Showing results for 
Search instead for 
Did you mean: 

[ERROR ] OpenVino Model Optimiser converting YOLOV3 model to IR

I followed this documentation for converting yolov3 model to IR. The step for generating *.pb file success. 

However I encounter this error while running model_optimizer:


python --input_model frozen_darknet_yolov3_model.pb --tensorflow_use_custom_operations_config extensions\front\tf\yolo_v3.json --input_shape [1,416,416,3]
Model Optimizer arguments:
Common parameters:
        - Path to the Input Model:      frozen_darknet_yolov3_model.pb
        - Path for generated IR:        openvino\deployment_tools\model_optimizer\.
        - IR output name:       frozen_darknet_yolov3_model
        - Log level:    ERROR
        - Batch:        Not specified, inherited from the model
        - Input layers:         Not specified, inherited from the model
        - Output layers:        Not specified, inherited from the model
        - Input shapes:         [1,416,416,3]
        - Mean values:  Not specified
        - Scale values:         Not specified
        - Scale factor:         Not specified
        - Precision of IR:      FP32
        - Enable fusing:        True
        - Enable grouped convolutions fusing:   True
        - Move mean values to preprocess section:       False
        - Reverse input channels:       False
TensorFlow specific parameters:
        - Input model in text protobuf format:  False
        - Path to model dump for TensorBoard:   None
        - List of shared libraries with TensorFlow custom layers implementation:        None
        - Update the configuration file with input/output node names:   None
        - Use configuration file used to generate the model with Object Detection API:  None
        - Operations to offload:        None
        - Patterns to offload:  None
        - Use the config file:  C:\Program Files (x86)\IntelSWTools\openvino\deployment_tools\model_optimizer\extensions\front\tf\yolo_v3.json
Model Optimizer version:        2019.1.1-83-g28dfbfd
C:\Program Files (x86)\IntelSWTools\openvino\deployment_tools\model_optimizer\mo\middle\passes\fusing\ RuntimeWarning: invalid value encountered in sqrt
  scale = 1. / np.sqrt(variance.value + eps)
[ ERROR ]  -------------------------------------------------
[ ERROR ]  ----------------- INTERNAL ERROR ----------------
[ ERROR ]  Unexpected exception happened.
[ ERROR ]  Please contact Model Optimizer developers and forward the following information:
[ ERROR ]  Traceback (most recent call last):
  File "C:\Program Files (x86)\IntelSWTools\openvino\deployment_tools\model_optimizer\mo\", line 312, in main
    return driver(argv)
  File "C:\Program Files (x86)\IntelSWTools\openvino\deployment_tools\model_optimizer\mo\", line 263, in driver
    is_binary=not argv.input_model_is_text)
  File "C:\Program Files (x86)\IntelSWTools\openvino\deployment_tools\model_optimizer\mo\pipeline\", line 141, in tf2nx
  File "C:\Program Files (x86)\IntelSWTools\openvino\deployment_tools\model_optimizer\mo\middle\passes\", line 186, in graph_clean_up_tf
    graph_clean_up(graph, ['TFCustomSubgraphCall', 'Shape'])
  File "C:\Program Files (x86)\IntelSWTools\openvino\deployment_tools\model_optimizer\mo\middle\passes\", line 181, in graph_clean_up
  File "C:\Program Files (x86)\IntelSWTools\openvino\deployment_tools\model_optimizer\mo\middle\passes\", line 145, in add_constant_operations
    Const(graph, dict(value=node.value, shape=np.array(node.value.shape))).create_node_with_data(data_nodes=node)
  File "C:\Program Files (x86)\IntelSWTools\openvino\deployment_tools\model_optimizer\mo\ops\", line 207, in create_node_with_data
    [np.array_equal(old_data_value[id], data_node.value) for id, data_node in enumerate(data_nodes)])

[ ERROR ]  ---------------- END OF BUG REPORT --------------
[ ERROR ]  -------------------------------------------------


Model Optimizer commands:

python --input_model frozen_darknet_yolov3_model.pb --tensorflow_use_custom_operations_config extensions\front\tf\yolo_v3.json --input_shape [1,416,416,3]

Link to *.pb file


0 Kudos
0 Replies