Intel® Distribution of OpenVINO™ Toolkit
Community assistance about the Intel® Distribution of OpenVINO™ toolkit, OpenCV, and all aspects of computer vision-related on Intel® platforms.

Using fine tuned Faster RCNN model error

Miralles__Francois
814 Views

Hi,

I'm trying to use a Faster RCNN model pre-trained on COCO and fine tuned for 100 steps on COCO itself with Tensorflow 1.13.1.

Inference is done on Neural compute stick 2.

Model optimization seems to run fine with:

python "C:\Program Files (x86)\IntelSWTools\openvino_2019.1.148\deployment_tools\model_optimizer\mo_tf.py"  --input_model="H:\Code\tensorflow-models\research\object_detection\exported_models\frozen_inference_graph.pb" --tensorflow_use_custom_operations_config "C:\Program Files (x86)\IntelSWTools\openvino_2019.1.148\deployment_tools\model_optimizer\extensions\front\tf\faster_rcnn_support.json" --tensorflow_object_detection_api_pipeline_config "H:\Code\tensorflow-models\research\object_detection\exported_models\pipeline.config" --reverse_input_channels --data_type FP16 --model_name "frcnn_resnet50_equipment_fp16"

Model Optimizer arguments:
Common parameters:
        - Path to the Input Model:      H:\Code\tensorflow-models\research\object_detection\exported_models\frozen_inference_graph.pb
        - Path for generated IR:        C:\Users\cs5807\Documents\Intel\OpenVINO\samples\build\intel64\Release\.
        - IR output name:       frcnn_resnet50_equipment_fp16
        - Log level:    ERROR
        - Batch:        Not specified, inherited from the model
        - Input layers:         Not specified, inherited from the model
        - Output layers:        Not specified, inherited from the model
        - Input shapes:         Not specified, inherited from the model
        - Mean values:  Not specified
        - Scale values:         Not specified
        - Scale factor:         Not specified
        - Precision of IR:      FP16
        - Enable fusing:        True
        - Enable grouped convolutions fusing:   True
        - Move mean values to preprocess section:       False
        - Reverse input channels:       True
TensorFlow specific parameters:
        - Input model in text protobuf format:  False
        - Path to model dump for TensorBoard:   None
        - List of shared libraries with TensorFlow custom layers implementation:        None
        - Update the configuration file with input/output node names:   None
        - Use configuration file used to generate the model with Object Detection API:  H:\Code\tensorflow-models\research\object_detection\exported_models\pipeline.config
        - Operations to offload:        None
        - Patterns to offload:  None
        - Use the config file:  C:\Program Files (x86)\IntelSWTools\openvino_2019.1.148\deployment_tools\model_optimizer\extensions\front\tf\faster_rcnn_support.json
Model Optimizer version:        2019.1.1-83-g28dfbfd
[ WARNING ] Model Optimizer removes pre-processing block of the model which resizes image keeping aspect ratio. The Inference Engine does not support dynamic image size so the Intermediate Representation file is generated with the input image size of a fixed size.
Specify the "--input_shape" command line parameter to override the default shape which is equal to (600, 600).
The Preprocessor block has been removed. Only nodes performing mean value subtraction and scaling (if applicable) are kept.
The graph output nodes "num_detections", "detection_boxes", "detection_classes", "detection_scores" have been replaced with a single layer of type "Detection Output". Refer to IR catalogue in the documentation for information about this layer.

[ SUCCESS ] Generated IR model.
[ SUCCESS ] XML file: C:\Users\cs5807\Documents\Intel\OpenVINO\samples\build\intel64\Release\.\frcnn_resnet50_equipment_fp16.xml
[ SUCCESS ] BIN file: C:\Users\cs5807\Documents\Intel\OpenVINO\samples\build\intel64\Release\.\frcnn_resnet50_equipment_fp16.bin
[ SUCCESS ] Total execution time: 36.84 seconds.

However, at inference, I get the following error:

object_detection_sample_ssd -i "C:\Users\cs5807\Pictures\IMG_2932.bmp" -m frcnn_resnet50_equipment_fp16.xml -d MYRIAD -ni 10

[ INFO ] InferenceEngine:
        API version ............ 1.6
        Build .................. 23780
Parsing input parameters
[ INFO ] Files were added: 1
[ INFO ]     C:\Users\cs5807\Pictures\IMG_2932.bmp
[ INFO ] Loading plugin

        API version ............ 1.6
        Build .................. 23780
        Description ....... myriadPlugin
[ INFO ] Loading network files:
        frcnn_resnet50_equipment_fp16.xml
        frcnn_resnet50_equipment_fp16.bin
[ INFO ] Preparing input blobs
[ INFO ] Batch size is 1
[ INFO ] Preparing output blobs
[ INFO ] Loading model to the plugin
[ WARNING ] Image is resized from (640, 480) to (600, 600)
[ INFO ] Batch size is 1
[ INFO ] Start inference (10 iterations)
E: [xLink] [         0] dispatcherEventSend:934    Write failed event -1

E: [xLink] [         0] dispatcherWaitEventComplete:708    waiting is timeout, sending reset remote event
E: [xLink] [         0] dispatcherEventSend:924    Write failed header -1 | event XLINK_RESET_REQ

E: [xLink] [         0] eventSchedulerRun:584      Event sending failed
F: [xLink] [         0] dispatcherEventReceive:355 E: [watchdog] [         0] sendPingMessage:132     Duplicate id detected.
Failed send ping message: X_LINK_TIMEOUT
E: [xLink] [         0] XLinkReadDataWithTimeOut:1343      
Event data is invalid
E: [ncAPI] [         0] ncFifoReadElem:3353        Packet reading is failed.
E: [watchdog] [         0] sendPingMessage:132     Failed send ping message: X_LINK_ERROR
E: [watchdog] [         0] watchdog_routine:327    [0000020DEC652170] device, not respond, removing from watchdog

W: [xLink] [         0] isAvailableScheduler:441   Scheduler has already been reset or cleaned
W: [xLink] [         0] eventSchedulerRun:610      Failed to reset
E: [ncAPI] [         0] ncFifoDestroy:3176 Failed to write to fifo before deleting it!
E: [ncAPI] [         0] ncDeviceClose:1617 Device didn't appear after reboot
[ ERROR ] Failed to read output from FIFO: NC_ERROR

Any idea of what is going wrong?

0 Kudos
5 Replies
Shubha_R_Intel
Employee
814 Views

Dear Miralles, Francois, instead of the object_detection_demo_ssd can you try the object_detection_demo ? 

Let me know what happens here,

Thanks,

Shubha

 

0 Kudos
Miralles__Francois
814 Views

Running the command:

object_detection_demo -i "C:\Users\cs5807\Pictures\IMG_2932.bmp" -m "C:\Users\cs5807\Documents\Intel\OpenVINO\samples\build\intel64\Release\frcnn_resnet50_equipment_fp16.xml" -d MYRIAD

log:

[ INFO ] InferenceEngine:
        API version ............ 1.6
        Build .................. 23780
Parsing input parameters
[ INFO ] Files were added: 1
[ INFO ]     C:\Users\cs5807\Pictures\IMG_2932.bmp
[ INFO ] Loading plugin

        API version ............ 1.6
        Build .................. 23780
        Description ....... myriadPlugin
[ INFO ] Loading network files:
        C:\Users\cs5807\Documents\Intel\OpenVINO\samples\build\intel64\Release\frcnn_resnet50_equipment_fp16.xml
        C:\Users\cs5807\Documents\Intel\OpenVINO\samples\build\intel64\Release\frcnn_resnet50_equipment_fp16.bin

but the demo crashes at line:

int inputWidth = network.getInputsInfo().begin()->second->getTensorDesc().getDims()[3];

because of vector subscript out of range. Dimension returned by getDims() is of 2.

0 Kudos
Shubha_R_Intel
Employee
814 Views

Dear Miralles, Francois,

I'm terribly sorry for this inconvenience - but these bugs should be fixed in the next upcoming release of OpenVino  2019 R2. Should be released very soon, though I am not at liberty to tell you the exact date.

Please be patient with us !

Thanks,

Shubha

 

0 Kudos
Miralles__Francois
814 Views

ok. I understand. This is all very new and on the edge I must say ;-)

0 Kudos
Shubha_R_Intel
Employee
814 Views

Dear Miralles, Francois,

You are right ! AI is constantly changing. For any company in this field, keeping abreast of the latest research is a never-ending challenge. But thanks for your flexibility. I promise R2 is "just around the corner" !

Shubha

0 Kudos
Reply