

typedef struct {
 mfxExtBuffer Header;
 mfxU16 NumRefIdxL0Active;
 mfxU16 NumRefIdxL1Active;
 mfxU16 reserved[2];

 struct mfxRefPic{
 mfxU32 FrameOrder;
 mfxU16 PicStruct;
 mfxU16 reserved[5];
 } RefPicList0[32], RefPicList1[32];

}mfxExtAVCRefLists;

Description

The mfxExtAVCRefLists structure specifies reference lists for the SDK encoder. It may be used together with the
mfxExtAVCRefListCtrl structure to create customized reference lists. If both structures are used together, then the SDK
encoder takes reference lists from mfxExtAVCRefLists structure and modifies them according to the
mfxExtAVCRefListCtrl instructions. In case of interlaced coding, the first mfxExtAVCRefLists structure affects TOP field
and the second – BOTTOM field.

Not all implementations of the SDK encoder support this structure. The application has to use query function to determine if it is
supported

Members

Header.BufferId Must be MFX_EXTBUFF_AVC_REFLISTS
NumRefIdxL0ActiveSpecify the number of reference frames in the active reference list L0. This number should be less or

equal to the NumRefFrame parameter from encoding initialization.
NumRefIdxL1ActiveSpecify the number of reference frames in the active reference list L1. This number should be less or

equal to the NumRefFrame parameter from encoding initialization.
RefPicList0,
RefPicList1

Specify L0 and L1 reference lists.

FrameOrder,
PicStruct

Together these fields are used to identify reference picture. Use FrameOrder =
MFX_FRAMEORDER_UNKNOWN to mark unused entry. Use PicStruct = MFX_PICSTRUCT_FIELD_TFF
for TOP field, PicStruct = MFX_PICSTRUCT_FIELD_BFF for BOTTOM field.

Change History

This structure is available since SDK API 1.9.

mfxExtCodingOption
Definition

55 SDK Developer Reference 1.27

typedef struct {
 mfxExtBuffer Header;

 mfxU16 reserved1;
 mfxU16 RateDistortionOpt;
 mfxU16 MECostType;
 mfxU16 MESearchType;
 mfxI16Pair MVSearchWindow;
 mfxU16 EndOfSequence;
 mfxU16 FramePicture;

 union {
 struct { /* AVC */
 mfxU16 CAVLC;
 mfxU16 reserved2[2];
 mfxU16 RecoveryPointSEI;
 mfxU16 ViewOutput;
 mfxU16 NalHrdConformance;
 mfxU16 SingleSeiNalUnit;
 mfxU16 VuiVclHrdParameters;
 mfxU16 RefPicListReordering;
 mfxU16 ResetRefList;
 mfxU16 RefPicMarkRep;
 mfxU16 FieldOutput;
 mfxU16 IntraPredBlockSize;
 mfxU16 InterPredBlockSize;
 mfxU16 MVPrecision;
 mfxU16 MaxDecFrameBuffering;
 mfxU16 AUDelimiter;
 mfxU16 EndOfStream;
 mfxU16 PicTimingSEI;
 mfxU16 VuiNalHrdParameters;
 };
 };
} mfxExtCodingOption;

Description

The mfxExtCodingOption structure specifies additional options for encoding.

The application can attach this extended buffer to the mfxVideoParam structure to configure initialization.

Members

Header.BufferId Must be MFX_EXTBUFF_CODING_OPTION
RateDistortionOpt Set this flag if rate distortion optimization is needed. See the CodingOptionValue enumerator for

values of this option.
MECostType Motion estimation cost type; this value is reserved and must be zero.
MESearchType Motion estimation search algorithm; this value is reserved and must be zero.
MVSearchWindow Rectangular size of the search window for motion estimation; this parameter is reserved and must be

(0, 0).
EndOfSequence Deprecated.
CAVLC If set, CAVLC is used; if unset, CABAC is used for encoding. See the CodingOptionValue enumerator

for values of this option.
NalHrdConformance If this option is turned ON, then AVC encoder produces HRD conformant bitstream. If it is turned OFF,

then AVC encoder may, but not necessary does, violate HRD conformance. I.e. this option can force
encoder to produce HRD conformant stream, but cannot force it to produce unconformant stream.

See the CodingOptionValue enumerator for values of this option.
SingleSeiNalUnit If set, encoder puts all SEI messages in the singe NAL unit. It includes both kinds of messages,

provided by application and created by encoder. It is three states option, see CodingOptionValue
enumerator for values of this option:

UNKNOWN - put each SEI in its own NAL unit,

ON - put all SEI messages in the same NAL unit,

OFF - the same as unknown
VuiVclHrdParameters If set and VBR rate control method is used then VCL HRD parameters are written in bitstream with

identical to NAL HRD parameters content. See the CodingOptionValue enumerator for values of this
option.

RefPicListReorderingSet this flag to activate reference picture list reordering; this value is reserved and must be zero.
ResetRefList Set this flag to reset the reference list to non-IDR I-frames of a GOP sequence. See the

CodingOptionValue enumerator for values of this option.

56 SDK Developer Reference 1.27

RefPicMarkRep Set this flag to write the reference picture marking repetition SEI message into the output bitstream.
See the CodingOptionValue enumerator for values of this option.

FieldOutput Set this flag to instruct the AVC encoder to output bitstreams immediately after the encoder encodes
a field, in the field-encoding mode. See the CodingOptionValue enumerator for values of this option.

ViewOutput Set this flag to instruct the MVC encoder to output each view in separate bitstream buffer. See the
CodingOptionValue enumerator for values of this option and SDK Reference Manual for Multi-View
Video Coding for more details about usage of this flag.

IntraPredBlockSize Minimum block size of intra-prediction; This value is reserved and must be zero.
InterPredBlockSize Minimum block size of inter-prediction; This value is reserved and must be zero.
MVPrecision Specify the motion estimation precision; this parameter is reserved and must be zero.
MaxDecFrameBufferingSpecifies the maximum number of frames buffered in a DPB. A value of zero means “unspecified.”
AUDelimiter Set this flag to insert the Access Unit Delimiter NAL. See the CodingOptionValue enumerator for

values of this option.
EndOfStream Deprecated.
PicTimingSEI Set this flag to insert the picture timing SEI with pic_struct syntax element. See sub-clauses D.1.2 and

D.2.2 of the ISO/IEC 14496-10 specification for the definition of this syntax element. See the
CodingOptionValue enumerator for values of this option. The default value is ON.

VuiNalHrdParameters Set this flag to insert NAL HRD parameters in the VUI header. See the CodingOptionValue enumerator
for values of this option.

FramePicture Set this flag to encode interlaced fields as interlaced frames; this flag does not affect progressive
input frames. See the CodingOptionValue enumerator for values of this option.

RecoveryPointSEI Set this flag to insert the recovery point SEI message at the beginning of every intra refresh cycle. See
the description of IntRefType in mfxExtCodingOption2 structure for details on how to enable and
configure intra refresh.

If intra refresh is not enabled then this flag is ignored.

See the CodingOptionValue enumerator for values of this option.
Change History

This structure is available since SDK API 1.0.

SDK API 1.3 adds RefPicMarkRep, FieldOutput, NalHrdConformance, SingleSeiNalUnit and
VuiVclHrdParameters fields.

SDK API 1.4 adds ViewOutput field.

SDK API 1.6 adds RecoveryPointSEI field.

SDK API 1.17 deprecates EndOfSequence and EndOfStream fields.

mfxExtCodingOption2
Definition

57 SDK Developer Reference 1.27

typedef struct {
 mfxExtBuffer Header;

 mfxU16 IntRefType;
 mfxU16 IntRefCycleSize;
 mfxI16 IntRefQPDelta;

 mfxU32 MaxFrameSize;
 mfxU32 MaxSliceSize;

 mfxU16 BitrateLimit; /* tri-state option */
 mfxU16 MBBRC; /* tri-state option */
 mfxU16 ExtBRC; /* tri-state option */
 mfxU16 LookAheadDepth;
 mfxU16 Trellis;
 mfxU16 RepeatPPS; /* tri-state option */
 mfxU16 BRefType;
 mfxU16 AdaptiveI; /* tri-state option */
 mfxU16 AdaptiveB; /* tri-state option */
 mfxU16 LookAheadDS;
 mfxU16 NumMbPerSlice;
 mfxU16 SkipFrame;
 mfxU8 MinQPI; /* 1..51, 0 = default */
 mfxU8 MaxQPI; /* 1..51, 0 = default */
 mfxU8 MinQPP; /* 1..51, 0 = default */
 mfxU8 MaxQPP; /* 1..51, 0 = default */
 mfxU8 MinQPB; /* 1..51, 0 = default */
 mfxU8 MaxQPB; /* 1..51, 0 = default */
 mfxU16 FixedFrameRate; /* tri-state option */
 mfxU16 DisableDeblockingIdc;
 mfxU16 DisableVUI;
 mfxU16 BufferingPeriodSEI;
 mfxU16 EnableMAD; /* tri-state option */
 mfxU16 UseRawRef; /* tri-state option */
} mfxExtCodingOption2;

Description

The mfxExtCodingOption2 structure together with mfxExtCodingOption structure specifies additional options for encoding.

The application can attach this extended buffer to the mfxVideoParam structure to configure initialization and to the
mfxEncodeCtrl during runtime.

Members

Header.BufferId Must be MFX_EXTBUFF_CODING_OPTION2.
IntRefType Specifies intra refresh type. See the IntraRefreshTypes. The major goal of intra refresh is improvement

of error resilience without significant impact on encoded bitstream size caused by I frames. The SDK
encoder achieves this by encoding part of each frame in refresh cycle using intra MBs.
MFX_REFRESH_NO means no refresh. MFX_REFRESH_VERTICAL means vertical refresh, by column of
MBs. MFX_REFRESH_HORIZONTAL means horizontal refresh, by rows of MBs. MFX_REFRESH_SLICE
means horizontal refresh by slices without overlapping. In case of MFX_REFRESH_SLICE SDK ignores
IntRefCycleSize (size of refresh cycle equals number slices). This parameter is valid during
initialization and runtime. When used with temporal scalability, intra refresh applied only to base
layer.

IntRefCycleSize Specifies number of pictures within refresh cycle starting from 2. 0 and 1 are invalid values. This
parameter is valid only during initialization

IntRefQPDelta Specifies QP difference for inserted intra MBs. This is signed value in [-51, 51] range. This parameter is
valid during initialization and runtime.

MaxFrameSize Specify maximum encoded frame size in byte. This parameter is used in AVBR and VBR bitrate control
modes and ignored in others. The SDK encoder tries to keep frame size below specified limit but
minor overshoots are possible to preserve visual quality. This parameter is valid during initialization
and runtime.

MaxSliceSize Specify maximum slice size in bytes. If this parameter is specified other controls over number of slices
are ignored.

Not all codecs and SDK implementations support this value. Use Query function to check if this
feature is supported.

BitrateLimit Turn off this flag to remove bitrate limitations imposed by the SDK encoder. This flag is intended for
special usage models and usually the application should not set it. Setting this flag may lead to
violation of HRD conformance and severe visual artifacts. See the CodingOptionValue enumerator for
values of this option. The default value is ON, i.e. bitrate is limitted. This parameter is valid only during
initialization.

58 SDK Developer Reference 1.27

MBBRC Setting this flag enables macroblock level bitrate control that generally improves subjective visual
quality. Enabling this flag may have negative impact on performance and objective visual quality
metric. See the CodingOptionValue enumerator for values of this option. The default value depends
on target usage settings.

ExtBRC Turn ON this option to enable external BRC. See the CodingOptionValue enumerator for values of this
option. Use Query function to check if this feature is supported.

LookAheadDepth Specifies the depth of look ahead rate control algorithm. It is the number of frames that SDK encoder
analyzes before encoding. Valid value range is from 10 to 100 inclusive. To instruct the SDK encoder
to use the default value the application should zero this field.

Trellis This option is used to control trellis quantization in AVC encoder. See TrellisControl enumerator for
possible values of this option. This parameter is valid only during initialization.

RepeatPPS This flag controls picture parameter set repetition in AVC encoder. Turn ON this flag to repeat PPS
with each frame. See the CodingOptionValue enumerator for values of this option. The default value
is ON. This parameter is valid only during initialization.

BRefType This option controls usage of B frames as reference. See BRefControl enumerator for possible values
of this option. This parameter is valid only during initialization.

AdaptiveI This flag controls insertion of I frames by the SDK encoder. Turn ON this flag to allow changing of
frame type from P and B to I. This option is ignored if GopOptFlag in mfxInfoMFX structure is equal
to MFX_GOP_STRICT. See the CodingOptionValue enumerator for values of this option. This
parameter is valid only during initialization.

AdaptiveB This flag controls changing of frame type from B to P. Turn ON this flag to allow such changing. This
option is ignored if GopOptFlag in mfxInfoMFX structure is equal to MFX_GOP_STRICT. See the
CodingOptionValue enumerator for values of this option. This parameter is valid only during
initialization.

LookAheadDS This option controls down sampling in look ahead bitrate control mode. See
LookAheadDownSampling enumerator for possible values of this option. This parameter is valid only
during initialization.

NumMbPerSlice This option specifies suggested slice size in number of macroblocks. The SDK can adjust this number
based on platform capability. If this option is specified, i.e. if it is not equal to zero, the SDK ignores
mfxInfoMFX::NumSlice parameter.

SkipFrame This option enables usage of mfxEncodeCtrl::SkipFrameparameter. See the SkipFrame enumerator
for values of this option.

Not all codecs and SDK implementations support this value. Use Query function to check if this
feature is supported.

MinQPI, MaxQPI,
MinQPP, MaxQPP,
MinQPB, MinQPB

Minimum and maximum allowed QP values for different frame types. Valid range is 1..51 inclusive.
Zero means default value, i.e.no limitations on QP.

Not all codecs and SDK implementations support this value. Use Query function to check if this
feature is supported.

FixedFrameRate This option sets fixed_frame_rate_flag in VUI.

Not all codecs and SDK implementations support this value. Use Query function to check if this
feature is supported.

DisableDeblockingIdcThis option disable deblocking.

Not all codecs and SDK implementations support this value. Use Query function to check if this
feature is supported.

DisableVUI This option completely disables VUI in output bitstream.

Not all codecs and SDK implementations support this value. Use Query function to check if this
feature is supported.

BufferingPeriodSEI This option controls insertion of buffering period SEI in the encoded bitstream. It should be one of
the following values:
MFX_BPSEI_DEFAULT – encoder decides when to insert BP SEI,
MFX_BPSEI_IFRAME – BP SEI should be inserted with every I frame.

EnableMAD Turn ON this flag to enable per-frame reporting of Mean Absolute Difference. This parameter is valid
only during initialization.

UseRawRef Turn ON this flag to use raw frames for reference instead of reconstructed frames. This parameter is
valid during initialization and runtime (only if was turned ON during initialization).

Not all codecs and SDK implementations support this value. Use Query function to check if this
feature is supported.

Change History

This structure is available since SDK API 1.6.

The SDK API 1.7 added LookAheadDepth and Trellis fields.

The SDK API 1.8 adds RepeatPPS, BRefType, AdaptiveI, AdaptiveB, LookAheadDS and
NumMbPerSlice fields.

59 SDK Developer Reference 1.27

The SDK API 1.9 adds MaxSliceSize, SkipFrame, MinQPI, MaxQPI, MinQPP, MaxQPP, MinQPB,
MinQPB, FixedFrameRate and DisableDeblockingIdc fields.

The SDK API 1.10 adds DisableVUIfields and BufferingPeriodSEI fields.

The SDK API 1.11 adds EnableMAD field.

The SDK API 1.13 adds UseRawRef field.

The SDK API 1.17 deprecates ExtBRC field.

The SDK API 1.24 returns ExtBRC field.

mfxExtCodingOption3
Definition

60 SDK Developer Reference 1.27

typedef struct {
 mfxExtBuffer Header;

 mfxU16 NumSliceI;
 mfxU16 NumSliceP;
 mfxU16 NumSliceB;

 mfxU16 WinBRCMaxAvgKbps;
 mfxU16 WinBRCSize;

 mfxU16 QVBRQuality;
 mfxU16 EnableMBQP;
 mfxU16 IntRefCycleDist;
 mfxU16 DirectBiasAdjustment; /* tri-state option */
 mfxU16 GlobalMotionBiasAdjustment; /* tri-state option */
 mfxU16 MVCostScalingFactor;
 mfxU16 MBDisableSkipMap; /* tri-state option */

 mfxU16 WeightedPred;
 mfxU16 WeightedBiPred;

 mfxU16 AspectRatioInfoPresent; /* tri-state option */
 mfxU16 OverscanInfoPresent; /* tri-state option */
 mfxU16 OverscanAppropriate; /* tri-state option */
 mfxU16 TimingInfoPresent; /* tri-state option */
 mfxU16 BitstreamRestriction; /* tri-state option */
 mfxU16 LowDelayHrd; /* tri-state option */
 mfxU16 MotionVectorsOverPicBoundaries; /* tri-state option */
 mfxU16 reserved1[2];

 mfxU16 ScenarioInfo;
 mfxU16 ContentInfo;

 mfxU16 PRefType;
 mfxU16 FadeDetection; /* tri-state option */
 mfxU16 reserved2[2];
 mfxU16 GPB; /* tri-state option */

 mfxU32 MaxFrameSizeI;
 mfxU32 MaxFrameSizeP;
 mfxU32 reserved3[3];

 mfxU16 EnableQPOffset; /* tri-state option */
 mfxI16 QPOffset[8]; /* FrameQP = QPX + QPOffset[pyramid_layer];
 QPX = QPB for B-pyramid, QPP for P-pyramid */
 mfxU16 NumRefActiveP[8];
 mfxU16 NumRefActiveBL0[8];
 mfxU16 NumRefActiveBL1[8];

 mfxU16 reserved6;

 mfxU16 TransformSkip; /* tri-state option */

 mfxU16 TargetChromaFormatPlus1;
 mfxU16 TargetBitDepthLuma;
 mfxU16 TargetBitDepthChroma;

 mfxU16 BRCPanicMode; /* tri-state option */
 mfxU16 LowDelayBRC; /* tri-state option */
 mfxU16 EnableMBForceIntra; /* tri-state option */
 mfxU16 AdaptiveMaxFrameSize; /* tri-state option */
 mfxU16 RepartitionCheckEnable; /* tri-state option */

 mfxU16 QuantScaleType;
 mfxU16 IntraVLCFormat;
 mfxU16 ScanType;

 mfxU16 EncodedUnitsInfo; /* tri-state option */

 mfxU16 EnableNalUnitType; /* tri-state option */

 mfxU16 ExtBrcAdaptiveLTR; /* tri-state option */

 mfxU16 reserved[163];

} mfxExtCodingOption3;

61 SDK Developer Reference 1.27

Description

The mfxExtCodingOption3 structure together with mfxExtCodingOption and mfxExtCodingOption2 structures specifies
additional options for encoding.

The application can attach this extended buffer to the mfxVideoParam structure to configure initialization and to the
mfxEncodeCtrl during runtime.

Members

Header.BufferId Must be MFX_EXTBUFF_CODING_OPTION3.
NumSliceI, NumSliceP, NumSliceB The number of slices for I, P and B frames separately.

Not all codecs and SDK implementations support these values. Use Query function to
check if this feature is supported

WinBRCMaxAvgKbps When rate control method is MFX_RATECONTROL_VBR, MFX_RATECONTROL_LA,
MFX_RATECONTROL_LA_HRD or MFX_RATECONTROL_QVBR this parameter specifies
the maximum bitrate averaged over a sliding window specified by WinBRCSize. For
MFX_RATECONTROL_CBR this parameter is ignored and equals TargetKbps.

WinBRCSize When rate control method is MFX_RATECONTROL_CBR, MFX_RATECONTROL_VBR,
MFX_RATECONTROL_LA, MFX_RATECONTROL_LA_HRD or MFX_RATECONTROL_QVBR
this parameter specifies sliding window size in frames. Set this parameter to zero to
disable sliding window.

QVBRQuality When rate control method is MFX_RATECONTROL_QVBR this parameter specifies
quality factor.It is a value in the 1…51 range, where 1 corresponds to the best quality.

EnableMBQP Turn ON this option to enable per-macroblock QP control, rate control method must be
MFX_RATECONTROL_CQP. See the CodingOptionValue enumerator for values of this
option. This parameter is valid only during initialization.

IntRefCycleDist Distance between the beginnings of the intra-refresh cycles in frames. Zero means no
distance between cycles.

DirectBiasAdjustment Turn ON this option to enable the ENC mode decision algorithm to bias to fewer B
Direct/Skip types. Applies only to B frames, all other frames will ignore this setting. See
the CodingOptionValue enumerator for values of this option.

GlobalMotionBiasAdjustment Enables global motion bias. See the CodingOptionValue enumerator for values of this
option.

MVCostScalingFactor MV cost scaling ratio. It is used when GlobalMotionBiasAdjustment is ON.

Values are:
0: set MV cost to be 0
1: scale MV cost to be 1/2 of the default value
2: scale MV cost to be 1/4 of the default value
3: scale MV cost to be 1/8 of the default value

MBDisableSkipMap Turn ON this option to enable usage of mfxExtMBDisableSkipMap. See the
CodingOptionValue enumerator for values of this option. This parameter is valid only
during initialization.

WeightedPred, WeightedBiPred Weighted prediction mode. See the WeightedPred enumerator for values of these
options.

AspectRatioInfoPresent Instructs encoder whether aspect ratio info should present in VUI parameters. See the
CodingOptionValue enumerator for values of this option.

OverscanInfoPresent Instructs encoder whether overscan info should present in VUI parameters. See the
CodingOptionValue enumerator for values of this option.

OverscanAppropriate ON indicates that the cropped decoded pictures output are suitable for display using
overscan. OFF indicates that the cropped decoded pictures output contain visually
important information in the entire region out to the edges of the cropping rectangle of
the picture. See the CodingOptionValue enumerator for values of this option.

TimingInfoPresent Instructs encoder whether frame rate info should present in VUI parameters. See the
CodingOptionValue enumerator for values of this option.

BitstreamRestriction Instructs encoder whether bitstream restriction info should present in VUI parameters.
See the CodingOptionValue enumerator for values of this option.

ScenarioInfo Provides a hint to encoder about the scenario for the encoding session. See the
ScenarioInfo enumerator for values of this option.

ContentInfo Provides a hint to encoder about the content for the encoding session. See the
ContentInfo enumerator for values of this option.

PRefType When GopRefDist=1, specifies the model of reference list construction and DPB
management. See the PRefType enumerator for values of this option.

FadeDetection Instructs encoder whether internal fade detection algorithm should be used for
calculation of weigh/offset values for pred_weight_table unless application provided
mfxExtPredWeightTable for this frame. See the CodingOptionValue enumerator for
values of this option.

GPB Turn this option OFF to make HEVC encoder use regular P-frames instead of GPB.

See the CodingOptionValue enumerator for values of this option

62 SDK Developer Reference 1.27

LowDelayHrd Corresponds to AVC syntax element low_delay_hrd_flag (VUI).

See the CodingOptionValue enumerator for values of this option.
MotionVectorsOverPicBoundariesWhen set to OFF, no sample outside the picture boundaries and no sample at a

fractional sample position for which the sample value is derived using one or more
samples outside the picture boundaries is used for inter prediction of any sample.

When set to ON, one or more samples outside picture boundaries may be used in inter
prediction.

See the CodingOptionValue enumerator for values of this option.
MaxFrameSizeI Same as mfxExtCodingOption2::MaxFrameSize but affects only I-frames.
MaxFrameSizeP Same as mfxExtCodingOption2::MaxFrameSize but affects only P-frames.
EnableQPOffset Enables QPOffset control.

See the CodingOptionValue enumerator for values of this option.
QPOffset When EnableQPOffset set to ON and RateControlMethod is CQP specifies QP offset

per pyramid layer.
For B-pyramid, B-frame QP = QPB + QPOffset[layer].
For P-pyramid, P-frame QP = QPP + QPOffset[layer].

NumRefActiveP, NumRefActiveBL0,
NumRefActiveBL1

Max number of active references for P and B frames in reference picture lists 0 and 1
correspondingly. Array index is pyramid layer.

TransformSkip For HEVC if this option turned ON, transform_skip_enabled_flag will be set to 1 in PPS,
OFF specifies that transform_skip_enabled_flag will be set to 0.

BRCPanicMode Controls panic mode in AVC and MPEG2 encoders.
LowDelayBRC When rate control method is MFX_RATECONTROL_VBR, MFX_RATECONTROL_QVBR or

MFX_RATECONTROL_VCM this parameter specifies frame size tolerance. Set this
parameter to MFX_CODINGOPTION_ON to allow strictly obey average frame size set by
MaxKbps, e.g. cases when MaxFrameSize == (MaxKbps*1000)/(8*
FrameRateExtN/FrameRateExtD).
Also MaxFrameSizeI and MaxFrameSizeP can be set separately.

EnableMBForceIntra Turn ON this option to enable usage of mfxExtMBForceIntra for AVC encoder. See the
CodingOptionValue enumerator for values of this option. This parameter is valid only
during initialization.

AdaptiveMaxFrameSize If this option is ON, BRC may decide a larger P or B frame size than what MaxFrameSizeP
dictates when the scene change is detected. It may benefit the video quality.

RepartitionCheckEnable Controls AVC encoder attempts to predict from small partitions. Default value allows
encoder to choose preferred mode, MFX_CODINGOPTION_ON forces encoder to favor
quality, MFX_CODINGOPTION_OFF forces encoder to favor performance.

QuantScaleType For MPEG2 specifies mapping between quantiser_scale_code and quantiser_scale (see
QuantScaleType enum).

IntraVLCFormat For MPEG2 specifies which table shall be used for coding of DCT coefficients of intra
macroblocks (see IntraVLCFormat enum).

ScanType For MPEG2 specifies transform coefficients scan pattern (see ScanType enum).
EncodedUnitsInfo Turn this option ON to make encoded units info available in mfxExtEncodedUnitsInfo.
EnableNalUnitType If this option is turned ON, then HEVC encoder uses NAL unit type provided by

application in mfxEncodeCtrl::MfxNalUnitType field.

This parameter is valid only during initialization.

Not all codecs and SDK implementations support this value. Use Query function to
check if this feature is supported.

ExtBrcAdaptiveLTR Turn OFF to prevent Adaptive marking of Long Term Reference Frames when using
ExtBRC. When ON and using ExtBRC, encoders will mark, modify, or remove LTR frames
based on encoding parameters and content properties. The application must set each
input frame's mfxFrameData::FrameOrder for correct operation of LTR.

TargetChromaFormatPlus1 Minus 1 specifies target encoding chroma format (see ChromaFormatIdc enumerator).
May differ from source one. TargetChromaFormatPlus1 = 0 mean default target
chroma format which is equal to source
(mfxVideoParam::mfx::FrameInfo::ChromaFormat + 1), except RGB4 source format.
In case of RGB4 source format default target chroma format is 4:2:0 (instead of 4:4:4) for
the purpose of backward compatibility.

TargetBitDepthLuma Target encoding bit-depth for luma samples. May differ from source one. 0 mean default
target bit-depth which is equal to source
(mfxVideoParam::mfx::FrameInfo::BitDepthLuma).

TargetBitDepthChroma Target encoding bit-depth for chroma samples. May differ from source one. 0 mean
default target bit-depthwhich is equal to source
(mfxVideoParam::mfx::FrameInfo::BitDepthChroma).

63 SDK Developer Reference 1.27

Change History

This structure is available since SDK API 1.11.

The SDK API 1.13 adds EnableMBQP, MBDisableSkipMap, DirectBiasAdjustment, GlobalMotionBiasAdjustment
and MVCostScalingFactor fields.

The SDK API 1.16 adds IntRefCycleDist, WeightedPred, WeightedBiPred, AspectRatioInfoPresent,
OverscanInfoPresent, OverscanAppropriate, TimingInfoPresent, BitstreamRestriction, ScenarioInfo,
ContentInfo, PRefType fields.

The SDK API 1.17 adds FadeDetection field.

The SDK API 1.18 adds GPB field.

The SDK API 1.19 adds LowDelayHrd, MotionVectorsOverPicBoundaries, MaxFrameSizeI, MaxFrameSizeP,
EnableQPOffset, QPOffset, NumRefActiveP, NumRefActiveBL0, NumRefActiveBL1 fields.

The SDK API 1.21 adds BRCPanicMode field.

The SDK API 1.23 adds LowDelayBRC, EnableMBForceIntra, AdaptiveMaxFrameSize, RepartitionCheckEnable fields.

The SDK API 1.25 adds EncodedUnitsInfo field.

The SDK API 1.25 adds EnableNalUnitType field.

The SDK API 1.26 adds TransformSkip, ExtBrcAdaptiveLTR fields.

The SDK API 1.27 adds TargetChromaFormatPlus1, TargetBitDepthLuma and TargetBitDepthChroma fields.

mfxExtCodingOptionSPSPPS
Definition

struct {
 mfxExtBuffer Header;
 mfxU8 *SPSBuffer;
 mfxU8 *PPSBuffer;
 mfxU16 SPSBufSize;
 mfxU16 PPSBufSize;
 mfxU16 SPSId;
 mfxU16 PPSId;
} mfxExtCodingOptionSPSPPS;

Description

Attach this structure as part of the extended buffers to configure the SDK encoder during MFXVideoENCODE_Init. The sequence
or picture parameters specified by this structure overwrite any such parameters specified by the structure or any other extended
buffers attached therein.

For H.264, SPSBuffer and PPSBuffer must point to valid bitstreams that contain the sequence parameter set and picture
parameter set, respectively. For MPEG-2, SPSBuffer must point to valid bitstreams that contain the sequence header followed
by any sequence header extension. The PPSBuffer pointer is ignored. The SDK encoder imports parameters from these buffers.
If the encoder does not support the specified parameters, the encoder does not initialize and returns the status code
MFX_ERR_INCOMPATIBLE_VIDEO_PARAM.

Check with the MFXVideoENCODE_Query function for the support of this multiple segemnt encoding feature. If this feature is
not supported, the query returns MFX_ERR_UNSUPPORTED.

Members

Header.BufferIdMust be MFX_EXTBUFF_CODING_OPTION_SPSPPS.
SPSBuffer Pointer to a valid bitstream that contains the SPS (sequence parameter set for H.264 or sequence header

followed by any sequence header extension for MPEG-2) buffer; can be NULL to skip specifying the SPS.
PPSBuffer Pointer to a valid bitstream that contains the PPS (picture parameter set for H.264 or picture header

followed by any picture header extension for MPEG-2) buffer; can be NULL to skip specifying the PPS.
SPSBufSize Size of the SPS in bytes
PPSBufSize Size of the PPS in bytes
SPSId SPS identifier; the value is reserved and must be zero.
PPSId PPS identifier; the value is reserved and must be zero.

Change History

This structure is available since SDK API 1.0.

mfxExtOpaqueSurfaceAlloc
Definition

64 SDK Developer Reference 1.27

typedef struct {
 mfxExtBuffer Header;
 mfxU32 reserved1[2];
 struct {
 mfxFrameSurface1 **Surfaces;
 mfxU32 reserved2[4];
 mfxU16 Type;
 mfxU16 NumSurface;
 } In, Out;
} mfxExtOpaqueSurfaceAlloc;

Description

The mfxExtOpaqueSurfaceAlloc structure defines the opaque surface allocation information.

Members

Header.BufferIdMust be MFX_EXTBUFF_OPAQUE_SURFACE_ALLOCATION
Type Surface type chosen by the application. Any valid combination of flags may be used, for example:

MFX_MEMTYPE_SYSTEM_MEMORY | MFX_MEMTYPE_FROM_DECODE | MFX_MEMTYPE_EXTERNAL_FRAME.

The SDK ignores any irrelevant flags. See the ExtMemFrameType enumerator for details.
NumSurface The number of allocated frame surfaces.
Surfaces The array pointers of allocated frame surfaces.
In, Out In refers to surface allocation for input and out refers to surface allocation for output. For decoding, In is

ignored. For encoding, Out is ignored.
Change History

This structure is available since SDK API 1.3.

mfxExtVideoSignalInfo
Definition

typedef struct {
 mfxExtBuffer Header;
 mfxU16 VideoFormat;
 mfxU16 VideoFullRange;
 mfxU16 ColourDescriptionPresent;
 mfxU16 ColourPrimaries;
 mfxU16 TransferCharacteristics;
 mfxU16 MatrixCoefficients;
} mfxExtVideoSignalInfo;

Description

The mfxExtVideoSignalInfo structure defines the video signal information.

Members

Header.BufferId Must be MFX_EXTBUFF_VIDEO_SIGNAL_INFO
VideoFormat, VideoFullRange,
ColourPrimaries, TransferCharacteristics,
MatrixCoefficients,
ColourDescriptionPresent

These parameters define the video signal information.

For H.264, see Annex E of the ISO/IEC 14496-10 specification for the
definition of these parameters.

For MPEG-2, see section 6.3.6 of the ITU* H.262 specification for the
definition of these parameters. The field VideoFullRange is ignored.

For VC-1, see section 6.1.14.5 of the SMPTE* 421M specification. The fields
VideoFormat and VideoFullRange are ignored.

If ColourDescriptionPresent is zero, the color description information
(including ColourPrimaries, TransferCharacteristics, and
MatrixCoefficients) will/does not present in the bitstream.

Change History

This structure is available since SDK API 1.3.

mfxExtPictureTimingSEI
Definition

65 SDK Developer Reference 1.27

typedef struct {
 mfxExtBuffer Header;
 mfxU32 reserved[14];

 struct {
 mfxU16 ClockTimestampFlag;
 mfxU16 CtType;
 mfxU16 NuitFieldBasedFlag;
 mfxU16 CountingType;
 mfxU16 FullTimestampFlag;
 mfxU16 DiscontinuityFlag;
 mfxU16 CntDroppedFlag;
 mfxU16 NFrames;
 mfxU16 SecondsFlag;
 mfxU16 MinutesFlag;
 mfxU16 HoursFlag;
 mfxU16 SecondsValue;
 mfxU16 MinutesValue;
 mfxU16 HoursValue;
 mfxU32 TimeOffset;
 } TimeStamp[3];
} mfxExtPictureTimingSEI;

Description

The mfxExtPictureTimingSEI structure configures the H.264 picture timing SEI message. The encoder ignores it if HRD
information in stream is absent and PicTimingSEI option in mfxExtCodingOption structure is turned off. See mfxExtCodingOption
for details.

If the application attaches this structure to the mfxVideoParam structure during initialization, the encoder inserts the picture
timing SEI message based on provided template in every access unit of coded bitstream.

If application attaches this structure to the mfxEncodeCtrl structure at runtime, the encoder inserts the picture timing SEI
message based on provided template in access unit that represents current frame.

Members

Header.BufferId Must be MFX_EXTBUFF_PICTURE_TIMING_SEI
ClockTimestampFlag,
CtType,
NuitFieldBasedFlag,
CountingType,
FullTimestampFlag,
DiscontinuityFlag,
CntDroppedFlag,
NFrames,
SecondsFlag,
MinutesFlag,
HoursFlag,
SecondsValue,
MinutesValue,
HoursValue,
TimeOffset

These parameters define the picture timing information. An invalid value of 0xFFFF indicates that
application does not set the value and encoder must calculate it.

See Annex D of the ISO/IEC 14496-10 specification for the definition of these parameters.

Change History

This structure is available since SDK API 1.3.

mfxExtAvcTemporalLayers
Definition

typedef struct {
 mfxExtBuffer Header;
 mfxU32 reserved1[4];
 mfxU16 reserved2;
 mfxU16 BaseLayerPID;

 struct {
 mfxU16 Scale;
 mfxU16 reserved[3];
 } Layer[8];
} mfxExtAvcTemporalLayers;

Description

The mfxExtAvcTemporalLayers structure configures the H.264 temporal layers hierarchy. If application attaches it to the

66 SDK Developer Reference 1.27

mfxVideoParam structure during initialization, the SDK encoder generates the temporal layers and inserts the prefix NAL unit
before each slice to indicate the temporal and priority IDs of the layer.

This structure can be used with the display-order encoding mode only.

Members

Header.BufferIdMust be MFX_EXTBUFF_AVC_TEMPORAL_LAYERS
BaseLayerPID The priority ID of the base layer; the SDK encoder increases the ID for each temporal layer and writes to the

prefix NAL unit.
Scale The ratio between the frame rates of the current temporal layer and the base layer.
Layer The array of temporal layers; Use Scale=0 to specify absent layers.

Change History

This structure is available since SDK API 1.3.

mfxExtVppAuxData
Definition

typedef struct {
 mfxExtBuffer Header;
 union{
 struct{
 mfxU32 SpatialComplexity;
 mfxU32 TemporalComplexity;
 };
 struct{
 mfxU16 PicStruct;
 mfxU16 reserved[3];
 };
 };
 mfxU16 SceneChangeRate;
 mfxU16 RepeatedFrame;
} mfxExtVppAuxData;

Description

The mfxExtVppAuxData structure returns auxiliary data generated by the video processing pipeline. The encoding process may
use the auxiliary data by attaching this structure to the mfxEncodeCtrl structure.

Members

Header.BufferId Must be MFX_EXTBUFF_VPP_AUXDATA
PicStruct Detected picture structure - top field first, bottom field first, progressive or unknown if video processor

cannot detect picture structure. See the PicStruct enumerator for definition of these values.

By default, detection is turned off and the application should explicitly enable it by using
mfxExtVPPDoUse buffer and MFX_EXTBUFF_VPP_PICSTRUCT_DETECTION algorithm.

SpatialComplexity Deprecated
TemporalComplexityDeprecated
SceneChangeRate Deprecated
RepeatedFrame Deprecated

Change History

This structure is available since SDK API 1.0. SDK API 1.6 adds PicStruct field and deprecates SpatialComplexity,
TemporalComplexity, SceneChangeRate and RepeatedFrame fields.

mfxExtVPPDenoise
Definition

typedef struct {
 mfxExtBuffer Header;
 mfxU16 DenoiseFactor;
} mfxExtVppDenoise;

Description

The mfxExtVPPDenoise structure is a hint structure that configures the VPP denoise filter algorithm.

Members

Header.BufferIdMust be MFX_EXTBUFF_VPP_DENOISE
DenoiseFactor Value of 0-100 (inclusive) indicates the level of noise to remove.

67 SDK Developer Reference 1.27

Change History

This structure is available since SDK API 1.1.

mfxExtVppMctf
Definition

typedef struct {
 mfxExtBuffer Header;
 mfxU16 FilterStrength;

 mfxU16 reserved[21];
} mfxExtVppMctf;

Description

mfxExtVppMctf structure allows to setup Motion-Compensated Temporal Filter (MCTF) during the VPP initialization and to
control parameters at runtime. By default, MCTF is off; an application may enable it by adding MFX_EXTBUFF_VPP_MCTF to
mfxExtVPPDoUse buffer or by attaching mfxExtVppMctf to mfxVideoParam during initialization or reset.

Members

Header.BufferIdMust be MFX_EXTBUFF_VPP_MCTF
FilterStrength 0..20 value (inclusive) to indicate the filter-strength of MCTF. A strength of MCTF process controls degree of

possible changes of pixel values eligible for MCTF; the bigger the strength the larger the change is; it is a
dimensionless quantity, values 1..20 inclusively imply strength; value 0 stands for AUTO mode and is valid
during initialization or reset only; if invalid value is given, it is fixed to default value which is 0. If this field is
1..20 inclusive, MCTF operates in fixed-strength mode with the given strength of MCTF process. At runtime,
value 0 and values greater than 20 are ignored.

Change History

This structure is available since SDK API 1.26.

mfxExtVPPDetail
Definition

typedef struct {
 mfxExtBuffer Header;
 mfxU16 DetailFactor;
} mfxExtVppDetail;

Description

The mfxExtVPPDetail structure is a hint structure that configures the VPP detail/edge enhancement filter algorithm.

Members

Header.BufferIdMust be MFX_EXTBUFF_VPP_DETAIL
DetailFactor 0-100 value (inclusive) to indicate the level of details to be enhanced.

Change History

This structure is available since SDK API 1.1.

mfxExtVPPDoNotUse
Definition

typedef struct {
 mfxExtBuffer Header;
 mfxU32 NumAlg;
 mfxU32 *AlgList;
} mfxExtVPPDoNotUse;

Description

The mfxExtVPPDoNotUse structure tells the VPP not to use certain filters in pipeline. See “Table 4 Configurable VPP filters” for
complete list of configurable filters.

The user can attach this structure to the mfxVideoParam structure when initializing video processing.

Members

Header.BufferIdMust be MFX_EXTBUFF_VPP_DONOTUSE
NumAlg Number of filters (algorithms) not to use
AlgList Pointer to a list of filters (algorithms) not to use

Change History

68 SDK Developer Reference 1.27

This structure is available since SDK API 1.0.

mfxExtVPPDoUse
Definition

typedef struct {
 mfxExtBuffer Header;
 mfxU32 NumAlg;
 mfxU32 *AlgList;
} mfxExtVPPDoUse;

Description

The mfxExtVPPDoUse structure tells the VPP to include certain filters in pipeline.

Each filter may be included in pipeline by two different ways. First one, by adding filter ID to this structure. In this case, default
filter parameters are used. Second one, by attaching filter configuration structure directly to the mfxVideoParam structure. In this
case, adding filter ID to mfxExtVPPDoUse structure is optional. See “Table 4 Configurable VPP filters” for complete list of
configurable filters, their IDs and configuration structures.

The user can attach this structure to the mfxVideoParam structure when initializing video processing.

NOTE: MFX_EXTBUFF_VPP_COMPOSITE cannot be enabled using mfxExtVPPDoUse because default parameters are undefined
for this filter. Application must attach appropriate filter configuration structure directly to the mfxVideoParam structure to enable
it.

Members

Header.BufferIdMust be MFX_EXTBUFF_VPP_DOUSE
NumAlg Number of filters (algorithms) to use
AlgList Pointer to a list of filters (algorithms) to use

Change History

This structure is available since SDK API 1.3.

mfxExtVPPFrameRateConversion
Definition

typedef struct {
 mfxExtBuffer Header;
 mfxU16 Algorithm;
 mfxU16 reserved;
 mfxU32 reserved2[15];
} mfxExtVPPFrameRateConversion;

Description

The mfxExtVPPFrameRateConversion structure configures the VPP frame rate conversion filter. The user can attach this
structure to the mfxVideoParam structure when initializing video processing, resetting it or query its capability.

On some platforms advanced frame rate conversion algorithm, algorithm based on frame interpolation, is not supported. To
query its support the application should add MFX_FRCALGM_FRAME_INTERPOLATION flag to Algorithm value in
mfxExtVPPFrameRateConversion structure, attach it to structure and call MFXVideoVPP_Query function. If filter is supported
the function returns MFX_ERR_NONE status and copies content of input structure to output one. If advanced filter is not
supported then simple filter will be used and function returns MFX_WRN_INCOMPATIBLE_VIDEO_PARAM, copies content of input
structure to output one and corrects Algorithm value.

If advanced FRC algorithm is not supported both MFXVideoVPP_Init and MFXVideoVPP_Reset functions returns
MFX_WRN_INCOMPATIBLE_VIDEO_PARAM status.

Members

Header.BufferIdMust be MFX_EXTBUFF_VPP_FRAME_RATE_CONVERSION.
Algorithm See the FrcAlgm enumerator for a list of frame rate conversion algorithms.

Change History

This structure is available since SDK API 1.3.

mfxExtVPPProcAmp
Definition

69 SDK Developer Reference 1.27

typedef struct {
 mfxExtBuffer Header;
 mfxF64 Brightness;
 mfxF64 Contrast;
 mfxF64 Hue;
 mfxF64 Saturation;
} mfxExtVPPProcAmp;

Description

The mfxExtVPPProcAmp structure is a hint structure that configures the VPP ProcAmp filter algorithm. The structure parameters
will be clipped to their corresponding range and rounded by their corresponding increment.

Members

Header.BufferIdMust be MFX_EXTBUFF_VPP_PROCAMP
Brightness The brightness parameter is in the range of -100.0F to 100.0F, in increments of 0.1F. Setting this field to

0.0F will disable brightness adjustment.
Contrast The contrast parameter in the range of 0.0F to 10.0F, in increments of 0.01F, is used for manual contrast

adjustment. Setting this field to 1.0F will disable contrast adjustment. If the parameter is negative, contrast
will be adjusted automatically.

Hue The hue parameter is in the range of -180F to 180F, in increments of 0.1F. Setting this field to 0.0F will
disable hue adjustment.

Saturation The saturation parameter is in the range of 0.0F to 10.0F, in increments of 0.01F. Setting this field to 1.0F
will disable saturation adjustment.

Note: There are no default values for fields in this structure, all settings must be explicitly specified every time this buffer is
submitted for processing.

Change History

This structure is available since SDK API 1.1.

mfxExtVPPImageStab
Definition

typedef struct {
 mfxExtBuffer Header;
 mfxU16 Mode;
 mfxU16 reserved[11];
} mfxExtVPPImageStab;

Description

The mfxExtVPPImageStab structure is a hint structure that configures the VPP image stabilization filter.

On some platforms this filter is not supported. To query its support, the application should use the same approach that it uses to
configure VPP filters - by adding filter ID to mfxExtVPPDoUse structure or by attaching mfxExtVPPImageStab structure directly
to the mfxVideoParam structure and calling MFXVideoVPP_Query function. If this filter is supported function returns
MFX_ERR_NONE status and copies content of input structure to output one. If filter is not supported function returns
MFX_WRN_FILTER_SKIPPED, removes filter from mfxExtVPPDoUse structure and zeroes mfxExtVPPImageStab structure.

If image stabilization filter is not supported, both MFXVideoVPP_Init and MFXVideoVPP_Reset functions returns
MFX_WRN_FILTER_SKIPPED status.

The application can retrieve list of active filters by attaching mfxExtVPPDoUse structure to mfxVideoParam structure and calling
MFXVideoVPP_GetVideoParam function. The application must allocate enough memory for filter list.

Members

Header.BufferIdMust be MFX_EXTBUFF_VPP_IMAGE_STABILIZATION
Mode Specify the image stabilization mode. It should be one of the next values:

MFX_IMAGESTAB_MODE_UPSCALE
MFX_IMAGESTAB_MODE_BOXING

Change History

This structure is available since SDK API 1.6.

mfxExtVPPComposite
Definition

70 SDK Developer Reference 1.27

typedef struct mfxVPPCompInputStream {
 mfxU32 DstX;
 mfxU32 DstY;
 mfxU32 DstW;
 mfxU32 DstH;

 mfxU16 LumaKeyEnable;
 mfxU16 LumaKeyMin;
 mfxU16 LumaKeyMax;

 mfxU16 GlobalAlphaEnable;
 mfxU16 GlobalAlpha;
 mfxU16 PixelAlphaEnable;

 mfxU16 TileId;

 mfxU16 reserved2[17];
} mfxVPPCompInputStream;

typedef struct {
 mfxExtBuffer Header;

 /* background color*/
 union {
 mfxU16 Y;
 mfxU16 R;
 };
 union {
 mfxU16 U;
 mfxU16 G;
 };
 union {
 mfxU16 V;
 mfxU16 B;
 };

 mfxU16 NumTiles;
 mfxU16 reserved1[23];

 mfxU16 NumInputStream;
 mfxVPPCompInputStream *InputStream;
} mfxExtVPPComposite;

Description

The mfxExtVPPComposite structure is used to control composition of several input surfaces in the one output. In this mode,
the VPP skips any other filters. The VPP returns error if any mandatory filter is specified and filter skipped warning for optional
filter. The only supported filters are deinterlacing and interlaced scaling. The only supported combinations of input and output
color formats are:

RGB to RGB,
NV12 to NV12,
RGB and NV12 to NV12, for per pixel alpha blending use case.

The VPP returns MFX_ERR_MORE_DATA for additional input until an output is ready. When the output is ready, VPP returns
MFX_ERR_NONE. The application must process the output frame after synchronization.

Composition process is controlled by:

mfxFrameInfo::CropXYWH in input surface- defines location of picture in the input frame,
InputStream[i].DstXYWH defines location of the cropped input picture in the output frame,
mfxFrameInfo::CropXYWH in output surface - defines actual part of output frame. All pixels in output frame outside this
region will be filled by specified color.

If the application uses composition process on video streams with different frame sizes, the application should provide
maximum frame size in mfxVideoParam during initialization, reset or query operations.

If the application uses composition process, MFXVideoVPP_QueryIOSurf function returns cumulative number of input surfaces,
i.e. number required to process all input video streams. The function sets frame size in the mfxFrameAllocRequest equal to the
size provided by application in the mfxVideoParam.

Composition process supports all types of surfaces, but opaque type has next limitations:

all input surfaces should have the same size,
all input surfaces should have the same color format,
all input surfaces should be described in one mfxExtOpaqueSurfaceAlloc structure.

All input surfaces should have the same type and color format, except per pixel alpha blending case, where it is allowed to mix

71 SDK Developer Reference 1.27

NV12 and RGB surfaces.

There are three different blending use cases:

Luma keying. In this case, all input surfaces should have NV12 color format specified during VPP initialization. Part of each
surface, including first one, may be rendered transparent by using LumaKeyEnable, LumaKeyMin and LumaKeyMax
values.
Global alpha blending. In this case, all input surfaces should have the same color format specified during VPP initialization.
It should be either NV12 or RGB. Each input surface, including first one, can be blended with underling surfaces by using
GlobalAlphaEnable and GlobalAlpha values.
Per pixel alpha blending. In this case, it is allowed to mix NV12 and RGB input surfaces. Each RGB input surface, including
first one, can be blended with underling surfaces by using PixelAlphaEnable value.

It is not allowed to mix different blending use cases in the same function call.

In special case where destination region of the output surface defined by output crops is fully covered with destination sub-
regions of the surfaces, the fast compositing mode can be enabled. The main use case for this mode is a video-wall scenario with
fixed destination surface partition into sub-regions of potentialy different size.

In order to trigger this mode, application must cluster input surfaces into tiles, defining at least one tile by setting the NumTiles
field to be greater then 0 and assigning surfaces to the corresponding tiles setting TileId field to the value within
[0..NumTiles) range per input surface. Tiles should also satisfy following additional constraints:

each tile should not have more than 8 surfaces assigned to it;
tile bounding boxes, as defined by the enclosing rectangles of a union of a surfaces assigned to this tile, should not
intersect;

Members

Header.BufferId Must be MFX_EXTBUFF_VPP_COMPOSITE
Y, U, V, R, G, B background color, may be changed dynamically through Reset. No default value. YUV black is (0;128;128)

or (16;128;128) depending on the sample range. The SDK uses YUV or RGB triple depending on output
color format.

NumTiles Number of input surface clusters grouped together to enable fast compositing. May be changed
dynamically at runtime through Reset.

NumInputStream Number of input surfaces to compose one output. May be changed dynamically at runtime through Reset.
Number of surfaces can be decreased or increased, but should not exceed number specified during
initialization. Query mode 2 should be used to find maximum supported number.

InputStream This array of mfxVPPCompInputStream structures describes composition of input video streams. It should
consist of exactly NumInputStream elements.

DstX, DstY,
DstW, DstH

Location of input stream in output surface.

LumaKeyEnable None zero value enables luma keying for the input stream. Luma keying is used to mark some of the
areas of the frame with specified luma values as transparent. It may be used for closed captioning, for
example.

LumaKeyMin,
LumaKeyMax

Minimum and maximum values of luma key, inclusive. Pixels whose luma values fit in this range are
rendered transparent.

GlobalAlphaEnableNone zero value enables global alpha blending for this input stream.
GlobalAlpha Alpha value for this stream in [0..255] range. 0 – transparent, 255 – opaque.
PixelAlphaEnable None zero value enables per pixel alpha blending for this input stream. The stream should have RGB

color format.
TileId Specify the tile this video stream assigned to. Should be in range [0..NumTiles). Valid only if NumTiles >

0.
Change History

This structure is available since SDK API 1.8.

The SDK API 1.9 adds LumaKeyEnable, LumaKeyMin, LumaKeyMax, GlobalAlphaEnable, GlobalAlpha and
PixelAlphaEnable fields.

The SDK API 1.24 adds 'TileId' and 'NumTiles' fields.

mfxExtVPPVideoSignalInfo
Definition

72 SDK Developer Reference 1.27

/* TransferMatrix */
enum {
 MFX_TRANSFERMATRIX_UNKNOWN = 0,
 MFX_TRANSFERMATRIX_BT709 = 1,
 MFX_TRANSFERMATRIX_BT601 = 2
};

/* NominalRange */
enum {
 MFX_NOMINALRANGE_UNKNOWN = 0,
 MFX_NOMINALRANGE_0_255 = 1,
 MFX_NOMINALRANGE_16_235 = 2
};

typedef struct {
 mfxExtBuffer Header;
 mfxU16 reserved1[4];

 union {
 struct { // Init
 struct {
 mfxU16 TransferMatrix;
 mfxU16 NominalRange;
 mfxU16 reserved2[6];
 } In, Out;
 };
 struct { // Runtime
 mfxU16 TransferMatrix;
 mfxU16 NominalRange;
 mfxU16 reserved3[14];
 };
 };
} mfxExtVPPVideoSignalInfo;

Description

The mfxExtVPPVideoSignalInfo structure is used to control transfer matrix and nominal range of YUV frames. The
application should provide it during initialization. It is supported for all kinds of conversion YUV->YUV, YUV->RGB, RGB->YUV.

This structure is used by VPP only and is not compatible with mfxExtVideoSignalInfo.

Members

Header.BufferIdMust be MFX_EXTBUFF_VPP_VIDEO_SIGNAL_INFO
TransferMatrix Transfer matrix
NominalRange Nominal range

Change History

This structure is available since SDK API 1.8.

mfxExtEncoderCapability
Definition

typedef struct {
 mfxExtBuffer Header;

 mfxU32 MBPerSec;
 mfxU16 reserved[58];
} mfxExtEncoderCapability;

Description

The mfxExtEncoderCapability structure is used to retrive SDK encoder capability. See description of mode 4 of the
MFXVideoENCODE_Query function for details how to use this structure.

Not all implementations of the SDK encoder support this extended buffer. The application has to use query mode 1 to
determine if such functionality is supported. To do so, the application has to attach this extended buffer to mfxVideoParam
structure and call MFXVideoENCODE_Query function. If function returns MFX_ERR_NONE then such functionality is supported.

Members

Header.BufferIdMust be MFX_EXTBUFF_ENCODER_CAPABILITY
MBPerSec Specify the maximum processing rate in macro blocks per second.

Change History

This structure is available since SDK API 1.7.

73 SDK Developer Reference 1.27

mfxExtEncoderResetOption
Definition

typedef struct {
 mfxExtBuffer Header;

 mfxU16 StartNewSequence;
 mfxU16 reserved[11];
} mfxExtEncoderResetOption;

Description

The mfxExtEncoderResetOption structure is used to control the SDK encoder behavior during reset. By using this structure,
the application instructs the SDK encoder to start new coded sequence after reset or continue encoding of current sequence.

This structure is also used in mode 3 of MFXVideoENCODE_Query function to check for reset outcome before actual reset. The
application should set StartNewSequence to required behavior and call query function. If query fails, see status codes below,
then such reset is not possible in current encoder state. If the application sets StartNewSequence to
MFX_CODINGOPTION_UNKNOWN then query function replaces it by actual reset type: MFX_CODINGOPTION_ON if the SDK encoder
will begin new sequence after reset or MFX_CODINGOPTION_OFF if the SDK encoder will continue current sequence.

Using this structure may cause next status codes from MFXVideoENCODE_Reset and MFXVideoENCODE_Queryfunctions:

MFX_ERR_INVALID_VIDEO_PARAM - if such reset is not possible. For example, the application sets StartNewSequence
to off and requests resolution change.
MFX_ERR_INCOMPATIBLE_VIDEO_PARAM - if the application requests change that leads to memory allocation. For
example, the application set StartNewSequence to on and requests resolution change to bigger than initialization value.
MFX_ERR_NONE - if such reset is possible.

There is limited list of parameters that can be changed without starting a new coded sequence:

bitrate parameters, TargetKbps and MaxKbps in the mfxInfoMFX structure.
number of slices, NumSlice in the mfxInfoMFX structure. Number of slices should be equal or less than number of slices
during initialization.
number of temporal layers in mfxExtAvcTemporalLayers structure. Reset should be called immediately before encoding of
frame from base layer and number of reference frames should be big enough for new temporal layers structure.
Quantization parameters, QPI, QPP and QPB in the mfxInfoMFX structure.

As it is described in Configuration Change chapter, the application should retrieve all cached frames before calling reset. When
query function checks for reset outcome, it expects that this requirement be satisfied. If it is not true and there are some cached
frames inside the SDK encoder, then query result may differ from reset one, because the SDK encoder may insert IDR frame to
produce valid coded sequence.

Not all implementations of the SDK encoder support this extended buffer. The application has to use query mode 1 to
determine if such functionality is supported. To do so, the application has to attach this extended buffer to mfxVideoParam
structure and call MFXVideoENCODE_Query function. If function returns MFX_ERR_NONE then such functionality is supported.

See also Appendix C: Streaming and Video Conferencing Features.

Members

Header.BufferId Must be MFX_EXTBUFF_ENCODER_RESET_OPTION
StartNewSequence Instructs encoder to start new sequence after reset. It is one of the CodingOptionValue options:

MFX_CODINGOPTION_ON – the SDK encoder completely reset internal state and begins new coded
sequence after reset, including insertion of IDR frame, sequence and picture headers.
MFX_CODINGOPTION_OFF – the SDK encoder continues encoding of current coded sequence after reset,
without insertion of IDR frame.
MFX_CODINGOPTION_UNKNOWN – depending on the current encoder state and changes in configuration
parameters the SDK encoder may or may not start new coded sequence. This value is also used to query
reset outcome.

Change History

This structure is available since SDK API 1.7.

mfxExtAVCEncodedFrameInfo
Definition

74 SDK Developer Reference 1.27

typedef struct {
 mfxExtBuffer Header;

 mfxU32 FrameOrder;
 mfxU16 PicStruct;
 mfxU16 LongTermIdx;
 mfxU32 MAD;
 mfxU16 BRCPanicMode;
 mfxU16 QP;
 mfxU32 SecondFieldOffset;
 mfxU16 reserved[2];

 struct {
 mfxU32 FrameOrder;
 mfxU16 PicStruct;
 mfxU16 LongTermIdx;
 mfxU16 reserved[4];
 } UsedRefListL0[32], UsedRefListL1[32];
} mfxExtAVCEncodedFrameInfo;

Description

The mfxExtAVCEncodedFrameInfo is used by the SDK encoder to report additional information about encoded picture. The
application can attach this buffer to the mfxBitstream structure before calling MFXVideoENCODE_EncodeFrameAsync function.
For interlaced content the SDK encoder requires two such structures. They correspond to fields in encoded order.

Not all implementations of the SDK encoder support this extended buffer. The application has to use query mode 1 to
determine if such functionality is supported. To do so, the application has to attach this extended buffer to mfxVideoParam
structure and call MFXVideoENCODE_Query function. If function returns MFX_ERR_NONE then such functionality is supported.

Members

Header.BufferId Must be MFX_EXTBUFF_ENCODED_FRAME_INFO
FrameOrder Frame order of encoded picture.
PicStruct Picture structure of encoded picture.
LongTermIdx Long term index of encoded picture if applicable.
MAD Mean Absolute Difference between original pixels of the frame and motion compensated (for inter

macroblocks) or spatially predicted (for intra macroblocks) pixels. Only luma component, Y plane, is used
in calculation.

BRCPanicMode Bitrate control was not able to allocate enough bits for this frame. Frame quality may be unacceptably
low.

QP Luma QP.
SecondFieldOffsetOffset to second field. Second field starts at

mfxBitstream::Data + mfxBitstream::DataOffset +
mfxExtAVCEncodedFrameInfo::SecondFieldOffset

UsedRefListL0
UsedRefListL1

Reference lists that have been used to encode picture.

FrameOrder Frame order of reference picture.
PicStruct Picture structure of reference picture.
LongTermIdx Long term index of reference picture if applicable.

Change History

This structure is available since SDK API 1.7.

The SDK API 1.8 adds MAD and BRCPanicMode fields.

The SDK API 1.9 adds SecondFieldOffset fields.

mfxExtEncoderROI
Definition

75 SDK Developer Reference 1.27

/* ROI QP adjustment mode */
enum {
 MFX_ROI_MODE_PRIORITY = 0,
 MFX_ROI_MODE_QP_DELTA = 1
};

typedef struct {
 mfxExtBuffer Header;

 mfxU16 NumROI;
 mfxU16 ROIMode;
 mfxU16 reserved1[1011];

 struct {
 mfxU32 Left;
 mfxU32 Top;
 mfxU32 Right;
 mfxU32 Bottom;

 union {
 mfxI16 Priority;
 mfxI16 DeltaQP;
 };
 mfxU16 reserved2[7];
 } ROI[256];
} mfxExtEncoderROI;

Description

The mfxExtEncoderROI structure is used by the application to specify different Region Of Interests during encoding. It may be
used at initialization or at runtime.

Members

Header.BufferIdMust be MFX_EXTBUFF_ENCODER_ROI
NumROI Number of ROI descriptions in array. The Query function mode 2 returns maximum supported value (set it to

256 and Query will update it to maximum supported value).
ROIMode QP adjustment mode for ROIs. Defines if Priority or DeltaQP is used during encoding in BRC mode (only

CBR and VBR are affected). For CQP rate control mode DeltaQP is always used for ROI encoding.
ROI Array of ROIs. Different ROI may overlap each other. If macroblock belongs to several ROI, Priority or Delta

QP from ROI with lowest index is used.
Left, Top,
Right, Bottom

ROI location rectangle. ROI rectangle definition is using end-point exclusive notation. In other words, the
pixel with (Right, Bottom) coordinates lies immediately outside of the ROI. Left, Top, Right, Bottom should be
aligned by codec-specific block boundaries (should be dividable by 16 for AVC, or by 32 for HEVC). Every
ROI with unaligned coordinates will be expanded by SDK to minimal-area block-aligned ROI, enclosing the
original one. For example (5, 5, 15, 31) ROI will be expanded to (0, 0, 16, 32) for AVC encoder, or to (0, 0, 32,
32) for HEVC.

DeltaQP Delta QP of ROI. Used if ROIMode = MFX_ROI_MODE_QP_DELTA. This is absolute value in the -51…51 range,
which will be added to the MB QP. Lesser value produces better quality.

Priority Priority of ROI.

For VBR, CBR and AVBR modes, this is relative priority of the region in the -3…3 range. Bigger value produces
better quality.

For CQP mode, this is absolute value in the -51…51 range, that will be added to the MB QP. Lesser value
produces better quality.

Change History

This structure is available since SDK API 1.8.

The SDK API 1.22 adds ROIMode and DeltaQP fields.
The SDK API 1.25 adds clarification that ROI rectangle Right, Bottom are considered exclusive and aligment rules changed.

mfxExtMasteringDisplayColourVolume
Definition

76 SDK Developer Reference 1.27

typedef struct {
 mfxExtBuffer Header;
 mfxU16 reserved[13];

 mfxU16 InsertPayloadToggle;
 mfxU16 DisplayPrimariesX[3];
 mfxU16 DisplayPrimariesY[3];
 mfxU16 WhitePointX;
 mfxU16 WhitePointY;
 mfxU32 MaxDisplayMasteringLuminance;
 mfxU32 MinDisplayMasteringLuminance;
} mfxExtMasteringDisplayColourVolume;

Description

The mfxExtMasteringDisplayColourVolume configures the HDR SEI message. If application attaches this structure to the
mfxEncodeCtrl at runtime, the encoder inserts the HDR SEI message for current frame and ignores InsertPayloadToggle. If
application attaches this structure to the mfxVideoParam during initialization or reset, the encoder inserts HDR SEI message
based on InsertPayloadToggle. Fields semantic defined in ITU-T* H.265 Annex D.

Members

Header.BufferId Must be MFX_EXTBUFF_MASTERING_DISPLAY_COLOUR_VOLUME
InsertPayloadToggle InsertHDRPayload.
DisplayPrimariesX[3],
DisplayPrimariesY[3],
WhitePointX, WhitePointY

Color primaries for a video source in increments of 0.00002. Consist of RGB x,y
coordinates and define how to convert colors from RGB color space to CIE XYZ color
space. These fields belong to the [0..50000] range.

MaxDisplayMasteringLuminance,
MinDisplayMasteringLuminance

Specify maximum and minimum luminance of the display on which the content was
authored in units of 0.00001 candelas per square meter. These fields belong to the
[1..65535] range.

Change History

This structure is available since SDK API 1.25.

mfxExtContentLightLevelInfo
Definition

typedef struct {
 mfxExtBuffer Header;
 mfxU16 reserved[3];

 mfxU16 InsertPayloadToggle;
 mfxU16 MaxContentLightLevel;
 mfxU16 MaxPicAverageLightLevel;
} mfxExtContentLightLevelInfo;

Description

The mfxExtContentLightLevelInfo structure configures the HDR SEI message. If application attaches this structure to the
mfxEncodeCtrl structure at runtime, the encoder inserts the HDR SEI message for current frame and ignores
InsertPayloadToggle. If application attaches this structure to the mfxVideoParam structure during initialization or reset, the
encoder inserts HDR SEI message based on InsertPayloadToggle. Fields semantic defined in ITU-T* H.265 Annex D.

Members

Header.BufferId Must be MFX_EXTBUFF_CONTENT_LIGHT_LEVEL_INFO
InsertPayloadToggle InsertHDRPayload.
MaxContentLightLevel Maximum luminance level of the content. The field belongs to the [1..65535] range.
MaxPicAverageLightLevelMaximum average per-frame luminance level of the content. The field belongs to the [1..65535]

range.
Change History

This structure is available since SDK API 1.25.

mfxExtVPPDeinterlacing
Definition

77 SDK Developer Reference 1.27

typedef struct {
 mfxExtBuffer Header;
 mfxU16 Mode;
 mfxU16 TelecinePattern;
 mfxU16 TelecineLocation;
 mfxU16 reserved[9];
} mfxExtVPPDeinterlacing;

Description

The mfxExtVPPDeinterlacing structure is used by the application to specify different deinterlacing
algorithms.

Members

Header.BufferId Must be MFX_EXTBUFF_VPP_DEINTERLACING
Mode Deinterlacing algorithm. See the DeinterlacingMode enumerator for details.
TelecinePattern Specifies telecine pattern when Mode = MFX_DEINTERLACING_FIXED_TELECINE_PATTERN. See the

TelecinePattern enumerator for details.
TelecineLocationSpecifies position inside a sequence of 5 frames where the artifacts start when TelecinePattern =

MFX_TELECINE_POSITION_PROVIDED.

Change History

This structure is available since SDK API 1.8.

The SDK API 1.13 adds TelecinePattern and TelecineLocation fields.

mfxFrameAllocator
Definition

typedef struct {
 mfxU32 reserved[4];
 mfxHDL pthis;

 mfxStatus (*Alloc) (mfxHDL pthis, mfxFrameAllocRequest *request, mfxFrameAllocResponse
*response);
 mfxStatus (*Lock) (mfxHDL pthis, mfxMemId mid, mfxFrameData *ptr);
 mfxStatus (*Unlock) (mfxHDL pthis, mfxMemId mid, mfxFrameData *ptr);
 mfxStatus (*GetHDL) (mfxHDL pthis, mfxMemId mid, mfxHDL *handle);
 mfxStatus (*Free) (mfxHDL pthis, mfxFrameAllocResponse *response);
} mfxFrameAllocator;

Description

The mfxFrameAllocator structure describes the callback functions Alloc, Lock, Unlock, GetHDL and Free that the SDK
implementation might use for allocating internal frames. Applications that operate on OS-specific video surfaces must
implement these callback functions.

Using the default allocator implies that frame data passes in or out of SDK functions through pointers, as opposed to using
memory IDs.

The SDK behavior is undefined when using an incompletely defined external allocator. See the section Memory Allocation and
External Allocators for additional information.

Members

pthis Pointer to the allocator object
Alloc Pointer to the function that allocates frames
Lock Pointer to the function that locks a frame and obtain its pointers
Unlock Pointer to the function that unlocks a frame; after unlocking, any pointers to the frame are invalid.
GetHDLPointer to the function that obtains the OS-specific handle
Free Pointer to the function that de-allocates a frame
Change History

This structure is available since SDK API 1.0.

Alloc
Syntax

mfxStatus (*Alloc)(mfxHDL pthis, mfxFrameAllocRequest *request, mfxFrameAllocResponse *response);

Parameters

pthis Pointer to the allocator object
request Pointer to the mfxFrameAllocRequest structure that specifies the type and number of required frames

78 SDK Developer Reference 1.27

responsePointer to the mfxFrameAllocResponse structure that retrieves frames actually allocated

Description

This function allocates surface frames. For decoders, MFXVideoDECODE_Init calls Alloc only once. That call includes all frame
allocation requests. For encoders, MFXVideoENCODE_Init calls Alloc twice: once for the input surfaces and again for the
internal reconstructed surfaces.

If two SDK components must share DirectX* surfaces, this function should pass the pre-allocated surface chain to SDK instead of
allocating new DirectX surfaces. See the Surface Pool Allocation section for additional information.

Return Status

MFX_ERR_NONE The function successfully allocated the memory block.
MFX_ERR_MEMORY_ALLOCThe function failed to allocate the video frames.
MFX_ERR_UNSUPPORTED The function does not support allocating the specified type of memory.

Change History

This function is available since SDK API 1.0.

Free
Syntax

mfxStatus (*Free)(mfxHDL pthis, mfxFrameAllocResponse
*response);

Parameters

pthis Pointer to the allocator object
responsePointer to the mfxFrameAllocResponse structure returned by the Alloc function

Description

This function de-allocates all allocated frames.

Return Status

MFX_ERR_NONEThe function successfully de-allocated the memory block.

Change History

This function is available since SDK API 1.0.

Lock
Syntax

mfxStatus (*Lock)(mfxHDL pthis, mfxMemId mid,mfxFrameData *ptr);

Parameters

pthisPointer to the allocator object
mid Memory block ID
ptr Pointer to the returned frame structure

Description

This function locks a frame and returns its pointer.

Return Status

MFX_ERR_NONE The function successfully locked the memory block.
MFX_ERR_LOCK_MEMORYThis function failed to lock the frame.

Change History

This function is available since SDK API 1.0.

Unlock
Syntax

mfxStatus (*Unlock)(mfxHDL pthis, mfxMemId mid, mfxFrameData *ptr);

Parameters

pthisPointer to the allocator object
mid Memory block ID
ptr Pointer to the frame structure; This pointer can be NULL.

79 SDK Developer Reference 1.27

Description

This function unlocks a frame and invalidates the specified frame structure.

Return Status

MFX_ERR_NONEThe function successfully unlocked the frame.

Change History

This function is available since SDK API 1.0.

GetHDL
Syntax

mfxStatus (*GetHDL)(mfxHDL pthis, mfxMemId mid, mfxHDL *hdl);

Parameters

pthisPointer to the allocator object
mid Memory block ID
hdl Pointer to the returned OS-specific handle

Description

This function returns the OS-specific handle associated with a video frame. If the handle is a COM interface, the reference
counter must increase. The SDK will release the interface afterward.

Return Status

MFX_ERR_NONE The function successfully returned the OS-specific handle.
MFX_ERR_UNSUPPORTEDThe function does not support obtaining OS-specific handle.

Change History

This function is available since SDK API 1.0.

mfxFrameAllocRequest
Definition

typedef struct {
 union {
 mfxU32 AllocId;
 mfxU32 reserved[1];
 };
 mfxU32 reserved3[3];
 mfxFrameInfo Info;
 mfxU16 Type; /* decoder or processor render targets */
 mfxU16 NumFrameMin;
 mfxU16 NumFrameSuggested;
 mfxU16 reserved2;
} mfxFrameAllocRequest;

Description

The mfxFrameAllocRequest structure describes multiple frame allocations when initializing encoders, decoders and video
preprocessors. A range specifies the number of video frames. Applications are free to allocate additional frames. In any case, the
minimum number of frames must be at least NumFrameMin or the called function will return an error.

Members

AllocId Unique (within the session) ID of component requested the allocation.
Info Describes the properties of allocated frames
Type Allocated memory type; see the ExtMemFrameType enumerator for details.
NumFrameMin Minimum number of allocated frames
NumFrameSuggestedSuggested number of allocated frames

Change History

This structure is available since SDK API 1.0.

The SDK API 1.16 adds AllocId field.

mfxFrameAllocResponse
Definition

80 SDK Developer Reference 1.27

typedef struct {
 mfxU32 AllocId;
 mfxU32 reserved[3];
 mfxMemId *mids; /* the array allocated by application */
 mfxU16 NumFrameActual;
 mfxU16 reserved2;
} mfxFrameAllocResponse;

Description

The mfxFrameAllocResponse structure describes the response to multiple frame allocations. The calling function returns the
number of video frames actually allocated and pointers to their memory IDs.

Members

AllocId Unique (within the session) ID of component requested the allocation.
mids Pointer to the array of the returned memory IDs; the application allocates or frees this array.
NumFrameActualNumber of frames actually allocated

Change History

This structure is available since SDK API 1.0.

The SDK API 1.16 adds AllocId field.

mfxFrameData
Definition

81 SDK Developer Reference 1.27

typedef struct
{
 mfxU32 U : 10;
 mfxU32 Y : 10;
 mfxU32 V : 10;
 mfxU32 A : 2;
} mfxY410;

typedef struct
{
 mfxU32 B : 10;
 mfxU32 G : 10;
 mfxU32 R : 10;
 mfxU32 A : 2;
} mfxA2RGB10;

typedef struct {
 union {
 mfxExtBuffer **ExtParam;
 mfxU64 reserved2;
 };
 mfxU16 NumExtParam;

 mfxU16 reserved[9];
 mfxU16 MemType;
 mfxU16 PitchHigh;

 mfxU64 TimeStamp;
 mfxU32 FrameOrder;
 mfxU16 Locked;
 union{
 mfxU16 Pitch;
 mfxU16 PitchLow;
 };

 /* color planes */
 union {
 mfxU8 *Y;
 mfxU16 *Y16;
 mfxU8 *R;
 };
 union {
 mfxU8 *UV; /* for UV merged formats */
 mfxU8 *VU; /* for VU merged formats */
 mfxU8 *CbCr; /* for CbCr merged formats */
 mfxU8 *CrCb; /* for CrCb merged formats */
 mfxU8 *Cb;
 mfxU8 *U;
 mfxU16 *U16;
 mfxU8 *G;
 mfxY410 *Y410; /* for Y410 format (merged AVYU) */
 };
 union {
 mfxU8 *Cr;
 mfxU8 *V;
 mfxU16 *V16;
 mfxU8 *B;
 mfxA2RGB10 *A2RGB10; /* for A2RGB10 format (merged ARGB) */
 };
 mfxU8 *A;
 mfxMemId MemId;

 /* Additional Flags */
 mfxU16 Corrupted;
 mfxU16 DataFlag;
} mfxFrameData;

Description

The mfxFrameData structure describes frame buffer pointers.

Members

TimeStamp Time stamp of the video frame in units of 90KHz (divide TimeStamp by 90,000 (90 KHz) to obtain the time in
seconds). A value of MFX_TIMESTAMP_UNKNOWN indicates that there is no time stamp.

Pitch Deprecated.

82 SDK Developer Reference 1.27

PitchHigh,
PitchLow

Distance in bytes between the start of two consecutive rows in a frame.

FrameOrder Current frame counter for the top field of the current frame; an invalid value of MFX_FRAMEORDER_UNKNOWN
indicates that SDK functions that generate the frame output do not use this frame.

Locked Counter flag for the application; if Locked is greater than zero then the application locks the frame or field pair.
Do not move, alter or delete the frame.

Y, U, V,
A;,
R, G, B,
A;,
Y, Cr, Cb,
A;,
Y, CbCr;,
Y, CrCb;,
Y, UV;,
Y, VU;
Y16, U16,
V16;
A2RGB10;
Y410;

Data pointers to corresponding color channels. The frame buffer pointers must be 16-byte aligned. The
application has to specify pointers to all color channels even for packed formats. For example, for YUY2 format
the application has to specify Y, U and V pointers. For RGB32 – R, G, B and A pointers.

MemId Memory ID of the data buffers; if any of the preceding data pointers is non-zero then the SDK ignores MemId.
DataFlag Additional flags to indicate frame data properties. See the FrameDataFlag enumerator for details.
Corrupted Some part of the frame or field pair is corrupted. See the Corruption enumerator for details.
NumExtParamThe number of extra configuration structures attached to this structure.
ExtParam Points to an array of pointers to the extra configuration structures; see the ExtendedBufferID enumerator for a list

of extended configurations.
MemType Allocated memory type; see the ExtMemFrameType enumerator for details. Used for better integration of 3rd

party plugins into SDK pipeline.
Change History

This structure is available since SDK API 1.0.

SDK API 1.3 extended the Corrupted and DataFlag fields.

SDK 1.8 replaced Pitch by PitchHigh and PitchLow fields.

SDK API 1.11 added NumExtParam and ExtParam fields.

SDK API 1.19 added MemType field.

SDK API 1.25 added A2RGB10 field.

SDK API 1.27 added Y410 field.

mfxFrameInfo
Definition

83 SDK Developer Reference 1.27

typedef struct {
 mfxU32 reserved[4];
 mfxU16 reserved4;
 mfxU16 BitDepthLuma;
 mfxU16 BitDepthChroma;
 mfxU16 Shift;

 mfxFrameId FrameId;

 mfxU32 FourCC;
 union {
 struct { /* Frame parameters */
 mfxU16 Width;
 mfxU16 Height;

 mfxU16 CropX;
 mfxU16 CropY;
 mfxU16 CropW;
 mfxU16 CropH;
 };
 struct { /* Buffer parameters (for plain formats like P8) */
 mfxU64 BufferSize;
 mfxU32 reserved5;
 };
 };

 mfxU32 FrameRateExtN;
 mfxU32 FrameRateExtD;
 mfxU16 reserved3;

 mfxU16 AspectRatioW;
 mfxU16 AspectRatioH;

 mfxU16 PicStruct;
 mfxU16 ChromaFormat;
 mfxU16 reserved2;
} mfxFrameInfo;

Description

The mfxFrameInfo structure specifies properties of video frames. See also Appendix A: Configuration Parameter Constraints.

Members

BitDepthLuma Number of bits used to represent luma samples.

Not all codecs and SDK implementations support this value. Use Query function to check if this feature is
supported.

BitDepthChromaNumber of bits used to represent chroma samples.

Not all codecs and SDK implementations support this value. Use Query function to check if this feature is
supported.

Shift When not zero indicates that values of luma and chroma samples are shifted. Use BitDepthLuma and
BitDepthChroma to calculate shift size. Use zero value to indicate absence of shift.

Not all codecs and SDK implementations support this value. Use Query function to check if this feature is
supported.

FourCC FourCC code of the color format; see the ColorFourCC enumerator for details.

84 SDK Developer Reference 1.27

Width, Height Width and height of the video frame in pixels; Width must be a multiple of 16. Height must be a multiple of
16 for progressive frame sequence and a multiple of 32 otherwise.

CropX, CropY,
CropW, CropH

Display the region of interest of the frame; specify the display width and height in mfxVideoParam.

BufferSize Size of frame buffer in bytes. Valid only for plain formats (when FourCC is P8); Width, Height and crops in this
case are invalid.

AspectRatioW,
AspectRatioH

These parameters specify the sample aspect ratio. If sample aspect ratio is explicitly defined by the standards
(see Table 6-3 in the MPEG-2 specification or Table E-1 in the H.264 specification), AspectRatioW and
AspectRatioH should be the defined values. Otherwise, the sample aspect ratio can be derived as follows:
AspectRatioW=display_aspect_ratio_width*display_height;
AspectRatioH=display_aspect_ratio_height*display_width;

For MPEG-2, the above display aspect ratio must be one of the defined values in Table 6-3. For H.264, there is
no restriction on display aspect ratio values.

If both parameters are zero, the encoder uses default value of sample aspect ratio.
FrameRateExtN,
FrameRateExtD

Specify the frame rate by the formula: FrameRateExtN / FrameRateExtD.

For encoding, frame rate must be specified. For decoding, frame rate may be unspecified (FrameRateExtN
and FrameRateExtD are all zeros.) In this case, the frame rate is default to 30 frames per second.

PicStruct Picture type as specified in the PicStruct enumerator
ChromaFormat Color sampling method; the value of ChromaFormat is the same as that of ChromaFormatIdc.

ChromaFormat is not defined if FourCC is zero.

Change History

This structure is available since SDK API 1.0.

SDK API 1.9 added BitDepthLuma, BitDepthChroma and Shift fields.

SDK API 1.15 adds BufferSize field.

Remarks

See Appendix A for constraints of specifying certain parameters during SDK class initialization and operation.

mfxFrameSurface1
Definition

typedef struct {
 mfxU32 reserved[4];
 mfxFrameInfo Info;
 mfxFrameData Data;
} mfxFrameSurface1;

Description

The mfxFrameSurface1 structure defines the uncompressed frames surface information and data buffers. The frame surface is
in the frame or complementary field pairs of pixels up to four color-channels, in two parts: mfxFrameInfo and mfxFrameData.

Members

InfomfxFrameInfo structure specifies surface properties
DatamfxFrameData structure describes the actual frame buffer.

Change History

This structure is available since SDK API 1.0.

mfxInfoMFX
Definition

85 SDK Developer Reference 1.27

typedef struct {
 mfxU32 reserved[7];

 mfxU16 LowPower;
 mfxU16 BRCParamMultiplier;

 mfxFrameInfo FrameInfo;
 mfxU32 CodecId;
 mfxU16 CodecProfile;
 mfxU16 CodecLevel;
 mfxU16 NumThread;

 union {
 struct { /* Encoding Options */
 mfxU16 TargetUsage;

 mfxU16 GopPicSize;
 mfxU16 GopRefDist;
 mfxU16 GopOptFlag;
 mfxU16 IdrInterval;

 mfxU16 RateControlMethod;
 union {
 mfxU16 InitialDelayInKB;
 mfxU16 QPI;
 mfxU16 Accuracy;
 };
 mfxU16 BufferSizeInKB;
 union {
 mfxU16 TargetKbps;
 mfxU16 QPP;
 mfxU16 ICQQuality;
 };
 union {
 mfxU16 MaxKbps;
 mfxU16 QPB;
 mfxU16 Convergence;
 };

 mfxU16 NumSlice;
 mfxU16 NumRefFrame;
 mfxU16 EncodedOrder;
 };
 struct { /* Decoding Options */
 mfxU16 DecodedOrder;
 mfxU16 ExtendedPicStruct;
 mfxU16 TimeStampCalc;
 mfxU16 SliceGroupsPresent;
 mfxU16 MaxDecFrameBuffering;
 mfxU16 EnableReallocRequest;
 mfxU16 reserved2[7];
 };
 struct { /* JPEG Decoding Options */
 mfxU16 JPEGChromaFormat;
 mfxU16 Rotation;
 mfxU16 JPEGColorFormat;
 mfxU16 InterleavedDec;
 mfxU8 SamplingFactorH[4];
 mfxU8 SamplingFactorV[4];
 mfxU16 reserved3[5];
 };
 struct { /* JPEG Encoding Options */
 mfxU16 Interleaved;
 mfxU16 Quality;
 mfxU16 RestartInterval;
 mfxU16 reserved5[10];
 };
 };
} mfxInfoMFX;

Description

This structure specifies configurations for decoding, encoding and transcoding processes. A zero value in any of these fields
indicates that the field is not explicitly specified.

Members

86 SDK Developer Reference 1.27

LowPower For encoders set this flag to ON to reduce
power consumption and GPU usage. See the
CodingOptionValue enumerator for values of
this option. Use Query function to check if
this feature is supported.

BRCParamMultiplier Specifies a multiplier for bitrate control
parameters. Affects next four variables
InitialDelayInKB, BufferSizeInKB,
TargetKbps, MaxKbps. If this value is not
equal to zero encoder calculates BRC
parameters as value *
BRCParamMultiplier.

FrameInfo mfxFrameInfo structure that specifies frame
parameters

CodecId Specifies the codec format identifier in the
FOURCC code; see the CodecFormatFourCC
enumerator for details. This is a mandated
input parameter for QueryIOSurf and Init
functions.

CodecProfile Specifies the codec profile; see the
CodecProfile enumerator for details. Specify
the codec profile explicitly or the SDK
functions will determine the correct profile
from other sources, such as resolution and
bitrate.

CodecLevel Codec level; see the CodecLevel enumerator
for details. Specify the codec level explicitly
or the SDK functions will determine the
correct level from other sources, such as
resolution and bitrate.

GopPicSize Number of pictures within the current GOP
(Group of Pictures); if GopPicSize = 0,
then the GOP size is unspecified. If
GopPicSize = 1, only I-frames are used.
See Example 15 for pseudo-code that
demonstrates how SDK uses this parameter.

GopRefDist Distance between I- or P (or GPB) - key
frames; if it is zero, the GOP structure is
unspecified. Note: If GopRefDist = 1, there
are no regular B-frames used (only P or GPB);
if mfxExtCodingOption3::GPB is ON, GPB
frames (B without backward references) are
used instead of P. See Example 15 for
pseudo-code that demonstrates how SDK
uses this parameter.

GopOptFlag ORs of the GopOptFlag enumerator indicate
the additional flags for the GOP specification;
see Example 15 for an example of pseudo-
code that demonstrates how to use this
parameter.

87 SDK Developer Reference 1.27

IdrInterval For H.264, IdrInterval specifies IDR-frame
interval in terms of I-frames; if IdrInterval
= 0, then every I-frame is an IDR-frame. If
IdrInterval = 1, then every other I-frame
is an IDR-frame, etc.

For HEVC, if IdrInterval = 0, then only
first I-frame is an IDR-frame. If IdrInterval
= 1, then every I-frame is an IDR-frame. If
IdrInterval = 2, then every other I-frame
is an IDR-frame, etc.

For MPEG2, IdrInterval defines sequence
header interval in terms of I-frames. If
IdrInterval = N, SDK inserts the
sequence header before every Nth I-frame. If
IdrInterval = 0 (default), SDK inserts the
sequence header once at the beginning of
the stream.

If GopPicSize or GopRefDist is zero,
IdrInterval is undefined.

TargetUsage Target usage model that guides the encoding
process; see the TargetUsage enumerator for
details.

RateControlMethod Rate control method; see the
RateControlMethod enumerator for details.

InitialDelayInKB,
TargetKbps, MaxKbps

These parameters are for the constant bitrate
(CBR), variable bitrate control (VBR) and CQP
HRD algorithms.

The SDK encoders follow the Hypothetical
Reference Decoding (HRD) model. The HRD
model assumes that data flows into a buffer
of the fixed size BufferSizeInKB with a
constant bitrate TargetKbps. (Estimate the
targeted frame size by dividing the framerate
by the bitrate.)

The decoder starts decoding after the buffer
reaches the initial size InitialDelayInKB,
which is equivalent to reaching an initial
delay of
InitialDelayInKB*8000/TargetKbpsms.
Note: In this context, KB is 1000 bytes and
Kbps is 1000 bps.

If InitialDelayInKB or BufferSizeInKB
is equal to zero, the value is calculated using
bitrate, frame rate, profile, level, and so on.

TargetKbps must be specified for encoding
initialization.

For variable bitrate control, the MaxKbps
parameter specifies the maximum bitrate at
which the encoded data enters the Video
Buffering Verifier (VBV) buffer. If MaxKbps is
equal to zero, the value is calculated from
bitrate, frame rate, profile, level, and so on.

QPI, QPP, QPB Quantization Parameters (QP)for I, P and B
frames, respectively, for the constant QP
(CQP) mode.

88 SDK Developer Reference 1.27

TargetKbps, Accuracy,
Convergence

These parameters are for the average variable
bitrate control (AVBR) algorithm. The
algorithm focuses on overall encoding
quality while meeting the specified bitrate,
TargetKbps, within the accuracy range
Accuracy, after a Convergence period. This
method does not follow HRD and the instant
bitrate is not capped or padded.

The Accuracy value is specified in the unit
of tenth of percent.

The Convergence value is specified in the
unit of 100 frames.

The TargetKbps value is specified in the
unit of 1000 bits per second.

ICQQuality This parameter is for Intelligent Constant
Quality (ICQ) bitrate control algorithm. It is
value in the 1…51 range, where 1
corresponds the best quality.

BufferSizeInKB BufferSizeInKB represents the maximum
possible size of any compressed frames.

NumSlice Number of slices in each video frame; each
slice contains one or more macro-block rows.
If NumSlice equals zero, the encoder may
choose any slice partitioning allowed by the
codec standard. See also
mfxExtCodingOption2::NumMbPerSlice.

NumRefFrame Number of reference frames; if NumRefFrame
= 0, this parameter is not specified.

EncodedOrder If not zero, EncodedOrder specifies that
ENCODE takes the input surfaces in the
encoded order and uses explicit frame type
control. Application still must provide
GopRefDist and
mfxExtCodingOption2::BRefType so SDK
can pack headers and build reference lists
correctly.

NumThread Deprecated; Used to represent the number of
threads the underlying implementation can
use on the host processor. Always set this
parameter to zero.

DecodedOrder For AVC and HEVC, used to instruct the
decoder to return output frames in the
decoded order. Deprecated and must be zero
for all other decoders.

When enabled, correctness of
mfxFrameData::TimeStamp and
FrameOrder for output surface is not
guaranteed, the application should ignore
them.

ExtendedPicStruct Instructs DECODE to output extended picture
structure values for additional display
attributes. See the PicStruct description for
details.

TimeStampCalc Time stamp calculation method; see the
TimeStampCalc description for details.

SliceGroupsPresent Nonzero value indicates that slice groups are
present in the bitstream. Only AVC decoder
uses this field.

MaxDecFrameBufferingNonzero value specifies the maximum
required size of the decoded picture buffer in
frames for AVC and HEVC decoders.

89 SDK Developer Reference 1.27

EnableReallocRequestFor decoders supporting dynamic resolution
change (VP9), set this option to ON to allow
MFXVideoDECODE_DecodeFrameAsync
return MFX_ERR_REALLOC_SURFACE.

See the CodingOptionValue enumerator for
values of this option. Use Query function to
check if this feature is supported.

Change History

This structure is available since SDK API 1.0.

SDK API 1.1 extended the QPI, QPP, QPB fields.

SDK API 1.3 extended the Accuracy, Convergence, TimeStampCalc, ExtendedPicStruct and
BRCParamMultiplier fields.

SDK API 1.6 added SliceGroupsPresent field.

SDK API 1.8 added ICQQuality field.

SDK API 1.15 adds LowPower field.

SDK API 1.16 adds MaxDecFrameBuffering field.

SDK API 1.19 adds EnableReallocRequest field.

Example 15: Pseudo-Code for GOP Structure Parameters
mfxU16 get_gop_sequence (…) {
 pos=display_frame_order;
 if (pos == 0)
 return MFX_FRAMETYPE_I | MFX_FRAMETYPE_IDR | MFX_FRAMETYPE_REF;
 /* Only I-frames */
 If (GopPicSize == 1)
 return MFX_FRAMETYPE_I | MFX_FRAMETYPE_REF;
 if (GopPicSize == 0)
 frameInGOP = pos; //Unlimited GOP
 else
 frameInGOP = pos%GopPicSize;

 if (frameInGOP == 0)
 return MFX_FRAMETYPE_I | MFX_FRAMETYPE_REF;
 if (GopRefDist == 1 || GopRefDist == 0) // Only I,P frames
 return MFX_FRAMETYPE_P | MFX_FRAMETYPE_REF;
 frameInPattern = (frameInGOP-1)%GopRefDist;
 if (frameInPattern == GopRefDist - 1)
 return MFX_FRAMETYPE_P | MFX_FRAMETYPE_REF;
 return MFX_FRAMETYPE_B;
}

mfxInfoVPP
Definition

 typedef struct _mfxInfoVPP {
 mfxU32 reserved[8];
 mfxFrameInfo In;
 mfxFrameInfo Out;
 } mfxInfoVPP;

Description

The mfxInfoVPP structure specifies configurations for video processing. A zero value in any of the fields indicates that the
corresponding field is not explicitly specified.

Members

In Input format for video processing
OutOutput format for video processing

Change History

This structure is available since SDK API 1.0.

90 SDK Developer Reference 1.27

mfxInitParam
Definition

typedef struct {
 mfxIMPL Implementation;
 mfxVersion Version;
 mfxU16 ExternalThreads;
 union {
 struct {
 mfxExtBuffer **ExtParam;
 mfxU16 NumExtParam;
 };
 mfxU16 reserved2[5];
 };
 mfxU16 GPUCopy;
 mfxU16 reserved[20];
} mfxInitParam;

Description

The mfxInitParam structure specifies advanced initialization parameters. A zero value in any of the fields indicates that the
corresponding field is not explicitly specified.

Members

Implementation mfxIMPL enumerator that indicates the desired SDK implementation
Version Structure which specifies minimum library version or zero, if not specified
ExternalThreadsDesired threading mode. Value 0 means internal threading, 1 – external.
NumExtParam The number of extra configuration structures attached to this structure.
ExtParam Points to an array of pointers to the extra configuration structures; see the ExtendedBufferID enumerator for

a list of extended configurations.
GPUCopy Enables or disables GPU accelerated copying between video and system memory in the SDK components.

See the GPUCopy enumerator for a list of valid values.
Change History

This structure is available since SDK API 1.14.

The SDK API 1.15 adds NumExtParam and ExtParam fields.

The SDK API 1.16 adds GPUCopy field.

mfxPlatform
Definition

typedef struct {
 mfxU16 CodeName;
 mfxU16 DeviceId;
 mfxU16 reserved[14];
} mfxPlatform;

Description

The mfxPlatform structure contains information about hardware platform.

Members

CodeName Intel® processor microarchitecture codename. See the PlatformCodeName enumerator for a list of possible values.
DeviceIdReserved.

Change History

This structure is available since SDK API 1.19.

mfxPayload
Definition

typedef struct {
 mfxU32 CtrlFlags;
 mfxU32 reserved[3];
 mfxU8 *Data; /* buffer pointer */
 mfxU32 NumBit; /* number of bits */
 mfxU16 Type; /* SEI message type in H.264 or user data start_code in MPEG-2 */
 mfxU16 BufSize; /* payload buffer size in bytes */
} mfxPayload;

Description

91 SDK Developer Reference 1.27

The mfxPayload structure describes user data payload in MPEG-2 or SEI message payload in H.264. For encoding, these
payloads can be inserted into the bitstream. The payload buffer must contain a valid formatted payload. For H.264, this is the
sei_message() as specified in the section 7.3.2.3.1 “Supplemental enhancement information message syntax” of the ISO/IEC
14496-10 specification. For MPEG-2, this is the section 6.2.2.2.2 “User data” of the ISO/IEC 13818-2 specification, excluding the
user data start_code. For decoding, these payloads can be retrieved as the decoder parses the bitstream and caches them in an
internal buffer.

Payloads insertion support in encoders:

Codec Supported Types
MPEG20x01B2 //User Data
AVC 02 //pan_scan_rect

03 //filler_payload

04 //user_data_registered_itu_t_t35

05 //user_data_unregistered

06 //recovery_point

09 //scene_info

13 //full_frame_freeze

14 //full_frame_freeze_release

15 //full_frame_snapshot

16 //progressive_refinement_segment_start

17 //progressive_refinement_segment_end

19 //film_grain_characteristics

20 //deblocking_filter_display_preference

21 //stereo_video_info

45 //frame_packing_arrangement
HEVC All
Members

Type MPEG-2 user data start code or H.264 SEI message type
NumBit Number of bits in the payload data
Data Pointer to the actual payload data buffer
BufSize Payload buffer size in bytes
CtrlFlagsAdditional payload properties. See the PayloadCtrlFlags enumerator for details.

Change History

This structure is available since SDK API 1.0.

The SDK API 1.19 adds CtrlFlags field.

mfxVersion
Definition

typedef union _mfxVersion {
 struct {
 mfxU16 Minor;
 mfxU16 Major;
 };
 mfxU32 Version;
} mfxVersion;

Description

The mfxVersion structure describes the version of the SDK implementation.

Members

VersionSDK implementation version number
Major Major number of the SDK implementation

92 SDK Developer Reference 1.27

Minor Minor number of the SDK implementation

Change History

This structure is available since SDK API 1.0.

mfxVideoParam
Definition

typedef struct {
 mfxU32 AllocId;
 mfxU32 reserved[2];
 mfxU16 reserved3;
 mfxU16 AsyncDepth;
 union {
 mfxInfoMFX mfx;
 mfxInfoVPP vpp;
 }
 mfxU16 Protected;
 mfxU16 IOPattern;
 mfxExtBuffer **ExtParam;
 mfxU16 NumExtParam;
 mfxU16 reserved2;
} mfxVideoParam;

Description

The mfxVideoParam structure contains configuration parameters for encoding, decoding, transcoding and video processing.

Members

AllocId Unique component ID that will be passed by SDK to mfxFrameAllocRequest. Useful in pipelines where several
components of the same type share the same allocator.

AsyncDepth Specifies how many asynchronous operations an application performs before the application explicitly
synchronizes the result. If zero, the value is not specified.

mfx Configurations related to encoding, decoding and transcoding; see the definition of the mfxInfoMFX structure for
details.

vpp Configurations related to video processing; see the definition of the mfxInfoVPP structure for details.
Protected Specifies the content protection mechanism; this is a reserved parameter. Its value must be zero.
IOPattern Input and output memory access types for SDK functions; see the enumerator IOPattern for details. The Query

functions return the natively supported IOPattern if the Query input argument is NULL. This parameter is a
mandated input for QueryIOSurf and Init functions. For DECODE, the output pattern must be specified; for
ENCODE, the input pattern must be specified; and for VPP, both input and output pattern must be specified.

NumExtParamThe number of extra configuration structures attached to this structure.
ExtParam Points to an array of pointers to the extra configuration structures; see the ExtendedBufferID enumerator for a list

of extended configurations.

The list of extended buffers should not contain duplicated entries, i.e. entries of the same type. If
mfxVideoParam structure is used to query the SDK capability, then list of extended buffers attached to input and
output mfxVideoParam structure should be equal, i.e. should contain the same number of extended buffers of
the same type.

Change History

This structure is available since SDK API 1.0. SDK API 1.1 extended the AsyncDepth field.

SDK API 1.17 adds AllocId field.

mfxVPPStat
Definition

 typedef struct _mfxVPPStat {
 mfxU32 reserved[16];
 mfxU32 NumFrame;
 mfxU32 NumCachedFrame;
} mfxVPPStat;

Description

The mfxVPPStat structure returns statistics collected during video processing.

Members

NumFrame Total number of frames processed
NumCachedFrameNumber of internally cached frames

93 SDK Developer Reference 1.27

Change History

This structure is available since SDK API 1.0.

mfxENCInput
Definition

typedef struct _mfxENCInput mfxENCInput;
struct _mfxENCInput{
 mfxU32 reserved[32];

 mfxFrameSurface1 *InSurface;

 mfxU16 NumFrameL0;
 mfxFrameSurface1 **L0Surface;
 mfxU16 NumFrameL1;
 mfxFrameSurface1 **L1Surface;

 mfxU16 NumExtParam;
 mfxExtBuffer **ExtParam;
};

Description

The mfxENCInput structure specifies input for the ENC class of functions.

Members

InSurface Input surface.
NumFrameL0, NumFrameL1Number of surfaces in L0 and L1 reference lists.
L0Surface, L1Surface L0 and L1 reference lists
NumExtParam Number of extended buffers.
ExtParam List of extended buffers.

Change History

This structure is available since SDK API 1.10.

mfxENCOutput
Definition

typedef struct _mfxENCOutput mfxENCOutput;
struct _mfxENCOutput{
 mfxU32 reserved[32];

 mfxU16 NumExtParam;
 mfxExtBuffer **ExtParam;
} ;

Description

The mfxENCOutput structure specifies output of the ENC class of functions.

Members

NumExtParamNumber of extended buffers.
ExtParam List of extended buffers.

Change History

This structure is available since SDK API 1.10.

mfxExtLAControl
Definition

94 SDK Developer Reference 1.27

typedef struct
{
 mfxExtBuffer Header;
 mfxU16 LookAheadDepth;
 mfxU16 DependencyDepth;
 mfxU16 DownScaleFactor;
 mfxU16 BPyramid;

 mfxU16 reserved1[23];

 mfxU16 NumOutStream;
 struct mfxStream{
 mfxU16 Width;
 mfxU16 Height;
 mfxU16 reserved2[14];
 } OutStream[16];
} mfxExtLAControl;

Description

The mfxExtLAControl structure is used to control standalone look ahead behavior. This LA is performed by ENC class of
functions and its results are used later by ENCODE class of functions to improve coding efficiency.

This LA is intended for one to N transcoding scenario, where one input bitstream is transcoded to several output ones with
different bitrates and resolutions. Usage of integrated into the SDK encoder LA in this scenario is also possible but not efficient in
term of performance and memory consumption. Standalone LA by ENC class of functions is executed only once for input
bitstream in contrast to the integrated LA where LA is executed for each of output streams.

This structure is used at ENC initialization time and should be attached to the mfxVideoParam structure.

The algorithm of QP calculation is the following:

1. Analyze LookAheadDepth frames to find per-frame costs using a sliding window of DependencyDepth frames.
2. After such analysis we have costs for (LookAheadDepth - DependencyDepth) frames. Cost is the estimation of frame

complexity based on inter-prediction.
3. Calculate QP for the first frame using costs of (LookAheadDepth - DependencyDepth) frames.

Figure 6: LookAhead BRC QP Calculation Algorithm

Members

Header.BufferIdMust be MFX_EXTBUFF_LOOKAHEAD_CTRL.
LookAheadDepth Look ahead depth. This parameter has exactly the same meaning as LookAheadDepth in the

mfxExtCodingOption2 structure.
DependencyDepthDependency depth. This parameter specifies the number of frames that SDK analyzes to calculate inter-

frame dependency. The recommendation is to set this parameter in the following range: greater than
(GopRefDist + 1) and less than (LookAheadDepth/4).

DownScaleFactorDown scale factor. This parameter has exactly the same meaning as LookAheadDS in the
mfxExtCodingOption2 structure. It is recommended to execute LA on downscaled image to improve
performance without significant quality degradation.

BPyramid Turn ON this flag to enable BPyramid feature (this mode is not supported by h264 encoder). See the
CodingOptionValue enumerator for values of this option.

NumOutStream Number of output streams in one to N transcode scenario.
OutStream Output stream parameters.
Width Output stream width.
Height Output stream height.

95 SDK Developer Reference 1.27

Change History

This structure is available since SDK API 1.10.

The SDK API 1.15 adds BPyramid field.

mfxExtLAFrameStatistics
Definition

typedef struct
{
 mfxU16 Width;
 mfxU16 Height;

 mfxU32 FrameType;
 mfxU32 FrameDisplayOrder;
 mfxU32 FrameEncodeOrder;

 mfxU32 IntraCost;
 mfxU32 InterCost;
 mfxU32 DependencyCost;
 mfxU16 Layer;
 mfxU16 reserved[23];

 mfxU64 EstimatedRate[52];
}mfxLAFrameInfo;

typedef struct {
 mfxExtBuffer Header;

 mfxU16 reserved[20];

 mfxU16 NumAlloc;
 mfxU16 NumStream;
 mfxU16 NumFrame;
 mfxLAFrameInfo *FrameStat;

 mfxFrameSurface1 *OutSurface;

} mfxExtLAFrameStatistics;

Description

The mfxExtLAFrameStatistics structure is used to pass standalone look ahead statistics to the SDK encoder in one to N
transcode scenario. This structure is used at runtime and should be attached to the mfxENCOutput structure and then passed,
attached, to the mfxEncodeCtrl structure.

Members

Header.BufferId Must be MFX_EXTBUFF_LOOKAHEAD_STAT.
NumAlloc Number of allocated elements in the FrameStat array.
NumStream Number of streams in the FrameStat array.
NumFrame Number of frames for each stream in the FrameStat array.
FrameStat LA statistics for each frame in output stream.
Width Output stream width.
Height Output stream height.
FrameType Output frame type.
FrameDisplayOrderOutput frame number in display order.
FrameEncodeOrder Output frame number in encoding order.
IntraCost Intra cost of output frame.
InterCost Inter cost of output frame.
DependencyCost Aggregated dependency cost. It shows how this frame influences subsequent frames.
Layer BPyramid layer number. zero if BPyramid is not used.
EstimatedRate Estimated rate for each QP.
OutSurface Output surface.

Change History

This structure is available since SDK API 1.10.

The SDK API 1.15 adds Layer field.

mfxExtVPPFieldProcessing

96 SDK Developer Reference 1.27

Definition

typedef struct {
 mfxExtBuffer Header;

 mfxU16 Mode;
 mfxU16 InField;
 mfxU16 OutField;
 mfxU16 reserved[25];
} mfxExtVPPFieldProcessing;

Description

The mfxExtVPPFieldProcessing structure configures the VPP field processing algorithm. The application can attach this
extended buffer to the mfxVideoParam structure to configure initialization and/or to the mfxFrameData during runtime, runtime
configuration has priority over initialization configuration. If field processing algorithm was activated via mfxExtVPPDoUse
structure and mfxExtVPPFieldProcessing extended buffer was not provided during initialization, this buffer must be attached to
mfxFrameData of each input surface.

Members

Header.BufferIdMust be MFX_EXTBUFF_VPP_FIELD_PROCESSING.
Mode Specifies the mode of field processing algorithm. See the VPPFieldProcessingMode enumerator for values

of this option
InField When Mode is MFX_VPP_COPY_FIELD specifies input field. See the PicType enumerator for values of this

parameter.
OutField When Mode is MFX_VPP_COPY_FIELD specifies output field. See the PicType enumerator for values of this

parameter.
Change History

This structure is available since SDK API 1.11.

mfxExtMBQP
Definition

typedef struct {
 mfxExtBuffer Header;

 mfxU32 reserved[11];
 mfxU32 NumQPAlloc;
 union {
 mfxU8 *QP;
 mfxU64 reserved2;
 };
} mfxExtMBQP;

Description

The mfxExtMBQP structure specifies per-macroblock QP for current frame if mfxExtCodingOption3::EnableMBQP was turned
ON during encoder initialization. The application can attach this extended buffer to the mfxEncodeCtrl during runtime.

Members

Header.BufferIdMust be MFX_EXTBUFF_MBQP.
NumQPAlloc The allocated QP array size.
QP Pointer to a list of per-macroblock QP in raster scan order. In case of interlaced encoding the first half of QP

array affects top field and the second – bottom field.

For AVC valid range is 1..51.

For HEVC valid range is 1..51. Application’s provided QP values should be valid; otherwise invalid QP values
may cause undefined behavior. MBQP map should be aligned for 16x16 block size. (align rule is (width +15
/16) && (height +15 /16))

For MPEG2 QP corresponds to quantizer_scale of the ISO/IEC 13818-2 specification and have valid range
1..112.

Change History

This structure is available since SDK API 1.13.

mfxExtMBForceIntra
Definition

97 SDK Developer Reference 1.27

typedef struct {
 mfxExtBuffer Header;

 mfxU32 reserved[11];
 mfxU32 MapSize;
 union {
 mfxU8 *Map;
 mfxU64 reserved2;
 };
} mfxExtMBForceIntra;

Description

The mfxExtMBForceIntra structure specifies macroblock map for current frame which forces specified macroblocks to be
encoded as Intra if mfxExtCodingOption3::EnableMBForceIntra was turned ON during encoder initialization. The application
can attach this extended buffer to the mfxEncodeCtrl during runtime.

Members

Header.BufferIdMust be MFX_EXTBUFF_MB_FORCE_INTRA.
MapSize Macroblock map size.
Map Pointer to a list of force intra macroblock flags in raster scan order. Each flag is one byte in map. Set flag to 1

to force corresponding macroblock to be encoded as intra. In case of interlaced encoding, the first half of
map affects top field and the second – bottom field.

Change History

This structure is available since SDK API 1.23.

mfxExtChromaLocInfo
Definition

typedef struct {
 mfxExtBuffer Header;

 mfxU16 ChromaLocInfoPresentFlag;
 mfxU16 ChromaSampleLocTypeTopField;
 mfxU16 ChromaSampleLocTypeBottomField;
 mfxU16 reserved[9];
} mfxExtChromaLocInfo;

Description

The mfxExtChromaLocInfo structure defines the location of chroma samples information.

Members

Header.BufferId Must be MFX_EXTBUFF_CHROMA_LOC_INFO.
ChromaLocInfoPresentFlag,
ChromaSampleLocTypeTopField,
ChromaSampleLocTypeBottomField

These parameters define the location of chroma samples information.

See Annex E of the ISO/IEC 14496-10 specification for the definition of these
parameters.

Change History

This structure is available since SDK API 1.13.

mfxExtHEVCTiles
Definition

typedef struct {
 mfxExtBuffer Header;

 mfxU16 NumTileRows;
 mfxU16 NumTileColumns;
 mfxU16 reserved[74];
}mfxExtHEVCTiles;

Description

The mfxExtHEVCTiles structure configures tiles options for the HEVC encoder. The application can attach this extended buffer
to the mfxVideoParam structure to configure initialization.

Members

Header.BufferIdMust be MFX_EXTBUFF_HEVC_TILES.
NumTileRows Number of tile rows.

98 SDK Developer Reference 1.27

NumTileColumns Number of tile columns.

Change History

This structure is available since SDK API 1.13.

mfxExtMBDisableSkipMap
Definition

typedef struct {
 mfxExtBuffer Header;

 mfxU32 reserved[11];
 mfxU32 MapSize;
 union {
 mfxU8 *Map;
 mfxU64 reserved2;
 };
} mfxExtMBDisableSkipMap;

Description

The mfxExtMBDisableSkipMap structure specifies macroblock map for current frame which forces specified macroblocks to be
non skip if mfxExtCodingOption3::MBDisableSkipMap was turned ON during encoder initialization. The application can attach
this extended buffer to the mfxEncodeCtrl during runtime.

Members

Header.BufferIdMust be MFX_EXTBUFF_MB_DISABLE_SKIP_MAP.
MapSize Macroblock map size.
Map Pointer to a list of non-skip macroblock flags in raster scan order. Each flag is one byte in map. Set flag to 1

to force corresponding macroblock to be non-skip. In case of interlaced encoding the first half of map
affects top field and the second – bottom field.

Change History

This structure is available since SDK API 1.13.

mfxExtDecodedFrameInfo
Definition

typedef struct {
 mfxExtBuffer Header;

 mfxU16 FrameType;
 mfxU16 reserved[59];
} mfxExtDecodedFrameInfo;

Description

This structure is used by the SDK decoders to report additional information about decoded frame. The application can attach this
extended buffer to the mfxFrameSurface1::mfxFrameData structure at runtime.

Members

Header.BufferIdMust be MFX_EXTBUFF_DECODED_FRAME_INFO
FrameType Frame type. See FrameType enumerator for the list of possible types.

Change History

This structure is available since SDK API 1.14.

mfxExtTimeCode
Definition

typedef struct {
 mfxExtBuffer Header;

 mfxU16 DropFrameFlag;
 mfxU16 TimeCodeHours;
 mfxU16 TimeCodeMinutes;
 mfxU16 TimeCodeSeconds;
 mfxU16 TimeCodePictures;
 mfxU16 reserved[7];
} mfxExtTimeCode;

Description

99 SDK Developer Reference 1.27

This structure is used by the SDK to pass MPEG 2 specific timing information.

Members

Header.BufferId Must be MFX_EXTBUFF_TIME_CODE
DropFrameFlag, TimeCodeHours, TimeCodeMinutes,
TimeCodeSeconds, TimeCodePictures

These parameters define timing information.

See ISO/IEC 13818-2 and ITU-T H.262, MPEG-2 Part 2 for the
definition of these parameters.

Change History

This structure is available since SDK API 1.14.

mfxExtHEVCRegion
Definition

enum {
 MFX_HEVC_REGION_ENCODING_ON = 0,
 MFX_HEVC_REGION_ENCODING_OFF = 1
};

typedef struct {
 mfxExtBuffer Header;

 mfxU32 RegionId;
 mfxU16 RegionType;
 mfxU16 RegionEncoding;
 mfxU16 reserved[24];
} mfxExtHEVCRegion;

Description

Attached to the mfxVideoParam structure during HEVC encoder initialization, specifies the region to encode.

Members

Header.BufferIdMust be MFX_EXTBUFF_HEVC_REGION.
RegionId Id of region.
RegionType Type of region. See HEVCRegionType enumerator for the list of possible types.
RegionEncoding Set to MFX_HEVC_REGION_ENCODING_ON to encode only specified region.

Change History

This structure is available since SDK API 1.15.

The SDK API 1.16 adds RegionEncoding field.

mfxExtThreadsParam
Definition

typedef struct {
 mfxExtBuffer Header;

 mfxU16 NumThread;
 mfxI32 SchedulingType;
 mfxI32 Priority;
 mfxU16 reserved[55];
} mfxExtThreadsParam;

Description

Attached to the mfxInitParam structure during the SDK session initialization, mfxExtThreadsParam stracture specifies options
for threads created by this session.

Members

Header.BufferIdMust be MFX_EXTBUFF_THREADS_PARAM.
NumThread The number of threads.
SchedulingType Scheduling policy for all threads.
Priority Priority for all threads.

Change History

This structure is available since SDK API 1.15.

mfxExtHEVCParam

100 SDK Developer Reference 1.27

Definition

typedef struct {
 mfxExtBuffer Header;

 mfxU16 PicWidthInLumaSamples;
 mfxU16 PicHeightInLumaSamples;
 mfxU64 GeneralConstraintFlags;
 mfxU16 SampleAdaptiveOffset;
 mfxU16 LCUSize;
 mfxU16 reserved[116];
} mfxExtHEVCParam;

Description

Attached to the mfxVideoParam structure extends it with HEVC-specific parameters. Used by both decoder and encoder.

Members

Header.BufferId Must be MFX_EXTBUFF_HEVC_PARAM.
PicWidthInLumaSamples Specifies the width of each coded picture in units of luma samples.
PicHeightInLumaSamplesSpecifies the height of each coded picture in units of luma samples.
GeneralConstraintFlagsAdditional flags to specify exact profile/constraints. See the GeneralConstraintFlags enumerator for

values of this field.
SampleAdaptiveOffset Controls SampleAdaptiveOffset encoding feature. See enum SampleAdaptiveOffset for supported

values (bit-ORed). Valid during encoder Init and Runtime.
LCUSize Specifies largest coding unit size (max luma coding block). Valid during encoder Init.

Change History

This structure is available since SDK API 1.14.

The SDK API 1.16 adds GeneralConstraintFlags field.

The SDK API 1.26 adds SampleAdaptiveOffset and LCUSize fields.

mfxExtPredWeightTable
Definition

typedef struct {
 mfxExtBuffer Header;

 mfxU16 LumaLog2WeightDenom; // 0..7
 mfxU16 ChromaLog2WeightDenom; // 0..7
 mfxU16 LumaWeightFlag[2][32]; // [list] 0,1
 mfxU16 ChromaWeightFlag[2][32]; // [list] 0,1
 mfxI16 Weights[2][32][3][2]; // [list][list entry][Y, Cb, Cr][weight, offset]
 mfxU16 reserved[58];
} mfxExtPredWeightTable;

Description

When mfxExtCodingOption3::WeightedPred was set to explicit during encoder Init or Reset and the current frame is P-frame
or mfxExtCodingOption3::WeightedBiPred was set to explicit during encoder Init or Reset and the current frame is B-frame,
attached to mfxEncodeCtrl, this structure specifies weighted prediction table for current frame.

Members

Header.BufferId Must be MFX_EXTBUFF_PRED_WEIGHT_TABLE.
LumaLog2WeightDenom Base 2 logarithm of the denominator for all luma weighting factors. Value shall be in the range of 0

to 7, inclusive.
ChromaLog2WeightDenomBase 2 logarithm of the denominator for all chroma weighting factors. Value shall be in the range of

0 to 7, inclusive.
LumaWeightFlag LumaWeightFlag[L][R] equal to 1 specifies that the weighting factors for the luma component

are specified for R’s entry of RefPicList L.
ChromaWeightFlag LumaWeightFlag[L][R] equal to 1 specifies that the weighting factors for the chroma component

are specified for R’s entry of RefPicList L.
Weights The values of the weights and offsets used in the encoding processing. The value of Weights[i]

[j][k][m] is interpreted as: i refers to reference picture list 0 or 1; j refers to reference list entry 0-
31; k refers to data for the luma component when it is 0, the Cb chroma component when it is 1 and
the Cr chroma component when it is 2; m refers to weight when it is 0 and offset when it is 1

Change History

This structure is available since SDK API 1.16.

101 SDK Developer Reference 1.27

mfxExtAVCRoundingOffset
Definition

typedef struct {
 mfxExtBuffer Header;

 mfxU16 EnableRoundingIntra; // tri-state option
 mfxU16 RoundingOffsetIntra; // valid value [0,7]
 mfxU16 EnableRoundingInter; // tri-state option
 mfxU16 RoundingOffsetInter; // valid value [0,7]

 mfxU16 reserved[24];
} mfxExtAVCRoundingOffset;

Description

This structure is used by the SDK encoders to set rounding offset parameters for quantization. It is per-frame based encoding
control, and can be attached to some frames and skipped for others. When the extension buffer is set the application can attach
it to the mfxEncodeCtrl during runtime.

Members

Header.BufferId Must be MFX_EXTBUFF_AVC_ROUNDING_OFFSET.
EnableRoundingIntraEnable rounding offset for intra blocks. See the CodingOptionValue enumerator for values of this

option.
RoundingOffsetIntra Intra rounding offset. Value shall be in the range of 0 to 7, inclusive.
EnableRoundingInterEnable rounding offset for inter blocks. See the CodingOptionValue enumerator for values of this

option.
RoundingOffsetInter Inter rounding offset. Value shall be in the range of 0 to 7, inclusive.

Change History

This structure is available since SDK API 1.27.

mfxExtDirtyRect
Definition

typedef struct {
 mfxExtBuffer Header;

 mfxU16 NumRect;
 mfxU16 reserved1[11];

 struct {
 mfxU32 Left;
 mfxU32 Top;
 mfxU32 Right;
 mfxU32 Bottom;

 mfxU16 reserved2[8];
 } Rect[256];
} mfxExtDirtyRect;

Description

Used by the application to specify dirty regions within a frame during encoding. It may be used at initialization or at runtime.

Members

Header.BufferIdMust be MFX_EXTBUFF_DIRTY_RECTANGLES.
NumRect Number of dirty rectangles.
Rect Array of dirty rectangles.
Left, Top, Right,
Bottom

Dirty region location. Dirty rectangle definition is using end-point exclusive notation. In other words, the
pixel with (Right, Bottom) coordinates lies immediately outside of the Dirty rectangle. Left, Top, Right,
Bottom should be aligned by codec-specific block boundaries (should be dividable by 16 for AVC, or by
block size (8, 16, 32 or 64, depends on platform) for HEVC). Every Dirty rectangle with unaligned coordinates
will be expanded by SDK to minimal-area block-aligned Dirty rectangle, enclosing the original one. For
example (5, 5, 15, 31) Dirty rectangle will be expanded to (0, 0, 16, 32) for AVC encoder, or to (0, 0, 32, 32)
for HEVC, if block size is 32. Dirty rectangle (0, 0, 0, 0) is a valid dirty rectangle and means that frame is not
changed.

Change History

This structure is available since SDK API 1.16.
The SDK API 1.25 adds clarification that Dirty rectangle Right, Bottom are considered exclusive and alignment rules changed.
Added clarification about (0, 0, 0, 0) Dirty rectangle case.

102 SDK Developer Reference 1.27

mfxExtMoveRect
Definition

typedef struct {
 mfxExtBuffer Header;

 mfxU16 NumRect;
 mfxU16 reserved1[11];

 struct {
 mfxU32 DestLeft;
 mfxU32 DestTop;
 mfxU32 DestRight;
 mfxU32 DestBottom;

 mfxU32 SourceLeft;
 mfxU32 SourceTop;
 mfxU16 reserved2[4];
 } Rect[256];
} mfxExtMoveRect;

Description

Used by the application to specify moving regions within a frame during encoding.

Members

Header.BufferId Must be MFX_EXTBUFF_MOVING_RECTANGLES.
NumRect Number of moving rectangles.
Rect Array of moving rectangles.
DestLeft, DestTop,
DestRight,
DestBottom

Destination rectangle location. Should be aligned to MB boundaries (should be dividable by 16). If not,
the SDK encoder truncates it to MB boundaries, for example, both 17 and 31 will be truncated to 16.

SourceLeft,
SourceTop,

Source rectangle location.

Change History

This structure is available since SDK API 1.16.

mfxExtCodingOptionVPS
Definition

typedef struct {
 mfxExtBuffer Header;

 union {
 mfxU8 *VPSBuffer;
 mfxU64 reserved1;
 };
 mfxU16 VPSBufSize;
 mfxU16 VPSId;

 mfxU16 reserved[6];
} mfxExtCodingOptionVPS;

Description

Attach this structure as part of the extended buffers to configure the SDK encoder during MFXVideoENCODE_Init. The sequence
or picture parameters specified by this structure overwrite any such parameters specified by the structure or any other extended
buffers attached therein.

If the encoder does not support the specified parameters, the encoder does not initialize and returns the status code
MFX_ERR_INCOMPATIBLE_VIDEO_PARAM.

Check with the MFXVideoENCODE_Query function for the support of this multiple segemnt encoding feature. If this feature is
not supported, the query returns MFX_ERR_UNSUPPORTED.

Members

Header.BufferIdMust be MFX_EXTBUFF_CODING_OPTION_VPS.
VPSBuffer Pointer to a valid bitstream that contains the VPS (video parameter set for HEVC) buffer.
VPSBufSize Size of the VPS in bytes
VPSId VPS identifier; the value is reserved and must be zero.

Change History

103 SDK Developer Reference 1.27

This structure is available since SDK API 1.17.

mfxExtVPPRotation
Definition

typedef struct {
 mfxExtBuffer Header;

 mfxU16 Angle;
 mfxU16 reserved[11];
} mfxExtVPPRotation;

Description

The mfxExtVPPRotation structure configures the VPP Rotation filter algorithm.

Members

Header.BufferIdMust be MFX_EXTBUFF_VPP_ROTATION
Angle Rotation angle. See Angle enumerator for supported values.

Change History

This structure is available since SDK API 1.17.

mfxExtVPPScaling
Definition

/* ScalingMode */
enum {
 MFX_SCALING_MODE_DEFAULT = 0,
 MFX_SCALING_MODE_LOWPOWER = 1,
 MFX_SCALING_MODE_QUALITY = 2
};

typedef struct {
 mfxExtBuffer Header;

 mfxU16 ScalingMode;
 mfxU16 reserved[11];
} mfxExtVPPScaling;

Description

The mfxExtVPPScaling structure configures the VPP Scaling filter algorithm.

Members

Header.BufferIdMust be MFX_EXTBUFF_VPP_SCALING
ScalingMode Scaling mode

Change History

This structure is available since SDK API 1.19.

mfxExtVPPMirroring
Definition

/* MirroringType */
enum
{
 MFX_MIRRORING_DISABLED = 0,
 MFX_MIRRORING_HORIZONTAL = 1,
 MFX_MIRRORING_VERTICAL = 2
};

typedef struct {
 mfxExtBuffer Header;

 mfxU16 Type;
 mfxU16 reserved[11];
} mfxExtVPPMirroring;

Description

The mfxExtVPPMirroring structure configures the VPP Mirroring filter algorithm.

Members

104 SDK Developer Reference 1.27

Header.BufferIdMust be MFX_EXTBUFF_VPP_MIRRORING
Type Mirroring type

Change History

This structure is available since SDK API 1.19.

mfxExtVPPColorFill
Definition

typedef struct {
 mfxExtBuffer Header;

 mfxU16 Enable; /* tri-state option */
 mfxU16 reserved[11];
} mfxExtVPPColorFill;

Description

The mfxExtVPPColorFill structure configures the VPP ColorFill filter algorithm.

Members

Header.BufferIdMust be MFX_EXTBUFF_VPP_COLORFILL
Enable Set to ON makes VPP fill the area between Width/Height and Crop borders.

See the CodingOptionValue enumerator for values of this option.
Change History

This structure is available since SDK API 1.19.

mfxExtEncodedSlicesInfo
Definition

typedef struct {
 mfxExtBuffer Header;

 mfxU16 SliceSizeOverflow;
 mfxU16 NumSliceNonCopliant;
 mfxU16 NumEncodedSlice;
 mfxU16 NumSliceSizeAlloc;
 union {
 mfxU16 *SliceSize;
 mfxU64 reserved1;
 };

 mfxU16 reserved[20];
} mfxExtEncodedSlicesInfo;

Description

The mfxExtEncodedSlicesInfo is used by the SDK encoder to report additional information about encoded slices. The
application can attach this buffer to the mfxBitstream structure before calling MFXVideoENCODE_EncodeFrameAsync function.

Not all implementations of the SDK encoder support this extended buffer. The application has to use query mode 1 to
determine if such functionality is supported. To do so, the application has to attach this extended buffer to mfxVideoParam
structure and call MFXVideoENCODE_Query function. If function returns MFX_ERR_NONE then such functionality is supported.

Members

Header.BufferId Must be MFX_EXTBUFF_ENCODED_SLICES_INFO
SliceSizeOverflow When mfxExtCodingOption2::MaxSliceSize is used, indicates the requested slice size was not met

for one or more generated slices
NumSliceNonCopliantWhen mfxExtCodingOption2::MaxSliceSize is used, indicates the number of generated slices

exceeds specification limits
NumEncodedSlice Number of encoded slices.
NumSliceSizeAlloc SliceSize array allocation size. Must be specified by application.
SliceSize Slice size in bytes. Array must be allocated by application.

Change History

This structure is available since SDK API 1.19.

mfxExtMVOverPicBoundaries
Definition

105 SDK Developer Reference 1.27

typedef struct {
 mfxExtBuffer Header;

 mfxU16 StickTop; /* tri-state option */
 mfxU16 StickBottom; /* tri-state option */
 mfxU16 StickLeft; /* tri-state option */
 mfxU16 StickRight; /* tri-state option */
 mfxU16 reserved[8];
} mfxExtMVOverPicBoundaries;

Description

Attached to the mfxVideoParam structure instructs encoder to use or not use samples over specified picture border for inter
prediction.

Members

Header.BufferId Must be MFX_EXTBUFF_MV_OVER_PIC_BOUNDARIES.
StickTop, StickBottom, StickLeft,
StickRight

When set to OFF, one or more samples outside corresponding picture boundary may
be used in inter prediction.

See the CodingOptionValue enumerator for values of this option.
Change History

This structure is available since SDK API 1.19.

mfxExtDecVideoProcessing
Definition

typedef struct {
 mfxExtBuffer Header;

 struct mfxIn{
 mfxU16 CropX;
 mfxU16 CropY;
 mfxU16 CropW;
 mfxU16 CropH;
 mfxU16 reserved[12];
 }In;

 struct mfxOut{
 mfxU32 FourCC;
 mfxU16 ChromaFormat;
 mfxU16 reserved1;

 mfxU16 Width;
 mfxU16 Height;

 mfxU16 CropX;
 mfxU16 CropY;
 mfxU16 CropW;
 mfxU16 CropH;
 mfxU16 reserved[22];
 }Out;

 mfxU16 reserved[13];
} mfxExtDecVideoProcessing;

Description

If attached to the mfxVideoParam structure during the Init stage this buffer will instruct decoder to resize output frames via fixed
function resize engine (if supported by HW) utilizing direct pipe connection bypassing intermediate memory operations. Main
benefits of this mode of pipeline operation are offloading resize operation to dedicated engine reducing power consumption
and memory traffic.

Members

Header.BufferId Must be MFX_EXTBUFF_DEC_VIDEO_PROCESSING.
In Input surface description

CropX, CropY, CropW, CropHRegion of interest of the input surface
Note: CropX and CropY must be 0

Out Output surface description
FourCC FourCC of output surface Note: Should be MFX_FOURCC_NV12
ChromaFormat Chroma Format of output surface

Note: Should be MFX_CHROMAFORMAT_YUV420
Width, Height Width and Height of output surface

106 SDK Developer Reference 1.27

CropX, CropY, CropW, CropHRegion of interest of the output surface

Note: There are three places for crops values already (one in mfxVideoParam and two in mfxExtDecVideoProcessing); and two for
Width and Height values (in mfxVideoParam and in mfxExtDecVideoProcessing). Example of relationship between structures
below.

Example 1: For instance, input stream has resolution 1920x1088. Need to do resize to 352x288 resolution.
mfxVideoParam.Width = 1920;
mfxVideoParam.Height = 1088;
mfxVideoParam.CropX = 0;
mfxVideoParam.CropY = 0;
mfxVideoParam.CropW = 1920;
mfxVideoParam.CropH = 1088;
mfxExtDecVideoProcessing.In.CropX = 0;
mfxExtDecVideoProcessing.In.CropY = 0;
mfxExtDecVideoProcessing.In.CropW = 1920;
mfxExtDecVideoProcessing.In.CropH = 1088;
mfxExtDecVideoProcessing.Out.Width = 352;
mfxExtDecVideoProcessing.Out.Heigth = 288
mfxExtDecVideoProcessing.Out.CropX = 0;
mfxExtDecVideoProcessing.Out.CropY = 0;
mfxExtDecVideoProcessing.Out.CropW = 352;
mfxExtDecVideoProcessing.Out.CropH = 288;

Example 2: For instance, input stream has resolution 1920x1080. Required to do (1) cropping of decoded image to 1280x720,
and then to do (2) resize 352x288 (3) into surface with SD resolution like 720x480
mfxVideoParam.Width = 1920;
mfxVideoParam.Height = 1088;
mfxVideoParam.CropX = 0;
mfxVideoParam.CropY = 0;
mfxVideoParam.CropW = 1920;
mfxVideoParam.CropH = 1080;
mfxExtDecVideoProcessing.In.CropX = 0;
mfxExtDecVideoProcessing.In.CropY = 0;
mfxExtDecVideoProcessing.In.CropW = 1280;
mfxExtDecVideoProcessing.In.CropH = 720;
mfxExtDecVideoProcessing.Out.Width = 720;
mfxExtDecVideoProcessing.Out.Heigth = 480;
mfxExtDecVideoProcessing.Out.CropX = 0;
mfxExtDecVideoProcessing.Out.CropY = 0;
mfxExtDecVideoProcessing.Out.CropW = 352;
mfxExtDecVideoProcessing.Out.CropH = 288;

Change History

This structure is available since SDK API 1.22.

mfxExtVP9Param
Definition

typedef struct {
 mfxExtBuffer Header;

 mfxU16 FrameWidth;
 mfxU16 FrameHeight;

 mfxU16 WriteIVFHeaders; /* tri-state option */

 mfxI16 QIndexDeltaLumaDC;
 mfxI16 QIndexDeltaChromaAC;
 mfxI16 QIndexDeltaChromaDC;

 mfxU16 reserved[112];
} mfxExtVP9Param;

Description

Attached to the mfxVideoParam structure extends it with VP9-specific parameters. Used by both decoder and encoder.

Members

Header.BufferId Must be MFX_EXTBUFF_VP9_PARAM.
FrameWidth Width of the coded frame in pixels.
FrameHeight Height of the coded frame in pixels.

107 SDK Developer Reference 1.27

WriteIVFHeaders Turn this option ON to make encoder insert IVF container headers to output stream. NumFrame field
of IVF sequence header will be zero, it’s responsibility of application to update it with correct value.
See the CodingOptionValue enumerator for values of this option.

QIndexDeltaLumaDC,
QIndexDeltaChromaAC,
QIndexDeltaChromaDC

Specifies an offset for a particular quantization parameter.

Change History

This structure is available since SDK API 1.26.

mfxExtVP9Segmentation
Definition

typedef struct {
 mfxU16 FeatureEnabled;
 mfxI16 QIndexDelta;
 mfxI16 LoopFilterLevelDelta;
 mfxU16 ReferenceFrame;
 mfxU16 reserved[12];
} mfxVP9SegmentParam;

typedef struct {
 mfxExtBuffer Header;
 mfxU16 NumSegments;
 mfxVP9SegmentParam Segment[8];
 mfxU16 SegmentIdBlockSize;
 mfxU32 NumSegmentIdAlloc;
 union {
 mfxU8 *SegmentId;
 mfxU64 reserved1;
 };
 mfxU16 reserved[52];
} mfxExtVP9Segmentation;

Description

In VP9 encoder it’s possible to divide a frame to up to 8 segments and apply particular features (like delta for quantization index
or for loop filter level) on segment basis. “Uncompressed header” of every frame indicates if segmentation is enabled for current
frame, and (if segmentation enabled) contains full information about features applied to every segment. Every “Mode info block”
of coded frame has segment_id in the range [0, 7].

To enable Segmentation mfxExtVP9Segmentation structure with correct settings should be passed to the encoder. It can be
attached to the mfxVideoParam structure during initialization or MFXVideoENCODE_Reset call (static configuration). If
mfxExtVP9Segmentation buffer isn’t attached during initialization, segmentation is disabled for static configuration. If the
buffer isn’t attached for Reset call, encoder continues to use static configuration for segmentation which was actual before this
Reset call. If mfxExtVP9Segmentation buffer with NumSegments=0 is provided during initialization or Reset call, segmentation
becomes disabled for static configuration.

Also the buffer can be attached to the mfxEncodeCtrl structure during runtime (dynamic configuration). Dynamic configuration is
applied to current frame only (after encoding of current frame SDK Encoder will switch to next dynamic configuration, or to static
configuration if dynamic isn’t provided for next frame).

Members

FeatureEnabled Indicates which features are enabled for the segment. See SegmentFeature enumerator for values for
this option. Values from the enumerator can be bit-OR’ed. Support of particular feature depends on
underlying HW platform. Application can check which features are supported by calling of Query.

QIndexDelta Quantization index delta for the segment. Ignored if MFX_VP9_SEGMENT_FEATURE_QINDEX isn’t set
in FeatureEnabled. Valid range for this parameter is [-255, 255]. If QIndexDelta is out of this
range, it will be ignored. If QIndexDelta is within valid range, but sum of base quantization index and
QIndexDelta is out of [0, 255], QIndexDelta will be clamped.

LoopFilterLevelDeltaLoop filter level delta for the segment. Ignored if MFX_VP9_SEGMENT_FEATURE_LOOP_FILTER isn’t
set in FeatureEnabled. Valid range for this parameter is [-63, 63]. If LoopFilterLevelDelta is out of
this range, it will be ignored. If LoopFilterLevelDelta is within valid range, but sum of base loop
filter level and LoopFilterLevelDelta is out of [0, 63], LoopFilterLevelDelta will be clamped.

ReferenceFrame Reference frame for the segment. See VP9ReferenceFrame enumerator for values for this option.
Ignored if MFX_VP9_SEGMENT_FEATURE_REFERENCE isn’t set in FeatureEnabled.

Header.BufferId Must be MFX_EXTBUFF_VP9_SEGMENTATION.
NumSegments Number of segments for frame. Value 0 means that segmentation is disabled. Sending of 0 for

particular frame will disable segmentation for this frame only. Sending of 0 to Reset function will
disable segmentation permanently (can be enabled again by subsequent Reset call).

108 SDK Developer Reference 1.27

Segment Array of structures mfxVP9SegmentParam containing features and parameters for every segment.
Entries with indexes bigger than NumSegments-1 are ignored. See the mfxVP9SegmentParam
structure for definitions of segment features and their parameters.

SegmentIdBlockSize,
NumSegmentIdAlloc,
SegmentId

These three parameters represent segmentation map. Here, segmentation map is array of
segment_ids (one byte per segment_id) for blocks of size NxN in raster scan order. Size NxN is
specified by application and is constant for whole frame. If mfxExtVP9Segmentation is attached
during initialization and/or during runtime, all three parameters should be set to proper values not
conflicting with each other and with NumSegments. If any of them not set, or any conflict/error in
these parameters detected by SDK, segmentation map discarded.

SegmentIdBlockSize Size of block (NxN) for segmentation map. See SegmentIdBlockSize enumerator for values for this
option. Encoded block which is bigger than SegmentIdBlockSize uses segment_id taken from it’s
top-left sub-block from segmentation map. Application can check if particular block size is supported
by calling of Query.

NumSegmentIdAlloc Size of buffer allocated for segmentation map (in bytes). Application must assure that
NumSegmentIdAlloc is enough to cover frame resolution with blocks of size
SegmentIdBlockSize. Otherwise segmentation map will be discarded.

SegmentId Pointer to segmentation map buffer which holds array of segment_ids in raster scan order.
Application is responsible for allocation and release of this memory. Buffer pointed by SegmentId
provided during initialization or Reset call should be considered in use until another SegmentId is
provided via Reset call (if any), or until call of MFXVideoENCODE_Close. Buffer pointed by SegmentId
provided with mfxEncodeCtrl should be considered in use while input surface is locked by SDK. Every
segment_id in the map should be in the range of [0, NumSegments-1]. If some segment_id is out of
valid range, segmentation map cannot be applied. If buffer mfxExtVP9Segmentation is attached to
mfxEncodeCtrl in runtime, SegmentId can be zero. In this case segmentation map from static
configuration will be used.

Change History

This structure is available since SDK API 1.26.

mfxExtVP9TemporalLayers
Definition

typedef struct {
 mfxU16 FrameRateScale;
 mfxU16 TargetKbps
 mfxU16 reserved[14];
} mfxVP9TemporalLayer;

typedef struct {
 mfxExtBuffer Header;
 mfxVP9TemporalLayer Layer[8];
 mfxU16 reserved[60];
} mfxExtVP9TemporalLayers;

Description

The SDK allows to encode VP9 bitstream that contains several subset bitstreams that differ in frame rates also called “temporal
layers”. On decoder side each temporal layer can be extracted from coded stream and decoded separately.
The mfxExtVP9TemporalLayers structure configures the temporal layers for SDK VP9 encoder. It can be attached to the
mfxVideoParam structure during initialization or MFXVideoENCODE_Reset call. If mfxExtVP9TemporalLayers buffer isn’t
attached during initialization, temporal scalability is disabled. If the buffer isn’t attached for Reset call, encoder continues to use
temporal scalability configuration which was actual before this Reset call.
In SDK API temporal layers are ordered by their frame rates in ascending order. Temporal layer 0 (having lowest frame rate) is
called base layer. Each next temporal layer includes all previous layers.
Temporal scalability feature has requirements for minimum number of allocated reference frames (controlled by SDK API
parameter NumRefFrame). If NumRefFrame set by application isn’t enough to build reference structure for requested number of
temporal layers, the SDK corrects NumRefFrame.
Temporal layer structure is reset (re-started) after key-frames.

Members

FrameRateScale The ratio between the frame rates of the current temporal layer and the base layer. The SDK treats particular
temporal layer as “defined” if it has FrameRateScale > 0. If base layer defined, it must have
FrameRateScale equal to 1. FrameRateScale of each next layer (if defined) must be multiple of and
greater than FrameRateScale of previous layer.

TargetKbps Target bitrate for current temporal layer (ignored if RateControlMethod is CQP). If RateControlMethod is not
CQP, application must provide TargetKbps for every defined temporal layer. TargetKbps of each next
layer (if defined) must be greater than TargetKbps of previous layer.

Header.BufferIdMust be MFX_EXTBUFF_VP9_TEMPORAL_LAYERS.

109 SDK Developer Reference 1.27

Layer The array of temporal layers. Layer[0] specifies base layer. The SDK reads layers from the array while they
are defined (have FrameRateScale>0). All layers starting from first layer with FrameRateScale=0 are
ignored. Last layer which is not ignored is “highest layer”. Highest layer has frame rate specified in
mfxVideoParam. Frame rates of lower layers are calculated using their FrameRateScale. TargetKbps of
highest layer should be equal to TargetKbps specified in mfxVideoParam. If it’s not true, TargetKbps of
highest temporal layers has priority. If there are no defined layers in Layer array, temporal scalability feature
is disabled. E.g. to disable temporal scalability in runtime, application should pass to Reset call
mfxExtVP9TemporalLayers buffer with all FrameRateScale set to 0.

Change History

This structure is available since SDK API 1.26

mfxExtBRC
Definition

typedef struct {
 mfxExtBuffer Header;

 mfxU32 reserved[14];
 mfxHDL pthis;

 mfxStatus (*Init) (mfxHDL pthis, mfxVideoParam* par);
 mfxStatus (*Reset) (mfxHDL pthis, mfxVideoParam* par);
 mfxStatus (*Close) (mfxHDL pthis);
 mfxStatus (*GetFrameCtrl) (mfxHDL pthis, mfxBRCFrameParam* par, mfxBRCFrameCtrl* ctrl);
 mfxStatus (*Update) (mfxHDL pthis, mfxBRCFrameParam* par, mfxBRCFrameCtrl* ctrl,
 mfxBRCFrameStatus* status);

 mfxHDL reserved1[10];
} mfxExtBRC;

Description

Structure contains set of callbacks to perform external bit rate control. Can be attached to mfxVideoParam structure during
encoder initialization.Turn mfxExtCodingOption2::ExtBRC option ON to make encoder use external BRC instead of native one.

Members

Header.BufferIdMust be MFX_EXTBUFF_BRC.
pthis Pointer to the BRC object
Init Pointer to the function that initializes BRC session
Reset Pointer to the function that resets initialization parameters for BRC session
Close Pointer to the function that closes BRC session
GetFrameCtrl Pointer to the function that returns controls required for next frame encoding
Update Pointer to the function that updates BRC state after each frame encoding
Change History

This structure is available since SDK API 1.24.

Init
Syntax

mfxStatus (*Init) (mfxHDL pthis, mfxVideoParam* par);

Parameters

pthisPointer to the BRC object
par Pointer to the mfxVideoParam structure that was used for the encoder initialization

Description

This function initializes BRC session according to parameters from input mfxVideoParam and attached structures. It does not
modify in any way the input mfxVideoParam and attached structures. Invoked during MFXVideoENCODE_Init.

Return Status

MFX_ERR_NONE The function successfully initialized BRC session.
MFX_ERR_UNSUPPORTEDThe function detected unsupported video parameters.

Change History

This function is available since SDK API 1.24.

Reset

110 SDK Developer Reference 1.27

Syntax

mfxStatus (*Reset) (mfxHDL pthis, mfxVideoParam* par);

Parameters

pthisPointer to the BRC object
par Pointer to the mfxVideoParam structure that was used for the encoder reset

Description

This function resets BRC session according to new parameters. It does not modify in any way the input mfxVideoParam and
attached structures. Invoked during MFXVideoENCODE_Reset.

Return Status

MFX_ERR_NONE The function successfully reset BRC session.
MFX_ERR_UNSUPPORTED The function detected unsupported video parameters.
MFX_ERR_INCOMPATIBLE_VIDEO_PARAMThe function detected that provided by the application video parameters are

incompatible with initialization parameters. Reset requires additional memory
allocation and cannot be executed.

Change History

This function is available since SDK API 1.24.

Close
Syntax

mfxStatus (*Close) (mfxHDL pthis);

Parameters

pthisPointer to the BRC object

Description

This function de-allocates any internal resources acquired in Init for this BRC session. Invoked during MFXVideoENCODE_Close.

Return Status

MFX_ERR_NONEThe function completed successfully.

Change History

This function is available since SDK API 1.24.

GetFrameCtrl
Syntax

mfxStatus (*GetFrameCtrl) (mfxHDL pthis, mfxBRCFrameParam* par, mfxBRCFrameCtrl* ctrl);

Parameters

pthisPointer to the BRC object
par Pointer to the input mfxBRCFrameParam structure
ctrl Pointer to the output mfxBRCFrameCtrl structure

Description

This function returns controls (ctrl) to encode next frame based on info from input mfxBRCFrameParam structure (par) and
internal BRC state. Invoked asynchronously before each frame encoding or recoding.

Return Status

MFX_ERR_NONEThe function completed successfully.

Change History

This function is available since SDK API 1.24.

Update
Syntax

mfxStatus (*Update) (mfxHDL pthis, mfxBRCFrameParam* par, mfxBRCFrameCtrl* ctrl,
mfxBRCFrameStatus* status);

Parameters

pthis Pointer to the BRC object

111 SDK Developer Reference 1.27

par Pointer to the input mfxBRCFrameParam structure
ctrl Pointer to the input mfxBRCFrameCtrl structure
statusPointer to the output mfxBRCFrameStatus structure

Description

This function updates internal BRC state and returns status to instruct encoder whether it should recode previous frame, skip it,
do padding or proceed to next frame based on info from input mfxBRCFrameParam and mfxBRCFrameCtrl structures. Invoked
asynchronously after each frame encoding or recoding.

Return Status

MFX_ERR_NONEThe function completed successfully.

Change History

This function is available since SDK API 1.24.

mfxBRCFrameParam
Definition

typedef struct {
 mfxU32 reserved[23];
 mfxU16 SceneChange;
 mfxU16 LongTerm;
 mfxU32 FrameCmplx;
 mfxU32 EncodedOrder;
 mfxU32 DisplayOrder;
 mfxU32 CodedFrameSize;
 mfxU16 FrameType;
 mfxU16 PyramidLayer;
 mfxU16 NumRecode;
 mfxU16 NumExtParam;
 mfxExtBuffer** ExtParam;
} mfxBRCFrameParam;

Description

Structure describes frame parameters required for external BRC functions.

Members

SceneChange Frame belongs to a new scene if non zero.
LongTerm Frame is a Long Term Reference frame if non zero.
FrameCmplx Frame spatial complexity if non zero. Zero if complexity is not available.

EncodedOrder The frame number in a sequence of reordered frames starting from encoder Init
DisplayOrder The frame number in a sequence of frames in display order starting from last IDR
CodedFrameSize Size of the frame in bytes after encoding
FrameType See FrameType enumerator
PyramidLayer B-pyramid or P-pyramid layer the frame belongs to
NumRecode Number of recodings performed for this frame
NumExtParam, ExtParamReserved for future extension

Change History

This structure is available since SDK API 1.24.

SDK API 1.26 adds SceneChange, LongTerm and FrameCmplx.

mfxBRCFrameCtrl
Definition

112 SDK Developer Reference 1.27

typedef struct {
 mfxI32 QpY;
 mfxU32 reserved1[13];
 mfxHDL reserved2;
} mfxBRCFrameCtrl;

Description

Structure specifies controls for next frame encoding provided by external BRC functions.

Members

QpYFrame-level Luma QP

Change History

This structure is available since SDK API 1.24.

mfxBRCFrameStatus
Definition

typedef struct {
 mfxU32 MinFrameSize;
 mfxU16 BRCStatus;
 mfxU16 reserved[25];
 mfxHDL reserved1;
} mfxBRCFrameStatus;

Description

Structure specifies instructions for the SDK encoder provided by external BRC after each frame encoding. See the BRCStatus
enumerator for details.

Members

MinFrameSizeSize in bits the coded frame must be padded to when BRCStatus is MFX_BRC_PANIC_SMALL_FRAME
BRCStatus See the BRCStatus enumerator

Change History

This structure is available since SDK API 1.24.

mfxExtMultiFrameParam
Definition

typedef struct {
 mfxExtBuffer Header;

 mfxU16 MFMode;
 mfxU16 MaxNumFrames;

 mfxU16 reserved[58];
} mfxExtMultiFrameParam;

Description

Attached to the mfxVideoParam structure used to query supported parameters for multi frame submission operation and
initialize encoder with particular values.
Multi Frame submission will gather frames from several joined sessions and combine into single submission.

Members

Header.BufferIdMust be MFX_EXTBUFF_MULTI_FRAME_PARAM.
MFMode Multi frame submission mode, when buffer attached, MaxNumFrames is not equal to zero and MFMode is

zero - will be set to MFX_MF_AUTO
MaxNumFrames Maximum number of frames to be used for combining. Each encoder in joined sessions has to be initialized

with the same value, depending on parameters allowed number of frames can differ, use query mechanizm
to identify number of frames. By default along with MFX_MF_AUTO will be decided by SDK, if not set with
other modes - disables multi-frame operation.

Change History

This structure is available since SDK API 1.25.

mfxExtMultiFrameControl
Definition

113 SDK Developer Reference 1.27

typedef struct {
 mfxExtBuffer Header;

 mfxU32 Timeout;
 mfxU16 Flush;

 mfxU16 reserved[57];
} mfxExtMultiFrameControl;

Description

If application attaches this structure to the mfxEncodeCtrl structure at runtime, allow to manage timeout on per frame basis or
force flushing internal frame buffer immediately.
If applicaiton attaches this structure to the mfxVideoParam structure at initialization and/or reset - set default Timeout for this
stream, that will be used for all frames of current encoder session, if per-frame timeout not set.

Members

Header.BufferIdMust be MFX_EXTBUFF_MULTI_FRAME_CONTROL.
Flush Flushes internal frame buffer with current frame despite whether MaxNumFrames specified during

initialization through mfxExtMultiFrameParam) reached or not.
Timeout Time in microseconds specifying how long this encoder will wait for internal buffer of frames to collect

MaxNumFrames specified during initialization through mfxExtMultiFrameParam), if elapse it'll flush internal
buffer. Ignored with 'MFX_MF_MANUAL'. By default calculated based on target frame rate.

Change History

This structure is available since SDK API 1.25.

mfxExtEncodedUnitsInfo
Definition

typedef struct {
 mfxU16 Type;
 mfxU16 reserved1;
 mfxU32 Offset;
 mfxU32 Size;
 mfxU32 reserved[5];
} mfxEncodedUnitInfo;

typedef struct {
 mfxExtBuffer Header;

 union {
 mfxEncodedUnitInfo *UnitInfo;
 mfxU64 reserved1;
 };
 mfxU16 NumUnitsAlloc;
 mfxU16 NumUnitsEncoded;

 mfxU16 reserved[22];
} mfxExtEncodedUnitsInfo;

Description

I f mfxExtCodingOption3::EncodedUnitsInfo was set to MFX_CODINGOPTION_ON during encoder initialization, structure
mfxExtEncodedUnitsInfo attached to the mfxBitstream structure during encoding is used to report information about coding
units in the resulting bitstream.

Members

Type Codec-dependent coding unit type (NALU type for AVC/HEVC, start_code for MPEG2 etc).
Offset Offset relatively to associated mfxBitstream::DataOffset.
Size Unit size including delimiter.
Header.BufferIdMust be MFX_EXTBUFF_ENCODED_UNITS_INFO.
UnitInfo Pointer to an array of structures mfxEncodedUnitsInfo of size equal to or greater than NumUnitsAlloc.
NumUnitsAlloc UnitInfo array size.
NumUnitsEncodedOutput field. Number of coding units to report. If NumUnitsEncoded is greater than NumUnitsAlloc,

UnitInfo array will contain information only for the first NumUnitsAlloc units; user may consider to
reallocate UnitInfo array to avoid this for consequent frames.

The number of filled items in UnitInfo is min(NumUnitsEncoded, NumUnitsAlloc).

For counting a minimal amount of encoded units you can use algorithm:

114 SDK Developer Reference 1.27

nSEI = amountOfApplicationDefinedSEI;
if (CodingOption3.NumSlice[IPB] != 0 || mfxVideoParam.mfx.NumSlice != 0)
 ExpectedAmount = 10 + nSEI + Max(CodingOption3.NumSlice[IPB], mfxVideoParam.mfx.NumSlice);
else if (CodingOption2.NumMBPerSlice != 0)
 ExpectedAmount = 10 + nSEI + (FrameWidth * FrameHeight) / (256 * CodingOption2.NumMBPerSlice);
else if (CodingOption2.MaxSliceSize != 0)
 ExpectedAmount = 10 + nSEI + Round(MaxBitrate / (FrameRate*CodingOption2.MaxSliceSize));
else
 ExpectedAmount = 10 + nSEI;

if (mfxFrameInfo.PictStruct != MFX_PICSTRUCT_PROGRESSIVE)
 ExpectedAmount = ExpectedAmount * 2;

if (temporalScaleabilityEnabled)
 ExpectedAmount = ExpectedAmount * 2;

Encoders support: AVC

Change History

This structure is available since SDK API 1.25.

mfxExtColorConversion
Definition

typedef struct {
 mfxExtBuffer Header;

 mfxU16 ChromaSiting;
 mfxU16 reserved[27];
} mfxExtColorConversion;

Description

The mfxExtColorConversion structure is a hint structure that tunes the VPP Color Conversion algorithm,
when attached to the mfxVideoParam structure during VPP Init.

Members

Header.BufferIdMust be MFX_EXTBUFF_VPP_COLOR_CONVERSION.
ChromaSiting See ChromaSiting enumerator for details.

ChromaSiting is applied on input or output surface depending on the scenario:

VPP Input VPP Output
MFX_CHROMAFORMAT_YUV420 or
MFX_CHROMAFORMAT_YUV422

MFX_CHROMAFORMAT_YUV444 the ChromaSiting indicates the input chroma location.

MFX_CHROMAFORMAT_YUV444 MFX_CHROMAFORMAT_YUV420 or
MFX_CHROMAFORMAT_YUV422

the ChromaSiting indicates the output chroma location.

MFX_CHROMAFORMAT_YUV420 MFX_CHROMAFORMAT_YUV420 the chroma siting location indicates chroma location for
both input and output.

MFX_CHROMAFORMAT_YUV420 MFX_CHROMAFORMAT_YUV422 the chroma siting location indicates horizontal location for
both input and output, and vertical location for input.

Change History

This structure is available since SDK API 1.25.

mfxExtDecodeErrorReport
Definition

typedef struct {
 mfxExtBuffer Header;

 mfxU32 ErrorTypes;
 mfxU16 reserved[10];
} mfxExtDecodeErrorReport;

Description

This structure is used by the SDK decoders to report bitstream error information right after DecodeHeader or
DecodeFrameAsync. The application can attach this extended buffer to the mfxBitstream structure at runtime.

Members

Header.BufferIdMust be MFX_EXTBUFF_DECODE_ERROR_REPORT
ErrorTypes Bitstream error types (bit-ORed values). See ErrorTypes enumerator for the list of possible types.

115 SDK Developer Reference 1.27

Change History

This structure is available since SDK API 1.25.

Enumerator Reference

BitstreamDataFlag
Description

The BitstreamDataFlag enumerator uses bit-ORed values to itemize additional information about the bitstream buffer.

Name/Description

MFX_BITSTREAM_COMPLETE_FRAMEThe bitstream buffer contains a complete frame or complementary field pair of data for the
bitstream. For decoding, this means that the decoder can proceed with this buffer without
waiting for the start of the next frame, which effectively reduces decoding latency.

If this flag is set, but the bitstream buffer contains incomplete frame or pair of field, then
decoder will produce corrupted output.

MFX_BITSTREAM_EOS The bitstream buffer contains the end of the stream. For decoding, this means that the
application does not have any additional bitstream data to send to decoder.

Change History

This enumerator is available since SDK API 1.0.

SDK API 1.6 adds MFX_BITSTREAM_EOS definition.

ChromaFormatIdc
Description

The ChromaFormatIdc enumerator itemizes color-sampling formats.

Name/Description

MFX_CHROMAFORMAT_MONOCHROMEMonochrome
MFX_CHROMAFORMAT_YUV420 4:2:0 color
MFX_CHROMAFORMAT_YUV422 4:2:2 color
MFX_CHROMAFORMAT_YUV444 4:4:4 color
MFX_CHROMAFORMAT_YUV400 equal to monochrome
MFX_CHROMAFORMAT_YUV411 4:1:1 color
MFX_CHROMAFORMAT_YUV422H 4:2:2 color, horizontal subsampling. It is equal to 4:2:2 color.
MFX_CHROMAFORMAT_YUV422V 4:2:2 color, vertical subsampling

Change History

This enumerator is available since SDK API 1.0.

SDK API 1.4 adds MFX_CHROMAFORMAT_YUV400, MFX_CHROMAFORMAT_YUV411, MFX_CHROMAFORMAT_YUV422H
and MFX_CHROMAFORMAT_YUV422V definitions.

CodecFormatFourCC
Description

The CodecFormatFourCC enumerator itemizes codecs in the FourCC format.

Name/Description

MFX_CODEC_AVC AVC, H.264, or MPEG-4, part 10 codec
MFX_CODEC_MPEG2MPEG-2 codec
MFX_CODEC_VC1 VC-1 codec
MFX_CODEC_HEVC HEVC codec
MFX_CODEC_VP9 VP9 codec
MFX_CODEC_AV1 AV1 codec

Change History

This enumerator is available since SDK API 1.0.

SDK API 1.8 added MFX_CODEC_HEVC definition.

SDK API 1.19 added MFX_CODEC_VP9 definition.

SDK API 1.25 added MFX_CODEC_AV1 definition.

116 SDK Developer Reference 1.27

CodecLevel
Description

The CodecLevel enumerator itemizes codec levels for all codecs.

Name/Description

MFX_LEVEL_UNKNOWN Unspecified codec level
MFX_LEVEL_AVC_1,
MFX_LEVEL_AVC_1b,
MFX_LEVEL_AVC_11,
MFX_LEVEL_AVC_12,
MFX_LEVEL_AVC_13

H.264 level 1-1.3

MFX_LEVEL_AVC_2,
MFX_LEVEL_AVC_21,
MFX_LEVEL_AVC_22

H.264 level 2-2.2

MFX_LEVEL_AVC_3,
MFX_LEVEL_AVC_31,
MFX_LEVEL_AVC_32

H.264 level 3-3.2

MFX_LEVEL_AVC_4,
MFX_LEVEL_AVC_41,
MFX_LEVEL_AVC_42

H.264 level 4-4.2

MFX_LEVEL_AVC_5,
MFX_LEVEL_AVC_51,
MFX_LEVEL_AVC_52

H.264 level 5-5.2

MFX_LEVEL_MPEG2_LOW,
MFX_LEVEL_MPEG2_MAIN,
MFX_LEVEL_MPEG2_HIGH,
MFX_LEVEL_MPEG2_HIGH1440

MPEG-2 levels

MFX_LEVEL_VC1_LOW,
MFX_LEVEL_VC1_MEDIAN,
MFX_LEVEL_VC1_HIGH

VC-1 Level Low (simple & main profiles)

MFX_LEVEL_VC1_0,
MFX_LEVEL_VC1_1,
MFX_LEVEL_VC1_2,
MFX_LEVEL_VC1_3,
MFX_LEVEL_VC1_4

VC-1 advanced profile levels

MFX_LEVEL_HEVC_1,
MFX_LEVEL_HEVC_2,
MFX_LEVEL_HEVC_21,
MFX_LEVEL_HEVC_3,
MFX_LEVEL_HEVC_31,
MFX_LEVEL_HEVC_4,
MFX_LEVEL_HEVC_41,
MFX_LEVEL_HEVC_5,
MFX_LEVEL_HEVC_51,
MFX_LEVEL_HEVC_52,
MFX_LEVEL_HEVC_6,
MFX_LEVEL_HEVC_61,
MFX_LEVEL_HEVC_62,

MFX_TIER_HEVC_MAIN,
MFX_TIER_HEVC_HIGH

HEVC levels and tiers

Change History

This enumerator is available since SDK API 1.0.

SDK API 1.8 added HEVC level and tier definitions.

CodecProfile
Description

The CodecProfile enumerator itemizes codec profiles for all codecs.

Name/Description

MFX_PROFILE_UNKNOWN Unspecified profile

117 SDK Developer Reference 1.27

MFX_PROFILE_AVC_BASELINE,
MFX_PROFILE_AVC_MAIN,
MFX_PROFILE_AVC_EXTENDED,
MFX_PROFILE_AVC_HIGH,
MFX_PROFILE_AVC_CONSTRAINED_BASELINE,
MFX_PROFILE_AVC_CONSTRAINED_HIGH,
MFX_PROFILE_AVC_PROGRESSIVE_HIGH

H.264 profiles

MFX_PROFILE_AVC_CONSTRAINT_SET0,
MFX_PROFILE_AVC_CONSTRAINT_SET1,
MFX_PROFILE_AVC_CONSTRAINT_SET2,
MFX_PROFILE_AVC_CONSTRAINT_SET3,
MFX_PROFILE_AVC_CONSTRAINT_SET4,
MFX_PROFILE_AVC_CONSTRAINT_SET5

Combined with H.264 profile these flags impose additional constrains. See
H.264 specification for the list of constrains.

MFX_PROFILE_MPEG2_SIMPLE,
MFX_PROFILE_MPEG2_MAIN,
MFX_PROFILE_MPEG2_HIGH

MPEG-2 profiles

MFX_PROFILE_VC1_SIMPLE,
MFX_PROFILE_VC1_MAIN,
MFX_PROFILE_VC1_ADVANCED,

VC-1 profiles

MFX_PROFILE_HEVC_MAIN,
MFX_PROFILE_HEVC_MAIN10,
MFX_PROFILE_HEVC_MAINSP,
MFX_PROFILE_HEVC_REXT,

HEVC profiles

MFX_PROFILE_VP9_0,
MFX_PROFILE_VP9_1,
MFX_PROFILE_VP9_2,
MFX_PROFILE_VP9_3

VP9 profiles

Change History

This enumerator is available since SDK API 1.0.

SDK API 1.3 adds MFX_PROFILE_AVC_EXTENDED.

SDK API 1.4 adds MFX_PROFILE_AVC_CONSTRAINED_BASELINE, MFX_PROFILE_AVC_CONSTRAINED_HIGH,
MFX_PROFILE_AVC_PROGRESSIVE_HIGH and six constrained flags MFX_PROFILE_AVC_CONSTRAINT_SET.

SDK API 1.8 added HEVC profile definitions.

SDK API 1.16 adds MFX_PROFILE_HEVC_REXT.

SDK API 1.19 added VP9 profile definitions.

CodingOptionValue
Description

The CodingOptionValue enumerator defines a three-state coding option setting.

Name/Description

MFX_CODINGOPTION_UNKNOWN Unspecified
MFX_CODINGOPTION_ON Coding option set
MFX_CODINGOPTION_OFF Coding option not set
MFX_CODINGOPTION_ADAPTIVEReserved

Change History

This enumerator is available since SDK API 1.0.

SDK API 1.6 adds MFX_CODINGOPTION_ADAPTIVE option.

ColorFourCC
Description

The ColorFourCC enumerator itemizes color formats.

Name/Description

MFX_FOURCC_YV12 YV12 color planes
MFX_FOURCC_NV12 NV12 color planes
MFX_FOURCC_NV16 4:2:2 color format with similar to NV12 layout.

118 SDK Developer Reference 1.27

MFX_FOURCC_RGB4 RGB4 (RGB32) color planes
MFX_FOURCC_YUY2 YUY2 color planes
MFX_FOURCC_P8 Internal SDK color format. The application should use one of the functions below to create such

surface, depending on Direct3D version.

Direct3D9

IDirectXVideoDecoderService::CreateSurface()

Direct3D11

ID3D11Device::CreateBuffer()
MFX_FOURCC_P8_TEXTURE Internal SDK color format. The application should use one of the functions below to create such

surface, depending on Direct3D version.

Direct3D9

IDirectXVideoDecoderService::CreateSurface()

Direct3D11

ID3D11Device::CreateTexture2D()
MFX_FOURCC_P010 P010 color format. This is 10 bit per sample format with similar to NV12 layout.

This format should be mapped to DXGI_FORMAT_P010.
MFX_FOURCC_P210 10 bit per sample 4:2:2 color format with similar to NV12 layout
MFX_FOURCC_BGR4 ABGR color format. It is similar to MFX_FOURCC_RGB4 but with interchanged R and B channels. ‘A’ is

8 MSBs, then 8 bits for ‘B’ channel, then ‘G’ and ‘R’ channels.
MFX_FOURCC_A2RGB10 10 bits ARGB color format packed in 32 bits. ‘A’ channel is two MSBs, then ‘R’, then ‘G’ and then ‘B’

channels.

This format should be mapped to DXGI_FORMAT_R10G10B10A2_UNORM or
D3DFMT_A2R10G10B10.

MFX_FOURCC_ARGB16 10 bits ARGB color format packed in 64 bits. ‘A’ channel is 16 MSBs, then ‘R’, then ‘G’ and then ‘B’
channels.

This format should be mapped to DXGI_FORMAT_R16G16B16A16_UINT or
D3DFMT_A16B16G16R16 formats.

MFX_FOURCC_R16 16 bits single channel color format.

This format should be mapped to DXGI_FORMAT_R16_TYPELESS or D3DFMT_R16F.
MFX_FOURCC_ABGR16 10 bits ABGR color format packed in 64 bits. ‘A’ channel is 16 MSBs, then ‘B’, then ‘G’ and then ‘R’

channels.

This format should be mapped to DXGI_FORMAT_R16G16B16A16_UINT or
D3DFMT_A16B16G16R16 formats.

MFX_FOURCC_AYUV YUV 4:4:4, AYUV color format.

This format should be mapped to DXGI_FORMAT_AYUV.
MFX_FOURCC_AYUV_RGB4 RGB4 stored in AYUV surface.

This format should be mapped to DXGI_FORMAT_AYUV.
MFX_FOURCC_UYVY UYVY color planes. Same as YUY2 except the byte order is reversed.
MFX_FOURCC_Y210 10 bit per sample 4:2:2 packed color format with similar to YUY2 layout.

This format should be mapped to DXGI_FORMAT_Y210.
MFX_FOURCC_Y410 10 bit per sample 4:4:4 packed color format

This format should be mapped to DXGI_FORMAT_Y410.
Change History

This enumerator is available since SDK API 1.0.

The SDK API 1.1 adds MFX_FOURCC_P8.

The SDK API 1.6 adds MFX_FOURCC_P8_TEXTURE.

The SDK API 1.9 adds MFX_FOURCC_P010, MFX_FOURCC_BGR4, MFX_FOURCC_A2RGB10, MFX_FOURCC_ARGB16
and MFX_FOURCC_R16.

The SDK API 1.11 adds MFX_FOURCC_NV16 and MFX_FOURCC_P210.

The SDK API 1.17 adds MFX_FOURCC_ABGR16, MFX_FOURCC_AYUV, MFX_FOURCC_AYUV_RGB4, and

119 SDK Developer Reference 1.27

MFX_FOURCC_UYVY.

The SDK API 1.27 adds MFX_FOURCC_Y210, MFX_FOURCC_Y410.

Corruption
Description

The Corruption enumerator itemizes the decoding corruption types. It is a bit-OR’ed value of the following.

Name/Description

MFX_CORRUPTION_MINOR Minor corruption in decoding certain macro-blocks.
MFX_CORRUPTION_MAJOR Major corruption in decoding the frame - incomplete data, for example.
MFX_CORRUPTION_REFERENCE_FRAME Decoding used a corrupted reference frame. A corrupted reference frame was used

for decoding this frame. For example, if the frame uses refers to frame was
decoded with minor/major corruption flag – this frame is also marked with
reference corruption flag.

MFX_CORRUPTION_REFERENCE_LIST The reference list information of this frame does not match what is specified in the
Reference Picture Marking Repetition SEI message. (ITU-T H.264 D.1.8
dec_ref_pic_marking_repetition)

MFX_CORRUPTION_ABSENT_TOP_FIELD Top field of frame is absent in bitstream. Only bottom field has been decoded.
MFX_CORRUPTION_ABSENT_BOTTOM_FIELDBottom field of frame is absent in bitstream. Only top filed has been decoded.

Flag MFX_CORRUPTION_ABSENT_TOP_FIELD/MFX_CORRUPTION_ABSENT_BOTTOM_FIELD is set by the AVC decoder when it
detects that one of fields is not present in bitstream. Which field is absent depends on value of bottom_field_flag (ITU-T
H.264 7.4.3).

Change History

This enumerator is available since SDK API 1.3.

The SDK API 1.6 added MFX_CORRUPTION_ABSENT_TOP_FIELD and MFX_CORRUPTION_ABSENT_BOTTOM_FIELD definitions.

ExtendedBufferID
Description

The ExtendedBufferID enumerator itemizes and defines identifiers (BufferId) for extended buffers or video processing
algorithm identifiers.

Name/Description

MFX_EXTBUFF_AVC_REFLIST_CTRL This extended buffer defines additional encoding controls for
reference list. See the mfxExtAVCRefListCtrl structure for details. The
application can attach this buffer to the mfxVideoParam structure for
encoding & decoding initialization, or the mfxEncodeCtrl structure for
per-frame encoding configuration.

MFX_EXTBUFF_AVC_TEMPORAL_LAYERS This extended buffer configures the structure of temporal layers inside
the encoded H.264 bitstream. See the mfxExtAvcTemporalLayers
structure for details. The application can attach this buffer to the
mfxVideoParam structure for encoding initialization.

MFX_EXTBUFF_CODING_OPTION This extended buffer defines additional encoding controls. See the
mfxExtCodingOption structure for details. The application can attach
this buffer to the structure for encoding initialization.

MFX_EXTBUFF_CODING_OPTION_SPSPPS This extended buffer defines sequence header and picture header for
encoders and decoders. See the mfxExtCodingOptionSPSPPS structure
for details. The application can attach this buffer to the mfxVideoParam
structure for encoding initialization, and for obtaining raw headers from
the decoders and encoders.

MFX_EXTBUFF_CODING_OPTION2 This extended buffer defines additional encoding controls. See the
mfxExtCodingOption2 structure for details. The application can attach
this buffer to the structure for encoding initialization.

MFX_EXTBUFF_CODING_OPTION3 This extended buffer defines additional encoding controls. See the
mfxExtCodingOption3 structure for details. The application can attach
this buffer to the structure for encoding initialization.

MFX_EXTBUFF_ENCODED_FRAME_INFO This extended buffer is used by the SDK encoder to report additional
information about encoded picture. See the
mfxExtAVCEncodedFrameInfo structure for details. The application can
attach this buffer to the mfxBitstream structure before calling
MFXVideoENCODE_EncodeFrameAsync function.

MFX_EXTBUFF_ENCODER_CAPABILITY This extended buffer is used to retrive SDK encoder capability. See the
mfxExtEncoderCapability structure for details. The application can
attach this buffer to the mfxVideoParam structure before calling
MFXVideoENCODE_Query function.

120 SDK Developer Reference 1.27

MFX_EXTBUFF_ENCODER_RESET_OPTION This extended buffer is used to control encoder reset behavior and
also to query possible encoder reset outcome. See the
mfxExtEncoderResetOption structure for details. The application can
attach this buffer to the mfxVideoParam structure before calling
MFXVideoENCODE_Query or MFXVideoENCODE_Reset functions.

MFX_EXTBUFF_OPAQUE_SURFACE_ALLOCATION This extended buffer defines opaque surface allocation information.
See the mfxExtOpaqueSurfaceAlloc structure for details. The
application can attach this buffer to decoding, encoding, or video
processing initialization.

MFX_EXTBUFF_PICTURE_TIMING_SEI This extended buffer configures the H.264 picture timing SEI message.
See the mfxExtPictureTimingSEI structure for details. The application
can attach this buffer to the mfxVideoParam structure for encoding
initialization, or the mfxEncodeCtrl structure for per-frame encoding
configuration.

MFX_EXTBUFF_VIDEO_SIGNAL_INFO This extended buffer defines video signal type. See the
mfxExtVideoSignalInfo structure for details. The application can attach
this buffer to the mfxVideoParam structure for encoding initialization,
and for retrieving such information from the decoders.

MFX_EXTBUFF_VPP_AUXDATA This extended buffer defines auxiliary information at the VPP output.
See the mfxExtVppAuxData structure for details. The application can
attach this buffer to the mfxEncodeCtrl structure for per-frame
encoding control.

MFX_EXTBUFF_VPP_DENOISE The extended buffer defines control parameters for the VPP denoise
filter algorithm. See the mfxExtVPPDenoise structure for details. The
application can attach this buffer to the mfxVideoParam structure for
video processing initialization.

MFX_EXTBUFF_VPP_DETAIL The extended buffer defines control parameters for the VPP detail
filter algorithm. See the mfxExtVPPDetail structure for details. The
application can attach this buffer to the structure for video processing
initialization.

MFX_EXTBUFF_VPP_DONOTUSE This extended buffer defines a list of VPP algorithms that applications
should not use. See the mfxExtVPPDoNotUse structure for details. The
application can attach this buffer to the mfxVideoParam structure for
video processing initialization.

MFX_EXTBUFF_VPP_DOUSE This extended buffer defines a list of VPP algorithms that applications
should use. See the mfxExtVPPDoUse structure for details. The
application can attach this buffer to the structure for video processing
initialization.

MFX_EXTBUFF_VPP_FRAME_RATE_CONVERSION This extended buffer defines control parameters for the VPP frame
rate conversion algorithm. See the mfxExtVPPFrameRateConversion
structure for details. The application can attach this buffer to the
mfxVideoParam structure for video processing initialization.

MFX_EXTBUFF_VPP_IMAGE_STABILIZATION This extended buffer defines control parameters for the VPP image
stabilization filter algorithm. See the mfxExtVPPImageStab structure
for details. The application can attach this buffer to the mfxVideoParam
structure for video processing initialization.

MFX_EXTBUFF_VPP_PICSTRUCT_DETECTION Deprecated.
MFX_EXTBUFF_VPP_PROCAMP The extended buffer defines control parameters for the VPP ProcAmp

filter algorithm. See the mfxExtVPPProcAmp structure for details. The
application can attach this buffer to the mfxVideoParam structure for
video processing initialization or to the mfxFrameData structure in the
mfxFrameSurface1 structure of output surface for per-frame
processing configuration.

MFX_EXTBUFF_VPP_SCENE_CHANGE Deprecated.
MFX_EXTBUFF_VPP_FIELD_PROCESSING The extended buffer defines control parameters for the VPP field-

processing algorithm. See the mfxExtVPPFieldProcessing structure for
details. The application can attach this buffer to the mfxVideoParam
structure for video processing initialization or to the mfxFrameData
structure during runtime.

MFX_EXTBUFF_MBQP This extended buffer defines per-macroblock QP. See the mfxExtMBQP
structure for details. The application can attach this buffer to the
mfxEncodeCtrl structure for per-frame encoding configuration.

MFX_EXTBUFF_MB_FORCE_INTRA This extended buffer defines per-macroblock force intra flag. See the
mfxExtMBForceIntra structure for details. The application can attach
this buffer to the mfxEncodeCtrl structure for per-frame encoding
configuration.

MFX_EXTBUFF_CHROMA_LOC_INFO This extended buffer defines chroma samples location information.
See the mfxExtChromaLocInfo structure for details. The application
can attach this buffer to the mfxVideoParam structure for encoding
initialization.

MFX_EXTBUFF_HEVC_PARAM See the mfxExtHEVCParam structure for details.

121 SDK Developer Reference 1.27

MFX_EXTBUFF_HEVC_TILES This extended buffer defines additional encoding controls for HEVC
tiles. See the mfxExtHEVCTiles structure for details. The application
can attach this buffer to the mfxVideoParam structure for encoding
initialization.

MFX_EXTBUFF_MB_DISABLE_SKIP_MAP This extended buffer defines macroblock map for current frame which
forces specified macroblocks to be non skip. See the
mfxExtMBDisableSkipMap structure for details. The application can
attach this buffer to the mfxEncodeCtrl structure for per-frame
encoding configuration.

MFX_EXTBUFF_DECODED_FRAME_INFO This extended buffer is used by SDK decoders to report additional
information about decoded frame. See the mfxExtDecodedFrameInfo
structure for more details.

MFX_EXTBUFF_DECODE_ERROR_REPORT This extended buffer is used by SDK decoders to report error
information before frames get decoded. See the
mfxExtDecodeErrorReport structure for more details.

MFX_EXTBUFF_TIME_CODE See the mfxExtTimeCode structure for more details.
MFX_HEVC_REGION_SLICE This extended buffer instructs HEVC encoder to encode only one

region. The application can attach this buffer to the mfxVideoParam
structure for HEVC encoding initialization.

MFX_EXTBUFF_THREADS_PARAM See the mfxExtThreadsParam structure for details.
MFX_EXTBUFF_PRED_WEIGHT_TABLE See the mfxExtPredWeightTable structure for details.
MFX_EXTBUFF_AVC_ROUNDING_OFFSET See the mfxExtAVCRoundingOffset structure for details.
MFX_EXTBUFF_DIRTY_RECTANGLES See the mfxExtDitrtyRect structure for details.
MFX_EXTBUFF_MOVING_RECTANGLES See the mfxExtMoveRect structure for details.
MFX_EXTBUFF_CODING_OPTION_VPS See the mfxExtCodingOptionVPS structure for details.
MFX_EXTBUFF_VPP_ROTATION See the mfxExtVPPRotation structure for details.
MFX_EXTBUFF_ENCODED_SLICES_INFO See the mfxExtEncodedSlicesInfo structure for details.
MFX_EXTBUFF_MV_OVER_PIC_BOUNDARIES See the mfxExtMVOverPicBoundaries structure for details.
MFX_EXTBUFF_VPP_SCALING See the mfxExtVPPScaling structure for details.
MFX_EXTBUFF_VPP_MIRRORING See the mfxExtVPPMirroring structure for details.
MFX_EXTBUFF_VPP_COLORFILL See the mfxExtVPPColorFill structure for details.
MFX_EXTBUFF_DEC_VIDEO_PROCESSING See the mfxExtDecVideoProcessing structure for details.
MFX_EXTBUFF_VP9_PARAM Extends mfxVideoParam structure with VP9-specific parameters. See

the mfxExtVP9Param structure for details.
MFX_EXTBUFF_VP9_SEGMENTATION Extends mfxVideoParam structure with VP9 segmentation parameters.

See the mfxExtVP9Segmentation structure for details.
MFX_EXTBUFF_VP9_TEMPORAL_LAYERS Extends mfxVideoParam structure with parameters for VP9 temporal

scalability. See the mfxExtVP9TemporalLayers structure for details.
MFX_EXTBUFF_MASTERING_DISPLAY_COLOUR_VOLUMEThis extended buffer configures HDR SEI message. See the

mfxExtMasteringDisplayColourVolume structure for details.
MFX_EXTBUFF_CONTENT_LIGHT_LEVEL_INFO This extended buffer configures HDR SEI message. See the

mfxExtContentLightLevelInfo structure for details.
MFX_EXTBUFF_BRC See the mfxExtBRC structure for details.
MFX_EXTBUFF_MULTI_FRAME_PARAM This extended buffer allow to specify multi-frame submission

parameters.
MFX_EXTBUFF_MULTI_FRAME_CONTROL This extended buffer allow to manage multi-frame submission in

runtime.
MFX_EXTBUFF_ENCODED_UNITS_INFO See the mfxExtEncodedUnitsInfo structure for details.
MFX_EXTBUFF_VPP_COLOR_CONVERSION See the mfxExtColorConversion structure for details.
MFX_EXTBUFF_TASK_DEPENDENCY See the Alternative Dependencies chapter for details.
MFX_EXTBUFF_VPP_MCTF This video processing algorithm identifier is used to enable MCTF via

mfxExtVPPDoUse and together with mfxExtVppMctf
Change History

This enumerator is available since SDK API 1.0.

SDK API 1.6 adds MFX_EXTBUFF_VPP_IMAGE_STABILIZATION, MFX_EXTBUFF_VPP_PICSTRUCT_DETECTION,
MFX_EXTBUFF_CODING_OPTION2 and deprecates MFX_EXTBUFF_VPP_SCENE_CHANGE.

SDK API 1.7 adds MFX_EXTBUFF_ENCODED_FRAME_INFO, MFX_EXTBUFF_ENCODER_CAPABILITY,
MFX_EXTBUFF_ENCODER_RESET_OPTION.

SDK API 1.11 adds MFX_EXTBUFF_CODING_OPTION3 and MFX_EXTBUFF_VPP_FIELD_PROCESSING.

SDK API 1.13 adds MFX_EXTBUFF_MBQP, MFX_EXTBUFF_HEVC_TILES, MFX_EXTBUFF_MB_DISABLE_SKIP_MAP and
MFX_EXTBUFF_CHROMA_LOC_INFO.

SDK API 1.14 adds MFX_EXTBUFF_HEVC_PARAM, MFX_EXTBUFF_HEVC_TILES, MFX_EXTBUFF_MB_DISABLE_SKIP_MAP,

122 SDK Developer Reference 1.27

MFX_EXTBUFF_DECODED_FRAME_INFO and MFX_EXTBUFF_TIME_CODE.

SDK API 1.15 adds MFX_HEVC_REGION_SLICE and MFX_EXTBUFF_THREADS_PARAM.

SDK API 1.16 adds MFX_EXTBUFF_PRED_WEIGHT_TABLE, MFX_EXTBUFF_DIRTY_RECTANGLES and
MFX_EXTBUFF_MOVING_RECTANGLES.

SDK API 1.17 adds MFX_EXTBUFF_CODING_OPTION_VPS and MFX_EXTBUFF_VPP_ROTATION and deprecates
MFX_EXTBUFF_VPP_PICSTRUCT_DETECTION.

SDK API 1.19 adds MFX_EXTBUFF_ENCODED_SLICES_INFO, MFX_EXTBUFF_MV_OVER_PIC_BOUNDARIES,
MFX_EXTBUFF_VPP_SCALING, MFX_EXTBUFF_VPP_MIRRORING, MFX_EXTBUFF_VPP_COLORFILL.

SDK API 1.22 adds MFX_EXTBUFF_DEC_VIDEO_PROCESSING.

SDK API 1.23 adds MFX_EXTBUFF_MB_FORCE_INTRA.

SDK API 1.24 adds MFX_EXTBUFF_BRC.

SDK API 1.25 adds MFX_EXTBUFF_CONTENT_LIGHT_LEVEL_INFO, MFX_EXTBUFF_MASTERING_DISPLAY_COLOUR_VOLUME,
MFX_EXTBUFF_MULTI_FRAME_PARAM, MFX_EXTBUFF_MULTI_FRAME_CONTROL, MFX_EXTBUFF_ENCODED_UNITS_INFO and
MFX_EXTBUFF_DECODE_ERROR_REPORT.

SDK API 1.26 adds MFX_EXTBUFF_VP9_PARAM, MFX_EXTBUFF_VP9_SEGMENTATION, MFX_EXTBUFF_VP9_TEMPORAL_LAYERS,
MFX_EXTBUFF_VPP_MCTF.

SDK API 1.27 adds MFX_EXTBUFF_AVC_ROUNDING_OFFSET.

See additional change history in the structure definitions.

ExtMemBufferType
Description

The ExtMemBufferType enumeratorspecifies the buffer type. It is a bit-ORed value of the following.

Name/Description

MFX_MEMTYPE_PERSISTENT_MEMORYMemory page for persistent use

Change History

This enumerator is available since SDK API 1.0.

ExtMemFrameType
Description

The ExtMemFrameType enumerator specifies the memory type of frame. It is a bit-ORed value of the following. For information
on working with video memory surfaces, see the section Working with hardware acceleration.

Name/Description

MFX_MEMTYPE_VIDEO_MEMORY_DECODER_TARGET Frames are in video memory and belong to video decoder render targets.
MFX_MEMTYPE_VIDEO_MEMORY_PROCESSOR_TARGETFrames are in video memory and belong to video processor render

targets.
MFX_MEMTYPE_SYSTEM_MEMORY The frames are in system memory.
MFX_MEMTYPE_FROM_ENCODE Allocation request comes from an ENCODE function
MFX_MEMTYPE_FROM_DECODE Allocation request comes from a DECODE function
MFX_MEMTYPE_FROM_VPPIN Allocation request comes from a VPP function for input frame allocation
MFX_MEMTYPE_FROM_VPPOUT Allocation request comes from a VPP function for output frame

allocation
MFX_MEMTYPE_FROM_ENC Allocation request comes from an ENC function
MFX_MEMTYPE_FROM_PAK Reserved
MFX_MEMTYPE_INTERNAL_FRAME Allocation request for internal frames
MFX_MEMTYPE_EXTERNAL_FRAME Allocation request for I/O frames
MFX_MEMTYPE_OPAQUE_FRAME Allocation request for opaque frames
MFX_MEMTYPE_EXPORT_FRAME Application requests frame handle export to some associated object. For

Linux frame handle can be considered to be exported to DRM Prime FD,
DRM FLink or DRM FrameBuffer Handle. Specifics of export types and
export procedure depends on external frame allocator implementation

MFX_MEMTYPE_SHARED_RESOURCE For DX11 allocation use shared resource bind flag.

Remarks

The application may use macro MFX_MEMTYPE_BASE to extract the base memory types, one of

123 SDK Developer Reference 1.27

MFX_MEMTYPE_VIDEO_MEMORY_DECODER_TARGET, MFX_MEMTYPE_VIDEO_MEMORY_PROCESSOR_TARGET, and
MFX_MEMTYPE_SYSTEM_MEMORY.

Change History

This enumerator is available since SDK API 1.0.

SDK API 1.3 extended the MFX_MEMTYPE_OPAQUE_FRAME definition and the MFX_MEMTYPE_BASE macro definition.

SDK API 1.17 adds MFX_MEMTYPE_EXPORT_FRAME.

SDK API 1.19 adds MFX_MEMTYPE_SHARED_RESOURCE.

FrameDataFlag
Description

TheFrameDataFlag enumerator uses bit-ORed values to itemize additional information about the frame
buffer.

Name/Description

MFX_FRAMEDATA_ORIGINAL_TIMESTAMP Indicates the time stamp of this frame is not calculated and is a pass-through of the
original time stamp.

Change History

This enumerator is available since SDK API 1.3.

FrameType
Description

The FrameType enumerator itemizes frame types. Use bit-ORed values to specify all that apply.

Name/Description

MFX_FRAMETYPE_I This frame or the first field is encoded as an I frame/field.
MFX_FRAMETYPE_P This frame or the first field is encoded as a P frame/field.
MFX_FRAMETYPE_B This frame or the first field is encoded as a B frame/field.
MFX_FRAMETYPE_S This frame or the first field is either an SI- or SP-frame/field.
MFX_FRAMETYPE_REF This frame or the first field is encoded as a reference.
MFX_FRAMETYPE_IDR This frame or the first field is encoded as an IDR.
MFX_FRAMETYPE_xI The second field is encoded as an I-field.
MFX_FRAMETYPE_xP The second field is encoded as a P-field.
MFX_FRAMETYPE_xB The second field is encoded as a B-field.
MFX_FRAMETYPE_xS The second field is an SI- or SP-field.
MFX_FRAMETYPE_xREFThe second field is encoded as a reference.
MFX_FRAMETYPE_xIDRThe second field is encoded as an IDR.

Change History

This enumerator is available since SDK API 1.0. SDK API 1.3 extended the second field types.

MfxNalUnitType
Description

This enumerator specifies NAL unit types supported by the SDK HEVC encoder.

Name/Description

MFX_HEVC_NALU_TYPE_UNKNOWN The SDK encoder will decide what NAL unit type to use.
MFX_HEVC_NALU_TYPE_TRAIL_N
MFX_HEVC_NALU_TYPE_TRAIL_R
MFX_HEVC_NALU_TYPE_RADL_N
MFX_HEVC_NALU_TYPE_RADL_R
MFX_HEVC_NALU_TYPE_RASL_N
MFX_HEVC_NALU_TYPE_RASL_R
MFX_HEVC_NALU_TYPE_IDR_W_RADL
MFX_HEVC_NALU_TYPE_IDR_N_LP
MFX_HEVC_NALU_TYPE_CRA_NUT

See Table 7-1 of the ITU-T H.265 specification for the definition of these types.

Change History

This enumerator is available since SDK API 1.25.

124 SDK Developer Reference 1.27

FrcAlgm
Description

TheFrcAlgm enumerator itemizes frame rate conversion algorithms. See description of mfxExtVPPFrameRateConversion
structure for more details.

Name/Description

MFX_FRCALGM_PRESERVE_TIMESTAMP Frame dropping/repetition based frame rate conversion algorithm with preserved
original time stamps. Any inserted frames will carry MFX_TIMESTAMP_UNKNOWN.

MFX_FRCALGM_DISTRIBUTED_TIMESTAMPFrame dropping/repetition based frame rate conversion algorithm with distributed
time stamps. The algorithm distributes output time stamps evenly according to the
output frame rate.

MFX_FRCALGM_FRAME_INTERPOLATION Frame rate conversion algorithm based on frame interpolation. This flag may be
combined with MFX_FRCALGM_PRESERVE_TIMESTAMP or
MFX_FRCALGM_DISTRIBUTED_TIMESTAMP flags.

Change History

This enumerator is available since SDK API 1.3.

GopOptFlag
Description

The GopOptFlag enumerator itemizes special properties in the GOP (Group of Pictures) sequence.

Name/Description

MFX_GOP_CLOSEDThe encoder generates closed GOP if this flag is set. Frames in this GOP do not use frames in previous GOP as
reference.

The encoder generates open GOP if this flag is not set. In this GOP frames prior to the first frame of GOP in
display order may use frames from previous GOP as reference. Frames subsequent to the first frame of GOP in
display order do not use frames from previous GOP as reference.

The AVC encoder ignores this flag if IdrInterval in mfxInfoMFX structure is set to 0, i.e. if every GOP starts
from IDR frame. In this case, GOP is encoded as closed.

This flag does not affect long-term reference frames. See Appendix C: Long-term Reference frame for more
details.

MFX_GOP_STRICTThe encoder must strictly follow the given GOP structure as defined by parameter GopPicSize, GopRefDist
etc in the mfxVideoParam structure. Otherwise, the encoder can adapt the GOP structure for better efficiency,
whose range is constrained by parameter GopPicSize and GopRefDist etc. See also description of
AdaptiveI and AdaptiveB fields in the mfxExtCodingOption2 structure.

Change History

This enumerator is available since SDK API 1.0.

IOPattern
Description

The IOPattern enumerator itemizes memory access patterns for SDK functions. Use bit-ORed values to specify an input access
pattern and an output access pattern.

Name/Description

MFX_IOPATTERN_IN_VIDEO_MEMORY Input to SDK functions is a video memory surface
MFX_IOPATTERN_IN_SYSTEM_MEMORY Input to SDK functions is a linear buffer directly in system memory or in system

memory through an external allocator
MFX_IOPATTERN_IN_OPAQUE_MEMORY Input to SDK functions maps at runtime to either a system memory buffer or a video

memory surface.
MFX_IOPATTERN_OUT_VIDEO_MEMORY Output to SDK functions is a video memory surface
MFX_IOPATTERN_OUT_SYSTEM_MEMORYOutput to SDK functions is a linear buffer directly in system memory or in system

memory through an external allocator
MFX_IOPATTERN_OUT_OPAQUE_MEMORYOutput to SDK functions maps at runtime to either a system memory buffer or a video

memory surface.
Change History

This enumerator is available since SDK API 1.0. SDK API 1.3 extended the MFX_IOPATTERN_IN_OPAQUE_MEMORY and
MFX_IOPATTERN_OUT_OPAQUE_MEMORY definitions.

mfxHandleType

125 SDK Developer Reference 1.27

Description

The mfxHandleType enumerator itemizes system handle types that SDK implementations might use.

Name/Description

MFX_HANDLE_D3D9_DEVICE_MANAGERPointer to the IDirect3DDeviceManager9 interface. See Working with Microsoft*
DirectX* Applications for more details on how to use this handle.

MFX_HANDLE_D3D11_DEVICE Pointer to the ID3D11Device interface. See Working with Microsoft* DirectX*
Applications for more details on how to use this handle.

MFX_HANDLE_VA_DISPLAY Pointer to VADisplay interface. See Working with VA API Applications for more details on
how to use this handle.

MFX_HANDLE_ENCODE_CONTEXT Pointer to VAContextID interface. It represents encoder context.

Change History

This enumerator is available since SDK API 1.0.

SDK API 1.4 added MFX_HANDLE_D3D11_DEVICE definition.

SDK API 1.8 added MFX_HANDLE_VA_DISPLAY and MFX_HANDLE_ENCODE_CONTEXT definitions.

mfxIMPL
Description

The mfxIMPL enumerator itemizes SDK implementation types. The implementation type is a bit OR’ed value of the base type
and any decorative flags.

Name/Description

MFX_IMPL_AUTO Find the best SDK implementation automatically. It includes either hardware-accelerated
implementation on the default acceleration device or software implementation.

This value is obsolete and it is recommended to use MFX_IMPL_AUTO_ANY instead.
MFX_IMPL_SOFTWARE Use the software implementation
MFX_IMPL_HARDWARE Use the hardware-accelerated implementation on the default acceleration device
MFX_IMPL_RUNTIME This value cannot be used for session initialization. It may be returned by MFXQueryIMPL function to

show that session has been initialized in run time mode.
MFX_IMPL_UNSUPPORTEDFailed to locate the desired SDK implementation

If the acceleration device is not default device, use the following values to initialize the SDK libraries on an alternative
acceleration device.

MFX_IMPL_AUTO_ANY Find the SDK implementation on any acceleration device including the default acceleration device
and the SDK software library.

MFX_IMPL_HARDWARE_ANYFind the hardware-accelerated implementation on any acceleration device including the default
acceleration device.

MFX_IMPL_HARDWARE2 Use the hardware-accelerated implementation on the second acceleration device.
MFX_IMPL_HARDWARE3 Use the hardware-accelerated implementation on the third acceleration device.
MFX_IMPL_HARDWARE4 Use the hardware-accelerated implementation on the fourth acceleration device.

Use the following decorative flags to specify the OS infrastructure that hardware acceleration should base on.

MFX_IMPL_VIA_D3D9 Hardware acceleration goes through the Microsoft* Direct3D9* infrastructure.
MFX_IMPL_VIA_D3D11Hardware acceleration goes through the Microsoft* Direct3D11* infrastructure.
MFX_IMPL_VIA_VAAPIHardware acceleration goes through the Linux* VA API infrastructure.
MFX_IMPL_VIA_ANY Hardware acceleration can go through any supported OS infrastructure. This is default value, it is used by

the SDK if none of MFX_IMPL_VIA_xxx flag is specified by application.

MFX_IMPL_AUDIOLoad audio library. It can be used only together with MFX_IMPL_SOFTWARE, any other combinations lead to
error.

Change History

This enumerator is available since SDK API 1.0.

SDK API 1.1 added support of multiple devices.

SDK API 1.3 added support of OS infrastructure definitions.

SDK API 1.6 changed defauls OS infrustructure from MFX_IMPL_VIA_D3D9 to MFX_IMPL_VIA_ANY.

SDK API 1.8 added support of MFX_IMPL_AUDIO and MFX_IMPL_VIA_VAAPI.

Remarks

The application can use the macro MFX_IMPL_BASETYPE(x) to obtain the base implementation type.

126 SDK Developer Reference 1.27

It is recommended that the application use MFX_IMPL_VIA_ANY if the application uses system memory or opaque surface for
I/O exclusively.

mfxPriority
Description

The mfxPriority enumerator describes the session priority.

Name/Description

MFX_PRIORITY_LOW Low priority: the session operation halts when high priority tasks are executing and more than 75% of
the CPU is being used for normal priority tasks.

MFX_PRIORITY_NORMALNormal priority: the session operation is halted if there are high priority tasks.
MFX_PRIORITY_HIGH High priority: the session operation blocks other lower priority session operations.

Change History

This enumerator is available since SDK API 1.1.

mfxSkipMode
Description

The mfxSkipMode enumerator describes the decoder skip-mode options.

Name/Description

MFX_SKIPMODE_NONEDo not skip any frames.
MFX_SKIPMODE_MORESkip more frames.
MFX_SKIPMODE_LESSSkip less frames.

Change History

This enumerator is available since SDK API 1.0.

mfxStatus
Description

The mfxStatus enumerator itemizes status codes returned by SDK functions.

When an SDK function returns an error status code, it generally expects a Reset or Close function to follow, (with the exception
o f MFX_ERR_MORE_DATA and MFX_ERR_MORE_SURFACE for asynchronous operation considerations) See section Decoding
Procedures, section Encoding Procedures, and section Video Processing Procedures for more information about recovery
procedures.

When an SDK function returns a warning status code, the function has performed necessary operations to continue the
operation without interruption. In this case, the output might be unreliable. The application must check the validity of the output
generated by the function.

Name/Description

Successful operation

MFX_ERR_NONENo error

Reserved status code

MFX_ERR_UNKNOWNAn unknown error occurred in the library function operation. This is a reserved status code.

Programming related errors

MFX_ERR_NOT_INITIALIZED Member functions called without initialization.
MFX_ERR_INVALID_HANDLE Invalid session or MemId handle
MFX_ERR_NULL_PTR NULL pointer in the input or output arguments
MFX_ERR_UNDEFINED_BEHAVIORThe behavior is undefined.
MFX_ERR_NOT_ENOUGH_BUFFER Insufficient buffer for input or output.
MFX_ERR_NOT_FOUND Specified object/item/sync point not found.

Memory related errors

MFX_ERR_MEMORY_ALLOC Failed to allocate memory.
MFX_ERR_LOCK_MEMORY Failed to lock the memory block (external allocator).
MFX_ERR_REALLOC_SURFACEBigger output surface required.

Configuration related errors or warnings

MFX_ERR_UNSUPPORTED Unsupported configurations, parameters, or features

127 SDK Developer Reference 1.27

MFX_ERR_INVALID_VIDEO_PARAM Invalid video parameters detected. Init and Reset functions return this status code to
indicate either that mandated input parameters are unspecified, or the functions
failed to correct them.

MFX_ERR_INCOMPATIBLE_VIDEO_PARAM Incompatible video parameters detected. If a Reset function returns this status code, a
component—decoder, encoder or video preprocessor—cannot process the specified
configuration with existing structures and frame buffers. If the function
MFXVideoDECODE_DecodeFrameAsync returnsthis status code, the bitstream
contains an incompatible video parameter configuration that the decoder cannot
follow.

MFX_WRN_VIDEO_PARAM_CHANGED The decoder detected a new sequence header in the bitstream. Video parameters
may have changed.

MFX_WRN_VALUE_NOT_CHANGED The parameter has been clipped to its value range.
MFX_WRN_OUT_OF_RANGE The parameter is out of valid value range.
MFX_WRN_INCOMPATIBLE_VIDEO_PARAM Incompatible video parameters detected. SDK functions return this status code to

indicate that there was incompatibility in the specified parameters and has resolved it.
MFX_WRN_FILTER_SKIPPED The SDK VPP has skipped one or more optional filters requested by the application.

To retrieve actual list of filters attach mfxExtVPPDoUse to mfxVideoParam and call
MFXVideoVPP_GetVideoParam. The application must ensure that enough memory is
allocated for filter list.

Asynchronous operation related errors or warnings

MFX_ERR_ABORTED The asynchronous operation aborted.
MFX_ERR_MORE_DATA Need more bitstream at decoding input, encoding input, or video processing input frames.
MFX_ERR_MORE_SURFACE Need more frame surfaces at decoding or video processing output
MFX_ERR_MORE_BITSTREAMNeed more bitstream buffers at the encoding output
MFX_WRN_IN_EXECUTION Synchronous operation still running

Hardware device related errors or warnings

MFX_ERR_DEVICE_FAILED Hardware device returned unexpected errors. SDK was unable to restore operation. See
section Hardware Device Error Handling for more information.

MFX_ERR_DEVICE_LOST Hardware device was lost; See the Hardware Device Error Handling section for further
information.

MFX_WRN_DEVICE_BUSY Hardware device is currently busy. Call this function again in a few milliseconds.
MFX_WRN_PARTIAL_ACCELERATIONThe hardware does not support the specified configuration. Encoding, decoding, or video

processing may be partially accelerated. Only SDK HW implementation may return this
status code.

MFX_ERR_GPU_HANG Hardware device operation failure caused by GPU hang.

Change History

This enumerator is available since SDK API 1.0.

SDK API 1.3 added the MFX_ERR_MORE_BITSTREAM return status.

SDK API 1.6 added the MFX_WRN_FILTER_SKIPPED return status.

SDK API 1.19 added MFX_ERR_GPU_HANG and MFX_ERR_REALLOC_SURFACE.

PicStruct
Description

The PicStruct enumerator itemizes picture structure. Use bit-OR’ed values to specify the desired picture type.

Name/Description

MFX_PICSTRUCT_UNKNOWN Unspecified or mixed progressive/interlaced/field pictures
MFX_PICSTRUCT_PROGRESSIVE Progressive picture
MFX_PICSTRUCT_FIELD_TFF Top field in first interlaced picture
MFX_PICSTRUCT_FIELD_BFF Bottom field in first interlaced picture
MFX_PICSTRUCT_FIELD_REPEATED First field repeated:

pic_struct = 5 or 6 in H.264
MFX_PICSTRUCT_FRAME_DOUBLING Double the frame for display:

pic_struct = 7 in H.264
MFX_PICSTRUCT_FRAME_TRIPLING Triple the frame for display:

pic_struct = 8 in H.264
MFX_PICSTRUCT_FIELD_SINGLE Single field in a picture
MFX_PICSTRUCT_FIELD_TOP Top field in a picture:

pic_struct = 1 in H.265

128 SDK Developer Reference 1.27

MFX_PICSTRUCT_FIELD_BOTTOM Bottom field in a picture:

pic_struct = 2 in H.265
MFX_PICSTRUCT_FIELD_PAIRED_PREV Paired with previous field:

pic_struct = 9 or 10 in H.265
MFX_PICSTRUCT_FIELD_PAIRED_NEXT,Paired with next field:

pic_struct = 11 or 12 in H.265

Change History

This enumerator is available since SDK API 1.0. SDK API 1.3 added support of combined display attributes. SDK API 1.20 added
support of single fields.

Remarks

It is possible to combine the above picture structure values to indicate additional display attributes. If ExtendedPicStruct in
the mfxInfoMFX structure is true, DECODE outputs extended picture structure values to indicate how to display an output frame
as shown in the following table:

Extended PicStruct Values Description
MFX_PICSTRUCT_PROGRESSIVE| MFX_PICSTRUCT_FRAME_DOUBLING The output frame is progressive; Display as two

identical progressive frames.
MFX_PICSTRUCT_PROGRESSIVE| MFX_PICSTRUCT_FRAME_TRIPLING The output frame is progressive; Display as three

identical progressive frames.
MFX_PICSTRUCT_PROGRESSIVE| MFX_PICSTRUCT_FIELD_TFF The output frame is progressive; Display as two fields,

top field first.
MFX_PICSTRUCT_PROGRESSIVE| MFX_PICSTRUCT_FIELD_BFF The output frame is progressive; Display as two fields,

bottom field first
MFX_PICSTRUCT_PROGRESSIVE| MFX_PICSTRUCT_FIELD_TFF|
MFX_PICSTRUCT_FIELD_REPEATED

The output frame is progressive; Display as three
fields: top, bottom, and top.

MFX_PICSTRUCT_FIELD_TOP| MFX_PICSTRUCT_FIELD_BFF|
MFX_PICSTRUCT_FIELD_REPEATED

The output frame is progressive; Display as three
fields: bottom, top, bottom.

MFX_PICSTRUCT_FIELD_TOP|
MFX_PICSTRUCT_FIELD_PAIRED_PREV

Top field paired with previous bottom field in output
order

MFX_PICSTRUCT_FIELD_TOP|
MFX_PICSTRUCT_FIELD_PAIRED_NEXT

Top field paired with next bottom field in output
order

MFX_PICSTRUCT_FIELD_BOTTOM |
MFX_PICSTRUCT_FIELD_PAIRED_PREV

Bottom field paired with previous bottom field in
output order

MFX_PICSTRUCT_FIELD_BOTTOM |
MFX_PICSTRUCT_FIELD_PAIRED_NEXT

Bottom field paired with next bottom field in output
order

In the above cases, VPP processes the frame as a progressive frame and passes the extended picture structure values from input
to output. ENCODE encodes the frame as a progressive frame and marks the bitstream header properly according to the
extended picture structure values.

RateControlMethod
Description

The RateControlMethod enumerator itemizes bitrate control methods.

Name/Description

MFX_RATECONTROL_CBR Use the constant bitrate control algorithm
MFX_RATECONTROL_VBR Use the variable bitrate control algorithm
MFX_RATECONTROL_CQP Use the constant quantization parameter algorithm.
MFX_RATECONTROL_AVBR Use the average variable bitrate control algorithm
MFX_RATECONTROL_LA Use the VBR algorithm with look ahead. It is a special bitrate control mode in the SDK AVC encoder

that has been designed to improve encoding quality. It works by performing extensive analysis of
several dozen frames before the actual encoding and as a side effect significantly increases
encoding delay and memory consumption.

The only available rate control parameter in this mode is mfxInfoMFX::TargetKbps. Two other
parameters, MaxKbps and InitialDelayInKB, are ignored. To control LA depth the application can
use mfxExtCodingOption2::LookAheadDepth parameter.

This method is not HRD compliant.
MFX_RATECONTROL_ICQ Use the Intelligent Constant Quality algorithm. This algorithm improves subjective video quality of

encoded stream. Depending on content, it may or may not decrease objective video quality. Only
one control parameter is used - quality factor, specified by mfxInfoMFX::ICQQuality.

129 SDK Developer Reference 1.27

MFX_RATECONTROL_VCM Use the Video Conferencing Mode algorithm. This algorithm is similar to the VBR and uses the
same set of parameters mfxInfoMFX::InitialDelayInKB, TargetKbpsandMaxKbps. It is tuned for
IPPP GOP pattern and streams with strong temporal correlation between frames. It produces better
objective and subjective video quality in these conditions than other bitrate control algorithms. It
does not support interlaced content, B frames and produced stream is not HRD compliant.

MFX_RATECONTROL_LA_ICQUse intelligent constant quality algorithm with look ahead. Quality factor is specified by
mfxInfoMFX::ICQQuality. To control LA depth the application can use
mfxExtCodingOption2::LookAheadDepth parameter.

This method is not HRD compliant.
MFX_RATECONTROL_LA_EXTUse extended look ahead rate control algorithm. It is intended for one to N transcode scenario and

requires presence of mfxExtLAFrameStatistics structure at encoder input at runtime. Rate control is
supported by AVC and HEVC encoders.

MFX_RATECONTROL_LA_HRDUse HRD compliant look ahead rate control algorithm.

MFX_RATECONTROL_QVBR Use the variable bitrate control algorithm with constant quality. This algorithm trying to achieve the
target subjective quality with the minimum number of bits, while the bitrate constraint and HRD
compliancy are satisfied. It uses the same set of parameters as VBR and quality factor specified by
mfxExtCodingOption3::QVBRQuality.

Change History

This enumerator is available since SDK API 1.0.

The SDK API 1.1 added the constant quantization parameter algorithm.

The SDK API 1.3 added the average variable bitrate control algorithm.

The SDK API 1.7 added the look ahead algorithm.

The SDK API 1.8 added the intelligent constant quality and video conferencing mode algorithms.

The SDK API 1.10 added the extended look ahead rate control algorithm.

The SDK API 1.11 added the HRD compliant look ahead and variable bitrate with constant quality rate control algorithms.

TimeStampCalc
Description

The TimeStampCalc enumerator itemizes time-stamp calculation methods.

Name/Description

MFX_TIMESTAMPCALC_UNKNOWN The time stamp calculation is to base on the input frame rate, if time stamp is not explicitly
specified.

MFX_TIMESTAMPCALC_TELECINEAdjust time stamp to 29.97fps on 24fps progressively encoded sequences if telecining
attributes are available in the bitstream and time stamp is not explicitly specified. (The input
frame rate must be specified.)

Change History

This enumerator is available since SDK API 1.3.

TargetUsage
Description

The TargetUsage enumerator itemizes a range of numbers from MFX_TARGETUSAGE_1, best quality, to MFX_TARGETUSAGE_7,
best speed. It indicates trade-offs between quality and speed. The application can use any number in the range. The actual
number of supported target usages depends on implementation. If specified target usage is not supported, the SDK encoder will
use the closest supported value.

Name/Description

MFX_TARGETUSAGE_1,
MFX_TARGETUSAGE_2,
MFX_TARGETUSAGE_3,
MFX_TARGETUSAGE_4,
MFX_TARGETUSAGE_5,
MFX_TARGETUSAGE_6,
MFX_TARGETUSAGE_7

Target usage

MFX_TARGETUSAGE_UNKNOWN Unspecified target usage
MFX_TARGETUSAGE_BEST_QUALITYBest quality,

mapped to MFX_TARGETUSAGE_1
MFX_TARGETUSAGE_BALANCED Balanced quality and speed,

mapped to MFX_TARGETUSAGE_4

130 SDK Developer Reference 1.27

MFX_TARGETUSAGE_BEST_SPEED Fastest speed,
mapped to MFX_TARGETUSAGE_7

Change History

This enumerator is available since SDK API 1.0.

The SDK API 1.7 adds MFX_TARGETUSAGE_1 .. MFX_TARGETUSAGE_7 values.

TrellisControl
Description

The TrellisControl enumerator is used to control trellis quantization in AVC encoder. The application can turn it on or off for
any combination of I, P and B frames by combining different enumerator values. For example, MFX_TRELLIS_I |
MFX_TRELLIS_B turns it on for I and B frames.

Due to performance reason on some target usages trellis quantization is always turned off and this control is ignored by the SDK
encoder.

Name/Description

MFX_TRELLIS_UNKNOWNDefault value, it is up to the SDK encoder to turn trellis quantization on or off.
MFX_TRELLIS_OFF Turn trellis quantization off for all frame types.
MFX_TRELLIS_I Turn trellis quantization on for I frames.
MFX_TRELLIS_P Turn trellis quantization on for P frames.
MFX_TRELLIS_B Turn trellis quantization on for B frames.

Change History

This enumerator is available since SDK API 1.7.

BRefControl
Description

The BRefControl enumerator is used to control usage of B frames as reference in AVC encoder.

Name/Description

MFX_B_REF_UNKNOWNDefault value, it is up to the SDK encoder to use B frames as reference.
MFX_B_REF_OFF Do not use B frames as reference.
MFX_B_REF_PYRAMIDArrange B frames in so-called “B pyramid” reference structure.

Change History

This enumerator is available since SDK API 1.8.

LookAheadDownSampling
Description

The LookAheadDownSampling enumerator is used to control down sampling in look ahead bitrate
control mode in AVC encoder.

Name/Description

MFX_LOOKAHEAD_DS_UNKNOWNDefault value, it is up to the SDK encoder what down sampling value to use.
MFX_LOOKAHEAD_DS_OFF Do not use down sampling, perform estimation on original size frames. This is the slowest

setting that produces the best quality.
MFX_LOOKAHEAD_DS_2x Down sample frames two times before estimation.
MFX_LOOKAHEAD_DS_4x Down sample frames four times before estimation. This option may significantly degrade quality.

Change History

This enumerator is available since SDK API 1.8.

VPPFieldProcessingMode
Description

The VPPFieldProcessingMode enumerator is used to control VPP field processing algorithm.

Name/Description

MFX_VPP_COPY_FRAME Copy the whole frame.
MFX_VPP_COPY_FIELD Copy only one field.
MFX_VPP_SWAP_FIELDSSwap top and bottom fields.

131 SDK Developer Reference 1.27

Change History

This enumerator is available since SDK API 1.11.

PicType
Description

The PicType enumerator itemizes picture type.

Name/Description

MFX_PICTYPE_UNKNOWN Picture type is unknown.
MFX_PICTYPE_FRAME Picture is a frame.
MFX_PICTYPE_TOPFIELD Picture is a top field.
MFX_PICTYPE_BOTTOMFIELDPicture is a bottom field.

Change History

This enumerator is available since SDK API 1.11.

SkipFrame
Description

The SkipFrame enumerator is used to define usage of mfxEncodeCtrl::SkipFrame parameter.

Name/Description

MFX_SKIPFRAME_NO_SKIP Frame skipping is disabled, mfxEncodeCtrl::SkipFrame is ignored
MFX_SKIPFRAME_INSERT_DUMMY Skipping is allowed, when mfxEncodeCtrl::SkipFrame is set encoder inserts into bitstream

frame where all macroblocks are encoded as skipped. Only non-reference P and B frames
can be skipped. If GopRefDist = 1 and mfxEncodeCtrl::SkipFrame is set for reference P
frame, it will be encoded as non-reference.

MFX_SKIPFRAME_INSERT_NOTHINGSimilar to MFX_SKIPFRAME_INSERT_DUMMY, but when mfxEncodeCtrl::SkipFrame is set
encoder inserts nothing into bitstream.

MFX_SKIPFRAME_BRC_ONLY mfxEncodeCtrl::SkipFrame indicates number of missed frames before the current frame.
Affects only BRC, current frame will be encoded as usual.

Change History

This enumerator is available since SDK API 1.11.

The SDK API 1.13 adds MFX_SKIPFRAME_BRC_ONLY.

DeinterlacingMode
Description

The DeinterlacingMode enumerator itemizes VPP deinterlacing modes.

Name/Description

MFX_DEINTERLACING_BOB BOB deinterlacing mode.
MFX_DEINTERLACING_ADVANCED Advanced deinterlacing mode.
MFX_DEINTERLACING_AUTO_DOUBLE Auto mode with deinterlacing double framerate output.
MFX_DEINTERLACING_AUTO_SINGLE Auto mode with deinterlacing single framerate output.
MFX_DEINTERLACING_FULL_FR_OUT Deinterlace only mode with full framerate output.
MFX_DEINTERLACING_HALF_FR_OUT Deinterlace only Mode with half framerate output.
MFX_DEINTERLACING_24FPS_OUT 24 fps fixed output mode.
MFX_DEINTERLACING_FIXED_TELECINE_PATTERNFixed telecine pattern removal mode.
MFX_DEINTERLACING_30FPS_OUT 30 fps fixed output mode.
MFX_DEINTERLACING_DETECT_INTERLACE Only interlace detection.
MFX_DEINTERLACING_ADVANCED_NOREF Advanced deinterlacing mode without using of reference frames.
MFX_DEINTERLACING_ADVANCED_SCD Advanced deinterlacing mode with scene change detection.
MFX_DEINTERLACING_FIELD_WEAVING Field weaving.

Change History

This enumerator is available since SDK API 1.13.

The SDK 1.17 adds MFX_DEINTERLACING_ADVANCED_NOREF.

The SDK 1.19 adds MFX_DEINTERLACING_ADVANCED_SCD, MFX_DEINTERLACING_FIELD_WEAVING.

132 SDK Developer Reference 1.27

TelecinePattern
Description

The TelecinePattern enumerator itemizes telecine patterns.

Name/Description

MFX_TELECINE_PATTERN_32 3:2 telecine
MFX_TELECINE_PATTERN_2332 2:3:3:2 telecine
MFX_TELECINE_PATTERN_FRAME_REPEATOne frame repeat telecine
MFX_TELECINE_PATTERN_41 4:1 telecine
MFX_TELECINE_POSITION_PROVIDED User must provide position inside a sequence of 5 frames where the artifacts start.

Change History

This enumerator is available since SDK API 1.13.

HEVCRegionType
Description

The HEVCRegionType enumerator itemizes type of HEVC region.

Name/Description

MFX_HEVC_REGION_SLICESlice.

Change History

This enumerator is available since SDK API 1.15.

GPUCopy
Description

The GPUCopy enumerator controls usage of GPU accelerated copying between video and system memory in the SDK
components.

Name/Description

MFX_GPUCOPY_DEFAULTUse default mode for the current SDK implementation.
MFX_GPUCOPY_ON Enable GPU accelerated copying.
MFX_GPUCOPY_OFF Disable GPU accelerated copying.

Change History

This enumerator is available since SDK API 1.16.

WeightedPred
Description

The WeightedPred enumerator itemizes weighted prediction modes.

Name/Description

MFX_WEIGHTED_PRED_UNKNOWN Allow encoder to decide.
MFX_WEIGHTED_PRED_DEFAULT Use default weighted prediction.
MFX_WEIGHTED_PRED_EXPLICITUse explicit weighted prediction.
MFX_WEIGHTED_PRED_IMPLICITUse implicit weighted prediction (for B-frames only).

Change History

This enumerator is available since SDK API 1.16.

ScenarioInfo
Description

The ScenarioInfo enumerator itemizes scenarios for the encoding session.

Name/Description

133 SDK Developer Reference 1.27

MFX_SCENARIO_UNKNOWN,
MFX_SCENARIO_DISPLAY_REMOTING,
MFX_SCENARIO_VIDEO_CONFERENCE,
MFX_SCENARIO_ARCHIVE,
MFX_SCENARIO_LIVE_STREAMING,
MFX_SCENARIO_CAMERA_CAPTURE
Change History

This enumerator is available since SDK API 1.16.

ContentInfo
Description

The ContentInfo enumerator itemizes content types for the encoding session.

Name/Description

MFX_CONTENT_UNKNOWN, MFX_CONTENT_FULL_SCREEN_VIDEO, MFX_CONTENT_NON_VIDEO_SCREEN
Change History

This enumerator is available since SDK API 1.16.

PRefType
Description

The PRefType enumerator itemizes models of reference list construction and DPB management when GopRefDist=1.

Name/Description

MFX_P_REF_DEFAULTAllow encoder to decide.
MFX_P_REF_SIMPLE Regular sliding window used for DPB removal process.
MFX_P_REF_PYRAMIDLet N be the max reference list’s size. Encoder treat each N’s frame as “strong” reference and the others as

“weak” references. Encoder uses “weak” reference only for prediction of the next frame and removes it
from DPB right after. “Strong” references removed from DPB by sliding window.

Change History

This enumerator is available since SDK API 1.16.

GeneralConstraintFlags
Description

The GeneralConstraintFlags enumerator uses bit-ORed values to itemize HEVC bitstream indications for specific profiles.

Name/Description

MFX_HEVC_CONSTR_REXT_MAX_12BIT,
MFX_HEVC_CONSTR_REXT_MAX_10BIT,
MFX_HEVC_CONSTR_REXT_MAX_8BIT,
MFX_HEVC_CONSTR_REXT_MAX_422CHROMA,
MFX_HEVC_CONSTR_REXT_MAX_420CHROMA,
MFX_HEVC_CONSTR_REXT_MAX_MONOCHROME,
MFX_HEVC_CONSTR_REXT_INTRA,
MFX_HEVC_CONSTR_REXT_ONE_PICTURE_ONLY,
MFX_HEVC_CONSTR_REXT_LOWER_BIT_RATE

Indications for format range extensions profiles.

Change History

This enumerator is available since SDK API 1.16.

Angle
Description

The Angle enumerator itemizes valid rotation angles.

Name/Description

MFX_ANGLE_0 0°
MFX_ANGLE_90 90°
MFX_ANGLE_180180°
MFX_ANGLE_270270°

134 SDK Developer Reference 1.27

Change History

This enumerator is available since SDK API 1.17.

PlatformCodeName
Description

The PlatformCodeName enumerator itemizes Intel® processor microarchitecture codenames. For details about any particular
codename, see ark.intel.com.

Name/Description

MFX_PLATFORM_UNKNOWN Unknown platform
MFX_PLATFORM_SANDYBRIDGESandy Bridge
MFX_PLATFORM_IVYBRIDGE Ivy Bridge
MFX_PLATFORM_HASWELL Haswell
MFX_PLATFORM_BAYTRAIL Bay Trail
MFX_PLATFORM_BROADWELL Broadwell
MFX_PLATFORM_CHERRYTRAILCherry Trail
MFX_PLATFORM_SKYLAKE Skylake
MFX_PLATFORM_APOLLOLAKE Apollo Lake
MFX_PLATFORM_KABYLAKE Kaby Lake
MFX_PLATFORM_GEMINILAKE Gemini Lake
MFX_PLATFORM_COFFEELAKE Coffee Lake
MFX_PLATFORM_CANNONLAKE Cannon Lake
MFX_PLATFORM_ICELAKE Ice Lake

Change History

This enumerator is available since SDK API 1.19.
SDK API 1.22 adds MFX_PLATFORM_APOLLOLAKE, and MFX_PLATFORM_KABYLAKE.

SDK API 1.25 adds MFX_PLATFORM_GEMINILAKE, MFX_PLATFORM_COFFEELAKE and MFX_PLATFORM_CANNONLAKE.

SDK API 1.27 adds MFX_PLATFORM_ICELAKE.

PayloadCtrlFlags
Description

The PayloadCtrlFlags enumerator itemizes additional payload properties.

Name/Description

MFX_PAYLOAD_CTRL_SUFFIX Insert this payload into HEVC Suffix SEI NAL-unit.

Change History

This enumerator is available since SDK API 1.19.

IntraRefreshTypes
Description

The IntraRefreshTypes enumerator itemizes types of intra refresh.

Name/Description

MFX_REFRESH_NO Encode without refresh.
MFX_REFRESH_VERTICAL Vertical refresh, by column of MBs.
MFX_REFRESH_HORIZONTALHorizontal refresh, by rows of MBs.
MFX_REFRESH_SLICE Horizontal refresh by slices without overlapping.

Change History

This enumerator is available since SDK API 1.23.

VP9ReferenceFrame
Description

The VP9ReferenceFrame enumerator itemizes reference frame type by mfxVP9SegmentParam::ReferenceFrame parameter.

Name/Description

135 SDK Developer Reference 1.27

http://ark.intel.com

MFX_VP9_REF_INTRA Intra
MFX_VP9_REF_LAST Last
MFX_VP9_REF_GOLDENGolden
MFX_VP9_REF_ALTREFAlternative reference

Change History

This enumerator is available since SDK API 1.26.

SegmentIdBlockSize
Description

The SegmentIdBlockSize enumerator indicates the block size represented by each segment_id in segmentation map. These
values are used with the mfxExtVP9Segmentation::SegmentIdBlockSize parameter.

Name/Description

MFX_VP9_SEGMENT_ID_BLOCK_SIZE_UNKNOWNUnspecified block size
MFX_VP9_SEGMENT_ID_BLOCK_SIZE_8x8 8x8 block size
MFX_VP9_SEGMENT_ID_BLOCK_SIZE_16x16 16x16 block size
MFX_VP9_SEGMENT_ID_BLOCK_SIZE_32x32 32x32 block size
MFX_VP9_SEGMENT_ID_BLOCK_SIZE_64x64 64x64 block size

Change History

This enumerator is available since SDK API 1.26.

SegmentFeature
Description

T h e SegmentFeature enumerator indicates features enabled for the segment. These values are used with the
mfxVP9SegmentParam::FeatureEnabled parameter.

Name/Description

MFX_VP9_SEGMENT_FEATURE_QINDEX Quantization index delta
MFX_VP9_SEGMENT_FEATURE_LOOP_FILTERLoop filter level delta
MFX_VP9_SEGMENT_FEATURE_REFERENCE Reference frame
MFX_VP9_SEGMENT_FEATURE_SKIP Skip

Change History

This enumerator is available since SDK API 1.26.

InsertHDRPayload
Description

The InsertHDRPayload enumerator itemizes HDR payloads insertion rules.

Name/Description

MFX_PAYLOAD_OFFDon't insert payload
MFX_PAYLOAD_IDR Insert payload on IDR frames

Change History

This enumerator is available since SDK API 1.25.

SampleAdaptiveOffset
Description

The SampleAdaptiveOffset enumerator uses bit-ORed values to itemize correspoding HEVC encoding feature.

Name/Description

MFX_SAO_UNKNOWN Use default value for platform/TargetUsage.
MFX_SAO_DISABLE Disable SAO. If set during Init leads to SPS sample_adaptive_offset_enabled_flag = 0. If set

during Runtime, leads to to slice_sao_luma_flag = 0 and slice_sao_chroma_flag = 0 for
current frame.

MFX_SAO_ENABLE_LUMA Enable SAO for luma (slice_sao_luma_flag = 1).
MFX_SAO_ENABLE_CHROMAEnable SAO for chroma (slice_sao_chroma_flag = 1).

Change History

136 SDK Developer Reference 1.27

This enumerator is available since SDK API 1.26.

BRCStatus
Description

The BRCStatus enumerator itemizes instructions to the SDK encoder by mfxExtBrc::Update.

Name/Description

MFX_BRC_OK Coded frame size is acceptable, no further operations required, proceed to next frame
MFX_BRC_BIG_FRAME Coded frame is too big, recoding required
MFX_BRC_SMALL_FRAME Coded frame is too small, recoding required
MFX_BRC_PANIC_BIG_FRAME Coded frame is too big, no further recoding possible - skip frame
MFX_BRC_PANIC_SMALL_FRAMECoded frame is too small, no further recoding possible - required padding to

mfxBRCFrameStatus::MinFrameSize
Change History

This enumerator is available since SDK API 1.24.

MFMode
Description

The MFMode enumerator defines multi-frame submission mode.

Name/Description

MFX_MF_DEFAULT The SDK decides if multi-frame submission is enabled or disabled based on parameters, target encoder,
platform, implementation, etc.

MFX_MF_DISABLEDExplicitly disables multi-frame submission.
MFX_MF_AUTO The SDK controls multi-frame submission based on timeout management and decides amount of frames to

be combined, by default timeout is calculated based on requirement to reach particular output rate equal to
framerate.

MFX_MF_MANUAL Applicaiton manages multi-frame submission, number of frames can be maximum for platform and decided
by Application. The SDK will always wait for mfxExtMultiFrameControl::MaxNumFrames to submit frames
or until application specify mfxExtMultiFrameControl::Flush with one of frames

Change History

This enumerator is available since SDK API 1.25.

ErrorTypes
Description

The ErrorTypes enumerator uses bit-ORed values to itemize bitstream error types.

Name/Description

MFX_ERROR_PPS Invalid/corrupted PPS
MFX_ERROR_SPS Invalid/corrupted SPS
MFX_ERROR_SLICEHEADER Invalid/corrupted slice header
MFX_ERROR_SLICEDATA Invalid/corrupted slice data
MFX_ERROR_FRAME_GAP Missed frames

Change History

This enumerator is available since SDK API 1.25.

ChromaSiting
Description

The ChromaSiting enumerator defines chroma location. Use bit-OR’ed values to specify the desired location.

Name/Description

MFX_CHROMA_SITING_UNKNOWN Unspecified.
MFX_CHROMA_SITING_VERTICAL_TOP Chroma samples are co-sited vertically on the top with the luma samples.
MFX_CHROMA_SITING_VERTICAL_CENTER Chroma samples are not co-sited vertically with the luma samples.
MFX_CHROMA_SITING_VERTICAL_BOTTOM Chroma samples are co-sited vertically on the bottom with the luma samples.
MFX_CHROMA_SITING_HORIZONTAL_LEFT Chroma samples are co-sited horizontally on the left with the luma samples.
MFX_CHROMA_SITING_HORIZONTAL_CENTERChroma samples are not co-sited horizontally with the luma samples.

137 SDK Developer Reference 1.27

Change History

This enumerator is available since SDK API 1.25.

Appendices

Appendix A: Configuration Parameter Constraints
T h e mfxFrameInfo structure is used by both the mfxVideoParam structure during SDK class initialization and the
mfxFrameSurface1 structure during the actual SDK class function. The following constraints apply:

Constraints common for DECODE, ENCODE and VPP:

Parameters During SDK
initialization

During SDK operation

FourCC Any valid value The value must be the same as the initialization value.
The only exception is VPP in composition mode, where in some cases it is allowed to mix RGB
and NV12 surfaces. See mfxExtVPPComposite for more details.

ChromaFormatAny valid value The value must be the same as the initialization value.

Constraints for DECODE:

Parameters During SDK initialization During SDK operation
Width
Height

Aligned frame size The values must be the equal to or larger than
the initialization values.

CropX, CropY
CropW, CropH

Ignored DECODE output. The cropping values are per-
frame based.

AspectRatioW
AspectRatioH

Any valid values or unspecified (zero); if unspecified, values
from the input bitstream will be used;
see note below the table

DECODE output.

FrameRateExtN
FrameRateExtD

Any valid values or unspecified (zero);
if unspecified, values from the input bitstream will be used;
see note below the table

DECODE output.

PicStruct Ignored DECODE output.

Note about priority of initialization parameters.

If application explicitly sets FrameRateExtN/FrameRateExtD or AspectRatioW/ AspectRatioH during initialization then decoder
uses these values during decoding regardless of values from bitstream and does not update them on new SPS. If application sets
them to 0, then decoder uses values from stream and update them on each SPS.

Constraints for VPP:

Parameters During SDK initialization During SDK operation
Width
Height

Any valid values These values must be the same or larger than the
initialization values.

CropX, CropY
CropW, CropH

Ignored These parameters specify the region of interest from
input to output.

AspectRatioW
AspectRatioH

Ignored Aspect ratio values will be passed through from input
to output.

FrameRateExtN
FrameRateExtD

Any valid values Frame rate values will be updated with the initialization
value at output.

PicStruct MFX_PICSTRUCT_UNKNOWN,
MFX_PICSTRUCT_PROGRESSIVE,
MFX_PICSTRUCT_FIELD_TFF,
MFX_PICSTRUCT_FIELD_BFF,
MFX_PICSTRUCT_FIELD_SINGLE,
MFX_PICSTRUCT_FIELD_TOP,
MFX_PICSTRUCT_FIELD_BOTTOM

The base value must be the same as the initialization
value unless MFX_PICSTRUCT_UNKNOWN is specified
during initialization.
Other decorative picture structure flags are passed
through or added as needed. See the PicStruct
enumerator for details.

Constraints for ENCODE:

Parameters During SDK initialization During SDK operation
Width
Height

Encoded frame size The values must be the same or larger than the initialization values

CropX, CropY
CropW, CropH

H.264: Cropped frame size
MPEG-2: CropW and CropH specify
the real width and height (maybe
unaligned) of the coded frames.
CropX and CropY must be zero.

Ignored

138 SDK Developer Reference 1.27

AspectRatioW
AspectRatioH

Any valid values Ignored

FrameRateExtN
FrameRateExtD

Any valid values Ignored

PicStruct MFX_PICSTRUCT_UNKNOWN,
MFX_PICSTRUCT_PROGRESSIVE,
MFX_PICSTRUCT_FIELD_TFF, or
MFX_PICSTRUCT_FIELD_BFF.

The base value must be the same as the initialization value unless
MFX_PICSTRUCT_UNKNOWN is specified during initialization.
Add other decorative picture structure flags to indicate additional display
attributes. Use MFX_PICSTRUCT_UNKNOWN during initialization for field
attributes and MFX_PICSTRUCT_PROGRESSIVE for frame attributes. See
the PicStruct enumerator for details.

Parameters During SDK initialization During SDK operation

The following table summarizes how to specify the configuration parameters during initialization and during encoding, decoding
and video processing:

ENCODE
Init

ENCODE
Encoding

DECODE
Init

DECODE
Decoding

VPP
Init

VPP
Processing

mfxVideoParam
Protected R - R - R -
IOPattern M - M - M -
ExtParam O - O - O -
NumExtParam O - O - O -
mfxInfoMFX
CodecId M - M - - -
CodecProfile O - O/M* - - -
CodecLevel O - O - - -
NumThread O - O - - -
TargetUsage O - - - - -
GopPicSize O - - - - -
GopRefDist O - - - - -
GopOptFlag O - - - - -
IdrInterval O - - - - -
RateControlMethodO - - - - -
InitialDelayInKB O - - - - -
BufferSizeInKB O - - - - -
TargetKbps M - - - - -
MaxKbps O - - - - -
NumSlice O - - - - -
NumRefFrame O - - - - -
EncodedOrder M - - - - -
mfxFrameInfo
FourCC M M M M M M
Width M M M M M M
Height M M M M M M
CropX M Ign Ign /U Ign M
CropY M Ign Ign /U Ign M
CropW M Ign Ign /U Ign M
CropH M Ign Ign /U Ign M
FrameRateExtN M Ign O /U M /U
FrameRateExtD M Ign O /U M /U
AspectRatioW O Ign O /U Ign PT
AspectRatioH O Ign O /U Ign PT
PicStruct O M Ign /U M M/U
ChromaFormat M M M M Ign Ign

Remarks
Ign Ignored
PT Pass Through
- Does Not Apply
M Mandated
R Reserved
O Optional

139 SDK Developer Reference 1.27

/U Updated at output
Remarks

*Note: CodecProfile is mandated for HEVC REXT and SCC profiles and optional for other cases. If application doesn't explicitly
set CodecProfile during initialization, HEVC decoder will use profile up to Main10.

Appendix B: Multiple-Segment Encoding
Multiple-segment encoding is useful in video editing applications when during production; the encoder encodes multiple video
clips according to their time line. In general, one can define multiple-segment encoding as dividing an input sequence of frames
into segments and encoding them in different encoding sessions with the same or different parameter sets, as illustrated in
Figure 7. (Note that different encoders can also be used.)

The application must be able to:

Extract encoding parameters from the bitstream of previously encoded segment;
Import these encoding parameters to configure the encoder.

Encoding can then continue on the current segment using either the same or the similar encoding parameters.

Figure 7: Multiple-Segment Encoding

Segment already Encoded Segment in encoding Segment to be encoded
0s 200s 500s
Extracting the header containing the encoding parameter set from the encoded bitstream is usually the task of a format splitter
(de-multiplexer). Nevertheless, the SDK MFXVideoDECODE_DecodeHeader function can export the raw header if the application
attaches the mfxExtCodingOptionSPSPPS structure as part of the parameters.

The encoder can use the mfxExtCodingOptionSPSPPS structure to import the encoding parameters during
MFXVideoENCODE_Init. The encoding parameters are in the encoded bitstream format. Upon a successful import of the header
parameters, the encoder will generate bitstreams with a compatible (not necessarily bit-exact) header. Table 9 shows all
functions that can import a header and their error codes if there are unsupported parameters in the header or the encoder is
unable to achieve compatibility with the imported header.

Table 9: Multiple-Segment Encoding Functions

Function Name Error Code if Import Fails
MFXVideoENCODE_Init MFX_ERR_INCOMPATIBLE_VIDEO_PARAM
MFXVideoENCODE_QueryIOSurfMFX_ERR_INCOMPATIBLE_VIDEO_PARAM
MFXVideoENCODE_Reset MFX_ERR_INCOMPATIBLE_VIDEO_PARAM
MFXVideoENCODE_Query MFX_ERR_UNSUPPORTED
The encoder must encode frames to a GOP sequence starting with an IDR frame for H.264 (or I frame for MPEG-2) to ensure that
the current segment encoding does not refer to any frames in the previous segment. This ensures that the encoded segment is
self-contained, allowing the application to insert it anywhere in the final bitstream. After encoding, each encoded segment is
HRD compliant. However, the concatenated segments may not be HRD compliant.

Example 16 shows an example of the encoder initialization procedure that imports H.264 sequence and picture parameter sets.

Example 16: Pseudo-code to Import H.264 SPS/PPS Parameters

140 SDK Developer Reference 1.27

mfxStatus init_encoder(…) {
 mfxExtCodingOptionSPSPPS option, *option_array;

 /* configure mfxExtCodingOptionSPSPPS */
 memset(&option,0,sizeof(option));
 option.Header.BufferId=MFX_EXTBUFF_CODING_OPTION_SPSPPS;
 option.Header.BufferSz=sizeof(option);
 option.SPSBuffer=sps_buffer;
 option.SPSBufSize=sps_buffer_length;
 option.PPSBuffer=pps_buffer;
 option.PPSBufSize=pps_buffer_length;

 /* configure mfxVideoParam */
 mfxVideoParam param;
 …
 param.NumExtParam=1;
 option_array=&option;
 param.ExtParam=&option_array;

 /* encoder initialization */
 mfxStatus status;
 status=MFXVideoENCODE_Init(session, ¶m);
 if (status==MFX_ERR_INCOMPATIBLE_VIDEO_PARAM) {
 printf(“Initialization failed\n”);
 } else {
 printf(“Initialized\n”);
 }
 return status;
}

Appendix C: Streaming and Video Conferencing Features
The following sections address a few aspects of additional requirements that streaming or video conferencing applications may
use in the encoding or transcoding process. See also Configuration Change chapter.

Dynamic Bitrate Change
The SDK encoder supports dynamic bitrate change differently depending on bitrate control mode andHRD conformance
requirement. If HRD conformance is required, i.e. if application sets NalHrdConformance option in mfxExtCodingOption
structure to ON, the only allowed bitrate control mode is VBR. In this mode, the application can change TargetKbps and
MaxKbps values. The application can change these values by calling the MFXVideoENCODE_Reset function. Such change in
bitrate usually results in generation of a new key-frame and sequence header. There are some exceptions though. For example, if
HRD Information is absent in the stream then change of TargetKbps does not require change of sequence header and as a result
the SDK encoder does not insert a key frame.

If HRD conformance is not required, i.e. if application turns off NalHrdConformance option in mfxExtCodingOption structure, all
bitrate control modes are available. In CBR and AVBR modes the application can change TargetKbps, in VBR mode the
application can change TargetKbps and MaxKbps values. Such change in bitrate will not result in generation of a new key-frame
or sequence header.

The SDK encoder may change some of the initialization parameters provided by the application during initialization. That in turn
may lead to incompatibility between the parameters provided by the application during reset and working set of parameters used
by the SDK encoder. That is why it is strongly recommended to retrieve the actual working parameters by
MFXVideoENCODE_GetVideoParam function before making any changes to bitrate settings.

In all modes, the SDK encoders will respond to the bitrate changes as quickly as the underlying algorithm allows, without
breaking other encoding restrictions, such as HRD compliance if it is enabled. How soon the actual bitrate can catch up with the
specified bitrate is implementation dependent.

Alternatively, the application may use the CQP (constant quantization parameter) encoding mode to perform customized bitrate
adjustment on a per-frame base. The application may use any of the encoded or display order modes to use per-frame CQP.

Dynamic resolution change
The SDK encoder supports dynamic resolution change in all bitrate control modes. The application may change resolution by
calling MFXVideoENCODE_Reset function. The application may decrease or increase resolution up to the size specified during
encoder initialization.

Resolution change always results in insertion of key IDR frame and new sequence parameter set header. The SDK encoder does
not guarantee HRD conformance across resolution change point.

The SDK encoder may change some of the initialization parameters provided by the application during initialization. That in turn
may lead to incompatibility of parameters provide by the application during reset and working set of parameters used by the SDK
encoder. That is why it is strongly recommended to retrieve the actual working parameters set by
MFXVideoENCODE_GetVideoParam function before making any resolution change.

141 SDK Developer Reference 1.27

Forced Key Frame Generation
The SDK supports forced key frame generation during encoding. The application can set the FrameType parameter of the
mfxEncodeCtrl structure to control how the current frame is encoded, as follows:

If the SDK encoder works in the display order, the application can enforce any current frame to be a key frame. The
application cannot change the frame type of already buffered frames inside the SDK encoder.
If the SDK encoder works in the encoded order, the application must exactly specify frame type for every frame thus the
application can enforce the current frame to have any frame type that particular coding standard allows.

Reference List Selection
During streaming or video conferencing, if the application can obtain feedbacks about how good the client receives certain
frames, the application may need to adjust the encoding process to use or not use certain frames as reference. The following
paragraphs describe how to fine-tune the encoding process based on such feedbacks.

The application can specify the reference window size by specifying the parameter mfxInfoMFX::NumRefFrame during encoding
initialization. Certain platform may have limitation on how big the size of the reference window is. Use the function
MFXVideoENCODE_GetVideoParam to retrieve the current working set of parameters.

During encoding, the application can specify the actual reference list lengths by attaching the mfxExtAVCRefListCtrl structure to
the MFXVideoENCODE_EncodeFrameAsync function. The NumRefIdxL0Active parameter of the mfxExtAVCRefListCtrl structure
specifies the length of the reference list L0 and the NumRefIdxL1Active parameter specifies the length of the reference list L1.
These two numbers must be less or equal to the parameter mfxInfoMFX::NumRefFrame during encoding initialization.

The application can instruct the SDK encoder to use or not use certain reference frames. To do this, there is a prerequisite that
the application must uniquely identify each input frame, by setting the mfxFrameData::FrameOrder parameter. The application
then specifies the preferred reference frame list PreferredRefList and/or the rejected frame list RejectedRefList in the
mfxExtAVCRefListCtrl structure, and attach the structure to the MFXVideoENCODE_EncodeFrameAsync function. The two lists
fine-tune how the SDK encoder chooses the reference frames of the current frame. The SDK encoder does not keep
PreferredRefList and application has to send it for each frame if necessary. There are a few limitations:

The frames in the lists are ignored if they are out of the reference window.
If by going through the lists, the SDK encoder cannot find a reference frame for the current frame, the SDK encoder will
encode the current frame without using any reference frames.
If the GOP pattern contains B-frames, the SDK encoder may not be able to follow the mfxExtAVCRefListCtrl instructions.

Low Latency Encoding and Decoding
The application can set mfxVideoParam::AsyncDepth=1 to disable any decoder buffering of output frames, which is aimed to
improve the transcoding throughput. With AsyncDepth=1, the application must synchronize after the decoding or transcoding
operation of each frame.

The application can adjust mfxExtCodingOption::MaxDecFrameBuffering, during encoding initialization, to improve decoding
latency. It is recommended to set this value equal to number of reference frames.

Reference Picture Marking Repetition SEI message
The application can request writing the reference picture marking repetition SEI message during encoding initialization, by
setting the RefPicMarkRep flag in the mfxExtCodingOption structure. The reference picture marking repetition SEI message
repeats certain reference frame information in the output bitstream for robust streaming.

The SDK decoder will respond to the reference picture marking repetition SEI message if such message exists in the bitstream,
and check with the reference list information specified in the sequence/picture headers. The decoder will report any mismatch
of the SEI message with the reference list information in the mfxFrameData::Corrupted field.

Long-term Reference frame
The application may use long-term reference frames to improve coding efficiency or robustness for video conferencing
applications. The application controls the long-term frame marking process by attaching the mfxExtAVCRefListCtrl extended
buffer during encoding. The SDK encoder itself never marks frame as long-term.

There are two control lists in the mfxExtAVCRefListCtrl extended buffer.The LongTermRefList list contains the frame orders (the
FrameOrder value in the mfxFrameData structure) of the frames that should be marked as long-term frames. The
RejectedRefList list contains the frame order of the frames that should be unmarked as long-term frames. The application can
only mark/unmark those frames that are buffered inside encoder. Because of this, it is recommended that the application marks
a frame when it is submitted for encoding. Application can either explicitly unmark long-term reference frame or wait for IDR
frame, there all long-term reference frames will be unmarked.

The SDK encoder puts all long-term reference frames at the end of a reference frame list. If the number of active reference
frames (the NumRefIdxL0Active and NumRefIdxL1Active values in the mfxExtAVCRefListCtrl extended buffer) is smaller than
the total reference frame number (the NumRefFrame value in the mfxInfoMFX structure during the encoding initialization), the
SDK encoder may ignore some or all long term reference frames. The application may avoid this by providing list of preferred
reference frames in the PreferredRefList list in the mfxExtAVCRefListCtrl extended buffer. In this case, the SDK encoder reorders
the reference list based on the specified list.

Temporal scalability

142 SDK Developer Reference 1.27

The application may specify the temporal hierarchy of frames by using the mfxExtAvcTemporalLayers extended buffer during the
encoder initialization, in the display-order encoding mode. The SDK inserts the prefix NAL unit before each slice with a unique
temporal and priority ID. The temporal ID starts from zero and the priority ID starts from the BaseLayerPID value. The SDK
increases the temporal ID and priority ID value by one for each consecutive layer.

If the application needs to specify a unique sequence or picture parameter set ID, the application must use the
mfxExtCodingOptionSPSPPS extended buffer, with all pointers and sizes set to zero and valid SPSId/PPSId fields. The same SPS
and PPS ID will be used for all temporal layers.

Each temporal layer is a set of frames with the same temporal ID. Each layer is defined by the Scale value. Scale for layer N is
equal to ratio between the frame rate of subsequence consisted of temporal layers with temporal ID lower or equal to N and
frame rate of base temporal layer. The application may skip some of the temporal layers by specifying the Scale value as zero.
The application should use an integer ratio of the frame rates for two consecutive temporal layers.

For example, 30 frame per second video sequence typically is separated by three temporal layers, that can be decoded as 7.5 fps
(base layer), 15 fps (base and first temporal layer) and 30 fps (all three layers). Scale for this case should have next values
{1,2,4,0,0,0,0,0}.

Appendix D: Switchable Graphics and Multiple Monitors
The following sections address a few aspects of supporting switchable graphics and multiple monitors configurations.

Switchable Graphics
Switchable Graphics refers to the machine configuration that multiple graphic devices are available (integrated device for power
saving and discrete devices for performance.) Usually at one time or instance, one of the graphic devices drives display and
becomes the active device, and others become inactive. There are different variations of software or hardware mechanisms to
switch between the graphic devices. In one of the switchable graphics variations, it is possible to register an application in an
affinity list to certain graphic device so that the launch of the application automatically triggers a switch. The actual techniques to
enable such a switch are outside the scope of this document. This document discusses the implication of switchable graphics to
the SDK and the SDK applications.

As the SDK performs hardware acceleration through Intel graphic device, it is critical that the SDK can access to the Intel graphic
device in the switchable graphics setting. If possible, it is recommended to add the application to the Intel graphic device affinity
list. Otherwise, the application must handle the following cases:

1. By the SDK design, during the SDK library initialization, the function MFXInit searches for Intel graphic devices. If a SDK
implementation is successfully loaded, the function MFXInit returns MFX_ERR_NONE and the MFXQueryIMPL function
returns the actual implementation type. If no SDK implementation is loaded, the function MFXInit returns
MFX_ERR_UNSUPPORTED.
In the switchable graphics environment, if the application is not in the Intel graphic device affinity list, it is possible that the
Intel graphic device is not accessible during the SDK library initialization. The fact that the MFXInit function returns
MFX_ERR_UNSUPPORTED does not mean that hardware acceleration is not possible permanently. The user may switch
the graphics later and by then the Intel graphic device will become accessible. It is recommended that the application
initialize the SDK library right before the actual decoding, video processing, and encoding operations to determine the
hardware acceleration capability.

2. During decoding, video processing, and encoding operations, if the application is not in the Intel graphic device affinity list,
the previously accessible Intel graphic device may become inaccessible due to a switch event. The SDK functions will
return MFX_ERR_DEVICE_LOST or MFX_ERR_DEVICE_FAILED, depending on when the switch occurs and what stage the
SDK functions operate. The application needs to handle these errors and exits gracefully.

Multiple Monitors
Multiple monitors refer to the machine configuration that multiple graphic devices are available. Some of the graphic devices
connect to a display, they become active and accessible under the Microsoft* DirectX* infrastructure. For those graphic devices
not connected to a display, they are inactive. Specifically, under the Microsoft Direct3D9* infrastructure, those devices are not
accessible.

The SDK uses the adapter number to access to a specific graphic device. Usually, the graphic device that drives the main desktop
becomes the primary adapter. Other graphic devices take subsequent adapter numbers after the primary adapter. Under the
Microsoft Direct3D9 infrastructure, only active adapters are accessible and thus have an adapter number.

The SDK extends the implementation type mfxIMPL as follows:

Implementation Type Definition
MFX_IMPL_HARDWARE The SDK should initialize on the primary adapter
MFX_IMPL_HARDWARE2 The SDK should initialize on the 2nd graphic adapter
MFX_IMPL_HARDWARE3 The SDK should initialize on the 3rd graphic adapter
MFX_IMPL_HARDWARE4 The SDK should initialize on the 4th graphic adapter
The application can use the above definitions to instruct the SDK library to initializes on a specific graphic device. The application
can also use the following definitions for automatic detection:

Implementation Type Definition
MFX_IMPL_HARDWARE_ANY The SDK should initialize on any graphic adapter

143 SDK Developer Reference 1.27

MFX_IMPL_AUTO_ANY The SDK should initialize on any graphic adapter. If not successful, load the software
implementation.

Implementation Type Definition

If the application uses the Microsoft* DirectX* surfaces for I/O, it is critical that the application and the SDK works on the same
graphic device. It is recommended that the application use the following procedure:

The application uses the MFXInit function to initialize the SDK library, with option MFX_IMPL_HARDWARE_ANY or
MFX_IMPL_AUTO_ANY. The MFXInit function returns MFX_ERR_NONE if successful.
The application uses the MFXQueryIMPL function to check the actual implementation type. The implementation type
MFX_IMPL_HARDWARE...MFX_IMPL_HARDWARE4 indicates the graphic adapter the SDK works on.
The application creates the Direct3D* device on the respective graphic adapter, and passes it to the SDK through the
MFXVideoCORE_SetHandle function.

Finally, similar to the switchable graphics cases, it is possible that the user disconnects monitors from the graphic devices or
remaps the primary adapter thus causes interruption. If the interruption occurs during the SDK library initialization, the MFXInit
function may return MFX_ERR_UNSUPPORTED. This means hardware acceleration is currently not available. It is recommended
that the application initialize the SDK library right before the actual decoding, video processing, and encoding operations to
determine the hardware acceleration capability.

If the interruption occurs during decoding, video processing, or encoding operations, the SDK functions will return
MFX_ERR_DEVICE_LOST or MFX_ERR_DEVICE_FAILED. The application needs to handle these errors and exit gracefully.

Appendix E: Working directly with VA API for Linux*
The SDK takes care of all memory and synchronization related operations in VA API. However, in some cases the application may
need to extend the SDK functionality by working directly with VA API for Linux*. For example, to implement customized external
allocator or USER functions (also known as “plug-in”). This chapter describes some basic memory management and
synchronization techniques.

To create VA surface pool the application should call vaCreateSurfaces as it is shown in Example 17.

Example 17: Creation of VA surfaces
VASurfaceAttrib attrib;
attrib.type = VASurfaceAttribPixelFormat;
attrib.value.type = VAGenericValueTypeInteger;
attrib.value.value.i = VA_FOURCC_NV12;
attrib.flags = VA_SURFACE_ATTRIB_SETTABLE;

#define NUM_SURFACES 5;
VASurfaceID surfaces[NUMSURFACES];

vaCreateSurfaces(va_display, VA_RT_FORMAT_YUV420,
 width, height,
 surfaces, NUM_SURFACES,
 &attrib, 1);

To destroy surface pool the application should call vaDestroySurfaces as it is shown in Example 18.

Example 18: Destroying of VA surfaces
vaDestroySurfaces(va_display, surfaces, NUM_SURFACES);

If the application works with hardware acceleration through the SDK then it can access surface data immediately after successful
completion of MFXVideoCORE_SyncOperation call. If the application works with hardware acceleration directly then it has to
check surface status before accessing data in video memory. This check can be done asynchronously by calling
vaQuerySurfaceStatus function or synchronously by vaSyncSurface function.

After successful synchronization the application can access surface data. It is performed in two steps. At the first step VAImage is
created from surface and at the second step image buffer is mapped to system memory. After mapping VAImage.offsets[3] array
holds offsets to each color plain in mapped buffer and VAImage.pitches[3] array holds color plain pitches, in bytes. For packed
data formats, only first entries in these arrays are valid. Example 19 shows how to access data in NV12 surface.

Example 19: Accessing data in VA surface
VAImage image;
unsigned char *buffer, Y, U, V;

vaDeriveImage(va_display, surface_id, &image);
vaMapBuffer(va_display, image.buf, &buffer);

/* NV12 */
Y = buffer + image.offsets[0];
U = buffer + image.offsets[1];
V = U + 1;

After processing data in VA surface the application should release resources allocated for mapped buffer and VAImage object.
Example 20 shows how to do it.

144 SDK Developer Reference 1.27

Example 20: unmapping buffer and destroying VAImage
vaUnmapBuffer(va_display, image.buf);
vaDestroyImage(va_display, image.image_id);

In some cases, for example, to retrieve encoded bitstream from video memory, the application has to use VABuffer to store data.
Example 21 shows how to create, use and then destroy VA buffer. Note, that vaMapBuffer function returns pointers to different
objects depending on mapped buffer type. It is plain data buffer for VAImage and VACodedBufferSegment structure for encoded
bitstream. The application cannot use VABuffer for synchronization and in case of encoding it is recommended to synchronize by
input VA surface as described above.

Example 21: Working with encoded bitstream buffer
/* create buffer */
VABufferID buf_id;
vaCreateBuffer(va_display, va_context,
 VAEncCodedBufferType, buf_size,
 1, NULL, & buf_id);

/* encode frame */
...

/* map buffer */
VACodedBufferSegment *coded_buffer_segment;

vaMapBuffer(va_display, buf_id, (void **)(& coded_buffer_segment));

size = coded_buffer_segment->size;
offset = coded_buffer_segment->bit_offset;
buf = coded_buffer_segment->buf;

/* retrieve encoded data*/
...

/* unmap and destroy buffer */
vaUnmapBuffer(va_display, buf_id);
vaDestroyBuffer(va_display, buf_id);

Appendix F: CQP HRD mode encoding
Application can configure AVC encoder to work in CQP rate control mode with HRD model parameters. SDK will place HRD
information to SPS/VUI and choose appropriate profile/level. It’s responsibility of application to provide per-frame QP, track HRD
conformance and insert required SEI messages to the bitstream.

Example 22 shows how to enable CQP HRD mode. Application should set RateControlMethod to CQP,
VuiNalHrdParameters to ON, NalHrdConformance to OFF and set rate control parameters similar to CBR or VBR modes
(instead of QPI, QPP and QPB). SDK will choose CBR or VBR HRD mode based on MaxKbps parameter. If MaxKbps is set to zero,
SDK will use CBR HRD model (write cbr_flag = 1 to VUI), otherwise VBR model will be used (and cbr_flag = 0 is written to VUI).

Example 22: Pseudo-code to enable CQP HRD mode

145 SDK Developer Reference 1.27

 mfxExtCodingOption option, *option_array;

 /* configure mfxExtCodingOption */
 memset(&option,0,sizeof(option));
 option.Header.BufferId = MFX_EXTBUFF_CODING_OPTION;
 option.Header.BufferSz = sizeof(option);
 option.VuiNalHrdParameters = MFX_CODINGOPTION_ON;
 option.NalHrdConformance = MFX_CODINGOPTION_OFF;

 /* configure mfxVideoParam */
 mfxVideoParam param;

 ...

 param.mfx.RateControlMethod = MFX_RATECONTROL_CQP;
 param.mfx.FrameInfo.FrameRateExtN = <valid_non_zero_value>;
 param.mfx.FrameInfo.FrameRateExtD = <valid_non_zero_value>;
 param.mfx.BufferSizeInKB = <valid_non_zero_value>;
 param.mfx.InitialDelayInKB = <valid_non_zero_value>;
 param.mfx.TargetKbps = <valid_non_zero_value>;

 if (<write cbr_flag = 1>)
 param.mfx.MaxKbps = 0;
 else /* <write cbr_flag = 0> */
 param.mfx.MaxKbps = <valid_non_zero_value>;

 param.NumExtParam = 1;
 option_array = &option;
 param.ExtParam = &option_array;

 /* encoder initialization */
 mfxStatus sts;
 sts = MFXVideoENCODE_Init(session, ¶m);
 ...

 /* encoding */
 mfxEncodeCtrl ctrl;
 memset(&ctrl,0,sizeof(ctrl));
 ctrl.QP = <frame_qp>

 sts=MFXVideoENCODE_EncodeFrameAsync(session,&ctrl,surface2,bits,&syncp);
 ...

146 SDK Developer Reference 1.27

	SDK Developer Reference
	Table of Contents
	Overview
	Document Conventions
	Acronyms and Abbreviations

	Architecture
	Figure 1: SDK Function Naming Convention
	Figure 2: SDK Library Dispatching Mechanism
	Video Decoding
	Video Encoding
	Video Processing
	Figure 3: Video Processing Operation Pipeline
	Table 1: Video Processing Features
	Table 2: Color Conversion Support in VPP*
	Table 3: Deinterlacing/Inverse Telecine Support in VPP
	Table 4: Color formats supported by VPP filters

	Programming Guide
	Status Codes
	SDK Session
	Multiple Sessions

	Frame and Fields
	Frame Surface Locking

	Decoding Procedures
	Bitstream Repositioning
	Example 1: Decoding Pseudo Code

	Multiple Sequence Headers
	Broken Streams Handling

	Encoding Procedures
	Configuration Change
	Example 2: Encoding Pseudo Code

	External Bit Rate Control
	Figure 4: Asynchronous Encoding Flow With External BRC
	Example 3: External BRC Pseudo Code

	Video Processing Procedures
	Example 4: Video Processing Pseudo Code
	Configuration
	Table 4 Configurable VPP filters
	Example 5: Configure Video Processing

	Region of Interest
	Figure 5: VPP Region of Interest Operation
	Table 5: Examples of VPP Operations on Region of Interest

	Transcoding Procedures
	Asynchronous Pipeline
	Example 6: Pseudo Code of Asynchronous Pipeline Construction
	Example 7: Pseudo Code of Asynchronous ENC->ENCODE Pipeline Construction

	Surface Pool Allocation
	Example 8: Calculate Surface Pool Size

	Pipeline Error Reporting

	Working with hardware acceleration
	Figure 6 Usage of video memory for hardware acceleration
	Working with Microsoft* DirectX* Applications
	Example 9 Setting multithreading mode
	Table 6: Supported SDK Surface Types and Color Formats for Direct3D9
	Table 7: Supported SDK Surface Types and Color Formats for Direct3D11

	Working with VA API Applications
	Example 10 Obtaining VA display from X Window System
	Example 11 Obtaining VA display from Direct Rendering Manager
	Table 8: Supported SDK Surface Types and Color Formats for VA API

	Memory Allocation and External Allocators
	Example 12: Example Frame Allocator

	Surface Type Neutral Transcoding
	Example 13: Pseudo-Code of Opaque Surface Procedure

	Hardware Device Error Handling
	Example 14: Pseudo-Code to Handle MFX_ERR_DEVICE_BUSY

	Function Reference
	Global Functions
	MFXCloneSession
	MFXClose
	MFXDoWork
	MFXDisjoinSession
	MFXGetPriority
	MFXInit
	MFXInitEx
	MFXJoinSession
	MFXQueryIMPL
	MFXQueryVersion
	MFXSetPriority

	MFXVideoCORE
	MFXVideoCORE_SetHandle
	MFXVideoCORE_GetHandle
	MFXVideoCORE_SetBufferAllocator
	MFXVideoCORE_SetFrameAllocator
	MFXVideoCORE_QueryPlatform
	MFXVideoCORE_SyncOperation

	MFXVideoENCODE
	MFXVideoENCODE_Query
	MFXVideoENCODE_QueryIOSurf
	MFXVideoENCODE_Init
	MFXVideoENCODE_Reset
	MFXVideoENCODE_Close
	MFXVideoENCODE_GetVideoParam
	MFXVideoENCODE_GetEncodeStat
	MFXVideoENCODE_EncodeFrameAsync

	MFXVideoENC
	MFXVideoENC_Query
	MFXVideoENC_QueryIOSurf
	MFXVideoENC_Init
	MFXVideoENC_Reset
	MFXVideoENC_Close
	MFXVideoENC_GetVideoParam
	MFXVideoENC_ProcessFrameAsync

	MFXVideoDECODE
	MFXVideoDECODE_DecodeHeader
	MFXVideoDECODE_Query
	MFXVideoDECODE_QueryIOSurf
	MFXVideoDECODE_Init
	MFXVideoDECODE_Reset
	MFXVideoDECODE_Close
	MFXVideoDECODE_GetVideoParam
	MFXVideoDECODE_GetDecodeStat
	MFXVideoDECODE_GetPayload
	MFXVideoDECODE_SetSkipMode
	MFXVideoDECODE_DecodeFrameAsync

	MFXVideoVPP
	MFXVideoVPP_Query
	MFXVideoVPP_QueryIOSurf
	MFXVideoVPP_Init
	MFXVideoVPP_Reset
	MFXVideoVPP_Close
	MFXVideoVPP_GetVideoParam
	MFXVideoVPP_GetVPPStat
	MFXVideoVPP_RunFrameVPPAsync

	Structure Reference
	mfxBitstream
	mfxBufferAllocator
	Alloc
	Free
	Lock
	Unlock

	mfxDecodeStat
	mfxEncodeCtrl
	mfxEncodeStat
	mfxExtBuffer
	mfxExtAVCRefListCtrl
	mfxExtAVCRefLists
	mfxExtCodingOption
	mfxExtCodingOption2
	mfxExtCodingOption3
	mfxExtCodingOptionSPSPPS
	mfxExtOpaqueSurfaceAlloc
	mfxExtVideoSignalInfo
	mfxExtPictureTimingSEI
	mfxExtAvcTemporalLayers
	mfxExtVppAuxData
	mfxExtVPPDenoise
	mfxExtVppMctf
	mfxExtVPPDetail
	mfxExtVPPDoNotUse
	mfxExtVPPDoUse
	mfxExtVPPFrameRateConversion
	mfxExtVPPProcAmp
	mfxExtVPPImageStab
	mfxExtVPPComposite
	mfxExtVPPVideoSignalInfo
	mfxExtEncoderCapability
	mfxExtEncoderResetOption
	mfxExtAVCEncodedFrameInfo
	mfxExtEncoderROI
	mfxExtMasteringDisplayColourVolume
	mfxExtContentLightLevelInfo
	mfxExtVPPDeinterlacing
	mfxFrameAllocator
	Alloc
	Free
	Lock
	Unlock
	GetHDL

	mfxFrameAllocRequest
	mfxFrameAllocResponse
	mfxFrameData
	mfxFrameInfo
	mfxFrameSurface1
	mfxInfoMFX
	Example 15: Pseudo-Code for GOP Structure Parameters

	mfxInfoVPP
	mfxInitParam
	mfxPlatform
	mfxPayload
	mfxVersion
	mfxVideoParam
	mfxVPPStat
	mfxENCInput
	mfxENCOutput
	mfxExtLAControl
	Figure 6: LookAhead BRC QP Calculation Algorithm

	mfxExtLAFrameStatistics
	mfxExtVPPFieldProcessing
	mfxExtMBQP
	mfxExtMBForceIntra
	mfxExtChromaLocInfo
	mfxExtHEVCTiles
	mfxExtMBDisableSkipMap
	mfxExtDecodedFrameInfo
	mfxExtTimeCode
	mfxExtHEVCRegion
	mfxExtThreadsParam
	mfxExtHEVCParam
	mfxExtPredWeightTable
	mfxExtAVCRoundingOffset
	mfxExtDirtyRect
	mfxExtMoveRect
	mfxExtCodingOptionVPS
	mfxExtVPPRotation
	mfxExtVPPScaling
	mfxExtVPPMirroring
	mfxExtVPPColorFill
	mfxExtEncodedSlicesInfo
	mfxExtMVOverPicBoundaries
	mfxExtDecVideoProcessing
	mfxExtVP9Param
	mfxExtVP9Segmentation
	mfxExtVP9TemporalLayers
	mfxExtBRC
	Init
	Reset
	Close
	GetFrameCtrl
	Update

	mfxBRCFrameParam
	mfxBRCFrameCtrl
	mfxBRCFrameStatus
	mfxExtMultiFrameParam
	mfxExtMultiFrameControl
	mfxExtEncodedUnitsInfo
	mfxExtColorConversion
	mfxExtDecodeErrorReport

	Enumerator Reference
	BitstreamDataFlag
	ChromaFormatIdc
	CodecFormatFourCC
	CodecLevel
	CodecProfile
	CodingOptionValue
	ColorFourCC
	Corruption
	ExtendedBufferID
	ExtMemBufferType
	ExtMemFrameType
	FrameDataFlag
	FrameType
	MfxNalUnitType
	FrcAlgm
	GopOptFlag
	IOPattern
	mfxHandleType
	mfxIMPL
	mfxPriority
	mfxSkipMode
	mfxStatus
	PicStruct
	RateControlMethod
	TimeStampCalc
	TargetUsage
	TrellisControl
	BRefControl
	LookAheadDownSampling
	VPPFieldProcessingMode
	PicType
	SkipFrame
	DeinterlacingMode
	TelecinePattern
	HEVCRegionType
	GPUCopy
	WeightedPred
	ScenarioInfo
	ContentInfo
	PRefType
	GeneralConstraintFlags
	Angle
	PlatformCodeName
	PayloadCtrlFlags
	IntraRefreshTypes
	VP9ReferenceFrame
	SegmentIdBlockSize
	SegmentFeature
	InsertHDRPayload
	SampleAdaptiveOffset
	BRCStatus
	MFMode
	ErrorTypes
	ChromaSiting

	Appendices
	Appendix A: Configuration Parameter Constraints
	Appendix B: Multiple-Segment Encoding
	Figure 7: Multiple-Segment Encoding
	Table 9: Multiple-Segment Encoding Functions
	Example 16: Pseudo-code to Import H.264 SPS/PPS Parameters

	Appendix C: Streaming and Video Conferencing Features
	Dynamic Bitrate Change
	Dynamic resolution change
	Forced Key Frame Generation
	Reference List Selection
	Low Latency Encoding and Decoding
	Reference Picture Marking Repetition SEI message
	Long-term Reference frame
	Temporal scalability

	Appendix D: Switchable Graphics and Multiple Monitors
	Switchable Graphics
	Multiple Monitors

	Appendix E: Working directly with VA API for Linux*
	Example 17: Creation of VA surfaces
	Example 18: Destroying of VA surfaces
	Example 19: Accessing data in VA surface
	Example 20: unmapping buffer and destroying VAImage
	Example 21: Working with encoded bitstream buffer

	Appendix F: CQP HRD mode encoding
	Example 22: Pseudo-code to enable CQP HRD mode

