Community
cancel
Showing results for 
Search instead for 
Did you mean: 
Kulkarni__Vinay
New Contributor I
55 Views

Conversion from .pb to IR format not working

Hi,

   I tried converting the yolo.pb (which i used your blog to get this from yolo tensorflow code) to IR format using optimizer tool.

But i get following errors:

I have attached all 3 files (yolo.pb,mo_tf.py and demo.py,yolov3_changed.json) for your reference.

Please let me know if i have to do extra steps to get it working.

 

C:\Users\Ignitarium\Documents\tensorflow-yolo-v3>python  C:\Intel\computer_vision_sdk_2018.4.420\deployment_tools\model_optimizer\mo_tf.py --input_model yolo_v3.pb --tensorflow_use_custom_operations_config  yolo_v3_changed.json
Model Optimizer arguments:
Common parameters:
        - Path to the Input Model:      C:\Users\Ignitarium\Documents\tensorflow-yolo-v3\yolo_v3.pb
        - Path for generated IR:        C:\Users\Ignitarium\Documents\tensorflow-yolo-v3\.
        - IR output name:       yolo_v3
        - Log level:    ERROR
        - Batch:        Not specified, inherited from the model
        - Input layers:         Not specified, inherited from the model
        - Output layers:        Not specified, inherited from the model
        - Input shapes:         Not specified, inherited from the model
        - Mean values:  Not specified
        - Scale values:         Not specified
        - Scale factor:         Not specified
        - Precision of IR:      FP32
        - Enable fusing:        True
        - Enable grouped convolutions fusing:   True
        - Move mean values to preprocess section:       False
        - Reverse input channels:       False
TensorFlow specific parameters:
        - Input model in text protobuf format:  False
        - Offload unsupported operations:       False
        - Path to model dump for TensorBoard:   None
        - List of shared libraries with TensorFlow custom layers implementation:        None
        - Update the configuration file with input/output node names:   None
        - Use configuration file used to generate the model with Object Detection API:  None
        - Operations to offload:        None
        - Patterns to offload:  None
        - Use the config file:  C:\Users\Ignitarium\Documents\tensorflow-yolo-v3\yolo_v3_changed.json
Model Optimizer version:        1.4.292.6ef7232d
[ ERROR ]  Shape [ -1 416 416   3] is not fully defined for output 0 of "Placeholder". Use --input_shape with positive integers to override model input shapes.
[ ERROR ]  Cannot infer shapes or values for node "Placeholder".
[ ERROR ]  Not all output shapes were inferred or fully defined for node "Placeholder".
 For more information please refer to Model Optimizer FAQ (<INSTALL_DIR>/deployment_tools/documentation/docs/MO_FAQ.html), question #40.
[ ERROR ]
[ ERROR ]  It can happen due to bug in custom shape infer function <function tf_placeholder_ext.<locals>.<lambda> at 0x000001780B84FAE8>.
[ ERROR ]  Or because the node inputs have incorrect values/shapes.
[ ERROR ]  Or because input shapes are incorrect (embedded to the model or passed via --input_shape).
[ ERROR ]  Run Model Optimizer with --log_level=DEBUG for more information.
[ ERROR ]  Stopped shape/value propagation at "Placeholder" node.
 For more information please refer to Model Optimizer FAQ (<INSTALL_DIR>/deployment_tools/documentation/docs/MO_FAQ.html), question #38.

 

 

Regards

Vinay

0 Kudos
2 Replies
Kulkarni__Vinay
New Contributor I
55 Views

Any ideas??

Hyodo__Katsuya
Innovator
55 Views