

SDK API

Reference Manual

for HEVC GPU Assist APIs

API Version 1.13

ii SDK API Reference Manual for HEVC GPU Assist APIs

LEGAL DISCLAIMER

THIS DOCUMENT CONTAINS INFORMATION ON PRODUCTS IN THE DESIGN PHASE OF
DEVELOPMENT.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO

LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL

PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S

TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY

WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO

SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO

FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY

PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT

DESIGNED NOR INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL

PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions

marked "reserved" or "undefined." Intel reserves these for future definition and shall have no

responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The information here is subject to change without notice. Do not finalize a design with this

information.

The products described in this document may contain design defects or errors known as errata

which may cause the product to deviate from published specifications. Current characterized

errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and

before placing your product order.

Copies of documents which have an order number and are referenced in this document, or

other Intel literature, may be obtained by calling 1-800-548-4725, or by visiting Intel's Web

Site.

MPEG is an international standard for video compression/decompression promoted by ISO.

Implementations of MPEG CODECs, or MPEG enabled platforms may require licenses from

various entities, including Intel Corporation.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its

subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2007-2015, Intel Corporation. All Rights reserved.

http://www.intel.com/
http://www.intel.com/

iii SDK API Reference Manual for HEVC GPU Assist APIs

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for

optimizations that are not unique to Intel microprocessors. These optimizations include SSE2,

SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the

availability, functionality, or effectiveness of any optimization on microprocessors not

manufactured by Intel.

Microprocessor-dependent optimizations in this product are intended for use with Intel

microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for

Intel microprocessors. Please refer to the applicable product User and Reference Guides for

more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

2 SDK API Reference Manual for HEVC GPU Assist APIs

Table of Contents

Overview .. 3

Document Conventions ... 3

Acronyms and Abbreviations .. 3

Architecture .. 4

Programming Guide ... 6

Function Reference .. 8

MFXVideoENC_Init .. 8

MFXVideoENC_Reset ... 9

MFXVideoENC_Close ... 9

MFXVideoENC_ProcessFrameAsync ... 10

MFXVideoCORE_SyncOperation .. 11

Structure Reference ... 12

mfxExtFEIH265Param ... 12

mfxExtFEIH265Input ... 13

mfxExtFEIH265Output .. 14

mfxFEIH265Output ... 14

Enumerator Reference .. 18

mfxFEIH265BlockSize ... 18

mfxFEIH265Operation ... 18

3 SDK API Reference Manual for HEVC GPU Assist APIs

Overview

The Intel® Media Server Studio – SDK, further referred to as the SDK, is a software

development library that exposes the media acceleration capabilities of Intel platforms for

decoding, encoding and video preprocessing. The API library covers a wide range of Intel

platforms.

This document describes an API providing access to hardware-accelerated functions which can

be used in an H265 (HEVC) encoder. Please refer to the SDK API Reference Manual for a

complete description of the API.

Document Conventions

The Intel® Media Server Studio - SDK API uses the Verdana typeface for normal prose. With the

exception of section headings and the table of contents, all code-related items appear in the

Courier New typeface (mxfStatus and MFXInit). All class-related items appear in all cap

boldface, such as DECODE and ENCODE. Member functions appear in initial cap boldface, such

as Init and Reset, and these refer to members of all classes, DECODE, ENCODE and VPP.
Hyperlinks appear in underlined boldface, such as mfxStatus.

Acronyms and Abbreviations

FEI Flexible Encode Infrastructure

MV Motion Vector

4 SDK API Reference Manual for HEVC GPU Assist APIs

Architecture

The HEVC GPU Assist APIs provide access to a set of GPU-accelerated functions which produce

useful information for encoding H265 video. This functionality is implemented in the H265

Flexible Infrastructure Encoder (FEI) plugin. The encoder sends YUV frames (typically one

source frame and one or more reconstructed reference frames) to the FEI plugin and specifies

one or more processing steps to perform. Currently H265 FEI can produce candidate intra

prediction modes, intra and inter distortion estimates, inter motion vectors, and half-pel

interpolation of reference frames using a fast approximation of the H265 interpolation filter. An

encoder may choose to perform additional processing in software to refine the output of FEI.

FEI runs asynchronously on the GPU which allows parallel CPU-GPU processing within a single

frame. FEI also supports up to one frame of lookahead, allowing an encoder to begin GPU

processing on the next frame to be encoded while the CPU completes encoding and

reconstruction of the current frame.

FEI uses synchronization objects to signal when processing has completed. Although FEI can be

run as a serialized pre-processing stage prior to encoding each frame, the greatest performance

benefits will be realized by running FEI in parallel with CPU processing whenever possible.

Development of the FEI plugin is ongoing and new functionality will be added in future versions.

The following are some important known limitations of the current version:

- Half-pel and quarter-pel motion vector refinement is performed using a fast approximation of

the standard HEVC interpolation filters, so the distortion estimates may differ from an

implementation which uses the standard filters.

- Motion vectors are only calculated for a subset of valid block sizes. The include file

mfxfeih265.h contains the list of currently supported sizes.

- The plugin supports video resolutions up to 3840x2160.

- Intra distortion estimates are provided for 16x16 blocks. This is a rough estimate of distortion

which can be calculated very quickly, and it is primarily useful for deciding whether or not intra

coding should be considered for a given region. Distortion estimation employs a weighted

transform so results may differ from an analysis using SAD.

- Intra angular mode decisions are calculated using a fast approximation to an exhaustive

search, so FEI will not necessarily select the same “best mode” as a full search which calculates

SAD for every direction. Currently only the single best mode is returned, but the API is

designed to permit a sorted list of multiple candidate modes to be calculated in future versions.

(MFX_FEI_H265_MAX_INTRA_MODES).

- Half-pel reference frames are produced with a fast approximation to the standard 8-tap HEVC

interpolation filter, so the interpolated output will not be identical.

5 SDK API Reference Manual for HEVC GPU Assist APIs

- Output buffers containing half-pel interpolated reference frames may be overwritten by

subsequent FEI operations, so before initiating a new FEI operation the application should

either finish use of this data or copy the output frame to a separate buffer for later CPU

processing.

6 SDK API Reference Manual for HEVC GPU Assist APIs

Programming Guide

This chapter describes the concepts used in programming the HEVC GPU Assist APIs for Intel®

Media Server Studio - SDK.

The application must use the include file, mfxfeih265.h and mfxvideo.h (for C programming),

or mfxvideo++.h (for C++ programming), and link the Intel® Media Server Studio - SDK static

dispatcher library, libmfx.lib or libmfx.a. If the application is written in C then libstdc++.a

library should also be linked.

The HEVC GPU Assist APIs are built upon the concept of extension buffers, and most of the

configuration parameters and video data are passed in such buffers. Usually functions work

with a list of such buffers at the input and output. For example,

MFXVideoENC_ProcessFrameAsync function receives a mfxENCInput structure and outputs a

mfxENCOutput structure. Both of these structures are simply lists of extension buffers, with

mfxENCInput also holding input and reference frames. Sample code is provided to illustrate the

process of loading and calling the H265 FEI plugin.

SDK API Reference Manual has more information about handling of extension buffers. In short –

an extension buffer is a special SDK structure that holds an mfxExtBuffer value as its first

member. This value holds the unique buffer ID and buffer size. The application should allocate

this structure, properly set ID and size and then “attach” this buffer to one of the other

structures, for example mfxVideoParam or mfxENCInput. “Attach” means to put a pointer to this

extension buffer to the ExtParam array and to increase buffer counter NumExtParam. It is very

important to zero all reserved fields in the extension buffers to ensure seamless future

extensions.

Extension buffers may be used on any stages of the SDK pipeline – during initialization, at

runtime and at reset. There are many limitations for when and how particular extension buffers

may be used, please refer to the buffer description for details.

To use the HEVC GPU Assist APIs, the encoder first initializes the SDK session and loads the

H265 FEI plugin. It then configures mfxVideoParam and passes this struct to

Include these files:

#include “mfxvideo.h” /* The SDK include file */

#include “mfxfeih265.h” /* H265 FEI extension include file */

#include “mfxvideo++.h” /* Optional for C++ development */

Link this library:

 libmfx.lib /* The SDK static dispatcher library */

or
 libmfx.a /* The SDK static dispatcher library */

7 SDK API Reference Manual for HEVC GPU Assist APIs

MFXVideoEnc_Init. The main encode loop generally loads one source frame per pass, and calls

MFXVideoENC_ProcessFrameAsync one or more times per frame.

MFXVideoENC_ProcessFrameAsync spawns a new task for the specified set of FEI operations

and then returns immediately. FEI processing takes place asynchronously on the GPU, so an

updated sync object mfxSyncPoint is returned with each call. This will be used later in a call to

MFXVideoCORE_SyncOperation to ensure that GPU processing is complete.

For intra-only processing (prediction mode selection and distortion estimation) only the source

YUV frame is required. Both of these operations process a single frame at once, so should be

called at most once per encoded frame.

For inter-processing (motion estimation and fast half-pel interpolation) source and reference

frames are required. H265 supports multiple reference frames, so these operations can be

called multiple times per source frame (subject to the upper limits specified in mfxfeih265.h) It

is the caller's responsiblity to ensure that reference frames are available (i.e. reconstruction is

complete) and to maintain the decoded picture buffer state.

Before using the output data from MFXVideoENC_ProcessFrameAsync the encoder must call

MFXVideoCORE_SyncOperation When this function returns, the application can safely use the

output data for the specified set of FEI operations, which is returned in mfxFEIH265Output.

The HEVC GPU Assist APIs require a compatible GPU (Intel® HD Graphics 4600 or later, Intel®

Iris Pro 5200 recommended) with up-to-date graphics drivers

(https://downloadcenter.intel.com). No software fallback is provided.

8 SDK API Reference Manual for HEVC GPU Assist APIs

Function Reference

This section describes HEVC GPU Assist API functions and their operations. Refer to the SDK API

Reference Manual for a description of other functions which are not specific to HEVC GPU Assist

APIs.

In each function description, only commonly used status codes are documented. The function

may return additional status codes, such as MFX_ERR_INVALID_HANDLE or MFX_ERR_NULL_PTR, in

certain case. See the mfxStatus enumerator for a list of all status codes.

MFXVideoENC_Init

Syntax

 mfxStatus MFXVideoENC_Init(mfxSession session, mfxVideoParam *par);

Parameters

 session SDK session handle

 par Pointer to the mfxVideoParam structure

Description

 This function initializes H265 FEI. At minimum, the following fields in mfxVideoParam

should be filled by the caller:

 par->mfx.FrameInfo.Width Width of video in pixels

 par->mfx.FrameInfo.Height Height of video in pixels

 par->mfx.NumRefFrame Maximum number of reference frames for ME

Video width and height should be multiples of 16 pixels (pad input frames if

necessary).

The number of reference frames must be <= MFX_FEI_H265_MAX_NUM_REF_FRAMES

mfxExtFEIH265Param contains additional parameters specific to H265 FEI and should

be attached to mfxVideoParam. Refer to the SDK API Reference Manual for a complete

description of this function and the mfxVideoParam structure.

Return Status

 MFX_ERR_NONE The function completed successfully.

Change History

 This function is available since SDK API 1.13.

9 SDK API Reference Manual for HEVC GPU Assist APIs

MFXVideoENC_Reset

Syntax

 mfxStatus MFXVideoENC_Reset(mfxSession session, mfxVideoParam *par);

Parameters

 session SDK session handle

 par Pointer to the mfxVideoParam structure

Description

 This function resets H265 FEI. Refer to the SDK API Reference Manual for a complete

description of this function.

Return Status

 MFX_ERR_NONE The function completed successfully.

Change History

 This function is available since SDK API 1.13.

MFXVideoENC_Close

Syntax

 mfxStatus MFXVideoENC_Close(mfxSession session);

Parameters

 session SDK session handle

Description

 This function closes H265 FEI. Refer to the SDK API Reference Manual for a complete

description of this function.

Return Status

 MFX_ERR_NONE The function completed successfully.

Change History

 This function is available since SDK API 1.13.

10 SDK API Reference Manual for HEVC GPU Assist APIs

MFXVideoENC_ProcessFrameAsync

Syntax

 mfxStatus MFXVideoENC_ProcessFrameAsync(

 mfxSession session, mfxENCInput *in,

 mfxENCOutput *out, mfxSyncPoint *syncp);

Parameters

 session SDK session handle

 in Pointer to the input parameters

 out Pointer to the output parameters

 syncp Pointer to the sync point associated with this operation

Description

 This function initiates the H265 FEI processing specified by the FEIOp field in the

mfxExtFEIH265Input structure. The results will be returned in the

mfxExtFEIH265Output structure. Note that this data cannot be safely accessed by

the caller until AFTER calling MFXVideoCORE_SyncOperation because FEI processing

occurs asynchronously. The same out pointer should be passed to every call to

MFXVideoEnc_ProcessFrameAsync which operates on the same source frame,

although the members of that struct may only be accessed after the relevant call to
MFXVideoCORE_SyncOperation returns.

Multiple FEI operations may be specified with one call to
MFXVideoEnc_ProcessFrameAsync by OR'ing operations in the FEIOp parameter

(e.g. MFX_FEI_H265_OP_INTRA_MODE | MFX_FEI_H265_OP_INTRA_DIST). But only

one forward and one backward reference are supported for motion estimation and

interpolation. To perform multi-reference search the application should call this

function several times.

Refer to the SDK API Reference Manual for a complete description of this function.

Return Status

 MFX_ERR_NONE The function completed successfully.

Change History

11 SDK API Reference Manual for HEVC GPU Assist APIs

 This function is available since SDK API 1.13.

MFXVideoCORE_SyncOperation

Syntax

 mfxStatus MFXVideoCORE_SyncOperation(mfxSession session,

 mfxSyncPoint syncp, mfxU32 wait);

Parameters

 session SDK session handle

 syncp Sync point

 wait Wait time in milliseconds

Description

 This function blocks until asynchronous H265 FEI processing completes. syncp is the

sync object returned from a call to MFXVideoEnc_ProcessFrameAsync. This function

will return when all processing associated with this sync point has completed, or when

the maximum wait time has elapsed. If MFX_ERR_NONE is returned then the relevant

results of H265 FEI processing can safely be accessed by the application.

Refer to the SDK API Reference Manual for a complete description of this function.

Return Status

 MFX_ERR_NONE The function completed successfully.

 MFX_WRN_IN_EXECUTION The wait time expired before the operation completed.
MFXVideoCORE_SyncOperation must be called again

before accessing the output.

Change History

 This function is available since SDK API 1.13.

12 SDK API Reference Manual for HEVC GPU Assist APIs

Structure Reference

In the following structure references, all reserved fields must be zero.

mfxExtFEIH265Param

Definition

typedef struct

{

 mfxExtBuffer Header;

 mfxU32 MaxCUSize;

 mfxU32 MPMode;

 mfxU32 NumIntraModes;

 mfxU16 reserved[22];

} mfxExtFEIH265Param;

Description

 This buffer contains parameters to configure the H265 FEI plugin.

Members

 Header.BufferId Buffer ID, must be MFX_EXTBUFF_FEI_H265_PARAM.

MaxCUSize

Maximum size of coding units (CU) used by the encoder. It

should be set to 16 or 32. If this value is 32, the FEI plugin

will provide MV and distortion estimates for blocks up to

size 32x32. Otherwise estimates are only provided for

blocks up to size 16x16.

MPMode

Motion partition mode. Must be one of the following values:

1 – square partitions only

2 – square and symmetric rectangular partitions

3 – all modes supported, including asymmetric partitions

If mode 2 or 3 is selected, MV and distortion estimates are

provided for block sizes 8x16 and 16x8. If MaxCUSize is

also >= 32, estimates are provided for sizes 32x16 and

16x32 as well. Otherwise these sizes are not evaluated.

NumIntraModes

Number of intra prediction modes to calculate. For each

frame, the plugin returns a sorted list of the top
NumIntraModes candidates for intra prediction. A unique

set of modes is calculated for every block on a 4x4, 8x8,

13 SDK API Reference Manual for HEVC GPU Assist APIs

16x16, and 32x32 grid. (NOTE: currently this must be set

to 1 – see "Known Limitations" above)

 reserved must be set to zero

Change History

 This structure is available since SDK API 1.13.

mfxExtFEIH265Input

Definition

typedef struct

{

 mfxExtBuffer Header;

 mfxU32 FEIOp;

 mfxU32 FrameType;

 mfxU32 RefIdx;

 mfxU16 reserved[22];

} mfxExtFEIH265Input;

Description

 This structure should be passed with each call to MFXVideoEnc_ProcessFrameAsync. It

specifies the type of processing to perform, frame type, and reference frame index (for

correlating with the output.

Members

 Header.BufferId Buffer ID, must be MFX_EXTBUFF_FEI_H265_INPUT.

 FEIOp

Operation to perform in the next call to

MFXVideoEnc_ProcessFrameAsync, selected from the

mfxFEIH265Operation enumerated list.

 FrameType Type of source frame (MFX_FRAMETYPE_I, MFX_FRAMETYPE_P, or

MFX_FRAMETYPE_B).

RefIdx

Reference frame index to associate with the results of inter-frame

prediction. This index will be used to access the corresponding

output data when all processing is complete. This value must be less

than the maximum number of reference frames specified during init
(mfxVideoParam.mfx.FrameInfo.NumRefFrames).

 reserved must be set to zero

14 SDK API Reference Manual for HEVC GPU Assist APIs

Change History

 This structure is available since SDK API 1.13.

mfxExtFEIH265Output

Definition

typedef struct

{

 mfxExtBuffer Header;

 mfxFEIH265Output *feiOut;

 mfxU16 reserved[24];

} mfxExtFEIH265Output;

Description

 This structure should be passed with each call to MFXVideoEnc_ProcessFrameAsync. It

contains a pointer to the buffer which will receive output data from H265 FEI processing.

Members

 Header.BufferId Buffer ID, must be MFX_EXTBUFF_FEI_H265_OUTPUT.

 feiOut
Pointer to user-allocated structure which will receive output data

from H265 FEI processing.

 reserved must be set to zero

Change History

 This structure is available since SDK API 1.13.

mfxFEIH265Output

Definition

typedef struct

{

 mfxU32 PaddedWidth;

 mfxU32 PaddedHeight;

 mfxU32 IntraMaxModes;

 mfxU32 * IntraModes4x4;

 mfxU32 * IntraModes8x8;

15 SDK API Reference Manual for HEVC GPU Assist APIs

 mfxU32 * IntraModes16x16;

 mfxU32 * IntraModes32x32;

 mfxU32 IntraPitch4x4;

 mfxU32 IntraPitch8x8;

 mfxU32 IntraPitch16x16;

 mfxU32 IntraPitch32x32;

 mfxI32 IntraPitch;

 mfxFEIH265IntraDist * IntraDist;

 mfxI32 PitchDist[64];

 mfxI32 PitchMV[64];

 mfxU32 * Dist[16][64];

 mfxI16Pair * MV[16][64];

 mfxI32 InterpolateWidth;

 mfxI32 InterpolateHeight;

 mfxI32 InterpolatePitch;

 mfxU8 * Interp[16][3];

} mfxFEIH265Output;

Description

 This structure contains the results of all H265 FEI processing for a source frame. It should
be attached to the structure mfxExtFEIH265Output. A subset of the elements may be

filled by a given call to MFXVideoEnc_ProcessFrameAsync, as determined by the value of

FEIOp. The results may only be accessed after the corresponding call to

MFXVideoCORE_SyncOperation has returned. For example, if

MFX_FEI_H265_OP_INTRA_DIST is specified, then IntraPitch and IntraDist[] may be

read once the corresponding sync operation has completed.

Members

PaddedWidth

Frame width padded up to a multiple of 16 if necessary. Used to
access the output data in IntraModes and IntraDist.

 PaddedHeight Frame height padded up to a multiple of 16 if necessary.

IntraMaxModes

Maximum number of intra prediction modes returned (specified at

initialization).

IntraModes4x4

Array containing IntraMaxModes candidate modes for each block of

the input frame, on a 4x4 grid. The list is sorted with the best

candidate appearing first. Modes are in the range [2,34]

corresponding to the 33 directional modes in the HEVC standard.

Modes 0 and 1 (planar and DC) are not considered.

In memory, each block contains IntraMaxModes modes, so the

modes for a 4x4 block with its upper-left pixel at location (x,y)

would be accessed at:

16 SDK API Reference Manual for HEVC GPU Assist APIs

(mfxU32)mode[i] =

IntraModes4x4[IntraMaxModes*(y/4*PaddedWidth/4+x/4) + i];

for i = [0, IntraMaxModes)

IntraModes8x8

Array containing IntraMaxModes candidate modes for each block of

the input frame, on an 8x8 grid. Addressing is similar to the 4x4

case.

IntraModes16x16

Array containing IntraMaxModes candidate modes for each block of

the input frame, on an 16x16 grid. Addressing is similar to the 4x4

case.

IntraModes32x32

Array containing IntraMaxModes candidate modes for each block of

the input frame, on a 32x32 grid. Addressing is similar to the 4x4

case.

IntraPitch

Horizontal pitch of the distortion estimates for intra coding on a

16x16 grid. In memory, each block is represented by a single
mfxFEIH265IntraDist element, so the estimate for 16x16 block

with its upper-left pixel at location (x,y) would be accessed at:

IntraDist[y/16*IntraPitch + x/16]

 IntraDist Array containing the distortion estimates for intra coding.

PitchDist

Horizontal pitch of the distortion estimates for inter coding, one for

each supported block size (partition unit).

PitchMV

Horizontal pitch of the estimated motion vectors for inter coding,

one for each supported block size (partition unit).

Dist

Array containing the distortion estimates (SAD's) for inter coding

for each source/reference frame pair.

For j = refIdx and k = MFX_FEI_H265_BLK_WxH (block size

index), mfxU32 *Dist[j][k] is the base pointer for distorition

estimates for reference frame j on a W x H grid. PitchDist[k]

returns the pitch of this array.

For block sizes 16x16 and smaller, a single distortion value is

provided, corresponding to the matching (quarter-pel) motion

vector in MV.

For block sizes 32x32, 16x32, and 32x16, a total of 9 distortion

values are provided, corresponding to a 3x3 matrix centered around

the returned value in MV (which has half-pel resolution). This allows

the encoder to consider eight additional MV's with offsets of +/1

quarter-pel in each direction. See example code in

sample_h265_gaa for an illustration of this indexing.

Note: 16x32 and 32x16 blocks are only processed if

mfxExtFEIH265Param.MPMode > 1, i.e. non-square blocks enabled.

17 SDK API Reference Manual for HEVC GPU Assist APIs

MV

Array containing the motion vector estimates for inter coding blocks
for each source/reference frame pair. Addressing is similar to Dist.

See example code in sample_ h265_gaa.

InterpolateWidth

Width (in pixels) of the half-pel interpolated output frames. This

includes a border of MFX_FEI_H265_INTERP_BORDER padding pixels.

InterpolateHeight

Height (in pixels) of the half-pel interpolated output frames. This

includes a border of MFX_FEI_H265_INTERP_BORDER padding pixels.

 InterpolatePitch Pitch (in pixels) of the half-pel interpolated output frames.

Interp

Pointers to 8-bit Y planes containing interpolated frames.

mfxU8 *Interp[j][k] corresponds to j = refIdx, and

k = [0,1,2] where:

 0 = horizontal interpolation (dx = 1/2, dy = 0)

 1 = vertical interpolation (dx = 0, dy = 1/2)

 2 = diagonal interpolation (dx = 1/2, dy = 1/2)

Change History

 This structure is available since SDK API 1.13.

18 SDK API Reference Manual for HEVC GPU Assist APIs

Enumerator Reference

mfxFEIH265BlockSize

Description

 The mfxFEIH265BlockSize enumerator indicates the block size (partition units) for

inter motion estimation. The convention is MFX_FEI_H265_BLK_WxH

Name/Description

 MFX_FEI_H265_BLK_32x32 32x32 blocks

 MFX_FEI_H265_BLK_32x16 32x16 blocks

 MFX_FEI_H265_BLK_16x32 16x32 blocks

 MFX_FEI_H265_BLK_16x16 16x16 blocks

 MFX_FEI_H265_BLK_16x8 16x8 blocks

 MFX_FEI_H265_BLK_8x16 8x16 blocks

 MFX_FEI_H265_BLK_8x8 8x8 blocks

Change History

 This enumerator is available since SDK API 1.13.

mfxFEIH265Operation

Description

 The mfxFEIH265Operation enumerator indicates the type of operation(s) to perform in

the call to MFXVideoEnc_ProcessFrameAsync. Multiple operations can be specified by

OR'ing together more than one value.

Name/Description

 MFX_FEI_H265_OP_NOP no operation

 MFX_FEI_H265_OP_INTRA_MODE calculate best intra prediction mode(s)

 MFX_FEI_H265_OP_INTRA_DIST calculate distortion estimates for intra coding

 MFX_FEI_H265_OP_INTER_ME calculate motion vectors and distortion estimates for

inter coding

 MFX_FEI_H265_OP_INTERPOLATE create half-pel interpolated frames

Change History

 This enumerator is available since SDK API 1.13.

19 SDK API Reference Manual for HEVC GPU Assist APIs

