- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
I try to convert tensorflow to IR, but CTCGreedyDecoder issue error.
[ 2019-01-29 15:46:01,349 ] [ DEBUG ] [ infer:151 ] Partial infer for CTCGreedyDecoder
[ 2019-01-29 15:46:01,349 ] [ DEBUG ] [ infer:152 ] Op: CTCGreedyDecoder
[ 2019-01-29 15:46:01,349 ] [ DEBUG ] [ infer:163 ] Inputs:
[ 2019-01-29 15:46:01,349 ] [ DEBUG ] [ infer:40 ] input[0]: shape = [24 1 67], value = <UNKNOWN>
[ 2019-01-29 15:46:01,349 ] [ DEBUG ] [ infer:40 ] input[1]: shape = [1 1], value = [[24]]
[ 2019-01-29 15:46:01,349 ] [ DEBUG ] [ infer:165 ] Outputs:
[ 2019-01-29 15:46:01,349 ] [ DEBUG ] [ infer:40 ] output[0]: shape = [ 1 24 1 1], value = <UNKNOWN>
[ 2019-01-29 15:46:01,349 ] [ DEBUG ] [ infer:40 ] output[2]: shape = <UNKNOWN>, value = <UNKNOWN>
[ 2019-01-29 15:46:01,349 ] [ DEBUG ] [ infer:40 ] output[1]: shape = <UNKNOWN>, value = <UNKNOWN>
[ ERROR ] Shape is not defined for output 2 of "CTCGreedyDecoder".
[ ERROR ] Shape is not defined for output 1 of "CTCGreedyDecoder".
[ ERROR ] Cannot infer shapes or values for node "CTCGreedyDecoder".
In lprnet IR, there only one output in CTCGreedyDecoder in LPRNet.xml:
<layer id="78" name="decode" precision="FP16" type="CTCGreedyDecoder"> <data ctc_merge_repeated="1"/> <input> <port id="0"> <dim>88</dim> <dim>1</dim> <dim>71</dim> </port> <port id="1"> <dim>88</dim> <dim>1</dim> </port> </input> <output> <port id="2"> <dim>1</dim> <dim>88</dim> <dim>1</dim> <dim>1</dim> </port> </output> </layer>
The tf model:
https://drive.google.com/open?id=1sQ9mzf3acwSO1grDC7q81qX6aCPXshIp
Please help. Thank you!
Link Copied
- Subscribe to RSS Feed
- Mark Topic as New
- Mark Topic as Read
- Float this Topic for Current User
- Bookmark
- Subscribe
- Printer Friendly Page