Community
cancel
Showing results for 
Search instead for 
Did you mean: 
203 Views

d_Helmholtz_3D accuracy

Jump to solution
What is the accuracy of d_Helmholtz_3D? I would like to know what the residual error is after solving the equation.

Thanks.
0 Kudos
1 Solution
203 Views
Hi,
d_Helmholtz_3D is the direct solver of matrix correspond of 7-point grid Helmholtz equation. So its provide accuracy based on floating operations.
With best regards,
Alexander Kalinkin

View solution in original post

14 Replies
204 Views
Hi,
d_Helmholtz_3D is the direct solver of matrix correspond of 7-point grid Helmholtz equation. So its provide accuracy based on floating operations.
With best regards,
Alexander Kalinkin

View solution in original post

203 Views
since it is double precision, does it mean the accuracy is 1E-16?
203 Views
Not equal but about it.
With best regards,
Alexander Kalinkin
203 Views
Dear Alexander,

I checked the accuracy of d_Helmholtz_3D and it was much much larger than 1E-16. Since the solver uses a standard seven-point discretization, I verified the accuracy by the following code. (I have a uniform mesh for my problem.)
[cpp]for ( k=1; kGetTuple( i + j *NX + k *NX*NY); phi_im1jk = Phi->GetTuple( (i-1) + j *NX + k *NX*NY); phi_ip1jk = Phi->GetTuple( (i+1) + j *NX + k *NX*NY); phi_ijm1k = Phi->GetTuple( i + (j-1)*NX + k *NX*NY); phi_ijp1k = Phi->GetTuple( i + (j+1)*NX + k *NX*NY); phi_ijkm1 = Phi->GetTuple( i + j *NX + (k-1)*NX*NY); phi_ijkp1 = Phi->GetTuple( i + j *NX + (k+1)*NX*NY); X_i = X->GetTuple( i ); X_im1 = X->GetTuple( i-1 ); Y_j = Y->GetTuple( j ); Y_jm1 = Y->GetTuple( j-1 ); Z_k = Z->GetTuple( k ); Z_km1 = Z->GetTuple( k-1 ); rhs= f->GetTuple( i + j*NX+ k*NX*NY); res = ( phi_im1jk + phi_ip1jk - 2*phi_ijk)/pow( X_i - X_im1, 2 ) + ( phi_ijm1k + phi_ijp1k - 2*phi_ijk)/pow( Y_j - Y_jm1, 2 ) + ( phi_ijkm1 + phi_ijkp1 - 2*phi_ijk)/pow( Z_k - Z_km1, 2 ) + rhs; } } }[/cpp]
When I print res, the residual is about 1E-1. Is there something that I have to be careful when using the function? I need to have an accuracy about 1E-16. Please advise.

Thanks,
Ahmad
203 Views
Hi Ahmad,
To verify it I need to have full example with rhs and boundary condition. Could you provide this example to me by e'mail or by private answer?
With best regards,
Alexander Kalinkin
203 Views
Alexander,

I found a bug in my code which misled me to the see large residuals. I fixed it and the error now is about 1E-15.

Thanks,
Ahmad
203 Views
Hi Ahmad,
Nice to hear it, feel free to ask any question about PL in particular and MKL in general.
With best regards,
Alexander Kalinkin
203 Views
Hi Alexander,

I have another question. The solver is for uniform mesh. Does this mean that it has to have dx=dy=dz? Or we can have dx!=dy!=dz (constant dx, dy, dz everywhere in the domain)?

Thanks,
Ahmad
203 Views
Hi Ahmad,
The uniform mesh mean that all mesh steps are equals in one direction, but mesh sizes for different dimension could be differ. For example hx=0.2, hy=0.5, hz=0.1.
With best regards,
Alexander Kalinkin
203 Views
I am writing a journal paper in which I have used d_Helmholtz. Regarding the 7-point grid Helmholtz equation, can I have the name of the method by which the system is solved?

Thanks,
Ahmad
203 Views
Hi Ahmad,
The main information could be in paper prepared by us a several years ago so feel free to use it.
With best regards,
Alexander Kalinkin
203 Views
Thanks. You helped me a lot.
Best,
Ahmad
203 Views
Hi Alexander,

I didn't find the method by which the library solves the system. Is it gradient bi-conjugate, multigrid, overrelaxation, or Fourier? I would appreciate it.

Thanks,
Ahmad
203 Views
Hi Ahmad,
Poisson library based on Fourier decomposition for elliptic problems with separable variables.
With best regards,
Alexander Kalinkin
Reply