- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
Hi there,
I halved the number of filters in yolov3.cfg and train a new model. I managed to convert yolov3_custom.weights into frozen_yolov3_custom.pb as documented in the following link:
Now when I am trying to convert from *.pb to *.xml and *.bin using following command I am getting this error: (following the similar topics in the forums I tested with tf versions: 1.12.0 and 1.14.0)
python3 mo.py --input_model frozen_darknet_yolov3_person_model.pb --tensorflow_use_custom_operations_config yolo_v3_person.json --output_dir ./ --model_name yolov3-person-fp32 --data_type FP32 --input_shape [1,416,416,3] Model Optimizer arguments: Common parameters: - Path to the Input Model: frozen_darknet_yolov3_person_model.pb - Path for generated IR: ./ - IR output name: yolov3-person-fp32 - Log level: ERROR - Batch: Not specified, inherited from the model - Input layers: Not specified, inherited from the model - Output layers: Not specified, inherited from the model - Input shapes: [1,416,416,3] - Mean values: Not specified - Scale values: Not specified - Scale factor: Not specified - Precision of IR: FP32 - Enable fusing: True - Enable grouped convolutions fusing: True - Move mean values to preprocess section: False - Reverse input channels: False TensorFlow specific parameters: - Input model in text protobuf format: False - Path to model dump for TensorBoard: None - List of shared libraries with TensorFlow custom layers implementation: None - Update the configuration file with input/output node names: None - Use configuration file used to generate the model with Object Detection API: None - Operations to offload: None - Patterns to offload: None - Use the config file: yolo_v3_person.json Model Optimizer version: 2019.1.1-83-g28dfbfd /opt/intel/openvino_2019.1.144/deployment_tools/model_optimizer/mo/middle/passes/fusing/decomposition.py:65: RuntimeWarning: invalid value encountered in sqrt scale = 1. / np.sqrt(variance.value + eps) [ ERROR ] ------------------------------------------------- [ ERROR ] ----------------- INTERNAL ERROR ---------------- [ ERROR ] Unexpected exception happened. [ ERROR ] Please contact Model Optimizer developers and forward the following information: [ ERROR ] [ ERROR ] Traceback (most recent call last): File "/opt/intel/openvino_2019.1.144/deployment_tools/model_optimizer/mo/main.py", line 312, in main return driver(argv) File "/opt/intel/openvino_2019.1.144/deployment_tools/model_optimizer/mo/main.py", line 263, in driver is_binary=not argv.input_model_is_text) File "/opt/intel/openvino_2019.1.144/deployment_tools/model_optimizer/mo/pipeline/tf.py", line 141, in tf2nx graph_clean_up_tf(graph) File "/opt/intel/openvino_2019.1.144/deployment_tools/model_optimizer/mo/middle/passes/eliminate.py", line 186, in graph_clean_up_tf graph_clean_up(graph, ['TFCustomSubgraphCall', 'Shape']) File "/opt/intel/openvino_2019.1.144/deployment_tools/model_optimizer/mo/middle/passes/eliminate.py", line 181, in graph_clean_up add_constant_operations(graph) File "/opt/intel/openvino_2019.1.144/deployment_tools/model_optimizer/mo/middle/passes/eliminate.py", line 145, in add_constant_operations Const(graph, dict(value=node.value, shape=np.array(node.value.shape))).create_node_with_data(data_nodes=node) File "/opt/intel/openvino_2019.1.144/deployment_tools/model_optimizer/mo/ops/op.py", line 207, in create_node_with_data [np.array_equal(old_data_value[id], data_node.value) for id, data_node in enumerate(data_nodes)]) AssertionError [ ERROR ] ---------------- END OF BUG REPORT -------------- [ ERROR ] -------------------------------------------------
Link Copied
- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
Dear Abdollahi Aghdam, Omid,
So if I understand you correctly, you're experiencing a Model Optimizer failure on a custom-trained yolo v3 model ? In other words, you are not using the pre-trained one ?
Well today we just released OpenVino R2. Can you download it and try again ? R2 contains lots of new features and bug fixes.
Thanks for your patience. Definitely report back here on the status of OpenVino R2.
Shubha

- Subscribe to RSS Feed
- Mark Topic as New
- Mark Topic as Read
- Float this Topic for Current User
- Bookmark
- Subscribe
- Printer Friendly Page