Intel® oneAPI Math Kernel Library
Ask questions and share information with other developers who use Intel® Math Kernel Library.
Announcements
This community is designed for sharing of public information. Please do not share Intel or third-party confidential information here.

Explicit SVD vs SVD with eigen solver

VICTOR_K_Intel
Employee
142 Views

Hi, 

could you clarify two following questions.

  1. Consider following mathematical problem. Given general full rank square non symmetric matrix A of 13 000 x 13 000 size I want to find its SVD with all singular values and all right/left eigen vectors. But when I solve it with some driver SVD routine (e.g. LAPACKE_sgesdd) it takes about 2 x slower then I solve two eigen decomposition problems at a time: for A*A' (getting left eigen vectors of A) and A'*A (getting right eigen vectors of A) matrices.
    Is it normal behavior or I miss something and there is more proper/fast way to find SVD for given matrix type explicitly (via SVD driver routine)?
  2. Considering the same problem, is there any way in MKL to find small subset (let it be 1 left and right eigen vectors for example) of all SVD right/left eigen vectors with the biggest singular values, saving "considerable" amount of time (at least 30%) ?

Thank you in advance.

0 Kudos
0 Replies
Reply