- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
I try to convert tensorflow to IR, but CTCGreedyDecoder issue error.
[ 2019-01-29 15:46:01,349 ] [ DEBUG ] [ infer:151 ] Partial infer for CTCGreedyDecoder
[ 2019-01-29 15:46:01,349 ] [ DEBUG ] [ infer:152 ] Op: CTCGreedyDecoder
[ 2019-01-29 15:46:01,349 ] [ DEBUG ] [ infer:163 ] Inputs:
[ 2019-01-29 15:46:01,349 ] [ DEBUG ] [ infer:40 ] input[0]: shape = [24 1 67], value = <UNKNOWN>
[ 2019-01-29 15:46:01,349 ] [ DEBUG ] [ infer:40 ] input[1]: shape = [1 1], value = [[24]]
[ 2019-01-29 15:46:01,349 ] [ DEBUG ] [ infer:165 ] Outputs:
[ 2019-01-29 15:46:01,349 ] [ DEBUG ] [ infer:40 ] output[0]: shape = [ 1 24 1 1], value = <UNKNOWN>
[ 2019-01-29 15:46:01,349 ] [ DEBUG ] [ infer:40 ] output[2]: shape = <UNKNOWN>, value = <UNKNOWN>
[ 2019-01-29 15:46:01,349 ] [ DEBUG ] [ infer:40 ] output[1]: shape = <UNKNOWN>, value = <UNKNOWN>
[ ERROR ] Shape is not defined for output 2 of "CTCGreedyDecoder".
[ ERROR ] Shape is not defined for output 1 of "CTCGreedyDecoder".
[ ERROR ] Cannot infer shapes or values for node "CTCGreedyDecoder".
In lprnet IR, there only one output in CTCGreedyDecoder in LPRNet.xml:
<layer id="78" name="decode" precision="FP16" type="CTCGreedyDecoder">
<data ctc_merge_repeated="1"/>
<input>
<port id="0">
<dim>88</dim>
<dim>1</dim>
<dim>71</dim>
</port>
<port id="1">
<dim>88</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2">
<dim>1</dim>
<dim>88</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
The tf model:
https://drive.google.com/open?id=1sQ9mzf3acwSO1grDC7q81qX6aCPXshIp
Please help. Thank you!
Link Copied
- Subscribe to RSS Feed
- Mark Topic as New
- Mark Topic as Read
- Float this Topic for Current User
- Bookmark
- Subscribe
- Printer Friendly Page