
Nios II Software Developer’s Handbook
May 2011

NII52004-11.0.0

© 2011 Altera Corporation. All rights reserved. ALTERA, ARR
and/or trademarks of Altera Corporation in the U.S. and other
www.altera.com/common/legal.html. Altera warrants perform
reserves the right to make changes to any products and services
information, product, or service described herein except as exp
specifications before relying on any published information and

May 2011
NII52004-11.0.0
6. Developing Programs Using the
Hardware Abstraction Layer
This chapter discusses how to develop embedded programs for the Nios® II
embedded processor based on the Altera® hardware abstraction layer (HAL). This
chapter contains the following sections:

■ “The Nios II Embedded Project Structure” on page 6–2

■ “The system.h System Description File” on page 6–4

■ “Data Widths and the HAL Type Definitions” on page 6–5

■ “UNIX-Style Interface” on page 6–5

■ “File System” on page 6–6

■ “Using Character-Mode Devices” on page 6–8

■ “Using File Subsystems” on page 6–15

■ “Using Timer Devices” on page 6–16

■ “Using Flash Devices” on page 6–19

■ “Using DMA Devices” on page 6–25

■ “Using Interrupt Controllers” on page 6–30

■ “Reducing Code Footprint in Embedded Systems” on page 6–30

■ “Boot Sequence and Entry Point” on page 6–37

■ “Memory Usage” on page 6–39

■ “Working with HAL Source Files” on page 6–44

The application program interface (API) for HAL-based systems is readily accessible
to software developers who are new to the Nios II processor. Programs based on the
HAL use the ANSI C standard library functions and runtime environment, and access
hardware resources with the HAL API’s generic device models. The HAL API largely
conforms to the familiar ANSI C standard library functions, though the ANSI C
standard library is separate from the HAL. The close integration of the ANSI C
standard library and the HAL makes it possible to develop useful programs that
never call the HAL functions directly. For example, you can manipulate character
mode devices and files using the ANSI C standard library I/O functions, such as
printf() and scanf().

f This document does not cover the ANSI C standard library. An excellent reference is
The C Programming Language, Second Edition, by Brian Kernighan and Dennis M.
Ritchie (Prentice-Hall).
Subscribe

IA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat. & Tm. Off.
 countries. All other trademarks and service marks are the property of their respective holders as described at

ance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but
 at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any
ressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
 before placing orders for products or services.

http://www.altera.com/common/legal.html
https://www.altera.com/servlets/subscriptions/alert?id=NII52004

6–2 Chapter 6: Developing Programs Using the Hardware Abstraction Layer
Nios II Development Flows
Nios II Development Flows
The Nios II Embedded Design Suite (EDS) provides two distinct development flows
for creating Nios II programs. You can you can use the Nios II Software Build Tools
(SBT), or work in the Nios II integrated development environment (IDE). These two
approaches use the HAL in the same way.

1 In most cases, you should create new projects using either the Nios II SBT for
Eclipse™ or the SBT command line. IDE support is for the following situations:

■ Working with pre-existing Nios II IDE software projects

■ Creating new projects for the Nios II C2H compiler

■ Debugging with the FS2 console

HAL BSP Settings
Every Nios II board support package (BSP) has settings that determine the BSP’s
characteristics. For example, HAL BSPs have settings to identify the hardware
components associated with standard devices such as stdout. Defining and
manipulating BSP settings is an important part of Nios II project creation. You
manipulate BSP settings with the Nios II BSP Editor, with command-line options, or
with Tcl scripts.

f For details about how to control BSP settings, refer to one or more of the following
documents:

■ For the Nios II SBT for Eclipse, refer to the Getting Started with the Graphical User
Interface chapter of the Nios II Software Developer’s Handbook.

■ For the Nios II SBT command line, refer to the Nios II Software Build Tools chapter of
the Nios II Software Developer’s Handbook.

f For detailed descriptions of available BSP settings, refer to the Nios II Software Build
Tools Reference chapter of the Nios II Software Developer’s Handbook.

Many HAL settings are reflected in the system.h file, which provides a helpful
reference for details about your BSP. For information about system.h, refer to “The
system.h System Description File” on page 6–4.

1 Do not edit system.h. The Nios II EDS provides tools to manipulate system settings.

The Nios II Embedded Project Structure
The creation and management of software projects based on the HAL is integrated
tightly with the Nios II SBT. This section discusses the Nios II projects as a basis for
understanding the HAL.
Nios II Software Developer’s Handbook May 2011 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52017.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52017.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf

Chapter 6: Developing Programs Using the Hardware Abstraction Layer 6–3
The Nios II Embedded Project Structure
Figure 6–1 shows the blocks of a Nios II program with emphasis on how the HAL BSP
fits in. The label for each block describes what or who generated that block, and an
arrow points to each block’s dependency.

Every HAL-based Nios II program consists of two Nios II projects, as shown in
Figure 6–1. Your application-specific code is contained in one project (the user
application project), and it depends on a separate BSP project (the HAL BSP).

The application project contains all the code you develop. The executable image for
your program ultimately results from building both projects.

With the Nios II SBT for Eclipse, the tools create the HAL BSP project when you create
your application project. In the Nios II SBT command line flow, you create the BSP
using nios2-bsp or a related tool.

The HAL BSP project contains all information needed to interface your program to the
hardware. The HAL drivers relevant to your hardware system are incorporated in the
BSP project.

The BSP project depends on the hardware system, defined by a SOPC Information File
(.sopcinfo). The Nios II SBT can keep your BSP up-to-date with the hardware system.
This project dependency structure isolates your program from changes to the
underlying hardware, and you can develop and debug code without concern about
whether your program matches the target hardware.

You can use the Nios II SBT to update your BSP to match updated hardware. You
control whether and when these updates occur.

f For details about how the SBT keeps your BSP up-to-date with your hardware system,
refer to “Revising Your BSP” in the Nios II Software Build Tools chapter of the Nios II
Software Developer’s Handbook.

In summary, when your program is based on a HAL BSP, you can always keep it
synchronized with the target hardware with a few simple SBT commands.

Figure 6–1. The Nios II HAL Project Structure

Nios II Program
Based on HAL

Also known as: Your program, or user project
Defined by: .c, .h, .S, .s files
Created by: You

Defined by: .sopcinfo file

Defined by: Nios II BSP settings

Also known as: Nios II processor system, or the hardware

Created by: System integration tool (Qsys or SOPC Builder)

Created by: Nios II IDE or Nios II command line tools

Application Project

HAL BSP Project

Hardware System
May 2011 Altera Corporation Nios II Software Developer’s Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf

6–4 Chapter 6: Developing Programs Using the Hardware Abstraction Layer
The system.h System Description File
The system.h System Description File
The system.h file provides a complete software description of the Nios II system
hardware. Not all information in system.h is useful to you as a programmer, and it is
rarely necessary to include it explicitly in your C source files. Nonetheless, system.h
holds the answer to the question, “What hardware is present in this system?”

The system.h file describes each peripheral in the system and provides the following
details:

■ The hardware configuration of the peripheral

■ The base address

■ Interrupt request (IRQ) information (if any)

■ A symbolic name for the peripheral

The Nios II SBT generates the system.h file for HAL BSP projects. The contents of
system.h depend on both the hardware configuration and the HAL BSP properties.

1 Do not edit system.h. The SBT provides facilities to manipulate system settings.

For details about how to control BSP settings, refer to “HAL BSP Settings” on
page 6–2.

The code in Example 6–1 from a system.h file shows some of the hardware
configuration options this file defines.

Example 6–1. Excerpts from a system.h File

/*
* sys_clk_timer configuration
*
*/

#define SYS_CLK_TIMER_NAME "/dev/sys_clk_timer"
#define SYS_CLK_TIMER_TYPE "altera_avalon_timer"
#define SYS_CLK_TIMER_BASE 0x00920800
#define SYS_CLK_TIMER_IRQ 0
#define SYS_CLK_TIMER_ALWAYS_RUN 0
#define SYS_CLK_TIMER_FIXED_PERIOD 0

/*
* jtag_uart configuration
*
*/

#define JTAG_UART_NAME "/dev/jtag_uart"
#define JTAG_UART_TYPE "altera_avalon_jtag_uart"
#define JTAG_UART_BASE 0x00920820
#define JTAG_UART_IRQ 1
Nios II Software Developer’s Handbook May 2011 Altera Corporation

Chapter 6: Developing Programs Using the Hardware Abstraction Layer 6–5
Data Widths and the HAL Type Definitions
Data Widths and the HAL Type Definitions
For embedded processors such as the Nios II processor, it is often important to know
the exact width and precision of data. Because the ANSI C data types do not explicitly
define data width, the HAL uses a set of standard type definitions instead. The ANSI
C types are supported, but their data widths are dependent on the compiler’s
convention.

The header file alt_types.h defines the HAL type definitions; Table 6–1 shows the
HAL type definitions.

Table 6–2 shows the data widths that the Altera-provided GNU toolchain uses.

UNIX-Style Interface
The HAL API provides a number of UNIX-style functions. The UNIX-style functions
provide a familiar development environment for new Nios II programmers, and can
ease the task of porting existing code to run in the HAL environment. The HAL uses
these functions primarily to provide the system interface for the ANSI C standard
library. For example, the functions perform device access required by the C library
functions defined in stdio.h.

The following list contains all of the available UNIX-style functions:

■ _exit()

■ close()

■ fstat()

■ getpid()

■ gettimeofday()

Table 6–1. The HAL Type Definitions

Type Meaning

alt_8 Signed 8-bit integer.

alt_u8 Unsigned 8-bit integer.

alt_16 Signed 16-bit integer.

alt_u16 Unsigned 16-bit integer.

alt_32 Signed 32-bit integer.

alt_u32 Unsigned 32-bit integer.

alt_64 Signed 64-bit integer.

alt_u64 Unsigned 64-bit integer.

Table 6–2. GNU Toolchain Data Widths

Type Meaning

char 8 bits.

short 16 bits.

long 32 bits.

int 32 bits.
May 2011 Altera Corporation Nios II Software Developer’s Handbook

6–6 Chapter 6: Developing Programs Using the Hardware Abstraction Layer
File System
■ ioctl()

■ isatty()

■ kill()

■ lseek()

■ open()

■ read()

■ sbrk()

■ settimeofday()

■ stat()

■ usleep()

■ wait()

■ write()

The most commonly used functions are those that relate to file I/O. Refer to “File
System” on page 6–6.

f For details about the use of these functions, refer to the HAL API Reference chapter of
the Nios II Software Developer’s Handbook.

File System
The HAL provides infrastructure for UNIX-style file access. You can use this
infrastructure to build a file system on any storage devices available in your
hardware.

f For an example, refer to the Read-Only Zip File System chapter of the Nios II Software
Developer’s Handbook.

You can access files in a HAL-based file system by using either the C standard library
file I/O functions in the newlib C library (for example fopen(), fclose(), and
fread()), or using the UNIX-style file I/O provided by the HAL.

The HAL provides the following UNIX-style functions for file manipulation:

■ close()

■ fstat()

■ ioctl()

■ isatty()

■ lseek()

■ open()

■ read()

■ stat()

■ write()
Nios II Software Developer’s Handbook May 2011 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52012.pdf

Chapter 6: Developing Programs Using the Hardware Abstraction Layer 6–7
File System
f For more information about these functions, refer to the HAL API Reference chapter of
the Nios II Software Developer’s Handbook.

The HAL registers a file subsystem as a mount point in the global HAL file system.
Attempts to access files below that mount point are directed to the file subsystem. For
example, if a read-only zip file subsystem (zipfs) is mounted as /mount/zipfs0, the
zipfs file subsystem handles calls to fopen() for /mount/zipfs0/myfile.

There is no concept of a current directory. Software must access all files using absolute
paths.

The HAL file infrastructure also allows you to manipulate character mode devices
with UNIX-style path names. The HAL registers character mode devices as nodes in
the HAL file system. By convention, system.h defines the name of a device node as
the prefix /dev/ plus the name assigned to the hardware component at system
generation time. For example, a UART peripheral that appears as uart1 in Qsys or
SOPC builder is named /dev/uart1 in system.h.

The code in Example 6–2 reads characters from a read-only zip file subsystem rozipfs
that is registered as a node in the HAL file system. The standard header files stdio.h,
stddef.h, and stdlib.h are installed with the HAL.

f For more information about the use of these functions, refer to the newlib C library
documentation installed with the Nios II EDS. On the Windows Start menu, click
Programs > Altera > Nios II > Nios II Documentation.

Example 6–2. Reading Characters from a File Subsystem

#include <stdio.h>
#include <stddef.h>
#include <stdlib.h>

#define BUF_SIZE (10)

int main(void)
{

FILE* fp;
char buffer[BUF_SIZE];

fp = fopen ("/mount/rozipfs/test", "r"); if (fp == NULL)
{
printf ("Cannot open file.\n");
exit (1);

}

fread (buffer, BUF_SIZE, 1, fp);

fclose (fp);

return 0;
}

May 2011 Altera Corporation Nios II Software Developer’s Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf

6–8 Chapter 6: Developing Programs Using the Hardware Abstraction Layer
Using Character-Mode Devices
Using Character-Mode Devices
A character-mode device is a hardware peripheral that sends and/or receives
characters serially. A common example is the UART. Character mode devices are
registered as nodes in the HAL file system. In general, a program associates a file
descriptor to a device’s name, and then writes and reads characters to or from the file
using the ANSI C file operations defined in file.h. The HAL also supports the concept
of standard input, standard output, and standard error, allowing programs to call the
stdio.h I/O functions.

Standard Input, Standard Output and Standard Error
Using standard input (stdin), standard output (stdout), and standard error (stderr)
is the easiest way to implement simple console I/O. The HAL manages stdin, stdout,
and stderr behind the scenes, which allows you to send and receive characters
through these channels without explicitly managing file descriptors. For example, the
HAL directs the output of printf() to standard out, and perror() to standard error.
You associate each channel to a specific hardware device by manipulating BSP
settings.

The code in Example 6–3 shows the classic Hello World program. This program sends
characters to whatever device is associated with stdout when the program is
compiled.

When using the UNIX-style API, you can use the file descriptors stdin, stdout, and
stderr, defined in unistd.h, to access, respectively, the standard in, standard out, and
standard error character I/O streams. unistd.h is installed with the Nios II EDS as
part of the newlib C library package.

Example 6–3. Hello World

#include <stdio.h>
int main ()
{

printf ("Hello world!");
return 0;

}

Nios II Software Developer’s Handbook May 2011 Altera Corporation

Chapter 6: Developing Programs Using the Hardware Abstraction Layer 6–9
Using Character-Mode Devices
General Access to Character Mode Devices
Accessing a character-mode device other than stdin, stdout, or stderr is as easy as
opening and writing to a file. The code in Example 6–4 writes a message to a UART
called uart1.

C++ Streams
HAL-based systems can use the C++ streams API for manipulating files from C++.

/dev/null
All systems include the device /dev/null. Writing to /dev/null has no effect, and all
data is discarded. /dev/null is used for safe I/O redirection during system startup.
This device can also be useful for applications that wish to sink unwanted data.

This device is purely a software construct. It does not relate to any physical hardware
device in the system.

Lightweight Character-Mode I/O
The HAL offers several methods of reducing the code footprint of character-mode
device drivers. For details, refer to “Reducing Code Footprint in Embedded Systems”
on page 6–30.

Altera Logging Functions
The Altera logging functions provide a separate channel for sending logging and
debugging information to a character-mode device, supplementing stdout and
stderr. The Altera logging information can be printed in response to several
conditions. Altera logging can be enabled and disabled independently of any normal
stdio output, making it a powerful debugging tool.

Example 6–4. Writing Characters to a UART

#include <stdio.h>
#include <string.h>

int main (void)
{

char* msg = "hello world";
FILE* fp;

fp = fopen ("/dev/uart1", "w");
if (fp!=NULL)
{
fprintf(fp, "%s",msg);
fclose (fp);

}
return 0;

}

May 2011 Altera Corporation Nios II Software Developer’s Handbook

6–10 Chapter 6: Developing Programs Using the Hardware Abstraction Layer
Using Character-Mode Devices
When Altera logging is enabled, your software can print extra messages to a specified
port with HAL function calls. The logging port, specified in the BSP, can be a UART or
a JTAG UART device. In its default configuration, Altera logging prints out boot
messages, which trace each step of the boot process.

1 Avoid setting the Altera logging device to the device used for stdout or stderr. If
Altera logging output is sent to stdout or stderr, the logging output might appear
interleaved with the stdout or stderr output

Several logging options are available, controlled by C preprocessor symbols. You can
also choose to add custom logging messages.

1 Altera logging changes system behavior. The logging implementation is designed to
be as simple as possible, loading characters directly to the transmit register. It can
have a negative impact on software performance.

Altera logging functions are conditionally compiled. When logging is disabled, it has
no impact on code footprint or performance.

1 The Altera reduced device drivers do not support Altera logging.

Enabling Altera Logging
The Nios II SBT has a setting to enable Altera logging. The setting is called
hal.log_port. It is similar to hal.stdout, hal.stdin, and hal.stderr. To enable Altera
logging, you set hal.log_port to a JTAG UART or a UART device. The setting allows
the HAL to send log messages to the specified device when a logging macro is
invoked.

When Altera logging is enabled, the Nios II SBT defines ALT_LOG_ENABLE in public.mk
to enable log messages. The build tools also set the ALT_LOG_PORT_TYPE and
ALT_LOG_PORT_BASE values in system.h to point to the specified device.

When Altera logging is enabled without special options, the HAL prints out boot
messages to the selected port. For typical software that uses the standard alt_main.c
(such as the Hello World software example), the messages appear as in Example 6–5.

Example 6–5. Default Boot Logging Output

[crt0.S] Inst & Data Cache Initialized.
[crt0.S] Setting up stack and global pointers.
[crt0.S] Clearing BSS
[crt0.S] Calling alt_main.
[alt_main.c] Entering alt_main, calling alt_irq_init.
[alt_main.c] Done alt_irq_init, calling alt_os_init.
[alt_main.c] Done OS Init, calling alt_sem_create.
[alt_main.c] Calling alt_sys_init.
[alt_main.c] Done alt_sys_init. Redirecting IO.
[alt_main.c] Calling C++ constructors.
[alt_main.c] Calling main.
[alt_exit.c] Entering _exit() function.
[alt_exit.c] Exit code from main was 0.
[alt_exit.c] Calling ALT_OS_STOP().
[alt_exit.c] Calling ALT_SIM_HALT().
[alt_exit.c] Spinning forever.
Nios II Software Developer’s Handbook May 2011 Altera Corporation

Chapter 6: Developing Programs Using the Hardware Abstraction Layer 6–11
Using Character-Mode Devices
1 A write operation to the Altera logging device stalls in ALT_LOG_PRINTF() until the
characters are read from the Altera logging device’s output buffer. To ensure that the
Nios II application completes initialization, run the nios2-terminal command from
the Nios II Command Shell to accept the Altera logging output.

Extra Logging Options
In addition to the default boot messages, logging options are incorporated in Altera
logging. Each option is controlled by a C preprocessor symbol. The details of each
option are outlined in Table 6–3.

Table 6–3. Altera Logging Options (Part 1 of 2)

Name Description

System clock log

Purpose Prints out a message from the system clock interrupt handler at a specified interval.
This indicates that the system is still running. The default interval is every 1 second.

Preprocessor
symbol ALT_LOG_SYS_CLK_ON_FLAG_SETTING

Modifiers

The system clock log has two modifiers, providing two different ways to specify the
logging interval.

■ ALT_LOG_SYS_CLK_INTERVAL—Specifies the logging interval in system clock
ticks. The default is <clock ticks per second>, that is, one second.

■ ALT_LOG_SYS_CLK_INTERVAL_MULTIPLIER—Specifies the logging interval in
seconds. The default is 1. When you modify
ALT_LOG_SYS_CLK_INTERVAL_MULTIPLIER, ALT_LOG_SYS_CLK_INTERVAL is
recalculated.

Sample Output
System Clock On 0

System Clock On 1

Write echo

Purpose

Every time alt_write() is called (normally, whenever characters are sent to
stdout), the first <n> characters are echoed to a logging message. The message
starts with the string "Write Echo:". <n> is specified with
ALT_LOG_WRITE_ECHO_LEN. The default is 15 characters.

Preprocessor
symbol ALT_LOG_WRITE_ON_FLAG_SETTING

Modifiers ALT_LOG_WRITE_ECHO_LEN—Number of characters to echo. Default is 15.

Sample Output Write Echo: Hello from Nio

JTAG startup log

Purpose

At JTAG UART driver initialization, print out a line with the number of characters in
the software transmit buffer followed by the JTAG UART control register contents.
The number of characters, prefaced by the string "SW CirBuf", might be negative,
because it is computed as (<tail_pointer> – <head_pointer>) on a circular buffer.

For more information about the JTAG UART control register fields, refer to the
Off-Chip Interface Peripherals section in the Embedded Peripherals IP User Guide.

Preprocessor
symbol ALT_LOG_JTAG_UART_STARTUP_INFO_ON_FLAG_SETTING

Modifiers None

Sample Output JTAG Startup Info: SW CirBuf = 0, HW FIFO wspace=64 AC=0 WI=0
RI=0 WE=0 RE=1
May 2011 Altera Corporation Nios II Software Developer’s Handbook

http://www.altera.com/literature/hb/nios2/n2cpu_nii5v3_01.pdf

6–12 Chapter 6: Developing Programs Using the Hardware Abstraction Layer
Using Character-Mode Devices
Setting a preprocessor flag to 1 enables the corresponding option. Any value other
than 1 disables the option.

Several options have modifiers, which are additional preprocessor symbols
controlling details of how the options work. For example, the system clock log’s
modifiers control the logging interval. Option modifiers are also listed in Table 6–3.
An option’s modifiers are meaningful only when the option is enabled.

JTAG interval log

Purpose
Creates an alarm object to print out the same JTAG UART information as the JTAG
startup log, but at a repeated interval. Default interval is 0.1 second, or 10 messages
a second.

Preprocessor
symbol ALT_LOG_JTAG_UART_ALARM_ON_FLAG_SETTING

Modifiers

The JTAG interval log has two modifiers, providing two different ways to specify the
logging interval.

■ ALT_LOG_JTAG_UART_TICKS—Logging interval in ticks. Default is
<ticks_per_second> / 10.

■ ALT_LOG_JTAG_UART_TICKS_DIVISOR—Specifies the number of logs per
second. The default is 10. When you modify
ALT_LOG_JTAG_UART_TICKS_DIVISOR, ALT_LOG_JTAG_UART_TICKS is
recalculated.

Sample Output JTAG Alarm: SW CirBuf = 0, HW FIFO wspace=45 AC=0 WI=0 RI=0 WE=0
RE=1

JTAG interrupt
service routine
(ISR) log

Purpose Prints out a message every time the JTAG UART near-empty interrupt triggers.
Message contains the same JTAG UART information as in the JTAG startup log.

Preprocessor
symbol ALT_LOG_JTAG_UART_ISR_ON_FLAG_SETTING

Modifiers None

Sample Output JTAG IRQ: SW CirBuf = -20, HW FIFO wspace=64 AC=0 WI=1 RI=0 WE=1
RE=1

Boot log

Purpose Prints out messages tracing the software boot process. The boot log is turned on by
default when Altera logging is enabled.

Preprocessor
symbol ALT_LOG_BOOT_ON_FLAG_SETTING

Modifiers None

Sample Output Refer to “Enabling Altera Logging” on page 6–10.

Table 6–3. Altera Logging Options (Part 2 of 2)

Name Description
Nios II Software Developer’s Handbook May 2011 Altera Corporation

Chapter 6: Developing Programs Using the Hardware Abstraction Layer 6–13
Using Character-Mode Devices
Logging Levels
An additional preprocessor symbol, ALT_LOG_FLAGS, can be set to provide some
grouping for the extra logging options. ALT_LOG_FLAGS implements logging levels
based on performance impact. With higher logging levels, the Altera logging options
take more processor time. ALT_LOG_FLAGS levels are defined in Table 6–4.

Because each logging option is controlled by an independent preprocessor symbol,
individual options in the logging levels can be overridden.

Example: Creating a BSP with Logging
Example 6–6 creates a HAL BSP with Altera logging enabled and the following
options in addition to the default boot log:

■ System clock log

■ JTAG startup log

■ JTAG interval log, logging twice a second

■ No write echo

The -DALT_LOG_FLAGS=2 argument adds -DALT_LOG_FLAGS=2 to the ALT_CPP_FLAGS
make variable in public.mk.

Custom Logging Messages
You can add custom messages that are sent to the Altera logging device. To define a
custom message, include the header file alt_log_printf.h in your C source file as
follows:

#include "sys/alt_log_printf.h"

Table 6–4. Altera Logging Levels

Logging Level Logging

0 Boot log (default)

1 Level 0 plus system clock log and JTAG startup log

2 Level 1 plus JTAG interval log and write echo

3 Level 2 plus JTAG ISR log

-1 Silent mode—No Altera logging

Note to Table 6–4:

(1) You can use logging level -1 to turn off logging without changing the program footprint. The logging code is still
present in your executable image, as determined by other logging options chosen. This is useful when you wish
to switch the log output on or off without disturbing the memory map.

Example 6–6. BSP With Logging

nios2-bsp hal my_bsp ../my_hardware.sopcinfo \
--set hal.log_port uart1 \
--set hal.make.bsp_cflags_user_flags \
-DALT_LOG_FLAGS=2 \
-DALT_LOG_WRITE_ON_FLAG_SETTING=0 \
-DALT_LOG_JTAG_UART_TICKS_DIVISOR=2r
May 2011 Altera Corporation Nios II Software Developer’s Handbook

6–14 Chapter 6: Developing Programs Using the Hardware Abstraction Layer
Using Character-Mode Devices
Then use the following macro function:

ALT_LOG_PRINTF(const char *format, ...)

This C preprocessor macro is a pared-down version of printf(). The format
argument supports most printf() options. It supports %c, %d %I %o %s %u %x, and %X,
as well as some precision and spacing modifiers, such as %-9.3o. It does not support
floating point formats, such as %f or %g. This function is not compiled if Altera logging
is not enabled.

If you want your custom logging message be controlled by Altera logging
preprocessor options, use the appropriate Altera logging option preprocessor flags
from Table 6–4, or Table 6–3 on page 6–11. Example 6–7 illustrates two ways to
implement logging options with custom logging messages.

Altera Logging Files
Table 6–5 lists HAL source files which implement Altera logging functions.

Table 6–6 lists HAL source files which use Altera logging functions. These files
implement the logging options listed in table Table 6–3 on page 6–11. They also serve
as examples of logging usage.

Example 6–7. Using Preprocessor Flags

/* The following example prints "Level 2 logging message" if
logging is set to level 2 or higher */

#if (ALT_LOG_FLAGS >= 2)
ALT_LOG_PRINTF ("Level 2 logging message");

#endif

/* The following example prints "Boot logging message" if boot logging
is turned on */

#if (ALT_LOG_BOOT_ON_FLAG_SETTING == 1)
ALT_LOG_PRINTF ("Boot logging message");

#endif

Table 6–5. HAL Implementation Files for Altera Logging

Location (1) File Name

components/altera_hal/HAL/inc/sys/ alt_log_printf.h

components/altera_hal/HAL/src/ alt_log_printf.c

components/altera_nios2/HAL/src/ alt_log_macro.S

Note to Table 6–5:

(1) All file locations are relative to <Nios II EDS install path>.

Table 6–6. HAL Example Files for Altera Logging

Location (1) File Name

components/altera_avalon_jtag_uart/HAL/src/ altera_avalon_jtag_uart.c

components/altera_avalon_timer/HAL/src/ altera_avalon_timer_sc.c

components/altera_hal/HAL/src/ alt_exit.c

Note to Table 6–6:

(1) All file locations are relative to <Nios II EDS install path>.
Nios II Software Developer’s Handbook May 2011 Altera Corporation

Chapter 6: Developing Programs Using the Hardware Abstraction Layer 6–15
Using File Subsystems
Using File Subsystems
The HAL generic device model for file subsystems allows access to data stored in an
associated storage device using the C standard library file I/O functions. For example,
the Altera read-only zip file system provides read-only access to a file system stored
in flash memory.

A file subsystem is responsible for managing all file I/O access beneath a given mount
point. For example, if a file subsystem is registered with the mount point /mnt/
rozipfs, all file access beneath this directory, such as fopen("/mnt/rozipfs/myfile",
"r"), is directed to that file subsystem.

As with character mode devices, you can manipulate files in a file subsystem using
the C file I/O functions defined in file.h, such as fopen() and fread().

f For more information about the use of file I/O functions, refer to the newlib C library
documentation installed with the Nios II EDS. On the Windows Start menu, click
Programs > Altera > Nios II <version> > Nios II EDS <version> Documentation.

Host-Based File System
The host-based file system enables programs executing on a target board to read and
write files stored on the host computer. The Nios II SBT for Eclipse transmits file data
over the Altera download cable. Your program accesses the host based file system
using the ANSI C standard library I/O functions, such as fopen() and fread(). The
host-based file system is a software package which you add to your BSP.

The following features and restrictions apply to the host based file system:

■ The host-based file system makes the Nios II C/C++ application project directory
and its subdirectories available to the HAL file system on the target hardware.

■ The target processor can access any file in the project directory. Be careful not to
corrupt project source files.

■ The host-based file system only operates while debugging a project. It cannot be
used for run sessions.

■ Host file data travels between host and target serially through the Altera
download cable, and therefore file access time is relatively slow. Depending on
your host and target system configurations, it can take several milliseconds per
call to the host. For higher performance, use buffered I/O function such as
fread() and fwrite(), and increase the buffer size for large files.

components/altera_hal/HAL/src/ alt_main.c

components/altera_hal/HAL/src/ alt_write.c

components/altera_nios2/HAL/src/ crt0.S

Table 6–6. HAL Example Files for Altera Logging

Location (1) File Name

Note to Table 6–6:

(1) All file locations are relative to <Nios II EDS install path>.
May 2011 Altera Corporation Nios II Software Developer’s Handbook

6–16 Chapter 6: Developing Programs Using the Hardware Abstraction Layer
Using Timer Devices
You configure the host-based file system using the Nios II BSP Editor. The host-based
file system has one setting: the mount point, which specifies the mount point within
the HAL file system. For example, if you name the mount point /mnt/host and the
project directory on you host computer is /software/project1, in a HAL-based
program, the following code opens the file /software/project1/datafile.dat.:

fopen("/mnt/host/datafile.dat", "r");

Using Timer Devices
Timer devices are hardware peripherals that count clock ticks and can generate
periodic interrupt requests. You can use a timer device to provide a number of
time-related facilities, such as the HAL system clock, alarms, the time-of-day, and
time measurement. To use the timer facilities, the Nios II processor system must
include a timer peripheral in hardware.

The HAL API provides two types of timer device drivers:

■ System clock driver—Supports alarms, such as you would use in a scheduler.

■ Timestamp driver—Supports high-resolution time measurement.

An individual timer peripheral can behave as either a system clock or a timestamp,
but not both.

f The HAL-specific API functions for accessing timer devices are defined in sys/
alt_alarm.h and sys/alt_timestamp.h.

System Clock Driver
The HAL system clock driver provides a periodic heartbeat, causing the system clock
to increment on each beat. Software can use the system clock facilities to execute
functions at specified times, and to obtain timing information. You select a specific
hardware timer peripheral as the system clock device by manipulating BSP settings.

For details about how to control BSP settings, refer to “HAL BSP Settings” on
page 6–2.

The HAL provides implementations of the following standard UNIX functions:
gettimeofday(), settimeofday(), and times(). The times returned by these functions
are based on the HAL system clock.

The system clock measures time in clock ticks. For embedded engineers who deal
with both hardware and software, do not confuse the HAL system clock with the
clock signal driving the Nios II processor hardware. The period of a HAL system
clock tick is generally much longer than the hardware system clock. system.h defines
the clock tick frequency.

At runtime, you can obtain the current value of the system clock by calling the
alt_nticks() function. This function returns the elapsed time in system clock ticks
since reset. You can get the system clock rate, in ticks per second, by calling the
function alt_ticks_per_second(). The HAL timer driver initializes the tick
frequency when it creates the instance of the system clock.
Nios II Software Developer’s Handbook May 2011 Altera Corporation

Chapter 6: Developing Programs Using the Hardware Abstraction Layer 6–17
Using Timer Devices
The standard UNIX function gettimeofday() is available to obtain the current time.
You must first calibrate the time of day by calling settimeofday(). In addition, you
can use the times() function to obtain information about the number of elapsed ticks.
The prototypes for these functions appear in times.h.

f For more information about the use of these functions, refer to the HAL API Reference
chapter of the Nios II Software Developer’s Handbook.

Alarms
You can register functions to be executed at a specified time using the HAL alarm
facility. A software program registers an alarm by calling the function
alt_alarm_start():

int alt_alarm_start (alt_alarm* alarm,
alt_u32 nticks,
alt_u32 (*callback) (void* context),
void* context);

The function callback() is called after nticks have elapsed. The input argument
context is passed as the input argument to callback() when the call occurs. The
HAL does not use the context parameter. It is only used as a parameter to the
callback() function.

Your code must allocate the alt_alarm structure, pointed to by the input argument
alarm. This data structure must have a lifetime that is at least as long as that of the
alarm. The best way to allocate this structure is to declare it as a static or global.
alt_alarm_start() initializes *alarm.

The callback function can reset the alarm. The return value of the registered callback
function is the number of ticks until the next call to callback. A return value of zero
indicates that the alarm should be stopped. You can manually cancel an alarm by
calling alt_alarm_stop().

One alarm is created for each call to alt_alarm_start(). Multiple alarms can run
simultaneously.

Alarm callback functions execute in an exception context. This imposes functional
restrictions which you must observe when writing an alarm callback.

f For more information about the use of these functions, refer to the Exception Handling
chapter of the Nios II Software Developer’s Handbook.
May 2011 Altera Corporation Nios II Software Developer’s Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52006.pdf

6–18 Chapter 6: Developing Programs Using the Hardware Abstraction Layer
Using Timer Devices
The code fragment in Example 6–8 demonstrates registering an alarm for a periodic
callback every second.

Timestamp Driver
Sometimes you want to measure time intervals with a degree of accuracy greater than
that provided by HAL system clock ticks. The HAL provides high resolution timing
functions using a timestamp driver. A timestamp driver provides a monotonically
increasing counter that you can sample to obtain timing information. The HAL only
supports one timestamp driver in the system.

You specify a hardware timer peripheral as the timestamp device by manipulating
BSP settings. The Altera-provided timestamp driver uses the timer that you specify.

If a timestamp driver is present, the following functions are available:

■ alt_timestamp_start()

■ alt_timestamp()

Calling alt_timestamp_start() starts the counter running. Subsequent calls to
alt_timestamp() return the current value of the timestamp counter. Calling
alt_timestamp_start() again resets the counter to zero. The behavior of the
timestamp driver is undefined when the counter reaches (232 - 1).

Example 6–8. Using a Periodic Alarm Callback Function

#include <stddef.h>
#include <stdio.h>
#include "sys/alt_alarm.h"
#include "alt_types.h"

/*
* The callback function.
*/

alt_u32 my_alarm_callback (void* context)
{

/* This function is called once per second */
return alt_ticks_per_second();

}

...

/* The alt_alarm must persist for the duration of the alarm. */
static alt_alarm alarm;

...

if (alt_alarm_start (&alarm,
alt_ticks_per_second(),
my_alarm_callback,
NULL) < 0)

{
printf ("No system clock available\n");

}

Nios II Software Developer’s Handbook May 2011 Altera Corporation

Chapter 6: Developing Programs Using the Hardware Abstraction Layer 6–19
Using Flash Devices
You can obtain the rate at which the timestamp counter increments by calling the
function alt_timestamp_freq(). This rate is typically the hardware frequency of the
Nios II processor system—usually millions of cycles per second. The timestamp
drivers are defined in the alt_timestamp.h header file.

f For more information about the use of these functions, refer to the HAL API Reference
chapter of the Nios II Software Developer’s Handbook.

The code fragment in Example 6–9 shows how you can use the timestamp facility to
measure code execution time.

Using Flash Devices
The HAL provides a generic device model for nonvolatile flash memory devices.
Flash memories use special programming protocols to store data. The HAL API
provides functions to write data to flash memory. For example, you can use these
functions to implement a flash-based file subsystem.

Example 6–9. Using the Timestamp to Measure Code Execution Time

#include <stdio.h>
#include "sys/alt_timestamp.h"
#include "alt_types.h"

int main (void)
{

alt_u32 time1;
alt_u32 time2;
alt_u32 time3;

if (alt_timestamp_start() < 0)
{
printf ("No timestamp device available\n");

}
else
{
time1 = alt_timestamp();
func1(); /* first function to monitor */
time2 = alt_timestamp();
func2(); /* second function to monitor */
time3 = alt_timestamp();

printf ("time in func1 = %u ticks\n",
(unsigned int) (time2 - time1));

printf ("time in func2 = %u ticks\n",
(unsigned int) (time3 - time2));

printf ("Number of ticks per second = %u\n",
(unsigned int)alt_timestamp_freq());

}
return 0;

}

May 2011 Altera Corporation Nios II Software Developer’s Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf

6–20 Chapter 6: Developing Programs Using the Hardware Abstraction Layer
Using Flash Devices
The HAL API also provides functions to read flash, although it is generally not
necessary. For most flash devices, programs can treat the flash memory space as
simple memory when reading, and do not need to call special HAL API functions. If
the flash device has a special protocol for reading data, such as the Altera erasable
programmable configurable serial (EPCS) configuration device, you must use the
HAL API to both read and write data.

This section describes the HAL API for the flash device model. The following two
APIs provide two different levels of access to the flash:

■ Simple flash access—Functions that write buffers to flash and read them back at
the block level. In writing, if the buffer is less than a full block, these functions
erase preexisting flash data above and below the newly written data.

■ Fine-grained flash access—Functions that write buffers to flash and read them
back at the buffer level. In writing, if the buffer is less than a full block, these
functions preserve preexisting flash data above and below the newly written data.
This functionality is generally required for managing a file subsystem.

The API functions for accessing flash devices are defined in sys/alt_flash.h.

f For more information about the use of these functions, refer to the HAL API Reference
chapter of the Nios II Software Developer’s Handbook. You can get details about the
Common Flash Interface, including the organization of common flash interface (CFI)
erase regions and blocks, from JEDEC (www.jedec.org). You can find the CFI standard
by searching for document JESD68.

Simple Flash Access
This interface consists of the functions alt_flash_open_dev(), alt_write_flash(),
alt_read_flash(), and alt_flash_close_dev(). The code “Using the Simple Flash
API Functions” on page 6–22 shows the use of all of these functions in one code
example. You open a flash device by calling alt_flash_open_dev(), which returns a
file handle to a flash device. This function takes a single argument that is the name of
the flash device, as defined in system.h.

After you obtain a handle, you can use the alt_write_flash() function to write data
to the flash device. The prototype is:

int alt_write_flash(alt_flash_fd* fd,
int offset,
const void* src_addr,
int length)

A call to this function writes to the flash device identified by the handle fd. The driver
writes the data starting at offset bytes from the base of the flash device. The data
written comes from the address pointed to by src_addr, and the amount of data
written is length.

There is also an alt_read_flash() function to read data from the flash device. The
prototype is:

int alt_read_flash(alt_flash_fd* fd,
int offset,
void* dest_addr,
int length)
Nios II Software Developer’s Handbook May 2011 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf
www.jedec.org

Chapter 6: Developing Programs Using the Hardware Abstraction Layer 6–21
Using Flash Devices
A call to alt_read_flash() reads from the flash device with the handle fd, offset
bytes from the beginning of the flash device. The function writes the data to location
pointed to by dest_addr, and the amount of data read is length. For most flash
devices, you can access the contents as standard memory, making it unnecessary to
use alt_read_flash().

The function alt_flash_close_dev() takes a file handle and closes the device. The
prototype for this function is:

void alt_flash_close_dev(alt_flash_fd* fd)

The code in Example 6–10 shows the use of simple flash API functions to access a
flash device named /dev/ext_flash, as defined in system.h.

Block Erasure or Corruption
Generally, flash memory is divided into blocks. alt_write_flash() might need to
erase the contents of a block before it can write data to it. In this case, it makes no
attempt to preserve the existing contents of the block. This action can lead to
unexpected data corruption (erasure), if you are performing writes that do not fall on
block boundaries. If you wish to preserve existing flash memory contents, use the
fine-grained flash functions. These are discussed in the following section.

Table 6–7 on page 6–23 shows how you can cause unexpected data corruption by
writing using the simple flash access functions. Table 6–7 shows the example of an
8-kilobyte (KB) flash memory comprising two 4-KB blocks. First write 5 KB of all 0xAA
to flash memory at address 0x0000, and then write 2 KB of all 0xBB to address 0x1400.
After the first write succeeds (at time t(2)), the flash memory contains 5 KB of 0xAA,
and the rest is empty (that is, 0xFF). Then the second write begins, but before writing
to the second block, the block is erased. At this point, t(3), the flash contains 4 KB of
0xAA and 4 KB of 0xFF. After the second write finishes, at time t(4), the 2 KB of 0xFF at
address 0x1000 is corrupted.

Fine-Grained Flash Access
Three additional functions provide complete control for writing flash contents at the
highest granularity:

■ alt_get_flash_info()

■ alt_erase_flash_block()

■ alt_write_flash_block()

By the nature of flash memory, you cannot erase a single address in a block. You must
erase (that is, set to all ones) an entire block at a time. Writing to flash memory can
only change bits from 1 to 0; to change any bit from 0 to 1, you must erase the entire
block along with it.
May 2011 Altera Corporation Nios II Software Developer’s Handbook

6–22 Chapter 6: Developing Programs Using the Hardware Abstraction Layer
Using Flash Devices
Therefore, to alter a specific location in a block while leaving the surrounding contents
unchanged, you must read out the entire contents of the block to a buffer, alter the
value(s) in the buffer, erase the flash block, and finally write the whole block-sized
buffer back to flash memory. The fine-grained flash access functions automate this
process at the flash block level.

alt_get_flash_info() gets the number of erase regions, the number of erase blocks
in each region, and the size of each erase block. The function prototype is as follows:

int alt_get_flash_info (
alt_flash_fd* fd,
flash_region** info,
int* number_of_regions)

Example 6–10. Using the Simple Flash API Functions

#include <stdio.h>
#include <string.h>
#include "sys/alt_flash.h"
#define BUF_SIZE 1024

int main ()
{

alt_flash_fd* fd;
int ret_code;
char source[BUF_SIZE];
char dest[BUF_SIZE];

/* Initialize the source buffer to all 0xAA */
memset(source, 0xAA, BUF_SIZE);

fd = alt_flash_open_dev("/dev/ext_flash");
if (fd!=NULL)
{
ret_code = alt_write_flash(fd, 0, source, BUF_SIZE);
if (ret_code==0)
{

ret_code = alt_read_flash(fd, 0, dest, BUF_SIZE);
if (ret_code==0)
{

/*
* Success.
* At this point, the flash is all 0xAA and we
* have read that all back to dest
*/

}
}
alt_flash_close_dev(fd);

}
else
{
printf("Cannot open flash device\n");

}
return 0;

}

Nios II Software Developer’s Handbook May 2011 Altera Corporation

Chapter 6: Developing Programs Using the Hardware Abstraction Layer 6–23
Using Flash Devices
If the call is successful, on return the address pointed to by number_of_regions
contains the number of erase regions in the flash memory, and *info points to an
array of flash_region structures. This array is part of the file descriptor.

The flash_region structure is defined in sys/alt_flash_types.h. The data structure is
defined as follows:

typedef struct flash_region
{

int offset; /* Offset of this region from start of the flash */
int region_size; /* Size of this erase region */
int number_of_blocks; /* Number of blocks in this region */
int block_size; /* Size of each block in this erase region */

}flash_region;

With the information obtained by calling alt_get_flash_info(), you are in a position
to erase or program individual blocks of the flash device.

alt_erase_flash() erases a single block in the flash memory. The function prototype
is as follows:

int alt_erase_flash_block (alt_flash_fd* fd, int offset, int length)

The flash memory is identified by the handle fd. The block is identified as being
offset bytes from the beginning of the flash memory, and the block size is passed in
length.

alt_write_flash_block() writes to a single block in the flash memory. The prototype
is:

int alt_write_flash_block(alt_flash_fd* fd,
int block_offset,
int data_offset,
const void *data,
int length)

Table 6–7. Example of Writing Flash and Causing Unexpected Data Corruption

Address Block

Time t(0) Time t(1) Time t(2) Time t(3) Time t(4)

Before
First Write

First Write Second Write

After Erasing
Block(s)

After
Writing
Data 1

After Erasing
Block(s)

After
Writing
Data 2

0x0000 1 ?? FF AA AA AA

0x0400 1 ?? FF AA AA AA

0x0800 1 ?? FF AA AA AA

0x0C00 1 ?? FF AA AA AA

0x1000 2 ?? FF AA FF FF (1)

0x1400 2 ?? FF FF FF BB

0x1800 2 ?? FF FF FF BB

0x1C00 2 ?? FF FF FF FF

Note to Table 6–7:

(1) Unintentionally cleared to FF during erasure for second write.
May 2011 Altera Corporation Nios II Software Developer’s Handbook

6–24 Chapter 6: Developing Programs Using the Hardware Abstraction Layer
Using Flash Devices
This function writes to the flash memory identified by the handle fd. It writes to the
block located block_offset bytes from the start of the flash device. The function
writes length bytes of data from the location pointed to by data to the location
data_offset bytes from the start of the flash device.

1 These program and erase functions do not perform address checking, and do not
verify whether a write operation spans into the next block. You must pass in valid
information about the blocks to program or erase.

The code in Example 6–11 on page 6–24 demonstrates the use of the fine-grained flash
access functions.

Example 6–11. Using the Fine-Grained Flash Access API Functions

#include <string.h>
#include "sys/alt_flash.h"
#include "stdtypes.h"
#include "system.h"

#define BUF_SIZE 100

int main (void)
{

flash_region* regions;
alt_flash_fd* fd;
int number_of_regions;
int ret_code;
char write_data[BUF_SIZE];

/* Set write_data to all 0xa */
memset(write_data, 0xA, BUF_SIZE);

fd = alt_flash_open_dev(EXT_FLASH_NAME);

if (fd)
{
ret_code = alt_get_flash_info(fd, ®ions, &number_of_regions);

if (number_of_regions && (regions->offset == 0))
{

/* Erase the first block */
ret_code = alt_erase_flash_block(fd,

regions->offset,
regions->block_size);

if (ret_code == 0) {
/*
* Write BUF_SIZE bytes from write_data 100 bytes to
* the first block of the flash
*/
ret_code = alt_write_flash_block (

fd,
regions->offset,
regions->offset+0x100,
write_data,
BUF_SIZE);

}
}

}
return 0;

}

Nios II Software Developer’s Handbook May 2011 Altera Corporation

Chapter 6: Developing Programs Using the Hardware Abstraction Layer 6–25
Using DMA Devices
Using DMA Devices
The HAL provides a device abstraction model for direct memory access (DMA)
devices. These are peripherals that perform bulk data transactions from a data source
to a destination. Sources and destinations can be memory or another device, such as
an Ethernet connection.

In the HAL DMA device model, there are two categories of DMA transactions:
transmit and receive. The HAL provides two device drivers to implement transmit
channels and receive channels. A transmit channel takes data in a source buffer and
transmits it to a destination device. A receive channel receives data from a device and
deposits it in a destination buffer. Depending on the implementation of the
underlying hardware, software might have access to only one of these two endpoints.

Figure 6–2 shows the three basic types of DMA transactions. Copying data from
memory to memory involves both receive and transmit DMA channels
simultaneously.

The API for access to DMA devices is defined in sys/alt_dma.h.

f For more information about the use of these functions, refer to the HAL API Reference
chapter of the Nios II Software Developer’s Handbook.

DMA devices operate on the contents of physical memory, therefore when reading
and writing data you must consider cache interactions.

f For more information about cache memory, refer to the Cache and Tightly-Coupled
Memory chapter of the Nios II Software Developer’s Handbook.

Figure 6–2. Three Basic Types of DMA Transactions

1. Receiving Data
 from a Peripheral

DMA
Recieve
Channel

Peripheral Memory

 2. Transmitting Data
 to a Peripheral

DMA
Receive
Channel

Peripheral

DMA
Transmit
Channel

DMA
Receive
Channel

DMA
Transmit
Channel

3. Transferring Data
 from Memory to
 Memory

Memory

MemoryMemory
May 2011 Altera Corporation Nios II Software Developer’s Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf

6–26 Chapter 6: Developing Programs Using the Hardware Abstraction Layer
Using DMA Devices
DMA Transmit Channels
DMA transmit requests are queued using a DMA transmit device handle. To obtained
a handle, use the function alt_dma_txchan_open(). This function takes a single
argument, the name of a device to use, as defined in system.h.

The code in Example 6–12 shows how to obtain a handle for a DMA transmit device
dma_0.

You can use this handle to post a transmit request using alt_dma_txchan_send(). The
prototype is:

typedef void (alt_txchan_done)(void* handle);

int alt_dma_txchan_send (alt_dma_txchan dma,
const void* from,
alt_u32 length,
alt_txchan_done* done,
void* handle);

Calling alt_dma_txchan_send() posts a transmit request to channel dma. Argument
length specifies the number of bytes of data to transmit, and argument from specifies
the source address. The function returns before the full DMA transaction completes.
The return value indicates whether the request is successfully queued. A negative
return value indicates that the request failed. When the transaction completes, the
user-supplied function done is called with argument handle to provide notification.

Two additional functions are provided for manipulating DMA transmit channels:
alt_dma_txchan_space(), and alt_dma_txchan_ioctl(). The
alt_dma_txchan_space() function returns the number of additional transmit requests
that can be queued to the device. The alt_dma_txchan_ioctl()function performs
device-specific manipulation of the transmit device.

1 If you are using the Avalon Memory-Mapped® (Avalon-MM) DMA device to transmit
to hardware (not memory-to-memory transfer), call the
alt_dma_txchan_ioctl()function with the request argument set to
ALT_DMA_TX_ONLY_ON.

Example 6–12. Obtaining a File Handle for a DMA Device

#include <stddef.h>
#include "sys/alt_dma.h"

int main (void)
{

alt_dma_txchan tx;

tx = alt_dma_txchan_open ("/dev/dma_0");
if (tx == NULL)
{
/* Error */

}
else
{
/* Success */

}
return 0;

}

Nios II Software Developer’s Handbook May 2011 Altera Corporation

Chapter 6: Developing Programs Using the Hardware Abstraction Layer 6–27
Using DMA Devices
f For further information, refer to the HAL API Reference chapter of the Nios II Software
Developer’s Handbook.

DMA Receive Channels
DMA receive channels operate similarly to DMA transmit channels. Software can
obtain a handle for a DMA receive channel using the alt_dma_rxchan_open()
function. You can then use the alt_dma_rxchan_prepare() function to post receive
requests. The prototype for alt_dma_rxchan_prepare() is:

typedef void (alt_rxchan_done)(void* handle, void* data);

int alt_dma_rxchan_prepare (alt_dma_rxchan dma,
void* data,
alt_u32 length,
alt_rxchan_done* done,
void* handle);

A call to this function posts a receive request to channel dma, for up to length bytes of
data to be placed at address data. This function returns before the DMA transaction
completes. The return value indicates whether the request is successfully queued. A
negative return value indicates that the request failed. When the transaction
completes, the user-supplied function done() is called with argument handle to
provide notification and a pointer to the receive data.

Certain errors can prevent the DMA transfer from completing. Typically this is caused
by a catastrophic hardware failure; for example, if a component involved in the
transfer fails to respond to a read or write request. If the DMA transfer does not
complete (that is, less than length bytes are transferred), function done() is never
called.

Two additional functions are provided for manipulating DMA receive channels:
alt_dma_rxchan_depth() and alt_dma_rxchan_ioctl().

1 If you are using the Avalon-MM DMA device to receive from hardware (not
memory-to-memory transfer), call the alt_dma_rxchan_ioctl() function with the
request argument set to ALT_DMA_RX_ONLY_ON.

alt_dma_rxchan_depth() returns the maximum number of receive requests that can
be queued to the device. alt_dma_rxchan_ioctl() performs device-specific
manipulation of the receive device.

f For further details, refer to the HAL API Reference chapter of the Nios II Software
Developer’s Handbook.
May 2011 Altera Corporation Nios II Software Developer’s Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf

6–28 Chapter 6: Developing Programs Using the Hardware Abstraction Layer
Using DMA Devices
The code in Example 6–13 shows a complete example application that posts a DMA
receive request, and blocks in main() until the transaction completes.

Example 6–13. A DMA Transaction on a Receive Channel

#include <stdio.h>
#include <stddef.h>
#include <stdlib.h>
#include "sys/alt_dma.h"
#include "alt_types.h"

/* flag used to indicate the transaction is complete */
volatile int dma_complete = 0;

/* function that is called when the transaction completes */
void dma_done (void* handle, void* data)
{

dma_complete = 1;
}

int main (void)
{

alt_u8 buffer[1024];
alt_dma_rxchan rx;

/* Obtain a handle for the device */
if ((rx = alt_dma_rxchan_open ("/dev/dma_0")) == NULL)
{
printf ("Error: failed to open device\n");
exit (1);

}
else
{
/* Post the receive request */
if (alt_dma_rxchan_prepare (rx, buffer, 1024, dma_done, NULL) < 0)
{

printf ("Error: failed to post receive request\n");
exit (1);

}

/* Wait for the transaction to complete */
while (!dma_complete);
printf ("Transaction complete\n");
alt_dma_rxchan_close (rx);

}
return 0;

}

Nios II Software Developer’s Handbook May 2011 Altera Corporation

Chapter 6: Developing Programs Using the Hardware Abstraction Layer 6–29
Using DMA Devices
Memory-to-Memory DMA Transactions
Copying data from one memory buffer to another buffer involves both receive and
transmit DMA drivers. The code in Example 6–14 shows the process of queuing up a
receive request followed by a transmit request to achieve a memory-to-memory DMA
transaction.

Example 6–14. Copying Data from Memory to Memory (Part 1 of 2)

#include <stdio.h>
#include <stdlib.h>

#include "sys/alt_dma.h"
#include "system.h"

static volatile int rx_done = 0;

/*
* Callback function that obtains notification that the data
* is received.
*/

static void done (void* handle, void* data)
{

rx_done++;
}

/*
*
*/

int main (int argc, char* argv[], char* envp[])
{

int rc;

alt_dma_txchan txchan;
alt_dma_rxchan rxchan;

void* tx_data = (void*) 0x901000; /* pointer to data to send */
void* rx_buffer = (void*) 0x902000; /* pointer to rx buffer */

/* Create the transmit channel */

if ((txchan = alt_dma_txchan_open("/dev/dma_0")) == NULL)
{
printf ("Failed to open transmit channel\n");
exit (1);
}

/* Create the receive channel */

if ((rxchan = alt_dma_rxchan_open("/dev/dma_0")) == NULL)
{
printf ("Failed to open receive channel\n");
exit (1);

}

/* Continued... */
May 2011 Altera Corporation Nios II Software Developer’s Handbook

6–30 Chapter 6: Developing Programs Using the Hardware Abstraction Layer
Using Interrupt Controllers
Using Interrupt Controllers
The HAL supports two types of interrupt controllers:

■ The Nios II internal interrupt controller

■ An external interrupt controller component

f For information about working with interrupt controllers, refer to the Exception
Handling chapter of the Nios II Software Developer’s Handbook.

Reducing Code Footprint in Embedded Systems
Code size is always a concern for embedded systems developers, because there is a
cost associated with the memory device that stores code. The ability to control and
reduce code size is important in controlling this cost.

The HAL environment is designed to include only those features that you request,
minimizing the total code footprint. If your Nios II hardware system contains exactly
the peripherals used by your program, the HAL contains only the drivers necessary to
control the hardware.

/* Post the transmit request */

if ((rc = alt_dma_txchan_send (txchan,
tx_data,
128,
NULL,
NULL)) < 0)

{
printf ("Failed to post transmit request, reason = %i\n", rc);
exit (1);
}

/* Post the receive request */

if ((rc = alt_dma_rxchan_prepare (rxchan,
rx_buffer,
128,
done,
NULL)) < 0)

{
printf ("Failed to post read request, reason = %i\n", rc);
exit (1);

}

/* wait for transfer to complete */

while (!rx_done);

printf ("Transfer successful!\n");

return 0;
}

Example 6–14. Copying Data from Memory to Memory (Part 2 of 2)
Nios II Software Developer’s Handbook May 2011 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52006.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52006.pdf

Chapter 6: Developing Programs Using the Hardware Abstraction Layer 6–31
Reducing Code Footprint in Embedded Systems
The following sections describe options to consider when you need to further reduce
code size. The hello_world_small example project demonstrates the use of some of
these options to reduce code size to the absolute minimum.

Implementing the options in the following sections entails making changes to BSP
settings. For detailed information about manipulating BSP settings, refer to “HAL
BSP Settings” on page 6–2.

Enable Compiler Optimizations
To enable compiler optimizations, use the -O3 compiler optimization level for the
nios2-elf-gcc compiler. You can specify this command-line option through a BSP
setting.

With this option turned on, the Nios II compiler compiles code with the maximum
optimization available, for both size and speed.

1 You must set this option for both the BSP and the application project.

Use Reduced Device Drivers
Some devices provide two driver variants, a fast variant and a small variant. The
feature sets provided by these two variants are device specific. The fast variant is
full-featured, and the small variant provides a reduced code footprint.

By default the HAL always uses the fast driver variants. You can select the reduced
device driver for all hardware components, or for an individual component, through
HAL BSP settings.

Table 6–8 lists the Altera Nios II peripherals that currently provide small footprint
drivers. The small footprint option might also affect other peripherals. Refer to each
peripheral’s data sheet for complete details of its driver’s small footprint behavior.

Reduce the File Descriptor Pool
The file descriptors that access character mode devices and files are allocated from a
file descriptor pool. You can change the size of the file descriptor pool through a BSP
setting. The default is 32.

Table 6–8. Altera Peripherals Offering Small Footprint Drivers

Peripheral Small Footprint Behavior

UART Polled operation, rather than IRQ-driven

JTAG UART Polled operation, rather than IRQ-driven

Common flash interface
controller Driver excluded in small footprint mode

LCD module controller Driver excluded in small footprint mode

EPCS serial configuration device Driver excluded in small footprint mode
May 2011 Altera Corporation Nios II Software Developer’s Handbook

6–32 Chapter 6: Developing Programs Using the Hardware Abstraction Layer
Reducing Code Footprint in Embedded Systems
Use /dev/null
At boot time, standard input, standard output, and standard error are all directed
towards the null device, that is, /dev/null. This direction ensures that calls to printf()
during driver initialization do nothing and therefore are harmless. After all drivers
are installed, these streams are redirected to the channels configured in the HAL. The
footprint of the code that performs this redirection is small, but you can eliminate it
entirely by selecting null for stdin, stdout, and stderr. This selection assumes that
you want to discard all data transmitted on standard out or standard error, and your
program never receives input through stdin. You can control the assignment of
stdin, stdout, and stderr channels by manipulating BSP settings.

Use a Smaller File I/O Library

Use the Small newlib C Library
The full newlib ANSI C standard library is often unnecessary for embedded systems.
The GNU Compiler Collection (GCC) provides a reduced implementation of the
newlib ANSI C standard library, omitting features of newlib that are often
superfluous for embedded systems. The small newlib implementation requires a
smaller code footprint. When you use nios2-elf-gcc at the command line, the
-msmallc command-line option enables the small C library.

You can select the small newlib library through BSP settings. Table 6–9 summarizes
the limitations of the Nios II small newlib C library implementation.

Table 6–9. Limitations of the Nios II Small newlib C Library (Part 1 of 2)

Limitation Functions Affected

No floating-point support for printf() family of routines. The functions listed
are implemented, but %f and %g options are not supported. (1)

asprintf()

fiprintf()

fprintf()

iprintf()

printf()

siprintf()

snprintf()

sprintf()

No floating-point support for vprintf() family of routines. The functions listed
are implemented, but %f and %g options are not supported.

vasprintf()

vfiprintf()

vfprintf()

vprintf()

vsnprintf()

vsprintf()
Nios II Software Developer’s Handbook May 2011 Altera Corporation

Chapter 6: Developing Programs Using the Hardware Abstraction Layer 6–33
Reducing Code Footprint in Embedded Systems
1 The small newlib C library does not support MicroC/OS-II.

No support for scanf() family of routines. The functions listed are not
supported.

fscanf()

scanf()

sscanf()

vfscanf()

vscanf()

vsscanf()

No support for seeking. The functions listed are not supported.
fseek()

ftell()

No support for opening/closing FILE *. Only pre-opened stdout, stderr, and
stdin are available. The functions listed are not supported.

fopen()

fclose()

fdopen()

fcloseall()

fileno()

No buffering of stdio.h output routines.

functions supported with no buffering:

fiprintf()

fputc()

fputs()

perror()

putc()

putchar()

puts()

printf()

functions not supported:

setbuf()

setvbuf()

No stdio.h input routines. The functions listed are not supported.

fgetc()

gets()

fscanf()

getc()

getchar()

gets()

getw()

scanf()

No support for locale.
setlocale()

localeconv()

No support for C++, because the functions listed in this table are not supported.

Note to Table 6–9:

(1) These functions are a Nios II extension. GCC does not implement them in the small newlib C library.

Table 6–9. Limitations of the Nios II Small newlib C Library (Part 2 of 2)

Limitation Functions Affected
May 2011 Altera Corporation Nios II Software Developer’s Handbook

6–34 Chapter 6: Developing Programs Using the Hardware Abstraction Layer
Reducing Code Footprint in Embedded Systems
f For details about the GCC small newlib C library, refer to the newlib documentation
installed with the Nios II EDS. On the Windows Start menu, click Programs > Altera
> Nios II > Nios II Documentation.

1 The Nios II implementation of the small newlib C library differs slightly from GCC.
Table 6–9 provides details about the differences.

Use UNIX-Style File I/O
If you need to reduce the code footprint further, you can omit the newlib C library,
and use the UNIX-style API. For details, refer to “UNIX-Style Interface” on page 6–5.

The Nios II EDS provides ANSI C file I/O, in the newlib C library, because there is a
per-access performance overhead associated with accessing devices and files using
the UNIX-style file I/O functions. The ANSI C file I/O provides buffered access,
thereby reducing the total number of hardware I/O accesses performed. Also the
ANSI C API is more flexible and therefore easier to use. However, these benefits are
gained at the expense of code footprint.

Emulate ANSI C Functions
If you choose to omit the full implementation of newlib, but you need a limited
number of ANSI-style functions, you can implement them easily using UNIX-style
functions. The code in Example 6–15 shows a simple, unbuffered implementation of
getchar().

f This example is from The C Programming Language, Second Edition, by Brian W.
Kernighan and Dennis M. Ritchie. This standard textbook contains many other useful
functions.

Use the Lightweight Device Driver API
The lightweight device driver API allows you to minimize the overhead of accessing
device drivers. It has no direct effect on the size of the drivers themselves, but lets you
eliminate driver API features which you might not need, reducing the overall size of
the HAL code.

The lightweight device driver API is available for character-mode devices. The
following device drivers support the lightweight device driver API:

■ JTAG UART

■ UART

■ Optrex 16207 LCD

Example 6–15. Unbuffered getchar()

/* getchar: unbuffered single character input */
int getchar (void)
{

char c;
return (read (0, &c, 1) == 1) ? (unsigned char) c : EOF;

}

Nios II Software Developer’s Handbook May 2011 Altera Corporation

Chapter 6: Developing Programs Using the Hardware Abstraction Layer 6–35
Reducing Code Footprint in Embedded Systems
For these devices, the lightweight device driver API conserves code space by
eliminating the dynamic file descriptor table and replacing it with three static file
descriptors, corresponding to stdin, stdout, and stderr. Library functions related to
opening, closing, and manipulating file descriptors are unavailable, but all other
library functionality is available. You can refer to stdin, stdout, and stderr as you
would to any other file descriptor. You can also refer to the following predefined file
numbers:

#define STDIN 0
#define STDOUT 1
#define STDERR 2

This option is appropriate if your program has a limited need for file I/O. The Altera
host-based file system and the Altera read-only zip file system are not available with
the reduced device driver API. You can select the reduced device drivers through BSP
settings.

By default, the lightweight device driver API is disabled.

f For further details about the lightweight device driver API, refer to the Developing
Device Drivers for the Hardware Abstraction Layer chapter of the Nios II Software
Developer’s Handbook.

Use the Minimal Character-Mode API
If you can limit your use of character-mode I/O to very simple features, you can
reduce code footprint by using the minimal character-mode API. This API includes
the following functions:

■ alt_printf()

■ alt_putchar()

■ alt_putstr()

■ alt_getchar()

These functions are appropriate if your program only needs to accept command
strings and send simple text messages. Some of them are helpful only in conjunction
with the lightweight device driver API, discussed in “Use the Lightweight Device
Driver API” on page 6–34.

To use the minimal character-mode API, include the header file sys/alt_stdio.h.

The following sections outline the effects of the functions on code footprint.

alt_printf()
This function is similar to printf(), but supports only the %c %s, %x, and %%
substitution strings. alt_printf() takes up substantially less code space than
printf(), regardless whether you select the lightweight device driver API.
alt_printf() occupies less than 1 KBKB with compiler optimization level -O2.

alt_putchar()
Equivalent to putchar(). In conjunction with the lightweight device driver API, this
function further reduces code footprint. In the absence of the lightweight API, it calls
putchar().
May 2011 Altera Corporation Nios II Software Developer’s Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf

6–36 Chapter 6: Developing Programs Using the Hardware Abstraction Layer
Reducing Code Footprint in Embedded Systems
alt_putstr()
Similar to puts(), except that it does not append a newline character to the string. In
conjunction with the lightweight device driver API, this function further reduces code
footprint. In the absence of the lightweight API, it calls puts().

alt_getchar()
Equivalent to getchar(). In conjunction with the lightweight device driver API, this
function further reduces code footprint. In the absence of the lightweight API, it calls
getchar().

f For further details about the minimal character-mode functions, refer to the HAL API
Reference chapter of the Nios II Software Developer’s Handbook.

Eliminate Unused Device Drivers
If a hardware device is present in the system, by default the Nios II development
flows assume the device needs drivers, and configure the HAL BSP accordingly. If the
HAL can find an appropriate driver, it creates an instance of this driver. If your
program never actually accesses the device, resources are being used unnecessarily to
initialize the device driver.

If the hardware includes a device that your program never uses, consider removing
the device from the hardware. This reduces both code footprint and FPGA resource
usage.

However, there are cases when a device must be present, but runtime software does
not require a driver. The most common example is flash memory. The user program
might boot from flash, but not use it at runtime; thus, it does not need a flash driver.

You can selectively omit any individual driver, select a specific driver version, or
substitute your own driver.

f For further information about controlling driver configurations, refer to the Nios II
Software Build Tools chapter of the Nios II Software Developer’s Handbook.

Another way to control the device driver initialization process is to use the
free-standing environment. For details, refer to “Boot Sequence and Entry Point” on
page 6–37.

Eliminate Unneeded Exit Code
The HAL calls the exit() function at system shutdown to provide a clean exit from
the program. exit() flushes all of the C library internal I/O buffers and calls any C++
functions registered with atexit(). In particular, exit() is called on return from
main(). Two HAL options allow you to minimize or eliminate this exit code.

Eliminate Clean Exit
To avoid the overhead associated with providing a clean exit, your program can use
the function _exit() in place of exit(). This function does not require you to change
source code. You can select the _exit() function through a BSP setting.
Nios II Software Developer’s Handbook May 2011 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf

Chapter 6: Developing Programs Using the Hardware Abstraction Layer 6–37
Boot Sequence and Entry Point
Eliminate All Exit Code
Many embedded systems never exit at all. In such cases, exit code is unnecessary. You
can eliminate all exit code through a BSP setting.

1 If you enable this option, ensure that your main() function (or alt_main() function)
does not return.

Turn off C++ Support
By default, the HAL provides support for C++ programs, including default
constructors and destructors. You can disable C++ support through a BSP setting.

Boot Sequence and Entry Point
Normally, your program’s entry point is the function main(). There is an alternate
entry point, alt_main(), that you can use to gain greater control of the boot sequence.
The difference between entering at main() and entering at alt_main() is the
difference between hosted and free-standing applications.

Hosted Versus Free-Standing Applications
The ANSI C standard defines a hosted application as one that calls main() to begin
execution. At the start of main(), a hosted application presumes the runtime
environment and all system services are initialized and ready to use. This is true in the
HAL environment. If you are new to Nios II programming, the HAL’s hosted
environment helps you come up to speed more easily, because you need not consider
what devices exist in the system or how to initialize each one. The HAL initializes the
whole system.

The ANSI C standard also provides for an alternate entry point that avoids automatic
initialization, and assumes that the Nios II programmer initializes any needed
hardware explicitly. The alt_main() function provides a free-standing environment,
giving you complete control over the initialization of the system. The free-standing
environment places on the programmer the responsibility to initialize any system
features used in the program. For example, calls to printf() do not function correctly
in the free-standing environment, unless alt_main() first instantiates a
character-mode device driver, and redirects stdout to the device.

1 Using the free-standing environment increases the complexity of writing Nios II
programs, because you assume responsibility for initializing the system. If your main
interest is to reduce code footprint, use the suggestions described in “Reducing Code
Footprint in Embedded Systems” on page 6–30. It is easier to reduce the HAL BSP
footprint by using BSP settings, than to use the free-standing mode.

The Nios II EDS provides examples of both free-standing and hosted programs.
May 2011 Altera Corporation Nios II Software Developer’s Handbook

6–38 Chapter 6: Developing Programs Using the Hardware Abstraction Layer
Boot Sequence and Entry Point
Boot Sequence for HAL-Based Programs
The HAL provides system initialization code in the C runtime library (crt0.S). This
code performs the following boot sequence:

■ Flushes the instruction and data cache.

■ Configures the stack pointer.

■ Configures the global pointer register.

■ Initializes the block started by symbol (BSS) region to zeroes using the
linker-supplied symbols __bss_start and __bss_end. These are pointers to the
beginning and the end of the BSS region.

■ If there is no boot loader present in the system, copies to RAM any linker section
whose run address is in RAM, such as .rwdata, .rodata, and .exceptions. Refer to
“Global Pointer Register” on page 6–43.

■ Calls alt_main().

The HAL provides a default implementation of the alt_main() function, which
performs the following steps:

■ Calls the alt_irq_init() function, located in alt_sys_init.c. alt_irq_init()
initializes the hardware interrupt controller. The Nios II development flow
creates the file alt_sys_init.c for each HAL BSP.

■ Calls ALT_OS_INIT() to perform any necessary operating system specific
initialization. For a system that does not include an operating system (OS)
scheduler, this macro has no effect.

■ If you are using the HAL with an operating system, initializes the
alt_fd_list_lock semaphore, which controls access to the HAL file systems.

■ Enables interrupts.

■ Calls the alt_sys_init() function, also located in alt_sys_init.c. alt_sys_init()
initializes all device drivers and software packages in the system.

■ Redirects the C standard I/O channels (stdin, stdout, and stderr) to use the
appropriate devices.

■ Calls the C++ constructors, using the _do_ctors() function.

■ Registers the C++ destructors to be called at system shutdown.

■ Calls main().

■ Calls exit(), passing the return code of main() as the input argument for exit().

alt_main.c, installed with the Nios II EDS, provides this default implementation. The
SBT copies alt_main.c to your BSP directory.

Customizing the Boot Sequence
You can provide your own implementation of the start-up sequence by simply
defining alt_main() in your Nios II project. This gives you complete control of the
boot sequence, and allows you to selectively enable HAL services. If your application
requires an alt_main() entry point, you can copy the default implementation as a
starting point and customize it to your needs.
Nios II Software Developer’s Handbook May 2011 Altera Corporation

Chapter 6: Developing Programs Using the Hardware Abstraction Layer 6–39
Memory Usage
Function alt_main() calls function main(). After main() returns, the default
alt_main() enters an infinite loop. Alternatively, your custom alt_main() might
terminate by calling exit(). Do not use a return statement.

The following line of code is the prototype for alt_main():

void alt_main (void)

The HAL build environment includes mechanisms to override default HAL BSP code.
This lets you override boot loaders, as well as default device drivers and other system
code, with your own implementation.

alt_sys_init.c is a generated file, which you must not modify. However, the
Nios II SBT enables you to control the generated contents of alt_sys_init.c. To specify
the initialization sequence in alt_sys_init.c, you manipulate the auto_initialize and
alt_sys_init_priority properties of each driver, using the set_sw_property Tcl
command.

f For more information about generated files and how to control the contents of
alt_sys_init.c, refer to the Nios II Software Build Tools chapter of the Nios II Software
Developer’s Handbook. For general information about alt_sys_init.c, refer to the
Developing Device Drivers for the Hardware Abstraction Layer chapter of the Nios II
Software Developer’s Handbook. For details about the set_sw_property Tcl command,
refer to the Nios II Software Build Tools Reference chapter of the Nios II Software
Developer’s Handbook.

Memory Usage
This section describes how the HAL uses memory and arranges code, data, stack, and
other logical memory sections, in physical memory.

Memory Sections
By default, HAL-based systems are linked using a generated linker script that is
created by the Nios II SBT. This linker script controls the mapping of code and data to
the available memory sections. The autogenerated linker script creates standard code
and data sections (.text, .rodata, .rwdata, and .bss), plus a section for each physical
memory device in the system. For example, if a memory component named sdram is
defined in the system.h file, there is a memory section named .sdram. Figure 6–3
shows the organization of a typical HAL link map.

The memory devices that contain the Nios II processor’s reset and exception
addresses are a special case. The Nios II tools construct the 32-byte .entry section
starting at the reset address. This section is reserved exclusively for the use of the reset
handler. Similarly, the tools construct a .exceptions section, starting at the exception
address.

In a memory device containing the reset or exception address, the linker creates a
normal (nonreserved) memory section above the .entry or .exceptions section. If
there is a region of memory below the .entry or .exceptions section, it is unavailable
to the Nios II software. Figure 6–3 illustrates an unavailable memory region below
the .exceptions section.
May 2011 Altera Corporation Nios II Software Developer’s Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf

6–40 Chapter 6: Developing Programs Using the Hardware Abstraction Layer
Memory Usage
Assigning Code and Data to Memory Partitions
This section describes how to control the placement of program code and data in
specific memory sections. In general, the Nios II development flow specifies a sensible
default partitioning. However, you might wish to change the partitioning in special
situations.

For example, to enhance performance, it is a common technique to place
performance-critical code and data in RAM with fast access time. It is also common
during the debug phase to reset (that is, boot) the processor from a location in RAM,
but then boot from flash memory in the released version of the software. In these
cases, you must specify manually which code belongs in which section.

Figure 6–3. Sample HAL Link Map

ext_flash

sdram

ext_ram

epcs_controller

HAL Memory
Sections

Physical
Memory

.entry

.ext_flash

(unused)

.exceptions

.text

.rodata

.rwdata

.bss

.sdram

.ext_ram

.epcs_controller
Nios II Software Developer’s Handbook May 2011 Altera Corporation

Chapter 6: Developing Programs Using the Hardware Abstraction Layer 6–41
Memory Usage
Simple Placement Options
The reset handler code is always placed at the base of the .reset partition. The general
exception funnel code is always the first code in the section that contains the
exception address. By default, the remaining code and data are divided into the
following output sections:

■ .text—All remaining code

■ .rodata—The read-only data

■ .rwdata—Read-write data

■ .bss—Zero-initialized data

You can control the placement of .text, .rodata, .rwdata, and all other memory
partitions by manipulating BSP settings. For details about how to control BSP settings,
refer to “HAL BSP Settings” on page 6–2.

The Nios II BSP Editor is a very convenient way to manipulate the linker’s memory
map. The BSP Editor displays memory section and region assignments graphically,
allowing you to see overlapping or unused sections of memory. The BSP Editor is
available either through the Nios II SBT for Eclipse, or at the command line of the
Nios II SBT.

f For details, refer to the Getting Started from the Command Line chapter of the Nios II
Software Developer’s Handbook.

Advanced Placement Options
In your program source code, you can specify a target memory section for each piece
of code. In C or C++, you can use the section attribute. This attribute must be placed
in a function prototype; you cannot place it in the function declaration itself. The code
in Example 6–16 places a variable foo in the memory named ext_ram, and the
function bar() in the memory named sdram.

In assembly you do this using the .section directive. For example, all code after the
following line is placed in the memory device named ext_ram:

.section .ext_ram.txt

Example 6–16. Manually Assigning C Code to a Specific Memory Section

/* data should be initialized when using the section attribute */
int foo __attribute__ ((section (".ext_ram.rwdata"))) = 0;

void bar (void) __attribute__ ((section (".sdram.txt")));

void bar (void)
{

foo++;
}

May 2011 Altera Corporation Nios II Software Developer’s Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52014.pdf

6–42 Chapter 6: Developing Programs Using the Hardware Abstraction Layer
Memory Usage
1 The section names ext_ram and sdram are examples. You need to use section names
corresponding to your hardware. When creating section names, use the following
extensions:

■ .txt for code: for example, .sdram.txt

■ .rodata for read-only data: for example, .cfi_flash.rodata

■ .rwdata for read-write data: for example, .ext_ram.rwdata

f For details about the use of these features, refer to the GNU compiler and assembler
documentation. This documentation is installed with the Nios II EDS. To find it, open
the Nios II EDS documentation launchpad, scroll down to Software Development,
and click Using the GNU Compiler Collection (GCC).

1 A powerful way to manipulate the linker memory map is by using the Nios II BSP
Editor. With the BSP Editor, you can assign linker sections to specific physical regions,
and then review a graphical representation of memory showing unused or
overlapping regions. You start the BSP Editor from the Nios II Command Shell. For
details about using the BSP Editor, refer to the editor’s tool tips.

Placement of the Heap and Stack
By default, the heap and stack are placed in the same memory partition as the .rwdata
section. The stack grows downwards (toward lower addresses) from the end of the
section. The heap grows upwards from the last used memory in the .rwdata section.
You can control the placement of the heap and stack by manipulating BSP settings.

By default, the HAL performs no stack or heap checking. This makes function calls
and memory allocation faster, but it means that malloc() (in C) and new (in C++) are
unable to detect heap exhaustion. You can enable run-time stack checking by
manipulating BSP settings. With stack checking on, malloc() and new() can detect
heap exhaustion.

To specify the heap size limit, set the preprocessor symbol ALT_MAX_HEAP_BYTES to the
maximum heap size in decimal. For example, the preprocessor argument
-DALT_MAX_HEAP_BYTES=1048576 sets the heap size limit to 0x100000. You can specify
this command-line option through a BSP setting. For more information about
manipulating BSP settings, refer to “HAL BSP Settings” on page 6–2.

Stack checking has performance costs. If you choose to leave stack checking turned
off, you must code your program so as to ensure that it operates within the limits of
available heap and stack memory.

f Refer to the Nios II Software Build Tools chapter of the Nios II Software Developer’s
Handbook for details about selecting stack and heap placement, and setting up stack
checking.

For details about how to control BSP settings, refer to “HAL BSP Settings” on
page 6–2.
Nios II Software Developer’s Handbook May 2011 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf

Chapter 6: Developing Programs Using the Hardware Abstraction Layer 6–43
Memory Usage
Global Pointer Register
The global pointer register enables fast access to global data structures in Nios II
programs. The Nios II compiler implements the global pointer, and determines which
data structures to access with it. You do not need to do anything unless you want to
change the default compiler behavior.

The global pointer register can access a single contiguous region of 64 KB. To avoid
overflowing this region, the compiler only uses the global pointer with small global
data structures. A data structure is considered “small” if its size is less than a specified
threshold. By default, this threshold is 8 bytes.

The small data structures are allocated to the small global data sections, .sdata,
.sdata2, .sbss, and .sbss2. The small global data sections are subsections of
the .rwdata and .bss sections. They are located together, as shown in Figure 6–4, to
enable the global pointer to access them.

If the total size of the small global data structures is more than 64 KB, these data
structures overflow the global pointer region. The linker produces an error message
saying "Unable to reach <variable name> ... from the global pointer ...
because the offset ... is out of the allowed range, -32678 to 32767."

Figure 6–4. Small Global Data sections

RAM

.rwdata

.bss.sbss2

.sbss

.sdata2

.sdata
May 2011 Altera Corporation Nios II Software Developer’s Handbook

6–44 Chapter 6: Developing Programs Using the Hardware Abstraction Layer
Working with HAL Source Files
You can fix this with the -G compiler option. This option sets the threshold size. For
example, -G 4 restricts global pointer usage to data structures 4 bytes long or smaller.
Reducing the global pointer threshold reduces the size of the small global data
sections.

The -G option’s numeric argument is in decimal. You can specify this compiler option
through a project setting. For information about manipulating project settings, refer to
“HAL BSP Settings” on page 6–2.

1 You must set this option to the same value for both the BSP and the application
project.

Boot Modes
The processor’s boot memory is the memory that contains the reset vector. This device
might be an external flash or an Altera EPCS serial configuration device, or it might be
an on-chip RAM. Regardless of the nature of the boot memory, HAL-based systems
are constructed so that all program and data sections are initially stored in it. The
HAL provides a small boot loader program that copies these sections to their run time
locations at boot time. You can specify run time locations for program and data
memory by manipulating BSP settings.

If the runtime location of the .text section is outside of the boot memory, the Altera
flash programmer places a boot loader at the reset address. This boot loader is
responsible for loading all program and data sections before the call to _start. When
booting from an EPCS device, this loader function is provided by the hardware.

However, if the runtime location of the .text section is in the boot memory, the system
does not need a separate loader. Instead the _reset entry point in the HAL executable
program is called directly. The function _reset initializes the instruction cache and
then calls _start. This initialization sequence lets you develop applications that boot
and execute directly from flash memory.

When running in this mode, the HAL executable program must take responsibility for
loading any sections that require loading to RAM. The .rwdata, .rodata, and
.exceptions sections are loaded before the call to alt_main(), as required. This
loading is performed by the function alt_load(). To load any additional sections, use
the alt_load_section() function.

f For more information about alt_load_section(), refer to the HAL API Reference
chapter of the Nios II Software Developer’s Handbook.

Working with HAL Source Files
You might wish to view files in the HAL, especially header files, for reference. This
section describes how to find and use HAL source files.

Finding HAL Files
You determine the location of HAL source files when you create the BSP. HAL source
files (and other BSP files) are copied to the BSP directory.
Nios II Software Developer’s Handbook May 2011 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf

Chapter 6: Developing Programs Using the Hardware Abstraction Layer 6–45
Document Revision History
f For details, refer to the Nios II Software Build Tools Reference chapter of the Nios II
Software Developer’s Handbook.

Overriding HAL Functions
HAL source files are copied to your BSP directory when you create your BSP. If you
regenerate a BSP, any HAL source files that differ from the installation files are copied.
Avoid modifying BSP files. To override default HAL code, use BSP settings, or custom
device drivers or software packages.

f For information about what happens when you regenerate a BSP, refer to “Revising
your BSP” in the Nios II Software Build Tools chapter of the Nios II Software Developer’s
Handbook.

1 Avoid modifying HAL source files. If you modify a HAL source file, you cannot
regenerate the BSP without losing your changes. This makes it difficult to keep the
BSP coordinated with changes to the underlying hardware system.

f For more information, refer to “Nios II Embedded Software Projects” in the Nios II
Software Build Tools chapter of the Nios II Software Developer’s Handbook.

Document Revision History
Table 6–10 shows the revision history for this document.

Table 6–10. Document Revision History (Part 1 of 2)

Date Version Changes

May 2011 11.0.0 Introduction of Qsys system integration tool

February 2011 10.1.0 Removed “Referenced Documents” section.

July 2010 10.0.0 Maintenance release.

November 2009 9.1.0

■ Introduced external interrupt controller.

■ BSP generation file-copy behavior changed.

■ Described alt_irq_init() function.

■ Inserted host-based file system description.

■ Removed IDE-specific information.

■ Updated information about overriding HAL functions.

March 2009 9.0.0

■ Reorganized and updated information and terminology to clarify role of Nios II Software
Build Tools.

■ Add documentation for Altera logging.

■ Corrected minor typographical errors.

May 2008 8.0.0 Maintenance release.

October 2007 7.2.0

■ Added documentation for HAL program development with the Nios II Software Build
Tools.

■ Additional documentation of alarms functions.

■ Correct alt_erase_flash_block() example.
May 2011 Altera Corporation Nios II Software Developer’s Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf

6–46 Chapter 6: Developing Programs Using the Hardware Abstraction Layer
Document Revision History
May 2007 7.1.0
■ Added table of contents to “Introduction” section.

■ Added Referenced Documents section.

March 2007 7.0.0 Maintenance release.

November 2006 6.1.0

■ Program never exits system library option.

■ Support C++ system library option.

■ Lightweight device driver API system library option.

■ Minimal character-mode API.

May 2006 6.0.0
■ Revised text on instruction emulation.

■ Added section on global pointers.

October 2005 5.1.0
■ Added alt_64 and alt_u64 types to Table 6–1 on page 6–5.

■ Made changes to section “Placement of the Heap and Stack”.

May 2005 5.0.0 Added alt_load_section() function information.

December 2004 1.2

■ Added boot modes information.

■ Amended compiler optimizations.

■ Updated Reducing Code Footprint section.

September 2004 1.1 Corrected DMA receive channels example code.

May 2004 1.0 Initial release.

Table 6–10. Document Revision History (Part 2 of 2)

Date Version Changes
Nios II Software Developer’s Handbook May 2011 Altera Corporation

	6. Developing Programs Using the Hardware Abstraction Layer
	Nios II Development Flows
	HAL BSP Settings
	The Nios II Embedded Project Structure
	The system.h System Description File
	Data Widths and the HAL Type Definitions
	UNIX-Style Interface
	File System
	Using Character-Mode Devices
	Standard Input, Standard Output and Standard Error
	General Access to Character Mode Devices
	C++ Streams
	/dev/null
	Lightweight Character-Mode I/O
	Altera Logging Functions
	Enabling Altera Logging
	Extra Logging Options
	Logging Levels
	Example: Creating a BSP with Logging
	Custom Logging Messages
	Altera Logging Files

	Using File Subsystems
	Host-Based File System

	Using Timer Devices
	System Clock Driver
	Alarms
	Timestamp Driver

	Using Flash Devices
	Simple Flash Access
	Block Erasure or Corruption
	Fine-Grained Flash Access

	Using DMA Devices
	DMA Transmit Channels
	DMA Receive Channels
	Memory-to-Memory DMA Transactions

	Using Interrupt Controllers
	Reducing Code Footprint in Embedded Systems
	Enable Compiler Optimizations
	Use Reduced Device Drivers
	Reduce the File Descriptor Pool
	Use /dev/null
	Use a Smaller File I/O Library
	Use the Small newlib C Library
	Use UNIX-Style File I/O
	Emulate ANSI C Functions

	Use the Lightweight Device Driver API
	Use the Minimal Character-Mode API
	alt_printf()
	alt_putchar()
	alt_putstr()
	alt_getchar()

	Eliminate Unused Device Drivers
	Eliminate Unneeded Exit Code
	Eliminate Clean Exit
	Eliminate All Exit Code

	Turn off C++ Support

	Boot Sequence and Entry Point
	Hosted Versus Free-Standing Applications
	Boot Sequence for HAL-Based Programs
	Customizing the Boot Sequence

	Memory Usage
	Memory Sections
	Assigning Code and Data to Memory Partitions
	Simple Placement Options
	Advanced Placement Options

	Placement of the Heap and Stack
	Global Pointer Register
	Boot Modes

	Working with HAL Source Files
	Finding HAL Files
	Overriding HAL Functions

	Document Revision History

