
 Page 1 of 18

Copyright © 2018, Intel Corporation

Intel® Media Server Studio -
Metrics Monitor (v1.1.2)

Reference Manual

Overview

Metrics Monitor is part of Intel® Media Server Studio 2017 for Linux*.

Metrics Monitor is a user space shared library which provides applications access to a

number of metrics from the GPU kernel mode driver to aid in understanding the state

of the GPU for Media workloads.

In this document we will refer to processor families by their former codenames for

the sake of readability:

 Intel® Xeon® E3-1200/1500 v5 Family and 6th Generation Intel® Core™

Processors will be referred to as “Skylake”

 Intel® Xeon® E3-1200 v4 Family and 5th Generation Intel® Core™

Processors

will be referred to as “Broadwell”

What’s New

Intel® Media Server Studio 2017 R4 – Metrics Monitor

Version 1.1.1:

 Support of systems with several GPU. Metrics Monitor detects Intel GPU

automatically.

Version 1.1.2:

 Support i915 PMU API to query metrics.

 Support precise engines utilization tracking instead of sampling estimations

(requires i915 scheduler).

 Reduced CPU usage overhead in case of precise engines utilization path.

Location and Contents

The Intel® Media Server Studio – Metrics Monitor contains the following

components:

<msdk-install-folder>/tools/metrics_monitor

_bin/libcttmetrics.so Metrics Monitor shared library

 Page 2 of 18

Copyright © 2018, Intel Corporation

_bin/metrics_monitor

Pre-build binary of the sample from the

sample folder

doc/metricsmon-man.pdf This file

include/cttmetrics.h Metrics Monitor API

sample/cttmetrics_sample.cpp

Source code of the sample, which shows

how to use Metrics Monitor library

sample/build.sh Batch file to build the sample.

sample/run.sh Batch file to run the sample.

 Page 3 of 18

Copyright © 2018, Intel Corporation

Software Requirements

The Metrics Monitor depends on:

1. Either installing of Intel® Media Server Studio 2017 R4 – Graphics

Driver provided with the package

2. Or applying the following patch series over the desired kernel:

https://patchwork.freedesktop.org/series/27488/

and does not work with other driver versions. Make sure that you build and install

kernel-mode driver. For more details how to do it refer to the Intel® Media Server

Studio – Driver & SDK Getting Started Guide.

The Metrics Monitor requires special privileges to be able to report metrics. Metrics

can be reported either if:

1. User has ‘root’ privileges

2. Or if /proc/sys/kernel/perf_event_paranoid is less than 1

3. Or if application has CAP_SYS_ADMIN capability

To provide CAP_SYS_ADMIN capability to metrics_monitor (or any other application

which uses libctt.so library), do the following:

1. Install libcttmetrics.so to system path (for security reasons

LD_LIBRARY_PATH will not work for applications which have capabilities), for

example with:

2. Execute the following command:

Be aware that the use of any GUI (e.g. X Server) will add additional usage beyond

the media workloads to the Blitter and Render engines.

$ sudo ln -s /opt/intel/mediasdk/tools/metrics_monitor/_bin/libcttmetrics.so /usr/lib64

$ sudo setcap cap_sys_admin+ep

/opt/intel/mediasdk/tools/metrics_monitor/_bin/metrics_monitor

https://patchwork.freedesktop.org/series/27488/

 Page 4 of 18

Copyright © 2018, Intel Corporation

Building and Running

To build the Metrics Monitor sample application invoke:

or run the build.sh batch file.

To run the Metrics Monitor sample application change to root, set the path to the

cttmetrics.so library thru $LD_LOAD_LIBRARY environment variable and run the

application:

where <metric_lib_path> is where the cttmetrics.so library is installed or run the

run.sh batch file.

$ sudo su

$ export LD_LIBRARY_PATH=<metrics_lib_path>:$LD_LIBRARY_PATH

$./metrics_monitor

$ gcc cttmetrics_sample.cpp -m64 -I../include -L../_bin -lcttmetrics -lstdc++

-o metrics_monitor

 Page 5 of 18

Copyright © 2018, Intel Corporation

Architecture

This section describes the architecture of the Metrics Monitor library.

The Metrics Monitor library collects the following i915 kernel mode driver

performance counters data:

1. Amount of time each GPU Engine spent executing tasks

2. Average actual GPU frequency

Metrics Monitor allows to monitor the following GPU hardware units (Engines):

 Render engine (execution units)

 Multi-Format CODEC (MFX)

 Video Quality Engine

 Blitter engine

The Intel® GPU provides 4 or 5 command streamers depending on the generation of

Intel® Core™ processors. Each command streamer corresponds to one of the GPU

Engines. The command streamers pull commands from command ring buffers in

memory that the kernel driver populates.

I915 kernel mode driver tracks each request execution, when it was scheduled and

when it was completed, and is capable to approximate time each engine spent

actively running tasks which is reported as usage by metrics monitor in percent scale

[0-100%] over elapsed time period. The described process is illustrated on the

following diagram.

Metrics Monitor is also capable to report average actual GPU frequency over elapsed

period of time. While Engines Usage metrics are precise metrics, frequency metric is

sampled. Sampling period is defined inside i915 PMU and is not currently adjustable

by the application. It can be noted however, that sampling is done once in i915 PMU

regardless of number if i915 PMU clients (number of metric monitor applications

running).

 Page 6 of 18

Copyright © 2018, Intel Corporation

Command

Ring Buffer

Kernel Driver

Render
(EUs)

Blitter

Video

Quality
Engine

Multi-

Format

CODEC

I915 PMU data

Metrics Monitor

Command
Ring Buffer

Command
Ring Buffer

Command

Ring Buffer

IRQ interrupts

(task done notifications)

engine_busy_start

engine_busy_stop

engine_busy_ns += stop-start

 Page 7 of 18

Copyright © 2018, Intel Corporation

Metrics Description

The table below provides description of metrics supported by the Metrics Monitor.

Metric name from

header file

Hardware Units

covered

Uses that will execute

this unit

CTT_USAGE_RENDER

Render Engine

(Execution units, media

samplers, VME and their

caches)

Video Encode (ENC),

OpenCL, Video Scaling, VPP

Composition including frame

rate conversion and image

stabilization, VPP copy to

CPU

CTT_USAGE_VIDEO

Multi-Format Codec

Engine (also known as

“MFX” or “VDBOX”)

Video Encode (PAK) and

Decode

CTT_USAGE_VIDEO2

2nd instance of the Multi-

Format Codec Engine, if

available (Examples of

supported processor

include 5th generation of

Intel® Core™

processors with Intel®

HD Graphics 6000,

Intel® Iris® Graphics

6100, Intel® Iris® Pro

Graphics 6200, Intel®

Iris® Pro Graphics

P6300)

Video Encode (PAK) and

Decode

CTT_USAGE_VIDEO_

ENHANCEMENT

Video Quality Engine (

(also known as “VEBOX”

or Video Quality

enhancement pipeline)

Deinterlace, Denoise

CTT_USAGE_BLITTER
2D graphics blitter

engine.

2D and 3D Blt (no media

use)

CTT_AVG_GT_FREQ Intel GPU

Any task running on any of

the GPU Engines listed

above

Below is the example of mapping metrics to the 4th generation of Intel® Core™

processor architecture.

 Page 8 of 18

Copyright © 2018, Intel Corporation

For detailed description of GPU’s engines refer to the Intel® Open Source Graphics

Programmer’s Reference Manual (PRM) for Skylake and Broadwell platforms:

https://01.org/linuxgraphics/documentation/hardware-specification-prms/2015-

2016-intel-processors-based-skylake-platform

https://01.org/linuxgraphics/documentation/hardware-specification-prms/2014-
2015-intel-processors-based-broadwell-platform

https://01.org/linuxgraphics/documentation/hardware-specification-prms/2015-2016-intel-processors-based-skylake-platform
https://01.org/linuxgraphics/documentation/hardware-specification-prms/2015-2016-intel-processors-based-skylake-platform
https://01.org/linuxgraphics/documentation/hardware-specification-prms/2014-2015-intel-processors-based-broadwell-platform
https://01.org/linuxgraphics/documentation/hardware-specification-prms/2014-2015-intel-processors-based-broadwell-platform

 Page 9 of 18

Copyright © 2018, Intel Corporation

Usage Model

This section provides overview of possible usages of the Metrics Monitor.

The Metrics Monitor tool can be used for monitoring GPU metrics. Different scenario

of the Metrics monitor usages provided below. All sample applications referenced

below can be found in the SDK sample package, which is part of Intel® Media Server

Studio product.

A. Video engine usage during decoding

1. Run Metrics Monitor sample application. It begins collecting metrics from GPU.

2. Run sample_decode application to perform decoding of h264 stream to put a

load on GPU.

3. Observe that video usage metric shows how video engine was busy

performing decoding.

Example of command line to perform decoding:

B. Video Enhancement pipeline usage during video processing

1. Run Metrics Monitor sample application. It begins collecting metrics from GPU.

2. Run sample_vpp application to perform de-interlacing of interlaced stream

using advanced capabilities of video enhancement pipeline.

3. Observe that video enhancement usage metric shows how video

enhancement pipeline was busy performing de-interlacing.

Example of command line to perform video processing with advanced de-interlacing:

C. Video and Render engine usage during transcoding

1. Run Metrics Monitor sample application. It begins collecting metrics from GPU.

2. Run sample_multi_transcode application to perform transcoding from one

format to another and with different transcoding speed to put a load on GPU.

3. Look for video and render usage metrics provided by the Metrics Monitor and

run more workloads to observe how metrics value changes. Video engine

usage scales with increasing or decreasing number of workloads.

Example of command line to perform transcoding:

$./sample_multi_transcode -i::h264 bbb1920x1080.264 -o::mpeg2

bbb1920x1080.mp2 -hw -async 4 -fps 15

$./sample_vpp -lib hw –vaapi -sw 1920 -sh 1080 -dw 1920 -dh 1080 -spic 0 -

dpic 1 –di_mode 2 -i i_stream.nv12 –o p_stream.nv12

$./sample_decode h264 -hw -vaapi -async 4 -i ../streams/bbb1920x1080.264

 Page 10 of 18

Copyright © 2018, Intel Corporation

Limitations

This section describes limitations of the Metrics Monitor.

 The metrics are not normalized for GPU operating frequency and the metric

values may change according to frequency change.

 Engines usage metrics provide approximation of the real Engines usages and

may not be fully accurate due to scheduling notification latencies.

 Due to sampling nature of Average Frequency metric its values may not be

fully accurate and provide only estimation of real average frequency.

 Page 11 of 18

Copyright © 2018, Intel Corporation

API Reference

This section describes the Metrics Monitor API.

CTTMetrics_Init

Syntax

 cttStatus CTTMetrics_Init();

Description

 This function initializes media metrics library.

Return Status

 MFX_ERR_NONE Metrics Monitor library succesfully initialized.

CTTMetrics_GetMetricCount

Syntax

 cttStatus CTTMetrics_GetMetricCount(unsigned int* out_count);

Parameters

 out_count Number of metrics available.

Description

 This function sreturns the number of available metrics. Must be called after

CTTMetrics_Init().

Return Status

 MFX_ERR_NONE Number of available metrics returned successfully.

CTTMetrics_GetMetricInfo

Syntax

 cttStatus CTTMetrics_GetMetricInfo(unsigned int count, cttMetric*

out_metric_ids);

Parameters

 count Number of elements in the out_metric_ids.

 out_metric_ids Output array of available metric IDs. Must be

allocated and de-allocated by app.

Description

 Page 12 of 18

Copyright © 2018, Intel Corporation

 This function returns IDs of available metrics. Must be called after CTTMetrics_Init().

Return Status

 MFX_ERR_NONE Metrics IDs returned succesfully.

CTTMetrics_Subscribe

Syntax

 cttStatus CTTMetrics_Subscribe(unsigned int count, cttMetric*

in_metric_ids);

Parameters

 count Number of metrics to collect.

 in_metric_ids Input array of metric IDs.

Description

 This function specifies metrics being collected. Must be called after CTTMetrics_Init().

Return Status

 MFX_ERR_NONE Metrics subscription completed succesfully.

CTTMetrics_SetSampleCount

Syntax

 cttStatus CTTMetrics_SetSampleCount(unsigned int in_num);

Parameters

 in_num Number of metric samples to collect during

sampling period.

Description

 Sets the number of metric samples to collect during sampling period. Default = 100.

Valid range 1..1000. Must be called after CTTMetrics_Init().

Return Status

 MFX_ERR_NONE Number of samples set successfully.

CTTMetrics_SetSamplePeriod

Syntax

 cttStatus CTTMetrics_SetSamplePeriod(unsigned int in_period);

 Page 13 of 18

Copyright © 2018, Intel Corporation

Parameters

 in_period Sampling period in milliseconds.

Description

 Sets the sampling period in milliseconds to collect metric samples. Default = 500.

Valid range 10..1000. Must be called after CTTMetrics_Init().

Return Status

 MFX_ERR_NONE Sampling period set successfully.

CTTMetrics_Close

Syntax

 void CTTMetrics_Close();

Description

 Close media metrics library and stops metrics collection.

CTTMetrics_GetValue

Syntax

 cttStatus CTTMetrics_GetValue(unsigned int count, float*

out_metric_values);

Parameters

 count Number of metric values to receive.

 out_metric_values Output array of metric values (floats). Must be

allocated and de-allocated by app.

out_metric_values[i] corresponds to

in_metric_ids[i] in CTTMetrics_Subscribe().

Description

 This function returns metric values. Number of values equals to *count* - number of

metric ids in CTTMetrics_Subscribe().

Return Status

 CTT_ERR_NONE Metric values received succesfully.

 Page 14 of 18

Copyright © 2018, Intel Corporation

Appendix – A (version 1.1.1 notes)

Version 1.1.1 of metrics monitor library used another approach of getting metrics.

This metrics collector still remains in metrics monitor library for the backward

compatibility. For this reason current Appendix contains detailed notes on the

software requirements and implementation of Version 1.1.1 metrics collector.

Software Requirements

The Metrics Monitor Version 1.1.1 data collector depends on installing Intel® Media

Server Studio 2017 R3 – Graphics Drivers (or earlier version) and does not

work with other driver versions. Make sure that you build and install kernel-mode

driver. For more details how to do it refer to the Intel® Media Server Studio – Driver

& SDK Getting Started Guide.

The Metrics Monitor requires the “root” user privileges and debugfs file system set

up on your machine.

To check if debugfs is mounted:

If you don’t have debugfs mounted:

For most accurate results it’s expected to run in headless operation. The use of any

GUI (e.g. X Server) will add additional usage beyond the media workloads to the

Blitter and Render engines.

Architecture

This section describes the architecture of the Metrics Monitor library version 1.1.1

data collector.

The Metrics Monitor library collects statistical information from GPU kernel driver

about ring command buffers of different GPU units. The driver provides information if

the command ring buffer was in idle state or not in particular time. The driver

exposes this information via debugfs file system. Command ring buffer idle state is

the state when it’s empty and doesn’t have any commands to pull and execute by

GPU.

Metrics Monitor allows to monitor the following GPU hardware units:

 Render engine (execution units)

 Multi-Format CODEC (MFX)

 Video Quality Engine

 Blitter engine

$ # mount | grep debugfs

$ # mount -t debugfs nodev /sys/kernel/debug

 Page 15 of 18

Copyright © 2018, Intel Corporation

The Intel® GPU provides 4 or 5 command streamers depending on the generation of

Intel® Core™ processors. The command streamers pull commands from command

ring buffers in memory that the kernel driver populates.

An overview of this process is shown in figure below:

The usage of particular GPU unit is estimated according to the following data – “how

much time the command ring buffer was in idle state during the sampling period”.

The Metrics Monitor allows to collect metrics data within user defined sampling

period.

During the sampling period the Metrics Monitor collects the number of idle states for

command ring buffer and calculates the busy metrics as relation of number of busy

states to the number of all states. Number of states collected during the sampling

period can be 1000 or less depending on the performance of obtaining and

processing data from driver and the number of samples a user defined to collect.

Limitations

This section describes limitations of the Metrics Monitor version 1.1.1 data collector.

Command
Ring Buffer

Command
Ring Buffer

Command
Ring Buffer

Command
Ring Buffer

Kernel Driver

Render
(EUs)

Blitter Video Quality
Engine

Multi-

Format
CODEC

Ring buffers
statistic

Metrics Monitor

 Page 16 of 18

Copyright © 2018, Intel Corporation

 The metrics are not normalized for GPU operating frequency and the metric

values may change according to frequency change.

 The small workloads with processing time less than the duration of sampling

period cannot be monitored.

 Due to statistical nature of metrics measurement on Linux the metric values

may have big deviations.

 Sampling metrics may introduces performance impact to the media

processing and total CPU Usage and Power Consumption.

The following table provides the overhead data for 100 millisecond sampling period.

 CPU usage, %
Processing time,

sec

Processing

speed, fps
Overhead, %

No Metrics

Monitor
0 69.6 30.7 0

20 samples 1 70.2 30.5 0.7

100 samples 3 71.5 29.9 3.0

500 samples 8 72.7 29.4 4.4

1000 samples 13 74.4 28.7 6.8

The sampling overhead measurements were done using sample_multi_transcode

application, which run in the N to N transcoding mode. It performs 10 joined

transcoding sessions converting Full HD H264 streams to H264 Full HD streams. One

stream containing 2136 frames was used as input stream for all transcoding

sessions.

The “CPU usage” information was collected by “top” tool on the system without any

media workloads and shows only impact introduced by metrics sampling in the

Metrics Monitor.

The measurements were done on the CentOS 7 system with Intel® Core™ i7-4770K

processor and enabled Turbo Boost (Max frequency 3.9 GHz) and processor graphics

frequency fixed at 1350 MHz.

 Page 17 of 18

Copyright © 2018, Intel Corporation

Appendix – B

The following table provides comparison of metrics monitor CPU Usage overhead

between Versions 1.1.1 and 1.1.2 on 100ms sampling period.

Version 1.1.1

CPU Usage, %

Version 1.1.2

CPU Usage, %

No Metrics

Monitor
0 0

20 samples 1 0.4

100 samples 3 0.4

500 samples 8 0.4

1000 samples 13 0.4

Version 1.1.2 does not require samples within sampling period to get correct metrics,

thus CPU Usage remains constant on any number of samples. Still metrics monitor

Version 1.1.2 may have some CPU Usage overhead mostly defined by the requested

sampling period.

 Page 18 of 18

Copyright © 2018, Intel Corporation

Legal Information

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is
granted by this document.

Intel disclaims all express and implied warranties, including without limitation, the implied
warranties of merchantability, fitness for a particular purpose, and non-infringement, as well
as any warranty arising from course of performance, course of dealing, or usage in trade.

This document contains information on products, services and/or processes in
development. All information provided here is subject to change without notice. Contact your
Intel representative to obtain the latest forecast, schedule, specifications and roadmaps.

The products and services described may contain defects or errors known as errata which may
cause deviations from published specifications. Current characterized errata are available on

request.

Copies of documents which have an order number and are referenced in this document may

be obtained by calling 1-800-548-4725 or by visiting

www.intel.com/design/literature.htm.

MPEG is an international standard for video compression/decompression promoted by ISO.
Implementations of MPEG CODECs, or MPEG enabled platforms may require
licenses from various entities, including Intel Corporation.

VP8 video codec is a high quality royalty free, open source codec deployed on millions of
computers and devices worldwide. Implementations of VP8 CODECs, or VP8 enabled platforms
may require licenses from various entities, including Intel Corporation.

Intel, the Intel logo, Intel Core, Intel Iris, Intel Iris Pro, Intel HD Graphics, Intel Xeon are

trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others

© Intel Corporation.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors
for optimizations that are not unique to Intel microprocessors. These optimizations include
SSE2, SSE3, and SSE3 instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on microprocessors not
manufactured by Intel.

Microprocessor-dependent optimizations in this product are intended for use with Intel
microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for

Intel microprocessors. Please refer to the applicable product User and Reference Guides for
more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

http://www.intel.com/design/literature.htm
http://legal.intel.com/Marketing/Pages/Notices-Disclaimers-Examples.aspx
http://legal.intel.com/Marketing/Pages/Notices-Disclaimers-Examples.aspx
http://legal.intel.com/Marketing/Pages/Notices-Disclaimers-Examples.aspx
http://legal.intel.com/Marketing/Pages/Notices-Disclaimers-Examples.aspx
http://legal.intel.com/Marketing/Pages/Notices-Disclaimers-Examples.aspx
http://legal.intel.com/Marketing/Pages/Notices-Disclaimers-Examples.aspx
http://legal.intel.com/Marketing/Pages/Notices-Disclaimers-Examples.aspx
http://legal.intel.com/Marketing/Pages/Notices-Disclaimers-Examples.aspx

