Intel® Distribution of OpenVINO™ Toolkit
Community assistance about the Intel® Distribution of OpenVINO™ toolkit, OpenCV, and all aspects of computer vision-related on Intel® platforms.
6480 Discussions

Problem Converting Tensorflow Model (Illegal Instruction)

Rivera__Maverick
Beginner
566 Views

I used the code below to convert my model. But it does not work. 

 sudo python3 mo_tf.py --input_model /home/ls201/Desktop/veh_class_faster_rcnn/frozen_inference_graph.pb --transformations_config /opt/intel/openvino/deployment_tools/model_optimizer/extensions/front/tf/faster_rcnn_support_api_v1.14.json --tensorflow_object_detection_api_pipeline_config /home/ls201/Desktop/veh_class_faster_rcnn/pipeline.config

the output is:

Model Optimizer arguments:
Common parameters:
    - Path to the Input Model:     /home/ls201/Desktop/veh_class_faster_rcnn/frozen_inference_graph.pb
    - Path for generated IR:     /opt/intel/openvino_2020.1.023/deployment_tools/model_optimizer/.
    - IR output name:     frozen_inference_graph
    - Log level:     ERROR
    - Batch:     Not specified, inherited from the model
    - Input layers:     Not specified, inherited from the model
    - Output layers:     Not specified, inherited from the model
    - Input shapes:     Not specified, inherited from the model
    - Mean values:     Not specified
    - Scale values:     Not specified
    - Scale factor:     Not specified
    - Precision of IR:     FP32
    - Enable fusing:     True
    - Enable grouped convolutions fusing:     True
    - Move mean values to preprocess section:     False
    - Reverse input channels:     False
TensorFlow specific parameters:
    - Input model in text protobuf format:     False
    - Path to model dump for TensorBoard:     None
    - List of shared libraries with TensorFlow custom layers implementation:     None
    - Update the configuration file with input/output node names:     None
    - Use configuration file used to generate the model with Object Detection API:     /home/ls201/Desktop/veh_class_faster_rcnn/pipeline.config
    - Operations to offload:     None
    - Patterns to offload:     None
    - Use the config file:     None
Model Optimizer version:     2020.1.0-61-gd349c3ba4a
Illegal instruction
 

link for model and pipeline config

https://drive.google.com/open?id=1vpVoYAfA5IdOcXNLgyelEUkENRHLRW_P

0 Kudos
2 Replies
JesusE_Intel
Moderator
566 Views

Hi Maverick,

It looks like the pipeline.config file is empty, could you double check?

Also, please share additional information about the model.

  • Is it a pre-trained model or custom trained model?
  • If it's custom trained model, what base model was used for training?
  • Which version of TensorFlow was used for training?
  • How did you freeze the model?

Regards,

Jesus

 

0 Kudos
Viramontes_Olivar__J
566 Views

I have the same problem but when I'm installing the robot_devkit, it says "Illegal instruction", this is the output:

 

Model Optimizer arguments:
Common parameters:
    - Path to the Input Model:     /home/ramon/Downloads/models/mask_rcnn_inception_v2_coco_2018_01_28/frozen_inference_graph.pb
    - Path for generated IR:     /opt/openvino_toolkit/models/segmentation/output/FP32
    - IR output name:     frozen_inference_graph
    - Log level:     ERROR
    - Batch:     Not specified, inherited from the model
    - Input layers:     Not specified, inherited from the model
    - Output layers:     Not specified, inherited from the model
    - Input shapes:     Not specified, inherited from the model
    - Mean values:     Not specified
    - Scale values:     Not specified
    - Scale factor:     Not specified
    - Precision of IR:     FP32
    - Enable fusing:     True
    - Enable grouped convolutions fusing:     True
    - Move mean values to preprocess section:     False
    - Reverse input channels:     True
TensorFlow specific parameters:
    - Input model in text protobuf format:     False
    - Path to model dump for TensorBoard:     None
    - List of shared libraries with TensorFlow custom layers implementation:     None
    - Update the configuration file with input/output node names:     None
    - Use configuration file used to generate the model with Object Detection API:     /home/ramon/Downloads/models/mask_rcnn_inception_v2_coco_2018_01_28/pipeline.config
    - Use the config file:     /opt/intel/openvino/deployment_tools/model_optimizer/extensions/front/tf/mask_rcnn_support.json
Model Optimizer version:     
/home/ramon/robot_devkit/packages/perception/deps/33-openvino.deps: line 14: 18813 Illegal instruction     sudo python3 /opt/intel/openvino/deployment_tools/model_optimizer/mo_tf.py --input_model frozen_inference_graph.pb --tensorflow_use_custom_operations_config /opt/intel/openvino/deployment_tools/model_optimizer/extensions/front/tf/mask_rcnn_support.json --tensorflow_object_detection_api_pipeline_config pipeline.config --reverse_input_channels --output_dir /opt/openvino_toolkit/models/segmentation/output/FP32

 

Because of this it can't finish the process of installation of robot_devkit, specifically the problem comes out when I run the command: ./demo/rdk_install.sh , I'm following the instructions of this link: https://intel.github.io/robot_devkit_doc/pages/install.html

 

I've already have the two cameras and the neural compute stick 2,

 

the file content of the file: mask_rcnn_inception_v2_coco_2018_01_28/pipeline.config

 

is:

model {
  faster_rcnn {
    number_of_stages: 3
    num_classes: 90
    image_resizer {
      keep_aspect_ratio_resizer {
        min_dimension: 800
        max_dimension: 1365
      }
    }
    feature_extractor {
      type: "faster_rcnn_inception_v2"
      first_stage_features_stride: 16
    }
    first_stage_anchor_generator {
      grid_anchor_generator {
        height_stride: 16
        width_stride: 16
        scales: 0.25
        scales: 0.5
        scales: 1.0
        scales: 2.0
        aspect_ratios: 0.5
        aspect_ratios: 1.0
        aspect_ratios: 2.0
      }
    }
    first_stage_box_predictor_conv_hyperparams {
      op: CONV
      regularizer {
        l2_regularizer {
          weight: 0.0
        }
      }
      initializer {
        truncated_normal_initializer {
          stddev: 0.00999999977648
        }
      }
    }
    first_stage_nms_score_threshold: 0.0
    first_stage_nms_iou_threshold: 0.699999988079
    first_stage_max_proposals: 100
    first_stage_localization_loss_weight: 2.0
    first_stage_objectness_loss_weight: 1.0
    initial_crop_size: 14
    maxpool_kernel_size: 2
    maxpool_stride: 2
    second_stage_box_predictor {
      mask_rcnn_box_predictor {
        fc_hyperparams {
          op: FC
          regularizer {
            l2_regularizer {
              weight: 0.0
            }
          }
          initializer {
            variance_scaling_initializer {
              factor: 1.0
              uniform: true
              mode: FAN_AVG
            }
          }
        }
        use_dropout: false
        dropout_keep_probability: 1.0
        conv_hyperparams {
          op: CONV
          regularizer {
            l2_regularizer {
              weight: 0.0
            }
          }
          initializer {
            truncated_normal_initializer {
              stddev: 0.00999999977648
            }
          }
        }
        predict_instance_masks: true
        mask_prediction_conv_depth: 0
        mask_height: 15
        mask_width: 15
        mask_prediction_num_conv_layers: 2
      }
    }
    second_stage_post_processing {
      batch_non_max_suppression {
        score_threshold: 0.300000011921
        iou_threshold: 0.600000023842
        max_detections_per_class: 100
        max_total_detections: 100
      }
      score_converter: SOFTMAX
    }
    second_stage_localization_loss_weight: 2.0
    second_stage_classification_loss_weight: 1.0
    second_stage_mask_prediction_loss_weight: 4.0
  }
}
train_config {
  batch_size: 1
  data_augmentation_options {
    random_horizontal_flip {
    }
  }
  optimizer {
    momentum_optimizer {
      learning_rate {
        manual_step_learning_rate {
          initial_learning_rate: 0.000199999994948
          schedule {
            step: 0
            learning_rate: 0.000199999994948
          }
          schedule {
            step: 900000
            learning_rate: 1.99999994948e-05
          }
          schedule {
            step: 1200000
            learning_rate: 1.99999999495e-06
          }
        }
      }
      momentum_optimizer_value: 0.899999976158
    }
    use_moving_average: false
  }
  gradient_clipping_by_norm: 10.0
  fine_tune_checkpoint: "PATH_TO_BE_CONFIGURED/model.ckpt"
  from_detection_checkpoint: true
  num_steps: 200000
}
train_input_reader {
  label_map_path: "PATH_TO_BE_CONFIGURED/mscoco_label_map.pbtxt"
  tf_record_input_reader {
    input_path: "PATH_TO_BE_CONFIGURED/mscoco_train.record"
  }
}
eval_config {
  num_examples: 8000
  max_evals: 10
  use_moving_averages: false
}
eval_input_reader {
  label_map_path: "PATH_TO_BE_CONFIGURED/mscoco_label_map.pbtxt"
  shuffle: false
  num_readers: 1
  tf_record_input_reader {
    input_path: "PATH_TO_BE_CONFIGURED/mscoco_val.record"
  }
}

 

the only advertisement that I see is "ILLEGAL INSTRUCTION" but I haven't found any log file to see details.

 

I Hope someone can help,

 

Thanks regards .

 

 

 

 

0 Kudos
Reply