- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
The code is prepared to do batch inference for object detection.
// -----------------------------------------------------------------------------------------------------
// --------------------------- 3. Configure input & output ---------------------------------------------
// --------------------------- Prepare input blobs -----------------------------------------------------
slog::info << "Preparing input blobs" << slog::endl;
/** Taking information about all topology inputs **/
InputsDataMap inputInfo(network.getInputsInfo());
if (inputInfo.size() != 1) throw std::logic_error("Sample supports topologies with 1 input only");
auto inputInfoItem = *inputInfo.begin();
/** Specifying the precision and layout of input data provided by the user.
* This should be called before load of the network to the device **/
inputInfoItem.second->setPrecision(Precision::U8);
inputInfoItem.second->setLayout(Layout::NCHW);
std::vector<std::shared_ptr<unsigned char>> imagesData = {};
std::vector<std::string> validImageNames = {};
for (const auto & i : imageNames) {
FormatReader::ReaderPtr reader(i.c_str());
if (reader.get() == nullptr) {
slog::warn << "Image " + i + " cannot be read!" << slog::endl;
continue;
}
/** Store image data **/
std::shared_ptr<unsigned char> data(
reader->getData(inputInfoItem.second->getTensorDesc().getDims()[3],
inputInfoItem.second->getTensorDesc().getDims()[2]));
if (data != nullptr) {
imagesData.push_back(data);
validImageNames.push_back(i);
}
}
if (imagesData.empty()) throw std::logic_error("Valid input images were not found!");
/** Setting batch size using image count **/
network.setBatchSize(imagesData.size());
size_t batchSize = network.getBatchSize();
slog::info << "Batch size is " << std::to_string(batchSize) << slog::endl;
// -----------------------------------------------------------------------------------------------------
// --------------------------- 4. Loading model to the device ------------------------------------------
slog::info << "Loading model to the device" << slog::endl;
ExecutableNetwork executable_network = ie.LoadNetwork(network, FLAGS_d);
// -----------------------------------------------------------------------------------------------------
// --------------------------- 5. Create infer request -------------------------------------------------
slog::info << "Create infer request" << slog::endl;
InferRequest inferRequest = executable_network.CreateInferRequest();
// -----------------------------------------------------------------------------------------------------
// --------------------------- 6. Prepare input --------------------------------------------------------
for (auto & item : inputInfo) {
Blob::Ptr inputBlob = inferRequest.GetBlob(item.first);
SizeVector dims = inputBlob->getTensorDesc().getDims();
/** Fill input tensor with images. First b channel, then g and r channels **/
size_t num_channels = dims[1];
size_t image_size = dims[3] * dims[2];
auto data = inputBlob->buffer().as<PrecisionTrait<Precision::U8>::value_type *>();
/** Iterate over all input images **/
for (size_t image_id = 0; image_id < imagesData.size(); ++image_id) {
/** Iterate over all pixel in image (b,g,r) **/
for (size_t pid = 0; pid < image_size; pid++) {
/** Iterate over all channels **/
for (size_t ch = 0; ch < num_channels; ++ch) {
/** [images stride + channels stride + pixel id ] all in bytes **/
data[image_id * image_size * num_channels + ch * image_size + pid] = imagesData.at(image_id).get()[pid*num_channels + ch];
}
}
}
}
// -----------------------------------------------------------------------------------------------------
// --------------------------- 7. Do inference ---------------------------------------------------------
size_t numIterations = 10;
size_t curIteration = 0;
std::condition_variable condVar;
inferRequest.SetCompletionCallback(
[&] {
curIteration++;
slog::info << "Completed " << curIteration << " async request execution" << slog::endl;
if (curIteration < numIterations) {
/* here a user can read output containing inference results and put new input
to repeat async request again */
inferRequest.StartAsync();
} else {
/* continue sample execution after last Asynchronous inference request execution */
condVar.notify_one();
}
});
/* Start async request for the first time */
slog::info << "Start inference (" << numIterations << " asynchronous executions)" << slog::endl;
inferRequest.StartAsync();
/* Wait all repetitions of the async request */
std::mutex mutex;
std::unique_lock<std::mutex> lock(mutex);
condVar.wait(lock, [&]{ return curIteration == numIterations; });
// -----------------------------------------------------------------------------------------------------
// --------------------------- 8. Process output -------------------------------------------------------
// -----------------------------------------------------------------------------------------------------
slog::info << "Processing output blobs" << slog::endl;
OutputsDataMap outputsInfo(network.getOutputsInfo());
if (outputsInfo.size() != 1) throw std::logic_error("Sample supports topologies with 1 output only");
Blob::Ptr outputBlob = inferRequest.GetBlob(outputsInfo.begin()->first);
std::string outputName;
DataPtr outputInfo;
for (const auto& out : outputsInfo) {
if (out.second->getCreatorLayer().lock()->type == "DetectionOutput") {
outputName = out.first;
outputInfo = out.second;
}
}
if (outputInfo == nullptr) {
throw std::logic_error("Can't find a DetectionOutput layer in the topology");
}
const SizeVector outputDims = outputInfo->getTensorDesc().getDims();
const int maxProposalCount = outputDims[2];
const int objectSize = outputDims[3];
if (objectSize != 7) {
throw std::logic_error("Output item should have 7 as a last dimension");
}
if (outputDims.size() != 4) {
throw std::logic_error("Incorrect output dimensions for SSD model");
}
/** Set the precision of output data provided by the user, should be called before load of the network to the device **/
outputInfo->setPrecision(Precision::FP32);
/** Validating -nt value **/
const size_t resultsCnt = outputBlob->size() / batchSize;
if (FLAGS_nt > resultsCnt || FLAGS_nt < 1) {
slog::warn << "-nt " << FLAGS_nt << " is not available for this network (-nt should be less than " \
<< resultsCnt + 1 << " and more than 0)\n will be used maximal value : " << resultsCnt << slog::endl;
FLAGS_nt = resultsCnt;
}
const float* detection = static_cast<PrecisionTrait<Precision::FP32>::value_type*>(outputBlob->buffer());
At output processing, outputsInfo.begin()->first is just for the first image. How to get results for next images.
My object detection is based on Tensorflow's SSD model.
Link Copied
1 Reply
- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
Dear naing, nyan,
You could do it exactly as https://github.com/opencv/dldt/blob/2019/inference-engine/samples/object_detection_sample_ssd/main.cpp shows. Your batch_size may be 1 or 100 but see how images are organized according to batch_id.
for (size_t batch_id = 0; batch_id < batchSize; ++batch_id) {
addRectangles(originalImagesData[batch_id].get(), imageHeights[batch_id], imageWidths[batch_id], boxes[batch_id], classes[batch_id],
BBOX_THICKNESS);
const std::string image_path = "out_" + std::to_string(batch_id) + ".bmp";
if (writeOutputBmp(image_path, originalImagesData[batch_id].get(), imageHeights[batch_id], imageWidths[batch_id])) {
slog::info << "Image " + image_path + " created!" << slog::endl;
} else {
throw std::logic_error(std::string("Can't create a file: ") + image_path);
}
}
Hope it helps,
Thanks,
Shubha
Reply
Topic Options
- Subscribe to RSS Feed
- Mark Topic as New
- Mark Topic as Read
- Float this Topic for Current User
- Bookmark
- Subscribe
- Printer Friendly Page