Community
cancel
Showing results for 
Search instead for 
Did you mean: 
idata
Community Manager
388 Views

Error during run time after model compilation to xml

I have compiled the following model from keras (h5) to tensorflow binary version (.pb) [ I have tried the compilation function previously with different models and it worked well ]

 

Then using intel modivus supplied kit compiled the (.pb) to xml file that can be used in runtime.

 

However resulted in the following runtime error:

 

what(): Cannot convert layer "up_sampling2d_1/ResizeNearestNeighbor" due to unsupported layer type "Resample"

 

inputs = Input((img_rows, img_cols,img_channels)) inputs_norm = Lambda(lambda x: x/127.5 - 1.) conv1 = Conv2D(8, (3, 3), padding='same')(inputs) conv1 = Activation('relu')(conv1) conv1 = Conv2D(8, (3, 3), padding='same')(conv1) conv1 = Activation('relu')(conv1) pool1 = MaxPooling2D(pool_size=(2, 2))(conv1) conv2 = Conv2D(16, (3, 3), padding='same')(pool1) conv2 = Activation('relu')(conv2) conv2 = Conv2D(16, (3, 3), padding='same')(conv2) conv2 = Activation('relu')(conv2) pool2 = MaxPooling2D(pool_size=(2, 2))(conv2) conv3 = Conv2D(32, (3, 3), padding='same')(pool2) conv3 = Activation('relu')(conv3) conv3 = Conv2D(32, (3, 3), padding='same')(conv3) conv3 = Activation('relu')(conv3) pool3 = MaxPooling2D(pool_size=(2, 2))(conv3) conv4 = Conv2D(64, (3, 3), padding='same')(pool3) conv4 = Activation('relu')(conv4) conv4 = Conv2D(64, (3, 3), padding='same')(conv4) conv4 = Activation('relu')(conv4) pool4 = MaxPooling2D(pool_size=(2, 2))(conv4) conv5 = Conv2D(128, (3, 3), padding='same')(pool4) conv5 = Activation('relu')(conv5) conv5 = Conv2D(128, (3, 3), padding='same')(conv5) conv5 = Activation('relu')(conv5) pool5 = MaxPooling2D(pool_size=(2, 2))(conv5) # # #up6 up6 = UpSampling2D()(conv5) up6 = concatenate([up6, conv4], axis=3) conv6 = Conv2D(64, (3, 3), padding='same')(up6) conv6 = Activation('relu')(conv6) conv6 = Conv2D(64, (3, 3), padding='same')(conv6) conv6 = Activation('relu')(conv6) #up 7 up7 = UpSampling2D()(conv6) up7 = concatenate([up7, conv3], axis=3) conv7 = Conv2D(32, (3, 3), padding='same')(up7) conv7 = Activation('relu')(conv7) conv7 = Conv2D(32, (3, 3), padding='same')(conv7) conv7 = Activation('relu')(conv7) # up 8 up8 = UpSampling2D()(conv7) up8 = concatenate([up8, conv2], axis=3) conv8 = Conv2D(16, (3, 3), padding='same')(up8) conv8 = Activation('relu')(conv8) conv8 = Conv2D(16, (3, 3), padding='same')(conv8) conv8 = Activation('relu')(conv8) # up 9 up9 = UpSampling2D()(conv8) up9 = concatenate([up9, conv1], axis=3) conv9 = Conv2D(8, (3, 3), padding='same')(up9) conv9 = Activation('relu')(conv9) conv9 = Conv2D(8, (3, 3), padding='same')(conv9) conv9 = Activation('relu')(conv9) conv10 = Conv2D(1, (1, 1))(conv9) conv10 = Activation('sigmoid')(conv10) model = Model(inputs=[inputs], outputs=[conv10])

 

What could be the reason, what and how i can tackle it.

0 Kudos
1 Reply
idata
Community Manager
80 Views

Hi @Mohammad,

 

 

Thanks for contacting us. May I ask which SDK are you using (NCSDK1, NCSDK2 or OpenVINO)? If you have any additional info that could help us reproduce this problem (host OS, VM?, NCS1 or NCS2?), perhaps sharing your model or provide steps on how to replicate.

 

Best Regards,

 

@Luis_at_Intel