- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
Hello folks,
Not sure how this helps to trust the Intel Python distribution,
but the following tests suite were disabled from the Intel Python Distribution for Linux
[Python 3.5.3 |Intel Corporation| (default, May 18 2017, 22:17:21)]
$ theano-nose --theano -v ---------------------------------------------------------------------- Ran 0 tests in 0.001s OK
$ nosetests -v sklearn ---------------------------------------------------------------------- Ran 0 tests in 0.002s OK
Sergio
Enhance your #MachineLearning and #BigData skills via #Python #SciPy
1) https://www.packtpub.com/big-data-and-business-intelligence/numerical-and-scientific-computing-scipy-video
2) https://www.packtpub.com/big-data-and-business-intelligence/learning-scipy-numerical-and-scientific-computing-second-edition
Link Copied
- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
Sergio,
We test scikit-learn and theano using following commands respectively:
1. <Intel-Distribution-for-Python_installation>/bin/python -c "import nose; nose.main()" -v sklearn
2. <Intel-Distribution-for-Python_installation>/bin/python -c "import theano; theano.test()"
Thanks,
Rohit
- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
Rohit J. (Intel) wrote:
Sergio,
We test scikit-learn and theano using following commands respectively:
1. <Intel-Distribution-for-Python_installation>/bin/python -c "import nose; nose.main()" -v sklearn
2. <Intel-Distribution-for-Python_installation>/bin/python -c "import theano; theano.test()"Thanks,
Rohit
Hi Rohit,
Thanks for your reply.
The first (testing sklearn) command did not work:
$ python -c "import nose; nose.main()" -v sklearn ---------------------------------------------------------------------- Ran 0 tests in 0.002s OK
The second one (testing theano) ended with and error. The output is below. Hope someone knows how to overcome it.
Regards,
Sergio
Enhance your #MachineLearning and #BigData skills via #Python #SciPy
1) https://www.packtpub.com/big-data-and-business-intelligence/numerical-and-scientific-computing-scipy-video
2) https://www.packtpub.com/big-data-and-business-intelligence/learning-scipy-numerical-and-scientific-computing-second-edition
3) FREE (beginner) PYTHON book in Spanish:
https://www.researchgate.net/publication/301293668_Aprendiendo_a_Programar_en_Python_con_mi_Computador_Primeros_pasos_rumbo_a_computos_de_gran_escala_en_las_Ciencias_e_Ingenierias
$ python -c "import theano; theano.test()" icpc version 18.0.0 Beta (gcc version 4.8.0 compatibility) Theano version 0.9.0dev2.dev-00216eff7fa927ba26c0629697e22fbd2d708e5c theano is installed in /home/intel2018py/intelpython3/lib/python3.5/site- packages/theano NumPy version 1.12.1 NumPy relaxed strides checking option: True NumPy is installed in /home/intel2018py/intelpython3/lib/python3.5/site-p ackages/numpy Python version 3.5.3 |Intel Corporation| (default, May 18 2017, 22:17:21) [GCC 4 .8.2 20140120 (Red Hat 4.8.2-15)] nose version 1.3.7 /home/intel2018py/intelpython3/lib/python3.5/site-packages/theano/misc/py cuda_init.py:35: UserWarning: PyCUDA import failed in theano.misc.pycuda_init warnings.warn("PyCUDA import failed in theano.misc.pycuda_init") /home/intel2018py/intelpython3/lib/python3.5/site-packages/theano/sandbox /gpuarray/__init__.py:10: UserWarning: theano.sandbox.gpuarray has been moved to theano.gpuarray. Please update your code and pickles. If the warning persists, clear theano's cache ('$theano/bin/theano-cache clear'). ... ... ... ............./home/intel2018py/intelpython3/lib/python3.5/site-packages/scipy/sparse/compressed.py:774: SparseEfficiencyWarning: Changing the sparsity structure of a csc_matrix is expensive. lil_matrix is more efficient. SparseEfficiencyWarning) /home/intel2018py/intelpython3/lib/python3.5/site-packages/scipy/sparse/compressed.py:774: SparseEfficiencyWarning: Changing the sparsity structure of a csr_matrix is expensive. lil_matrix is more efficient. SparseEfficiencyWarning) ...S....................................Error in file [/home/.theano/compiledir_Linux-3.13--generic-x86_64-with-debian-jessie-sid-x86_64-3.5.3-64/tmp4hdl47fr/mod.cpp:750], err code (-1)
- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
Sergio,
Can you try running the theano tests with the following command and post the output?
theano-nose --theano -v --exe
The tests require the "nose_parameterized" module as well
conda install nose-parameterized
Thanks,
Chris

- Subscribe to RSS Feed
- Mark Topic as New
- Mark Topic as Read
- Float this Topic for Current User
- Bookmark
- Subscribe
- Printer Friendly Page