Intel® Distribution of OpenVINO™ Toolkit
Community support and discussions about the Intel® Distribution of OpenVINO™ toolkit, OpenCV, and all things computer vision-related on Intel® platforms.

using a batch for prediction

pkhan10
New Contributor I
228 Views

Hello openvino support dynamic batching
similar is there on other platform like tensorflow, where when you passed a batch of image you get batch of output
but in openvino same option is by enabling dynamic batching.

But dynamic batching doesn't work for all kind of topologies.
my question is how to use batch prediction for models like mobilenet-ssd,  Faster RCNN etc.

0 Kudos
3 Replies
Max_L_Intel
Moderator
228 Views

Hello Prateek.

OpenVINO toolkit supports dynamic batching, however, on only CPU and GPU devices and only on certain topologies that do contain specific supported layers - please find more details here https://docs.openvinotoolkit.org/latest/_docs_IE_DG_DynamicBatching.html
So please make sure your model used doesn't contain unsupported layers.

Best regards, Max.

pkhan10
New Contributor I
225 Views

hello,
Regarding batch prediction
In benchmarking tool, we can define batchsize and the output is the model latency at the batchsize,
how does that work, Can you please shed some light

Max_L_Intel
Moderator
215 Views

Hi @pkhan10 

Usually, batching improves the performance. Although, high batch size results in a latency penalty. Depending on your inference device, to achieve best results we recommend you to try different batch size values combining with other parameters (such as -nstreams) in order to find a sweet spot.

Please see more details about it in the following articles:
Performance Topics - https://docs.openvinotoolkit.org/latest/_docs_IE_DG_Intro_to_Performance.html
Optimization Guide - https://docs.openvinotoolkit.org/latest/_docs_optimization_guide_dldt_optimization_guide.html

Hope this helps.
Best regards, Max.

Reply